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Finite-temperature quantum noise correlations as a probe for topological helical edge modes
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The distinction between chiral, trivial helical, and topological helical edge modes can be effectively made
using quantum noise measurements at finite temperatures. Quantum noise measurements consist of mainly two
components: The first is thermal noise, whose provenance is thermal fluctuations, and the second is shot noise,
whose origin is the quantum nature of charge particles. Studying these edge modes at finite temperatures is
important as it more accurately reflects the conditions in real-world experiments. Additionally, we have verified
that our results for finite-temperature quantum noise correlations are valid at finite frequencies too.
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I. INTRODUCTION

The discovery of the integer quantum Hall effect [1] and
subsequent development of Landauer-Buttiker formula [2,3]
were critical milestones in our understanding of electron
transport in 2DEGs (two-dimensional electron gas). The con-
cept of chiral edge modes, which are responsible for quantized
Hall resistance has since been extended to other systems,
including the quantum spin Hall (QSH) effect in materials
such as HgTe/CdTe heterostructures [4], wherein the edge
modes are helical. The discovery of the QSH effect [5,6] was
important because it demonstrated that spin-orbit scattering
could be used to control the direction of spin polarization
in edge modes, opening up new avenues for spintronics and
quantum computing.

Chiral and helical edge modes are topologically protected
and are not affected by the presence of impurities along the
edge channels [2,3]. Helical and chiral edge states can be
distinguished by different methods, such as a conductance
test using the Landauer-Buttiker approach [7]. However, a
recent experiment showed that the helical edge states may
not always be topologically protected [8]; instead, trivial
helical edge modes can arise. In this case, it is essential
to distinguish between the different kinds of helical edge
states, a topological one and another nontopological or triv-
ial. Of course, we can do a conductance measurement using
the Landauer-Buttiker approach, but this cannot effectively
show any distinction between trivial and topological heli-
cal edge modes [9]. In this case, it is wiser to rely upon
the noise correlations [10], which can also be performed
experimentally.

At zero temperature in a multiterminal conductor and in
the presence of inelastic scattering, transport via chiral and
helical edge modes can be distinguished by the nonlocal
charge shot noise “HBT” correlations [9]. For the transport
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via chiral edge modes, “HBT” correlations are always nega-
tive, while it is positive for transport via topological helical
edge states [9]. The most significant advantage of this is
that it works as a probe for helicity as it turns negative for
trivial helical edge modes due to in the presence of inelas-
tic scattering [9]. Experiments involving nonlocal shot noise
correlations can be instrumental in distinguishing different
modes of quantum transport. However, that study [9] has
certain limitations. Firstly, it was at zero temperature, where
only shot noise matters. Secondly, it does not distinguish
between trivial and topological helical edge modes for low
spin-flip probabilities, which is a disadvantage for experi-
ments in clean samples where spin-flip scattering is low.
Thirdly, its setup does not provide any information regarding
the distinction via shot noise autocorrelation. In this paper,
we remove these limitations by showing the differentiation
between the chiral and topological helical edge modes and
between the helical, trivial, and topological edge modes for
any arbitrary value of spin-flip scattering by studying both
cross- and autocorrelation of the quantum noise at finite
temperatures.

Many other groups have also explored this topic. A recent
experimental study [11] presented noise measurements on
InAs/Ga(In)Sb Corbino structures at different temperatures
and current ranges, which deals with the distinction of trivial
and topological helical edge modes. The same experimen-
tal technique can be extended to QH and QSH Hall bars,
which is our proposal in this paper. In our paper, we have
shown the distinction between chiral, topological helical as
well as trivial helical by both thermal noise as well as shot
noise. In Ref. [12], tuning between trivial and topological
phases is done through electrical gating and it has shown
the discrimination between trivial and topological phases via
Hall resistance and longitudinal resistance, but with a large
magnetic and electric field. In a recent study [13], it was seen
that a technique called “resistively detected nuclear magnetic
resonance (RDNMR)” can be used as a probe for helicity in
QSH samples. Further in a recent theoretical study [14], it is
shown that applying an external electric field and interedge
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coupling can lead to oscillations in energy spectra verifying
the presence of topologically protected helical edge modes.
Further, one can perform the noise experiments at very low
temperatures, such as 50 nK and 10 mK, as reported in QSH
experiments in [8,12].

The total noise in mesoscopic conductors at finite tem-
perature is called “quantum noise”. At finite temperatures,
both thermal and quantum fluctuations are significant. Ther-
mal fluctuations are responsible for thermal noise, whereas
quantum fluctuations result in shot noise [10]. In this pa-
per, we have used a familiar setup used in the context of
chiral edge modes, see Ref. [15]. We see distinct behavior
for both chiral and helical edge modes as well as topolog-
ical and trivial helical edge modes. The thermal noise-like
contribution cannot distinguish between chiral and topologi-
cal helical, but distinguishes trivial helical from topological
helical via its magnitude, while the shot noise-like contri-
bution, distinguishes between the aforesaid edge modes via
both its magnitude and nature. The most striking result was
that we could observe the distinct behavior of trivial helical
edge modes as opposed to topological helical edge modes by
measuring both the quantum noise autocorrelation and cross-
correlations.

