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Influence of scattering effects on the interaction between longitudinal modes in laser diodes
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A predictive model of scattering processes in semiconductor lasers is derived, enabling us to model relaxation
processes starting from well-known parameters such as the dielectric constant. The resulting effective mode
interaction terms are explicitly calculated for an (InGa)N quantum well using Coulomb scattering. In contrast
to the method used so far to model mode competition phenomena in Fabry-Pérot-type laser diodes, the model
correctly includes, e.g., accelerated scattering at higher densities or temperatures and eliminates the scattering
rate as an unknown parameter. The effective mode interaction term derived in this work can be used for the
simulation of the mode dynamics in various laser diode types, for example, broad area laser diodes, where
multiple transversal and longitudinal modes are active. Thus, our model offers an increased predictability and
improved modeling of switch-on behavior.

DOI: 10.1103/PhysRevB.108.115304

I. INTRODUCTION

Fabry-Pérot-type laser diodes are used for various appli-
cations such as laser displays [1–4] and projection [5–7],
showing mode-competition phenomena [8,9]. For example,
these lasers show mode hopping, where the level of activity
of different longitudinal modes changes over time due to an
antisymmetric interaction of the modes. In a more recent
development, a similar effect has been observed in broad area
laser diodes, specifically in the presence of multiple lateral
modes [10]. This kind of mode interaction can be explained
by beating vibrations of the carrier densities in the quantum
well that appear when multiple longitudinal modes are active
at the same time [11].

The most common way to simulate the mode dynamics is
to use rate equations, i.e., to formulate equations of motion
for the photon numbers of all relevant modes and the carrier
density. An alternative method is the traveling wave method,
where a partial differential equation for the electrical field is
solved [12–18]. However, up to this point, no mode dynamics
simulations using the traveling wave method have been able
to qualitatively replicate the experimental results.

When using rate equations, the state of the charge carri-
ers is usually described by the total number of carriers in
the quantum well not specifying their spatial momentum or
energy distribution. In order to describe effects such as spatial
or spectral hole burning, a more detailed description is needed.
One possibility is to use a spatially varying carrier density or
even to use electron and hole distribution functions that de-
termine the average occupation of the different energy levels
[19].

*kuhn@wias-berlin.de

The direct treatment of the beating vibrations of the quan-
tum well carriers is computationally expensive, as the period
of the vibrations is typically in the region of a few picoseconds
[20], but the mode competition effects occur on the timescale
of 100 ns [21]. The computation time can be significantly
reduced by using an effective mode interaction term in the rate
equations instead. This effective term describes the interaction
between different optical modes and it is no longer necessary
to consider the beating vibrations of the quantum well carriers
in the calculations. The equations of motion of the photon
numbers in each mode are expanded by adding an additional
mode interaction term, where the strength of the interaction
is determined by the frequency difference of two modes. This
effective interaction term was derived for maser devices by
Lamb et al. [22] and for Fabry-Pérot laser diodes with a single
lateral mode by Yamada et al. using a constant scattering time
[11,23–27].

In Sec. II, we derive these effective mode interaction terms
using ab initio scattering terms, e.g., Coulomb scattering.
This kind of scattering term has been used extensively in the
literature to calculate optical properties such as the refractive
index and absorption/gain spectra for different materials, e.g.,
for gallium arsenide [28–35] and also gallium nitride based
[36] material systems. The derived effective mode interaction
term is valid not only for narrow-ridge laser diodes, but also
extends to broad ridge laser diodes exhibiting multiple lateral
modes. This may be used to understand the streak camera
observation, as shown in Ref. [10].

In Sec. III, the effective mode interaction term is calcu-
lated for an (InGa)N quantum well using Coulomb scattering.
Differences from a “traditional” calculation using a con-
stant scattering time occur, in particular, for small frequency
differences of the participating modes (�ω < 1 ps−1). The
interaction term also strongly depends on the field strength
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at the quantum well or, alternatively, the photon density. The
effect of the scattering terms on the mode dynamics using
an effective mode interaction term is also studied for a sim-
ple example where the carrier densities were assumed to be
constant.

II. THEORY

A. Basic theory

In order to simulate the mode dynamics of laser diodes,
we need to consider the equations of motion for the photon
numbers Sp. These photon numbers are the absolute squares
of the coefficients Bp in the expansion of the optical field E(r),
Sp = |Bp|2, and

E(r) =
∑

p

i

√
h̄ωp

2ε0
[Bpup(r) − B∗

pu∗
p(r)],

where up(r) are the respective photon mode functions, ωp are
the mode frequencies, and ε0 is the vacuum permittivity. The
mode functions typically depend on the device geometry. For
example, for Fabry-Pérot laser diodes, they can be written as

upm = gp(y)tm(x, z),

where the index p is used for the longitudinal mode function
gp(y) and m is used for the transversal mode function tm(x, z).
In the following, these two indices are combined into a sin-
gle index p. Here, z is the growth direction, x is the lateral
coordinate, and y is the longitudinal coordinate.

The equation of motion for the coefficients Bp can be de-
rived using the Heisenberg picture and is given by an integral
of the mode function with the polarization P of the quantum
well [37],

d

dt
Bp = −iωpBp +

√
ωp

2h̄ε0

∫
d3r u∗

p(r)P(r, ωp)

⇒ d

dt
Sp = d

dt
|Bp|2 =

√
2ωp

h̄ε0

∫
d3r Re{B∗

pu∗
p(r) · P(r, ωp)}.

(1)

For the actual simulation of a laser device, additional terms are
needed, for example, terms that describe spontaneous emis-
sion and photon losses inside the cavity.

In the present model, we also require a description of
the carriers in the quantum well in order to calculate the
polarization P. For this purpose, we use the semiconductor
Bloch equations [19,38,39], which are equations of motion
for the carrier distribution functions f e

k , f λ
k and microscopic

polarizations ψλ
k . These polarizations are used to describe

optical transitions between the conduction and valence band
and therefore indirectly couple the distribution functions with
the optical field. A derivation of these equations for the space-
dependent case is given in Ref. [19].