This paper is organized as follows. In the next sec-
tion (Sec. II), we explore the behavior of quantum noise
in the presence of chiral edge states by calculating cross-
correlations between different terminals and autocorrelation
in a four-terminal Hall bar. The terminals are connected to
reservoirs at differing chemical potentials. Section III ex-
tends our study to helical edge mode transport and calculates
the quantum noise correlations both for topological as well
as trivial helical edge modes. We also compare the results
obtained for chiral and topological helical edge modes and
find that they are distinct. In Sec. III B, we study transport
via trivial helical edge modes and find distinct behavior for
the quantum noise correlations as compared to topological
helical edge modes and the results are further analyzed via
Tables I–VI in Sec. IV (Analysis). In the same Sec. IV, we
have discussed the validity of our results at finite frequencies.
In Sec. V, we provide the experimental realization and conclu-
sion to this paper by explaining how to distinguish the thermal
and shot noise experimentally using a two-terminal quantum
Hall sample with chiral edge modes and we further discuss
the possible analysis via �T noise. The paper ends with an
exhaustive set of Appendices, which gives a historic context
of quantum noise calculation related with edge modes, then
we derive the quantum noise and the individual thermal and
shot noise contributions for chiral, helical, and trivial helical
setups.

II. QUANTUM NOISE IN QUANTUM HALL SETUP

A. Theory

The current-current correlation between metallic contacts
α and β is given by [10]

Sαβ (t − t ′) = 1
2 〈�Îα (t )�Îβ (t ′) + �Îβ (t ′)�Îα (t )〉, (1)

where �Îα (t ) is the fluctuation in current from the average
value in contact α and is given by �Îα (t ) = Îα − 〈Îα〉. For a

multiterminal system, the current in contact α is given by [10]

Îα (t ) = e

h

∑
βγ

∑
mn

∫
dEdE ′ei(E−E ′ )t/h̄

× â†
βm(E )Amn

βγ (α; E , E ′)âγ n(E ′), (2)

where summation over β, γ runs over the contacts except α,
and summation over m, n runs over number of edge channels.
â†

βm(E ) is the creation operator, which creates a particle (bo-
son or fermion) with energy E in the terminal β in the edge
channel m. Similarly, âγ n(E ′) is the annihilation operator,
which annihilates a particle (boson or fermion) with energy E ′
in terminal γ in the edge channel n. Using these two operators,
we can find the occupation number of the incident charge
carriers in the terminal β in the edge channel m, given by

n̂βm(E ) = â†
βm(E )âβm(E ). (3)

In Eq. (2), Amn
βγ (α; E , E ′) is given by [10],

Amn
βγ (α; E , E ′) = δmnδαβδαγ −

∑
k

s†
αβ;mk (E )sαγ ;kn(E ′), (4)

where sαβ;mk (E ) is the amplitude for an electron to scatter
from terminal β in the edge channel k to terminal α in the
edge channel m with energy E . Similarly, average current in
terminal α is given by

〈Iα〉 = 2e2

h

∑
β

Vβ

∫
dE

(
− ∂ f

∂E

)
[Nαδαβ − Tr(s†

αβsαβ )],

(5)
where Vβ is the applied voltage to contact β with β �= α and
Nα is the number of edge modes in terminal α. sαβ is the am-
plitude for an electron to scatter from terminal β to terminal α.
The extra factor of 2 in Eq. (5) has been taken due to the spin
degeneracy. We can calculate the current fluctuation using
Eqs. (2) and (5) and derive the quantum noise. The Fourier
transform of Eq. (1) is called quantum noise, which is given
by

2πδ(ω + ω′)Sq
αβ (ω)= 1

2 〈�Îα (ω)�Îβ (ω′) + �Îβ (ω′)�Îα (ω)〉.
(6)

We can derive an expression for quantum noise [10] using
Eqs. (2), (5), and (6) and the Fermi-Dirac statistics, we get

Sq
αβ (ω) = 2e2

h

∑
γ ,δ

∑
m,n

∫
dE

[
Amn

γ δ (α; E , E + h̄ω),

× Anm
δγ (β; E + h̄ω, E )

]
( fγ (E )[1 − fδ (E + h̄ω)]

+ [1 − fγ (E )] fδ (E + h̄ω)). (7)

Our focus will be on zero-frequency quantum noise, and for
simplicity, we consider single edge mode occupation, which
reduces Eq. (7) to

Sq
αβ = 2e2

h

∑
γ ,δ

∫
dE [Aγ δ (α)Aδγ (β )]( fγ (E )[1 − fδ (E )]

+ [1 − fγ (E )] fδ (E )), (8)

where Aβγ (α) = Iαδαβδαγ − s†
αβsαγ , and sαβ is an element

of the s-matrix of the setup, describing the amplitude for an
electron to scatter from terminal β to α with single edge

115301-2



FINITE-TEMPERATURE QUANTUM NOISE … PHYSICAL REVIEW B 108, 115301 (2023)

mode only. sαβ is the scattering amplitude for an electron to
scatter from terminal β to terminal α. fγ ( fδ ) is the Fermi-
Dirac distribution function for contact γ (δ), i.e., fγ ( fδ ) =
(1 + e(E−μγ (δ) )/kBT )−1, T is the temperature of the system,
and μγ (δ) is the chemical potential of contact γ (δ). Quan-
tum noise, as in Eq. (8), contains two parts: (i) the thermal
noise-like contribution (Sth

αβ), and (ii) the shot noise-like con-
tribution (Ssh

αβ). The expression for both thermal noise and
shot noise-like contributions can be derived separately, and
the full calculation is given in Appendices B 1 and B 2 re-
spectively. Thus, Sq

αβ = Sth
αβ + Ssh

αβ . For the quantum noise
cross-correlation (α �= β), we have

Sth
αβ = −4e2

h

∫
dE [Tαβ fβ (1 − fβ ) + Tβα fα (1 − fα )],

Ssh
αβ = −4e2

h

∑
γ ,δ

∫
dE ( fγ − fa)( fδ − fb)Tr(s†

αγ sαδs†
βδsβγ ).

(9)

Tαβ is the transmission probability for an electron to scatter
from terminal β to terminal α. fa and fb are energy-dependent
functions, whose significance has been explained in Ap-
pendix A 2. As an aside, we provide a historical perspective
to quantum noise calculation by considering a two-terminal
quantum Hall sample with chiral edge modes in the presence
of a constriction in Appendix A. In that setup, we calculate the
quantum noise cross-correlation Sq

12 between terminals 1 and
2, via wavepacket approach [16–18] and also by the scattering
matrix approach of Buttiker [15,19] using Eq. (8). After de-
riving the quantum noise cross-correlation via the wavepacket
approach, we derive the same quantum noise correlation via
Buttiker’s approach using Eq. (8), which unfortunately does
not match with that of the wavepacket approach. Although
the thermal noise-like contribution is similar to that of the
wavepacket approach, it is the shot noise-like contribution,
which does not match. Further, at zero temperature and zero
applied voltage bias, shot noise does not vanish, which is a
unphysical result. Therefore, Buttiker [15,19] introduced a
modification to the derivation of shot noise-like contribution;
we explain this modification in Appendix A 2, Eq. (9) such
that the problems with deriving shot noise using scattering
matrix approach are corrected.

We can also derive the thermal and shot noise-like con-
tributions separately for the autocorrelation (α = β). The
thermal noise-like contribution to the autocorrelation is given
as

Sth
αα = 8e2

h

∫
dE fα (1 − fα )(Mα − Rαα ), (10)

where Mα is the number of edge modes in terminal α and Rαα

is the probability for an electron to reflect from terminal α to
itself. Similarly, the shot noise-like contribution is

Ssh
αα = 4e2

h

∫
dE

( ∑
γ

Tαγ ( fγ − fα ) + Mα f 2
α

−
∑
γ ,δ

fγ fδTr(s†
αγ sαδs†

αδsαγ )

)
. (11)

FIG. 1. Four-terminal quantum Hall sample with chiral edge
modes and a constriction. The black solid (dashed) line depicts
the edge mode for an electron, which can transmit (reflect) via
constriction.

We consider a four-terminal system with QH edge modes.
We can apply voltages at any of the contacts and measure the
current-current correlation between any contacts based on a
system as in Fig. 1. In our paper, we have considered a variety
of setups with different biasing conditions to verify that quan-
tum noise correlations are the best probe to distinguish the
different modes of transport irrespective of any situation. We
have three separate setups:Setup 1 with μ2 = μ3 = μ0 and
μ1 = μ4 = μ, Setup 2 with μ2 = μ4 = μ0 and μ1 = μ3 =
μ, and Setup 3 with μ3 = μ4 = μ0 and μ1 = μ2 = μ. In all
these setups, μ − μ0 = eV , where V is the applied voltage
bias and we will be working in the regime μ,μ0 � kBT ,
where T is the temperature of each setup. In each setup, we
have a constriction with scattering amplitudes r, t respectively,
and the general s-matrix for this quantum Hall bar, which is
valid for each of the three setups, is given as

s =

⎛
⎜⎜⎜⎝

0 teiθ 0 −ireiθ

0 0 eiφ2 0

0 −ireiθ 0 teiθ

eiφ1 0 0 0

⎞
⎟⎟⎟⎠. (12)

The phases φ2 and φ1 are the propagating phases connecting
different contacts due to the path difference of the electron.
θ is the phase acquired when there is scattering due to the
constriction. There will be an extra phase π/2 whenever there
is a reflection due to the constriction such that the s-matrix
is unitary. From the s-matrix, we can find the transmission
probability Tαβ by taking the modulus square |sαβ |2 and since
the s-matrix element is energy independent, the transmission
probability Tαβ will also be energy independent.