In order to calculate the changes of the distribution
functions, the equations of motion for the microscopic polar-
izations ψλ

k need to be solved. These are given by [19,38,39]

d

dt
ψλ

k = i�λ
k

(
1 − f λ

k − f e
k

) − i

h̄

(
ε̃e

k + ε̃λ
k

)
ψλ

k + d

dt
ψλ

k

∣∣∣∣
Scatter

,

(2)

where the index λ is used to index the different hole bands
and f λ

k are the hole distribution functions. Here, only one con-
duction band with the distribution function f e

k is considered.
Although all the quantities are dependent on x, y, and t , we
have omitted these dependencies for brevity’s sake. In this
equation, ε̃λ

k are the Hartree-Fock energies,

ε̃λ
k = ελ

k − 1

A

∑
q

V λλ
q f λ

k+q,

where A is the quantization area of the quantum well and
V λλ′

q are the Coulomb matrix elements. In the rotating wave
approximation (RWA), the Rabi frequency �λ

k is given by [37]

h̄�λ
k = − e

m0

∑
p

√
h̄

2ωpε0
Bpp∗

λ · up(r‖, zQW)

+ 1

A

∑
q

V eλ
q ψλ

k+q,

where m0 is the electron mass, r‖ is a shorthand logogram for
the x and y coordinates, and the quantum well is located at
zQW. The strength of the interaction with an optical field is
determined by the momentum matrix element pλ and, for a
quantum well, the Coulomb matrix element V λλ′

q is given by

V λλ′
q = e2

2ε0εb

1

q

∫
dz

∫
dz′ |ξλ(z)|2|ξλ′ (z′)|2 e−|q(z−z′ )|,

where ξλ(z) are the envelope functions of the different bands
and εb is the dielectric function of the background. For the
dephasing of the polarization due to carrier scattering, the
term

d

dt
ψλ

k

∣∣∣∣
Scatter

= −
∑

k′


λ
kk′

h̄
ψλ

k′ (3)

is used. The exact form of the dephasing matrix 
λ
kk′ depends

on the scattering processes that are considered. An example
is given in the Appendix for Coulomb scattering. The macro-
scopic polarization in Eq. (1) is parallel to the field and given
by [37]

u∗
p(r) · P(r, ωp) = −δ(z − zQW)u∗

p(r‖)
iepλ

ωpm0

2

A

∑
λk

ψλ
k (r‖),

(4)

where up(r) is the mode function at the position of the quan-
tum well,

pλ · u∗
p(r‖, zQW) = pλu∗

p(r‖). (5)

The equations of motion for the electron and hole distribu-
tion functions are

d

dt
f e
k = 2

∑
λ

Im
{
ψλ

k

(
�λ

k

)∗} − f e
k

τnr
+ d

dt
f e
k

∣∣∣∣
Scatter

,

d

dt
f λ
k = 2Im

{
ψλ

k

(
�λ

k

)∗} − f λ
k

τnr
+ d

dt
f λ
k

∣∣∣∣
Scatter

. (6)

Here, only terms that are relevant for the mode interaction are
considered. The constant τnr is used to account for nonradia-
tive losses. Further terms that are relevant in a laser simulation
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include the pumping of the quantum wells and losses due to
spontaneous emission and Auger recombination.

The scattering term plays a crucial role in the relaxation of
the system towards an equilibrium state, where the distribu-
tion functions can be described by Fermi-Dirac distributions.
When the deviations of the distribution functions from the
Fermi-Dirac form are small, the scattering term can be lin-
earized as follows:

d

dt
f λ
k

∣∣∣∣
Scatter

= −
∑

k′
Jλ

kk′
(

f λ
k′ − f λ,FD

k′
)
. (7)

Here, f λ,FD
k represents the Fermi-Dirac distributions at a fixed

temperature, which yield the same density as f λ
k . The scatter-

ing matrix Jλ
kk′ , similar to the dephasing matrix 
λ

kk′ , depends
on the specific scattering processes being considered. In the
Appendix, the scattering matrix for Coulomb scattering is pro-
vided. The simplest approximation for the scattering matrix
assumes a constant scattering time τs,

Jλ
kk′ = 1

τs
δkk′ . (8)

Using this approximation, the deviations from the Fermi-
Dirac distributions decay exponentially,

d

dt
f λ
k

∣∣∣∣
Scatter

= − f λ
k − f λ,FD

k

τs
.

B. Mode interaction term for a single lateral mode

Yamada et al. have provided a theoretical description of
mode-competition phenomena in Fabry-Pérot laser diodes for
narrow-ridge laser diodes with a single lateral mode [23]. In
their rate equation model, they incorporate a mode interaction
term expressed in terms of two matrices [26],

d

dt
Sp

∣∣∣∣
Interaction

= −
∑
q �=p

(Dpq + Hpq )SqSp.

This mode interaction arises due to the beating vibrations of
carrier densities in the longitudinal direction, as illustrated in
Fig. 1. The symmetric interaction matrix Dpq, which accounts
for mode interaction, is given by

Dpq = 4

3

B( 2πcτin
λ2

p

)2
(λp − λq)2 + 1

, (9)

where λp represents the vacuum wavelength of mode p, c is
the speed of light in vacuum, τin is denoted as the intraband
relaxation time, and B is the self-saturation coefficient which
depends on various other parameters. For a large mode spac-
ing, the antisymmetric mode interaction matrix Hpq can be
expressed as

Hpq = 3λ2
p

8πc

(
aξ

V

)2
α(N − Ng)

λq − λp
. (10)

Here, a denotes the slope coefficient to determine the local
linear gain, Ng represents the transparent electron number,
V is the volume of the active region, ξ is the confinement
factor, and α denotes the linewidth enhancement factor. It is

FIG. 1. Illustration of the interaction of two active modes. When
two longitudinal modes up(y) and up+1(y) are active at the same time,
they produce vibrations of the carrier densities δn(y) and the distri-
bution functions δ fk(y), which in turn change the optical gain g(y).
Contributions to δn(y) and δ fk(y) with a strong spatial dependence
are quickly dampened due to carrier diffusion; therefore, only the
contributions with a weak spatial dependence need to be considered.
In the derivation, the equations of motion for the charge carriers are
solved approximately and the resulting deviations δ fk are substituted
into the equations of motion for the photon numbers in order to
obtain an effective mode interaction term.

worth noting that in this model, the scattering and dephasing
effects are incorporated into a single parameter τin, which cor-
responds to the scattering time τs in Eq. (8). In the subsequent
section, we derive a mode interaction term that allows for a
more detailed description of the scattering processes.