In each of our setups, the thermal noise-like contributions
Sth

αβ both in quantum noise cross- and autocorrelations are
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identical in the regime μ,μ0 � kBT . We explain this in the
following way in the context of cross-correlation (α �= β),
since the transmission probability Tαβ is energy independent,
Sth

αβ as shown in Eq. (9) only involves the integrations of
fβ (1 − fβ ) and fα (1 − fα ). Now, in the regime μβ,μα �
kBT , we see∫ ∞

0
dE fβ (1 − fβ ) =

∫ ∞

0
dE fα (1 − fα ) = kBT , (13)

where fα = 1

1+e
E−μα
kBT

and fβ = 1

1+e
E−μβ
kBT

. The thermal noise-

like contribution, thus reduces to

Sth
αβ = −4e2

h
kBT (Tαβ + Tβα ). (14)

As seen in Eq. (14), the thermal noise-like contribution is only
dependent on the transmission probabilities Tαβ and Tβα and
temperature T of the setup, and not on the applied voltage
biases. So, this will be identical in each of the setups under
different biasing conditions. Similarly, for the autocorrelation
too, we can verify that the thermal noise-like contribution
(Sth

αα) is same irrespective of the voltage biases applied. Using
Eq. (10), the thermal noise-like contribution reduces to

Sth
αα = 8e2

h
kBT (Mα − Rαα ). (15)

Herein below, we analyze the thermal and shot noise-like con-
tributions and the quantum noise calculation for each setup.

B. Quantum noise due to chiral edge modes

1. Setup 1 (μ2 = μ3 = μ0 and μ1 = μ4 = μ)

Figure 1 shows a quantum Hall setup, which is character-
ized by μ2 = μ3 = μ0 and μ1 = μ4 = μ = μ0 + eV , where
V is the applied voltage. In this setup, all contacts are as-
sumed to be ideal and we analyze current correlations between
different contacts. First, we will calculate the quantum noise
cross-correlation between terminals 1 and 3, i.e., Sq

13. The
general expression for Sq

13 according to Eq. (8) is given as

Sq
13 = 2e2

h

∑
γ ,δ

∫
dE [Aγ δ (1)Aδγ (3)]

× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (16)

where Aγ δ (1) = δ1γ δ1δ − s†
1γ s1δ and Aδγ (3) = δ3δδ3γ −

s†
3δs3γ . The thermal noise-like contributions (Sth

13) using
Eq. (9) vanishes, since an electron cannot directly tunnel
to terminal 3 from terminal 1 and vice versa, and only shot
noise-like contribution (Ssh

13) is finite. We can see this below:

Ssh
13 = −4e2

h

∑
γ ,δ=1,4

∫
dE ( fγ − fa)( fδ − fb)Tr(s†

1γ s1δs†
3δs3γ ),

(17)
f and f0 are the Fermi-Dirac distribution functions for termi-
nals 1, 4 and 2, 3. Choosing fa and fb to be f0, which is similar
to the assumption taken in [15] and using the s-matrix given
in Eq. (12), we get

Sq
13 = Ssh

13 = −4e2

h

∫
dERT ( f − f0)2, (18)

where T = |s12|2 and R = |s14|2 are the transmission and re-
flection probabilities of the constriction. The integration [16]
in Eq. (18) is∫ ∞

0
dE ( f − f0)2 = eV coth

[
eV

2kBT

]
− 2kBT , (19)

where μ − μ0 = eV and we have assumed the condition
μ,μ0 � kBT and taking the lower limit in Eq. (18) to be
0 and assuming it to be the energy at the bottom of the
conduction band. So, the quantum noise correlation between
the terminals 1 and 3 is

Sq
13 = Ssh

13 = −4e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (20)

In this setup, we observe that quantum noise correlation
(Sq

13) between terminals 1 and 3 is nonzero. Sq
13 is the current-

current correlation 〈�I1�I3〉, which in principle should have
contributions from thermal as well as shot noise. In all of
our setups, the thermal noise-like contribution (Sth

13) is zero,
since there is no direct tunneling between terminals 1 and
3, i.e., T13 = |s13|2 = T31 = |s31|2 = 0, which can be directly
verified via s-matrix as in Eq. (12). Thus, in Sq

13, only the
shot noise-like contribution (Ssh

13) is finite. This can also be
verified from the s-matrix as has been done in Eq. (17). Shot
noise-like contribution arises due to the constriction as well
as applied voltage bias. If either the constriction is absent, i.e.,
R = 0, T = 1,3 or voltage bias is zero, then Ssh

13 vanishes since
for eV → 0, the expression inside the parenthesis in Eq. (20)
is zero.

We can have three distinct regimes. In the regime eV �
kBT ,

Sq
13 = Ssh

13 = −2e2

h
2RT (eV − 2kBT ) 	 −4e2

h
RTeV, (21)

as for eV � kBT , coth[ eV
2kBT ] = 1.

In the regime eV 
 kBT , Sq
13 = 0, and in the regime eV =

kBT ,

Sq
13 = −4e2

h
0.16RT kBT . (22)

The quantum noise correlation between contacts 1 and 4
denoted by Sq

14 is given as

Sq
14 = 2e2

h

∑
γ ,δ

∫
dE [Aγ δ (1)Aδγ (4)]

× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )). (23)

The thermal noise-like contribution (Sth
14) to the quantum noise

correlation is given by

Sth
14 = −4e2

h

∫
dE [T14 f4(1 − f4) + T41 f1(1 − f1)], (24)

now, using
∫ ∞

0 dE fα (1 − fα ) = kBT , where α = 1, 2, 3, 4
with T being the temperature in the limit μ,μ0 � kBT , we
get

Sth
14 = −4e2

h
kBT (T14 + T41) = −4e2

h
kBT (1 + R). (25)
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Similarly, we can calculate the shot noise-like contribution,
which is

Ssh
14 = −4e2

h

∑
γ ,δ=1,4

∫
dE ( fγ − fa)( fδ − fb)Tr(s†

1γ s1δs†
4δs4γ ).

(26)

Because each term in the summation in Eq. (26) vanishes due
to the s-matrix elements vanishing, see Eq. (12), the shot noise
contribution Ssh

14 vanishes. So, the quantum noise correlation
between terminals 1 and 4 is entirely due to thermal noise.
Thus,

Sq
14 = −4e2

h
kBT (1 + R). (27)

Similarly, when we calculate the quantum noise correlation
between terminals 1 and 2, 3 and 4, and 2 and 3, we see that
only the thermal noise contributes, i.e.,

Sq
12 = Sq

34 = 1 − R

1 + R
Sq

14, Sq
23 = Sth

23 = Sq
14. (28)

Here also, the shot noise-like contributions vanish because of
the elements of s-matrix as in Eq. (12). There is one particu-
lar case as well, i.e., the quantum noise correlation between
terminals 2 and 4, which is precisely zero since both the
thermal noise-like and shot noise-like contributions vanish.
The thermal noise-like contribution (Sth

24) is zero, since there
is no direct tunneling process between terminals 2 and 4.

The shot noise-like contribution is given as

Ssh
24 = −4e2

h

∑
γ ,δ=1,2,3,4

∫
dE ( fγ − f0)( fδ − f0)

× Tr(s†
2γ s2δs†

4δs4γ ). (29)

The summation in the above equation for shot noise-like
contribution (Ssh

24) vanishes due to one or more of the s-matrix
elements being zero, as in Eq. (12). Therefore, the quantum
noise cross-correlation between terminals 2 and 4 is given as

Sq
24 = Sth

24 + Ssh
24 = 0. (30)

Similarly, we can calculate autocorrelation for each of the
terminals. For this purpose, we use the formulas given in
Eqs. (10) and (11) to calculate thermal noise and shot noise-
like contributions. The thermal noise-like contribution (Sth

11) to
quantum noise autocorrelation (Sq

11) in terminal 1 is given as

Sth
11 = 8e2

h

∫
dE f (1 − f )(M1 − R11) = 8e2

h

∫
dE f (1 − f ).

(31)

Using the s-matrix as in Eq. (12), R11 = |s11|2 = 0 and
number of edge modes in terminal 1 (M1) to be 1, we get

Sth
11 = 8e2

h

∫
dE f (1 − f ). (32)

The shot noise-like correlation (Ssh
11) is given as

Ssh
11 = 4e2

h

∫
dE

(
T ( f0 − f ) + f 2

−
∑
γ ,δ

fγ fδTr(s†
1γ s1δs†

1δs1γ )

)
. (33)

In the summation in the above equation, the surviving
terms arise when γ and δ are either 2 or 4, which can be
seen in the s-matrix as in Eq. (12). Using the s-matrix given in
Eq. (12) and adding Eqs. (32) and (33), we get

Sq
11 = Sth

11 + Ssh
11 = 4e2

h

∫
dE (2 f (1 − f ) + T ( f0 − f ) + f 2

− R2 f 2 − T 2 f 2
0 − 2RT f f0)). (34)

Simplifying further, we get the quantum noise autocorrela-
tion (Sq

11) to be

Sq
11 = 4e2

h

∫
dE [ f (1 − f ) + R f (1 − f ) + T f0(1 − f0)

+ RT ( f − f0)2]. (35)

Similarly, the autocorrelation in contact 3, Sq
33 is the same as

Sq
11. Doing the integration in Eq. (35) taking the limit from 0

to ∞ and assuming μ,μ0 � kBT , we get

Sq
11 = Sq

33 = 8e2

h
kBT+2e2

h
2RT

(
eV coth

[
eV

2kBT

]
−2kBT

)
.