C. Derivation of the mode interaction terms

The mode interaction term derived in this section has the
form

d

dt
Sp

∣∣∣∣
Interaction

≈
∑

q

SpSq

ωpωq

∫
d2r‖ |up(r‖)|2|uq(r‖)|2

× G(ωq − ωp, r‖). (11)

This expression can be easily incorporated into rate equa-
tions for the photon numbers Sp as an additional term and can
also be used for multiple lateral modes. In the case of multiple
quantum wells, the same formula can be used; the integral just
needs to be evaluated for every quantum well.

Thus, the strength of the mode interaction between two
modes p and q is determined by a function G(�ω, r‖) that
depends on the frequency difference �ω = ωq − ωp, the tem-
perature, and the carrier densities at the point r‖. In the
following, we present a microscopic derivation of the mode
interaction strength G(�ω, r‖).

In a laser diode, the photon numbers and distribution
functions generally exhibit a relatively slow change over
a timescale of nanoseconds, particularly once the turn-on
process is complete. However, the dephasing times for semi-
conductors are of the order of 100 fs [39], and therefore Eq. (2)
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can be approximately solved for the polarization,

ψλ
k =

∑
p

ep∗
λ

m0

√
h̄

2ωpε0
up(r‖)Bp

∑
k′

�λ,−1
kk′ (ωp)

(
1 − f e

k′ − f λ
k′
) = −

∑
p

ep∗
λ

m0

√
h̄

2ωpε0
up(r‖)Bpχ

λ
k (ωp), (12)

where �λ,−1
kk′ denotes the inverse of the matrix,

�λ
kk′ (ω) = δkk′

(
h̄ω − ε̃e

k − ε̃λ
k

) + i
λ
kk′ + 1

A

(
1 − f e

k − f λ
k

)
V eλ

k′−k.

Here, χλ
k (ω) denotes contributions for wave vector k and hole band λ to the electrical susceptibility,

χ (ω) = 2

A

∑
λk

e2|pλ|2
ε0m2

0ω
2
χλ

k (ω). (13)

While the real part of the susceptibility determines changes in the refractive index, the imaginary part of the susceptibility is
strongly related to the absorption and therefore the optical gain [40],

g(ω) = − ω

n(ω)cdQW
Imχ (ω),

where n(ω) is the refractive index, c is the speed of light in vacuum, and dQW is the quantum well thickness. The equations of
motion for the photon numbers can be obtained by substituting Eqs. (4) and (12) into Eq. (1),

d

dt
Sp =

∑
q

Im

{
B∗

pBq
Cλ√
ωpωq

∫
d2r‖ u∗

p(r‖)uq(r‖)
2

A

∑
λk

χλ
k (ωq)

}
, (14)

with the abbreviation Cλ = e2|pλ|2/m2
0ε0. The initial step involves isolating the highly time-dependent contributions of the

distribution functions that are induced by two distinct active optical modes, distinguishing them from the remaining terms,

fk(r‖) = f 0
k (r‖) + δ fk(r‖).

Here, the contributions with a strong time dependence are given by δ fk(r‖). For example, the frequency difference of two
neighboring longitudinal modes is approximately given by 0.5 ps−1 for the structure discussed in Sec. III, whereas the term
f 0
k (r‖) is assumed to change on a nanosecond timescale. For the current discussion, we assume that the distribution functions

f 0
k are given by Fermi-Dirac distributions. Substituting the solution from Eq. (12) for the microscopic polarization into the

equations of motion for the distribution functions in Eqs. (6) yields

d

dt
f e
k =

∑
λ

∑
pq

Cλ

1√
ωqωp

Im
{
BpB∗

qχ
λ
k (ωp)up(r‖)u∗

q(r‖)
} − f e

k

τnr
−

∑
k′

Je
kk′

(
f e
k′ − f e,FD

k′
)
,

d

dt
f λ
k

=
∑

pq

Cλ

1√
ωqωp

Im
{
BpB∗

qχ
λ
k (ωp)up(r‖)u∗

q(r‖)
} − f λ

k

τnr
−

∑
k′

Jλ
kk′

(
f λ
k′ − f λ,FD

k′
)
. (15)

The equation of motion for the spatial deviations of the hole distribution functions is then given by

d

dt
δ f λ

k ≈
∑
p�=q

Cλ

1√
ωqωp

Im
{
BpB∗

qχ
λ
k (ωp)up(r‖)u∗

q(r‖)
} −

∑
k′

Jλ
kk′

(
δ f λ

k′ − δnh

∂ f λ,FD
k′

∂n0
h

)
− δ f λ

k

τnr
,

where
∂ f λ,FD

k′
∂n0

h
denotes the derivative of the Fermi-Dirac distributions with respect to the density and

δnh = 2

A

∑
λk

δ f λ
k

is the deviation of the hole density. An analogous equation of motion can be derived for the electrons. When the densities
and photon numbers change slowly compared to the typical scattering times, it is possible to solve these equations of motion
approximately and we obtain, for the spatial deviations of the hole distribution functions,

δ f λ
k ≈

∑
λ′ pq,p>q

Cλ′

√
1

ωqωp
Re

(
BpB∗

qup(r‖)u∗
q(r‖)

{
δλλ′

∑
k′

J̃λ
kk′ (ωq − ωp)

[
Imχλ,0

k′ (ωp) + Imχλ,0
k′ (ωq)

]

− i

ωq − ωp

[
Imχ0

λ′ (ωp) + Imχ0
λ′ (ωq)

]∑
k′k′′

J̃λ,−1
kk′ (ωq − ωp)Jλ

k′k′′
∂ f λ,FD

k′′

∂n0
h

})
. (16)
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A similar expression can be derived for the electron distribution functions. Here, χλ denotes the contribution of the valence band
with index λ to the susceptibility in Eq. (13),

χλ(ω) = 2

A

∑
k

χλ
k (ω).

The corrected scattering matrix J̃λ
kk′ is defined as

J̃λ
kk′ (�ω) = Jλ

kk′ + i�ωδkk′ − Cλ

∑
p

Sp

ωp
|up(r‖)|2Im�λ,−1

kk′ (ωp). (17)

In the case of a vanishing frequency difference (�ω → 0) and no photons (Sp = 0), the corrected scattering matrix is given by
the scattering matrix in Eq. (7). The approximation from Eq. (16) can be inserted into the equation of motion of the photon
numbers (14) to obtain an effective mode interaction term,

d

dt
Sp

∣∣∣∣
Interaction

= −
∑

λλ′qrs
r>s,q �=p

CλCλ′
√

ωpωqωrωs
Im

[
B∗

pBq

∫
d2r‖ u∗

p(r‖)uq(r‖)
2

A

∑
kk′

�λ,−1
kk′ (ωq)

× Re

(
BrB∗

s ur (r‖)u∗
s (r‖)

{∑
k′′

[
J̃e,−1

k′k′′ (ωs − ωr ) + δλλ′ J̃λ,−1
k′k′′ (ωs − ωr )

][
Imχλ′,0

k′′ (ωr ) + Imχλ′,0
k′′ (ωs)

]

− i
Imχ0

λ′ (ωr ) + Imχ0
λ′ (ωs)

ωs − ωr

∑
k′′k′′′

[
J̃e,−1

k′k′′ (ωs − ωr )Je
k′′k′′′

∂ f e,FD
k′′′

∂n0
e

+ J̃λ,−1
k′k′′ (ωs − ωr )Jλ

k′′k′′′
∂ f λ,FD

k′′′

∂n0
h

]})]
.

This effective interaction is initially rather complicated and can be further simplified by assuming that only the dominant
contributions with r = p, s = q or r = q, s = p contribute. In comparison, the other contributions oscillate with the frequency
differences of the form ωp − ωq and are almost negligible when averaged over time; see, also, Ref. [20]. We also assume that
all relevant modes are close to the gain maximum in terms of frequency. This can be used to approximately replace all the
frequencies with the frequency ω0 of the gain maximum, except in places where the frequency difference ωp − ωq is calculated.
This results in a mode interaction term as in Eq. (11), where the strength of the interaction only depends on the frequency
difference of the modes and the state of the carriers in the quantum well, and is given by

G(�ω) = −
∑
λλ′

CλCλ′Im

(
2

A

∑
kk′

�λ,−1
kk′ (ω0)

{∑
k′′

[
J̃e,−1

k′k′′ (�ω) + δλλ′ J̃λ,−1
k′k′′ (�ω)

]
Imχλ′,0

k′′ (ω0)

− i
Imχ0

λ′ (ω0)

�ω

∑
k′′k′′′

[
J̃e,−1

k′k′′ (�ω)Je
k′′k′′′

∂ f e,FD
k′′′

∂n0
e

+ J̃λ,−1
k′k′′ (�ω)Jλ

k′′k′′′
∂ f λ,FD

k′′′

∂n0
h

]})
. (18)

The matrix J̃λ
kk′ is now determined by

J̃λ
kk′ (�ω) = Jλ

kk′ + i�ωδkk′ − Cλ

s

ωp
Im�λ,−1

kk′ (ω0), (19)

with the photon density s = ∑
p Sp|up(r‖)|2. Like any other

function, the mode interaction can be separated into sym-
metric and antisymmetric contributions with respect to the
frequency difference �ω,

G(�ω) = GS(�ω) + GA(�ω).

D. Analysis for a constant scattering time

For a general scattering matrix, the mode interaction term
in Eq. (18) needs to be evaluated numerically. However, for
the special case of a constant scattering time τs, the mode
interaction can be simplified. In this case, the scattering matrix
is given by

Jλ
kk′ = 1

τs
δkk′ .

As a scattering term of this form was used by Yamada
et al., the resulting mode interaction terms should agree with
Eqs. (9) and (10). In the limit of a small scattering time
τs 
 1/�ω and a vanishing photon density s = 0, we obtain
the symmetric interaction term

GS(�ω) = G(�ω) + G(−�ω)

2

= −
∑
λλ′

CλCλ′
τs(1 + δλλ′ )

�ω2τ 2
s + 1

2

A

∑
kk′

Im�λ,−1
kk′ (ω0)

× Imχλ′,0
k′ (ω0)+ω4

0Imχ (ω0)Imχ ′(ω0)
τs

�ω2τ 2
s + 1

(20)

and the antisymmetric interaction term

GA(�ω) = G(�ω) − G(−�ω)

2
= ω4

0
Imχ (ω0)Reχ ′(ω0)

�ω
.

(21)
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Here, χ ′(ω) denotes the derivative of the susceptibility with
respect to the carrier densities,

χ ′(ω) = ∂χ (ω)

∂ne

+ ∂χ (ω)

∂nh

.

In order to see how Eq. (21) relates to Eq. (10) from
Yamada et al., we can use the antiguiding factor or linewidth-
enhancement factor α to express the derivative of the real part
of the susceptibility in terms of the derivative of the imaginary
part [39],

α = Reχ ′(ω)

Imχ ′(ω)
.

Under the assumption of linear gain,

Imχ (ω) ∝ ξa

V
(N − Ng) ⇒ Imχ ′(ω) ∝ ξa

V
,

and replacing the frequency difference �ω ≈ −2πc�λ/λ2
0,

Eq. (21) becomes

GA(�λ) ∝
(

ξa

V

)2
α(N − Ng)

�λ
.

The remaining prefactor in Eq. (11) can be determined by
evaluating the integral using a lateral mode of the form
sin(πx/wr ), where wr represents the ridge width, and as-
suming constant carrier densities. The only difference is an
additional factor of 2, which can be attributed to carrier
diffusion and will be discussed in the subsequent section.
In Eqs. (9) and (20), the symmetric mode interaction term

exhibits a frequency dependence of [(�ωτs)2 + 1]−1 in both
cases.

E. Influence of carrier diffusion

One aspect that is yet to be considered is the diffusion of
carriers in the quantum well, which can dampen the beating
vibrations of the carrier densities and therefore reduce the
mode interaction. If we consider, as an example, longitudinal
modes described by standing waves [up(y) ∝ sin(pπy/L)],
then the beating vibrations will be of the form

d

dt
δn(y) ∝ up(y)uq(y) ∝ sin

( pπy

L

)
sin

(qπy

L

)

∝ cos

(
(p − q)πy

L

)
− cos

(
(p + q)πy

L

)
. (22)

For a green nitride laser diode, we might have a resonator
length L = 600 µm, a refractive index of 2.4, and a laser
wavelength of 500 nm, which results in p ≈ q ≈ 5760. Using
the diffusion equation and a diffusion constant of 10 cm2 s−1,
the second term in Eq. (22) is dampened with a time con-
stant of τ ≈ 0.3 ps and therefore should not contribute to the
mode dynamics. For two neighboring modes (q = p + 1), the
time constant for the first term is given by τ ≈ 37 µs and
the dampening due to diffusion can be neglected. As both
terms in Eq. (22) contribute equally to the mode interaction in
Eq. (11), we can include the effect of carrier diffusion using
an additional factor of 1/2:

d

dt
Sp

∣∣∣∣
Interaction

≈ 1

2

∑
q

SpSq

ωpωq

∫
d2r‖ |up(r‖)|2|uq(r‖)|2G(ωq − ωp, r‖). (23)