(36)

Equation (36) has both the thermal and shot noise-like contri-
butions. They are given as

Sth
11 = Sth

33 = 8e2

h
kBT , (37)

Ssh
11 = Ssh

33 = 4e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (38)

Here, we can see that the quantum noise autocorrelation has
contributions from equilibrium (thermal noise) and transport
(shot noise) fluctuations. The thermal noise-like contribution
in terminal 1 arises effectively due to transport with proba-
bility 1. The shot noise-like contribution comes due to both
constriction and applied voltage bias. If there is no constric-
tion, i.e., R = 0, T = 1 or at zero applied voltage bias, i.e.,
eV → 0, then the shot noise-like contribution vanishes and
what remains is only the thermal noise-like contribution.

Here again we have three distinct regimes. For eV � kBT ,
the quantum noise autocorrelation is

Sq
11 = Sq

33 = 4e2

h
RT (eV − 2kBT ), (39)

for the regime eV 
 kBT ,

Sq
11 = Sq

33 = 8e2

h
kBT , (40)

and, for the regime eV = kBT ,

Sq
11 = Sq

33 = 2e2

h
4kBT + 2e2

h
0.32RT kBT . (41)

We can also calculate autocorrelation in other terminals as
well. The thermal noise-like contribution in terminal 2 is given
as

Sth
22 = 8e2

h

∫
dE f0(1 − f0), (42)

115301-5



SACHIRAJ MISHRA AND COLIN BENJAMIN PHYSICAL REVIEW B 108, 115301 (2023)

and the shot noise-like contribution is given as

Ssh
22 = 4e2

h

∫
dE

⎛
⎝ f 2

0 −
∑
γ ,δ

fγ fδTr(s†
2γ s2δs†

2δs2γ )

⎞
⎠ = 0.

(43)
Now, using the s-matrix as given in Eq. (12), we see that
the trace in Eq. (43) only survives only if γ = δ = 3, which
makes the total shot noise-like contribution zero. The noise
autocorrelation in terminal 2 is only due to thermal noise and
it is the same as that of terminal 4, which is given as

Sq
22 = Sth

22 = Sq
44 = Sth

44 = 8e2

h
kBT . (44)

It should be noted that the quantum noise autocorrelations Sq
22

and Sq
44 are independent of constriction.

2. Setup 2 (μ2 = μ4 = μ0 and μ1 = μ3 = μ)

In this subsection, we are concerned with the outcomes for
Setup 2, i.e., μ2 = μ4 = μ0 and μ1 = μ3 = μ. Using Eq. (9),
we can find the thermal and shot noise-like contributions
to total quantum noise. As shown in Eqs. (14) and (15) in
Sec. II A, the thermal noise-like contribution to any cross-
correlation between terminals will remain unchanged in any
setup since it only depends on the tunneling probability for
the electron to scatter from one terminal to another and not on
how voltage biases are applied. The shot noise-like contribu-
tion may change depending on the voltage bias applied across
the terminals. Below we provide a list of cross-correlations,
where only thermal noise contributes:

Sq
14 = Sth

14 = Sq
23 = Sth

23 = −4e2

h
kBT (1 + R), (45)

Sq
12 = Sth

12 = Sq
34 = Sth

34 = 1 − R

1 + R
Sq

14. (46)

In all these cases, the shot noise-like contribution vanishes.
Like we explained in Eq. (26), the shot noise-like contribu-
tions here too vanish due to the s-matrix given in Eq. (12)
with its elements vanishing.

Further, the quantum noise correlation between terminals
1 and 3, and between terminals 2 and 4 is zero. The quantum
noise correlations between terminals 1 and 3, 2 and 4 for Setup
2 are

Sq
13= Sth

13 = Ssh
13 = 0, Sq

24= Sth
24 = Ssh

24 = 0. (47)

We also see that Sq
13 vanishes, because the chemical po-

tential in terminals 1 and 3 are now the same, which implies
absence of any applied bias voltage, which drives the shot
noise-like contribution to zero. Further, thermal noise-like
contribution (Sth

13) is zero, since there is no direct tunneling
between terminals 1 and 3. The autocorrelations in each ter-
minal are the same, which is only thermal noise like and is
given as

Sq
ii = Sth

ii = 8e2

h
kBT , i ∈ {1, 2, 3, 4}. (48)