III. RESULTS

To compute the mode interaction terms, it is necessary to
have knowledge of the quantum well’s band structure, optical
matrix elements, and Coulomb matrix elements. To achieve
this, the k · p method is employed for an InGaN quantum well
encapsulated by GaN, utilizing the Hamiltonian proposed by
Chuang et al. [41]. The equations that were used in the calcu-
lations can be found in the Appendix and the parameters are
provided in Ref. [42]. The quantum well is composed of 28 %
indium and it has a thickness of 2 nm. The refractive index of
GaN is known to be 2.4 for wavelengths near 550 nm [42].
The Coulomb interaction uses the static dielectric constant
of the surrounding GaN material, with a value of 9.7 [43].
During the numerical computation of the scattering terms,
the δ functions are substituted with Lorentzian functions with
a broadening of 5 meV. Additionally, the broadening in the
Lindhard formula [39,44] is set to 10 meV. In the calculations,
the piezo effect is included [42,45] with a fixed carrier density
of 1013cm−2 in the quantum well and a temperature of 300 K.
In the solution of the Poisson equation, a vanishing electrical
field at the boundaries of the simulation cell is assumed.
In the following calculation of the mode interaction terms,
different scattering terms are used, but the dephasing of the
microscopic polarization is always determined by Coulomb

scattering with dynamic screening. The resulting susceptibil-
ity is shown in Fig. 2.

In Figs. 3(a) and 3(c), a microscopic analysis of the sym-
metric and antisymmetric mode interaction terms is shown
using a constant scattering time for different carrier densi-
ties. The interaction term is evaluated at the gain maximum;
therefore, only carrier densities above transparency are used
in the calculations. The photon density in Eq. (17) is set to
zero, as it has a small effect on the mode interaction for a
constant scattering time (see the Appendix). For the largest
carrier density, the approximations of Eq. (20) and Eq. (21) are
also shown and reasonably agree with the calculation using
Eq. (18). While the antisymmetric contribution diverges as the
frequency difference goes to zero, the symmetric contribution
has the form of a Lorentzian function, where the broadening
is determined by the scattering time. A larger carrier density
leads to a stronger mode interaction, especially for the sym-
metric contribution.

In Figs. 3(b) and 3(d), Coulomb scattering was used to
calculate the mode interaction terms for different carrier den-
sities and a vanishing photon density. The antisymmetric term
shows a behavior similar to the calculation with the constant
scattering time, but does not quite agree with the approxi-
mation of Eq. (21). More interestingly, the symmetric term
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FIG. 2. Electronic susceptibility from Eq. (13) calculated using the k · p band structure and Coulomb scattering. The carrier density was
systematically varied from 2 × 1012 cm−2 to 16 × 1012 cm−2 in increments of 2 × 1012 cm−2. Due to the large energy difference between the
second and the third hole band in the k · p calculations, only the first two hole bands are considered in the simulations. This results in two
peaks in the imaginary part of the susceptibility, which is nearly proportional to the absorption spectrum. The lower wavelength peak belongs
to transitions between the conduction band and the first light-hole band (LH) and the higher wavelength peak is due to transitions between the
conduction band and the first heavy-hole band (HH).

shows a very different behavior in comparison and diverges
for �ω → 0. In both cases, the interaction strength increases
for higher carrier densities.

The effect of the photon density in Eq. (19) is investi-
gated in Fig. 4 for a constant scattering time and Coulomb
scattering. For a constant scattering time, the photon den-
sity only causes a small reduction of the mode interaction
strength and has no influence on the qualitative behavior.
For nonzero photon densities and Coulomb scattering, the

symmetric term no longer diverges for �ω → 0 and shows
a similar behavior compared to the calculation with a con-
stant scattering time. While a higher photon density decreases
the strength of the mode interaction for small frequency
differences, there is an increase in the interaction for large
�ω. Interestingly enough, the divergence of the antisymmet-
ric interaction is also lifted for nonzero photon densities,
while the behavior for larger frequency differences remains
unaffected.

FIG. 3. Mode interaction of Eq. (18) as a function of the frequency difference of the two modes. In (a) and (c), a constant scattering time
τs = 100 fs was used, and in (b) and (d), Coulomb scattering was used. The symmetric contributions to the mode interaction are shown in
(a) and (b), whereas the antisymmetric contributions are shown in (c) and (d). The mode interaction is depicted for various carrier densities,
ranging from 8 × 1012 cm−2 to 16 × 1012 cm−2, with increments of 2 × 1012 cm−2. The calculations were performed with zero photon density.
For comparison, the approximations from Eq. (20) and Eq. (21) are also shown for the highest carrier density.
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FIG. 4. Mode interaction of Eq. (18) for Coulomb scattering as a function of the frequency difference for a fixed carrier density of 1.4 ×
1013cm−2 and different photon densities. In (a) and (c), a constant scattering time τs = 100 fs was used, and in (b) and (d), Coulomb scattering
was used.

An example for the mode dynamics of a Fabry-Pérot laser
diode using these effective mode interaction terms is shown
in Fig. 5 for different current densities. For these calcula-
tions, the equations of motion from Ref. [9] are used, with
the difference that all the third-order effects are replaced by
the effective mode interaction terms. The resulting set of
equations is also shown in the Appendix. For this example, a
resonator length of 600 µm, a ridge width of 2 µm, an injection

efficiency of 0.75, a group refractive index of 2.8, a photon
lifetime of 16 ps, and a nonradiative recombination time of
1000 ns are used. The broadening of the gain spectrum due
to Coulomb scattering is not sufficient to obtain realistic re-
sults; therefore, an additional inhomogeneous broadening of
30 meV is included in the calculation. In both cases, the effect
of mode hopping can be seen, where the currently active mode
changes from smaller to higher wavelengths, which can be

FIG. 5. The longitudinal mode dynamics of a Fabry-Pérot laser diode for two different currents. Here the output of the laser is shown as a
function of wavelength and time. The data for this figure are calculated by multiplying the time-dependent photon numbers from the simulation
with Gaussian functions that are centered at their respective vacuum wavelengths with a width of 0.02 nm. On the left, the mode interaction
terms were calculated using a constant scattering time of 300 fs; on the right, the Coulomb scattering term was used.