This can be understood using the s-matrix as in Eq. (12).
Using Eq. (10), the thermal noise-like contribution in terminal

1 is given as

Sth
11 = 8e2

h

∫ ∞

0
dE f (1 − f ) = 8e2

h
kBT . (49)

As proved previously in Eq. (15), the thermal noise-like con-
tribution is independent of setups. The only thing, which can
change is the shot noise-like contribution. Using Eq. (11), we
get the shot noise-like contribution is given as

Ssh
11 = 4e2

h

∫
dE

⎛
⎝∑

γ

T1γ ( fγ − f1) + f 2
1

−
∑
γ ,δ

fγ fδTr(s†
1γ sαδs†

αδsαγ )

⎞
⎠. (50)

Using the s-matrix as in Eq. (12), we get

Ssh
11 = 4e2

h

∫ ∞

0
dE ( f0(1 − f0) − f (1 − f )) = 0, (51)

where we used Eq. (13) in the limit μ,μ0 � kBT , which
makes the shot noise to vanish. It effectively means the con-
striction does not play any role even though there is an applied
bias voltage. That is why the quantum noise autocorrelation
in terminal 1 is only thermal noise like. The quantum noise
autocorrelation in terminal 3 (Sq

33) is identical to Sq
11. Similarly,

we can find quantum noise autocorrelation in terminal 2 is also
thermal noise like and we can derive it using the s-matrix. The
thermal noise-like contribution in terminal 2 is

Sth
22 = 8e2

h

∫ ∞

0
dE f0(1 − f0) = 8e2

h
kBT , (52)

and the shot noise-like contribution is given as

Ssh
22 = 4e2

h

∫ ∞

0
dE ( f (1 − f ) − f0(1 − f0)) = 0. (53)

The shot noise-like contribution is also zero at terminal 2. The
quantum noise autocorrelation in terminal 4 (Sq

44) is identical
to Sq

22. Therefore, we conclude that the quantum noise auto-
correlations in this setup are only thermal noise like.

3. Setup 3 (μ1 = μ2 = μ and μ3 = μ4 = μ0)

In this setup, we see that the quantum noise correlation
between terminals 1 and 3 are shot noise like only. The quan-
tum noise correlation for all other terminals are thermal noise
like. Below, we derive expressions of all the possible quantum
noise cross correlations:

Sq
14 = Sth

14 = Sq
23 = Sth

23 = −4e2

h
kBT (1 + R),

Sq
12 = Sth

12 = Sq
34 = Sth

34 = (1 − R)

1 + R
Sq

14,

Sq
13 = Ssh

13 = −4e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
,

Sq
24 = Sth

24 = Ssh
24 = 0. (54)

The reason behind the vanishing shot noise-like contribution
can be understood from the s-matrix as in Eq. (12). Since
the elements involved in the summation in the shot noise-
like contributions vanish, the shot noise-like contribution

115301-6



FINITE-TEMPERATURE QUANTUM NOISE … PHYSICAL REVIEW B 108, 115301 (2023)

automatically vanishes. For the autocorrelations, we get

Sq
22 = Sth

22 = Sq
44 = Sth

44 = 8e2

h
kBT , with Ssh

22 = Ssh
44 = 0,

Sq
33 = Sq

11 = Sth
11 + Ssh

11 (55)

and Ssh
11 = Ssh

33 = 4e2

h RT (eV coth[ eV
2kBT ] − 2kBT ).

We observe that the quantum noise-correlations Sq
11 and

Sq
33 are a combination of both equilibrium (thermal noise) and

transport (shot noise) fluctuations, whereas in case of Sq
22 and

Sq
44, only equilibrium (thermal noise) fluctuation matters. The

reason behind this can be derived and explained in a similar
fashion as we did in Setup 1 below Eqs. (36) and (41) using
the s-matrix.

In the following section, we will calculate the quantum
noise correlations in the presence of helical edge modes.

III. QUANTUM NOISE IN QUANTUM SPIN HALL SETUP

A. Theory

The current-current correlation between the metallic con-
tacts α and β due to spin-polarized current is given by

Sσσ ′
αβ (t − t ′) = 1

2

〈
�Îσ

α (t )�Îσ ′
β (t ′) + �Îσ ′

β (t ′)�Îσ
α (t )

〉
, (56)

where � ˆIσ
α is the fluctuation in current from the average value

in contact α with spin σ and is given by � ˆIσ
α = ˆIσ

α − 〈 ˆIσ
α 〉. The

current due to a charged particle with spin σ flowing through
terminal α is

ˆIσ
α (t ) = e

h

M∑
n=1

∫∫
dEdE ′ei(E−E ′ )t/h̄

× (
âσ†

αn (E )âσ
αn(E ′) − b̂σ†

αn(E )b̂σ
αn(E ′)