115304-8



INFLUENCE OF SCATTERING EFFECTS ON THE … PHYSICAL REVIEW B 108, 115304 (2023)

observed experimentally [8,20]. Once the gain for the active
mode is no longer sufficient, this process restarts at the gain
maximum. The mode rolling frequency is determined by the
period of this process and increases with increasing current
densities. For a scattering time of 100 fs, the mode rolling
frequencies are too large compared to the calculation with
Coulomb scattering; therefore, the scattering time is increased
to 300 fs in Fig. 5 in order to produce very similar mode
rolling frequencies. In this case, the resulting mode dynamics
are comparable and only show major differences at the begin-
ning of the simulations. Here, the calculation using Coulomb
scattering shows a better qualitative behavior compared to the
experimental results [8,20].

IV. SUMMARY

Fabry-Pérot-type laser diodes show mode-competition ef-
fects that can be simulated with rate equations using an
effective mode interaction term. In this paper, a mode in-
teraction term was derived that can be used for different
scattering mechanisms and when more than one lateral mode
is relevant. While the mode interaction terms have no impact
on the output power of the laser diode, they determine the
level of activity of individual modes. For a constant scattering
time, the results agree with mode interaction terms found in
the literature. In comparison, the mode interaction terms for
Coulomb scattering show a very different behavior, especially
for �ω → 0, where �ω is the frequency difference of the two
interacting modes. While the form of the mode interaction
terms is more complex, in typical simulations, they can be cal-
culated for different carrier densities before the actual mode
dynamics simulation and thus have a negligible impact on
the performance. While all the calculations in this paper have
been performed using Coulomb scattering, it is possible to
include other scattering mechanisms such as electron-phonon
scattering. In this paper, the influence of the photon density
on the strength of mode interaction is also discussed. While
a nonzero photon density has a small effect on the mode
interaction for a constant scattering time, for Coulomb scat-
tering, qualitative changes can be observed. For example, the
mode interaction term no longer diverges for �ω → 0 for
nonzero photon densities. Therefore, the dependence of the
mode interaction on the field intensity should be considered
in rate equation simulations, when a realistic scattering term is
used. The effect of the scattering terms on the mode dynamics
using an effective mode interaction term was also studied for
a simple example where the carrier densities were assumed
to be constant in the quantum well. If the scattering time is
chosen appropriately, the mode dynamics are very similar, but
using Coulomb scattering results in a more realistic behavior
at the beginning of the simulation. In conclusion, the mode
interaction terms derived in this paper offer a way to simulate
the mode dynamics in different kinds of laser diodes. They
are especially important for laser diodes with a small mode
spacing, for example, Fabry-Pérot laser diodes with broad and
narrow ridge widths. Compared to using a constant scattering
time, more complex scattering times offer an increased pre-
dictability due to better known parameters and also improve
the behavior of the mode dynamics at the beginning of the
simulation.
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APPENDIX A: k · p HAMILTONIAN

For the calculation of the band structure of an InGaN quan-
tum well, we employ the Hamiltonian proposed by Chuang
et al. [41]. This Hamiltonian is expressed as follows:

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎝

F −H∗ −K∗ 0 0 0
−H λ H∗ � 0 0
−K H G 0 � 0

0 � 0 G −H∗ −K∗
0 0 � −H λ H∗
0 0 0 −K H F

⎞
⎟⎟⎟⎟⎟⎟⎠

(A1)

and is valid only for the valence bands. The matrix elements
are given by

F = �1 + �2 + λ + θ, K = h̄2

2m0
A5(kx + iky)2 + D5ε+,

G = �1 − �2 + λ + θ, H = h̄2

2m0
A6kz(kx + iky)+D6εz+,

λ = Ev + h̄2

2m0

[
A1k2

z + A2
(
k2

x + k2
y

)] + λε, � =
√

2�3,

λε = D1εzz + D2(εxx + εyy), �1 =
√

2�cr,

θ = h̄2

2m0

[
A3k2

z +A4
(
k2

x + k2
y

)] + θε, ε±=εxx ± 2iεxy−εyy,

θε = D3εzz + D4(εxx + εyy), εz± = εzx ± iεyz.

Here, kx, ky, and kz are the corresponding components of the
three-dimensional wave vector, εi j are the components of the
strain tensor, and the rest are material parameters. In the cubic
approximation, the parameters satisfy the relations

A1 − A2 = −A3 = 2A4, A3 + 4A5 =
√

2A6,

�2 = �3 = 1
3�so,

D1 − D2 = −D3 = 2D4, D3 + 4D5 =
√

2D6.

For a quantum well, the component kz is replaced by
the derivative −i ∂

∂z and the resulting one-dimensional
Schrödinger equation is solved for every two-dimensional
wave vector k = (kx, ky). The nonvanishing components of
the strain tensor inside the quantum well are given by [41]

εxx = εyy = a0 − a

a
, εzz = −2C13

C33
εxx,

where Ci j are the components of the elasticity tensor, a0 is
the lattice constant of the surrounding material, and a is the
lattice constant of the quantum well. Since the band gap of the
quantum film material is smaller than that of the surrounding
materials, the question of aligning the band edges for electrons
and holes remains. If E0

G is the band gap of the substrate and
EG is the band gap of the quantum film material, the energies
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at the 
 point are modified as follows:

Ec = E0
c − (

E0
G − EG

)
η,

Ev = E0
v + (

E0
G − EG

)
(1 − η).

The parameter η is set to 2
3 [41]. For the conduction band, the

Hamiltonian is given by

Ĥe = Ec + �1 + �2 + Pcε + h̄2

2mz
e

k2
z + h̄2

2mp
e

(
k2

x + k2
y

)
,

(A2)

Pcε = aczεzz + act (εxx + εyy). (A3)

The material parameters mz
e and mp

e are the effective masses
of the conduction band in the z direction and perpendicular
directions, respectively. The parameters acz and act determine
the shift of the band edge due to material strain. In compari-
son to many other crystal structures, such as the zinc-blende
structure, the effect of piezoelectricity must be additionally
considered in wurtzite crystals [45]. Due to the strain of the
material within the quantum film, a polarization is generated,
which is determined by the corresponding piezoelectric con-
stants [42],

P(z) = Psp + 2d13

(
C11 + C12 − 2C13

C33

)
εxx.

In addition to the components of the elasticity tensor, two
other material parameters, Psp and d13, come into play. The
polarization within the quantum film differs from that of the
surrounding material, resulting in charges at the interfaces
between the materials,

ρ(z) = ∂

∂z
P(z).

A solution of the Poisson equation [46], given by

∂

∂z

[
εs(z)

∂

∂z
φ(z)

]
= −ρ(z)

ε0
,

provides an electrostatic potential that modifies the band
edges as follows:

E ′
c(z) = Ec − eφ(z),

E ′
v(z) = Ev − eφ(z).

The charge carriers in the quantum film align accordingly,
thereby weakening the field within the quantum film. To ac-
count for this effect, an assumption regarding the distribution
function of the charge carriers is required. Here, a Fermi-Dirac
distribution is used, where the temperature and the charge
carrier density n0 are given. The chemical potential must be

chosen such that the following holds:

ne = n0 = 2

A

∑
k

1

eβ(εe
k−μe ) + 1

= 2

A

∑
k

f e,FD
k ,

nh = n0 = 1

A

∑
λk

1

eβ(ελ
k−μh ) + 1

= 2

A

∑
λk

f λ,FD
k .

The double degeneracy due to spin has been taken into ac-
count by the factor of 2 for the conduction band electrons.
In the Poisson equation, the additional charge density ρQW(z)
needs to be considered, which satisfies

ρQW(z) = ρe(z) + ρh(z),

ρe(z) = −2e

A

∑
k

∣∣ξ e
k (z)

∣∣2
f e,FD
k ,

ρh(z) = e

A

∑
λαk

∣∣ξ h
λαk(z)

∣∣2
f λ,FD
k .

Here, ξ e
k and ξ h

λαk are eigenfunctions of the Hamiltonian op-
erators from Eqs. (A1) and (A3), and εe

k and ελ
k correspond

to their respective eigenvalues. However, since the Hamilto-
nian operator depends on the electrostatic potential, the entire
problem must be solved self-consistently.

Regarding the boundary conditions, in the Schrödinger
equation, the condition ξ (z = 0) = ξ (z = LZ) = 0 is sim-
ply assumed, where LZ is the length of the simulation cell.
For the Poisson equation, the Neumann boundary condi-
tions ∂φ(z=0)

∂z = ∂φ(z=LZ )
∂z = 0 are used. By imposing these

conditions, the solution of the Poisson equation becomes in-
dependent of the length of the simulation cell.

For the transverse electric (TE) polarized modes, the opti-
cal matrix elements are given by

Sλα =
∫

dz
[
ξ e

k (z)
]∗

ξ h
λαk(z),

∣∣pTE
λ

∣∣2 = |px|2
2

[|Sλ1|2 + |Sλ2|2 + |Sλ4|2 + |Sλ5|2].

All of the parameters used in the k · p calculations are given
in Table I and are taken from Ref. [43]. The temperature-
dependent band gap is calculated using

EG = E0
G − α

T 2

T + β
.

The k · p wave functions and band structure are shown in
Fig. 6 for the parameters used in the mode dynamics calcu-
lations.

APPENDIX B: SCATTERING TERMS FOR THE COULOMB INTERACTION

The contribution due to Coulomb scattering to the equations of motion of the distribution function is given by [39,47]

d

dt
f λ
k

∣∣∣∣
Coulomb

= 4π

A2h̄

∑
λ′qk′

∣∣W λλ′
q

[(
ελ

k+q − ελ
k

)
/h̄

]∣∣2
δ
(
ελ

k+q − ελ
k − ελ′

k′+q + ελ′
k′
)

× [(
1 − f λ

k

)
f λ
k+q

(
1 − f λ′

k′+q

)
f λ′
k′ − f λ

k

(
1 − f λ

k+q

)
f λ′
k′+q

(
1 − f λ′

k′
)]

, (B1)
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TABLE I. k · p parameters for GaN and InN, taken from Ref. [43]. In addition, there are bowing parameters for the band gap bE0
G

=
1400 meV and the polarization bPsp = −0.037 Cm−2, also taken from Ref. [43].

GaN InN

a Lattice constant 0.3189 nm 0.3545 nm
c Lattice constant 0.5185 nm 0.5703 nm
mz

e Perpendicular electron effective mass 0.2 m0 0.07 m0

mp
e Parallel electron effective mass 0.21 m0 0.07 m0

A1 −7.21 −8.21
A2 −0.44 −0.68
A3 6.68 7.57
A4 −3.46 −5.23
A5 −3.4 −5.11
A6 −4.9 −5.96
�cr 10 meV 24 meV
�so 17 meV 5 meV
Epx = Epz = Ep Optical matrix element 19.8 eV 11.4 eV
E 0

G Band gap 3510 meV 690 meV
α Band gap parameter 0.914 meVK−1 0.414 meVK−1

β Band gap parameter 825 K 154 K
εs Static dielectric constant 9.7 14.4
D1 −3.6 eV −3.6 eV
D2 1.7 eV 1.7 eV
D3 5.2 eV 5.2 eV
D4 −2.7 eV −2.7 eV
D5 −2.8 eV −2.8 eV
D6 −4.3 eV −4.3 eV
acz −7.1 eV −4.2 eV
act −9.9 eV −4.2 eV
d13 −1.0 pmV−1 −3.5 pmV−1

d33 1.9 pmV−1 7.6 pmV−1

Psp −0.034 Cm−2 −0.042 Cm−2

C11 390 GPa 223 GPa
C12 145 GPa 115 GPa
C13 106 GPa 92 GPa
C33 398 GPa 224 GPa

FIG. 6. Calculation of the band structure of an InGaN quantum with a thickness of 2 nm and an indium concentration of 28 %. The wave
functions of the conduction band and the first two valence bands at the 
 point are shown in the figure on the left, together with the potential.
The gray area illustrates the position of the quantum well. The k · p band structure is presented on the right for these three bands.
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where W λλ′
q (ω) is the screened Coulomb interaction,

W λλ′
q (ω) = V λλ′

q +
∑
λ′′

V λλ′′
q Pλ′′

q (ω)W λ′′λ′
q (ω).

The polarization is given by the Lindhard formula [39,44],

Pλ
q (ω) = 2

A

∑
k

f λ
k+q − f λ

k

h̄ω − ελ
k + ελ

k+q + iδW
.

Substituting f λ
k = f λ,FD

k + δ f λ
k into Eq. (B1) and only considering terms up to first

order in δ f λ
k yields Eq. (7) with the scattering matrix,

Jλ
k,k+q = − 4π

A2h̄

∑
λ′k′

∣∣W λλ′
q

[(
ελ

k+q − ελ
k

)
/h̄

]∣∣2
δ
(
ελ

k+q − ελ
k − ελ′

k′+q + ελ′
k′
)

× [(
1 − f λ

k

)(
1 − f λ′

k′+q

)
f λ′
k′ + f λ

k f λ′
k′+q

(
1 − f λ′

k′
)]

+ δk,k+q
4π

A2h̄

∑
λ′k′q′

∣∣W λλ′
q′

[(
ελ

k+q′ − ελ
k

)
/h̄

]∣∣2
δ
(
ελ

k+q′ − ελ
k − ελ′

k′+q′ + ελ′
k′
)

× [
f λ
k+q′

(
1 − f λ′

k′+q′
)

f λ′
k′ + (

1 − f λ
k+q′

)
f λ′
k′+q′

(
1 − f λ′

k′
)]

.

For the microscopic polarizations, the dephasing term is given by [39,47]

d

dt
ψλ

k

∣∣∣∣
Coulomb

= 2

A2h̄

∑
qk′

λ′λ′′∈{e,λ}

∣∣W λ′λ′′
q

[(
ελ′′

k′+q − ελ′′
k′

)
/h̄

]∣∣2

× {
g
(
ελ′

k+q − ελ′
k − ελ′′

k′+q + ελ′′
k′

)
ψλ

k+q

[(
1 − f λ′

k

)(
1 − f λ′′

k′+q

)
f λ′′
k′ + f λ′

k f λ′′
k′+q

(
1 − f λ′′

k′
)]

− g
(
ελ′

k − ελ′
k+q − ελ′′

k′ + ελ′′
k′+q

)
ψλ

k

[
f λ′
k+q

(
1 − f λ′′

k′+q

)
f λ′′
k′ + (

1 − f λ′
k+q

)
f λ′′
k′+q

(
1 − f λ′′

k′
)]}

,

where

g(x) = i

x + iδ
.

For Coulomb scattering, the dephasing matrix in Eq. (3) is therefore given by


λ
k,k+q = − 2

A2

∑
k′

λ′λ′′∈{e,λ}

∣∣W λ′λ′′
q

[(
ελ′′

k′+q − ελ′′
k′

)
/h̄

]∣∣2{
g
(
ελ′

k+q − ελ′
k − ελ′′

k′+q + ελ′′
k′

)

× [(
1 − f λ′

k

)(
1 − f λ′′

k′+q

)
f λ′′
k′ + f λ′

k f λ′′
k′+q

(
1 − f λ′′

k′
)]}

+ δk,k+q
2

A2

∑
q′k′

λ′λ′′∈{e,λ}

∣∣W λ′λ′′
q′

[(
ελ′′

k′+q′ − ελ′′
k′

)
/h̄

]∣∣2{
g
(
ελ′

k − ελ′
k+q′ − ελ′′

k′ + ελ′′
k′+q′

)

× [
f λ′
k+q′

(
1 − f λ′′

k′+q′
)

f λ′′
k′ + (

1 − f λ′
k+q′

)
f λ′′
k′+q′

(
1 − f λ′′

k′
)]}

.

APPENDIX C: EQUATIONS OF MOTION

The equation of motion for the electron density is given by [20]

d

dt
ne = d

dt

2

A

∑
k

f e
k =

∑
p

ωpSp|up(r‖)|2Imχ (ωp) − ne

τnr
−

∑
λ

2

A

∑
k

Bλ
k f e

k f λ
k + jηinj

e
,

analogous for the hole density. They can be derived from Eq. (15) assuming Fermi-Dirac distributions for the carriers, except for
the spontaneous emission term and the pump term. The quantum wells are pumped by a current density j, which is assumed to
be the same for both electrons and holes. The prefactor Bλ

k in the spontaneous emission term is given by

Bλ
k = Cλ

2n3
eff

3πc3h̄2

(
εe

k + ελ
k

)
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and can also be found in Ref. [19] in a similar form. In the simulations, the carrier density is assumed to be constant directly
under the ridge; therefore, this equation is averaged over the ridge area,

d

dt
ne =

∑
p

ωpSpImχ (ωp)
1

Lwr

∫ wr

0
dx

∫ L

0
dy

∣∣up(r‖)
∣∣2 − ne

τnr
−

∑
λ

2

A

∑
k

Bλ
k f e

k f λ
k + Iηinj

eLwr
,

where I is the current and wr is the ridge width. The equation of motion for the photon numbers is given by Eq. (11) and Eq. (14),
with an additional spontaneous emission term and a loss term determined by the photon lifetime τphoton,

d

dt
Sp = Spωp

∫ wr

0
dx

∫ L

0
dy |up(r‖)|2Imχ (ωp) +

∫
d2r‖ |up(r‖)|2ISE(ωp, r‖)

+
∑
q �=p

SpSq

ωpωq

∫
d2r‖ |up(r‖)|2|uq(r‖)|2A(ωq − ωp, r‖) − Sp

τphoton
.

The spontaneous emission spectrum is calculated like the gain spectrum, except that the factor 1 − f e
k − f λ

k is replaced by f e
k f λ

k ,

ISE(ω) = − 2

A

∑
λk

Cλ

ω
Im

{∑
k′

�λ,−1
kk′ (ω) f e

k′ f λ
k′

}
.

In the simulation, we consider different longitudinal modes as standing waves and only the fundamental lateral TE mode, which
is approximated by a sine function [11],

up(r) = exZ (z)

√
2

L
sin

(π p

L
y
)√

2

wr
sin

(
π

wr
x

)
.

In this case, the equations of motion are given by

d

dt
ne =

∑
p

CωpSp

Lwr
Imχ (ωp) − ne

τnr
−

∑
λ

2

A

∑
k

Bλ
k f e

k f λ
k + Iηinj

eLwr
,

d

dt
Sp = SpωpCImχ (ωp) + CISE(ωp) +

∑
q �=p

SpSq

ωpωq

3

2
C2A(ωq − ωp) − Sp

τphoton
,

where the constant C is related to the confinement factor ξ ,

C = |Z (zQW)|2 ≈ ξ

n2
effdQW

.

The spacing of the mode frequencies is determined by the refractive group index ngr and the frequency of the mode with index
p is given by

ωp = πneff

Lc
p0 + (p − p0)

πngr

Lc
.

The integer p0 is determined by

p0 = round

(
ω0Lc

πneff

)
,

where the frequency ω0 is the gain maximum and c is the speed of light in vacuum.
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