)
, (57)

where âσ†
αn (E ) is the creation operator, which creates an in-

coming electron in terminal α with energy E in edge channel
n and âσ

αn(E ) is the annihilation operator, which annihilates
an incoming electron in the terminal α with energy E ′ in
edge channel n. Similarly, b̂σ†

αn(E ) and b̂σ
αn(E ′) are the creation

and annihilation operators, which create and annihilate an
outgoing electron from the terminal α with spin σ with energy
E and E ′ respectively. The expression for finite-temperature
quantum noise correlation in quantum spin Hall setup due to
the spin-polarized currents I↑ and I↓ seen in Fig. 2 is given by

Sq
αβ = S↑↑,q

αβ + S↑↓,q
αβ + S↓↑,q

αβ + S↓↓,q
αβ . (58)

The individual spin-polarized contributions are given as [20]

Sσσ ′,q
αβ = e2

h

∑
ρ,ρ ′=↑,↓

∑
γ ,δ

∫
dETr

[
Aρρ ′

γ δ (α, σ, E , E + h̄ω)

× Aρ ′ρ
δγ (β, σ ′, E + h̄ω, E )

]
( fγ (E )[1 − fδ (E + h̄ω)]

+ [1 − fγ (E + h̄ω)] fδ (E )), (59)

Our focus is on zero-frequency quantum noise, which re-
duces Eq. (59) to

Sσσ ′,q
αβ = e2

h

∑
ρ,ρ ′=↑,↓

∑
γ ,δ

∫
dETr

[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (β, σ ′)

]
× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (60)

FIG. 2. Four-terminal quantum Hall sample with a constriction,
showing Helical edge modes. The Black (Red) solid (dashed) line
depicts the edge mode for a spin-up (down) electron, which can
transmit (reflect) via constriction.

where Aρρ ′
γ β (α, σ ) = δαγ δαβδσρδσρ ′ − sσρ†

αγ sσρ ′
αβ , and σ, σ ′ de-

notes the spin of electrons. Equation (60) has both the thermal
noise-like contribution and shot noise-like contribution to the
quantum noise. We will first look into the cross-correlation,
i.e., α �= β. The thermal noise-like contribution is given by

Sth
αβ = S↑↑,th

αβ + S↑↓,th
αβ + S↓↑,th

αβ + S↓↓,th
αβ , (61)

and the individual spin-polarized contributions to the thermal
noise-like contributions are given as

Sσσ ′,th
αβ = −2e2

h

∫ ∞

0
dE

[
T σσ ′

αβ fβ (1 − fβ ) + T σσ ′
βα fα (1 − fα )

]
.

(62)

See Appendix C 1 for the derivation of Eq. (62). T σσ ′
αβ is the

transmission probability for an electron to scatter from termi-
nal β with initial spin σ ′ to terminal α with final spin σ . fβ is
the Fermi-Dirac distribution function at contact β connected
to a reservoir given by the expression fβ = (1 + e(E−μβ )/kBT ),
where T is the temperature of the system, μβ is the chemical
potential of the contact β.

From the s-matrix, we can find the transmission proba-
bility T σσ ′

αβ by taking the modulus square |sσσ ′
αβ |2 and since

the s-matrix element in our setups is energy independent, the
transmission probability T σσ ′

αβ will also be energy indepen-
dent.

In each of our setups, the thermal noise-like contribu-
tions Sσσ ′,th

αβ are identical in the regime μ,μ0 � kBT . We
can explain this in the following way. Since the transmission
probability T σσ ′

αβ is energy independent, Sσσ ′,th
αβ as shown in

Eq. (62) only involves the integrations of fβ (1 − fβ ) and
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fα (1 − fα ). Now, in the regime μβ,μα � kBT , we see∫ ∞

0
dE fβ (1 − fβ ) =

∫ ∞

0
dE fα (1 − fα ) = kBT , (63)

so, the thermal noise-like contribution reduces to

Sσσ ′,th
αβ = −2e2

h
kBT

(
T σσ ′

αβ + T σσ ′
βα

)
. (64)

As seen in Eq. (64), the thermal noise-like contribution is only
dependent upon the transmission probabilities T σσ ′

αβ and T σσ ′
βα

and temperature T of the setup, not on the applied voltage
biases. So, this will be identical in each of the setups under
different biasing conditions.

Similar to Eq. (61), the shot noise-like contribution is

Ssh
αβ = S↑↑,sh

αβ + S↑↓,sh
αβ + S↓↑,sh

αβ + S↓↓,sh
αβ , (65)

the individual spin-polarized contributions are

Sσσ ′,sh
αβ = − 2e2

h

∫
dE

∑
γ ,δ

∑
ρρ ′=↑,↓

( fγ − fa)( fδ − fb)

× Tr
(
sσρ†

αγ sσρ ′
αδ sσ ′ρ ′†

βδ sσ ′ρ
βγ

)
. (66)

See Appendix C 2 for the derivation of Eq. (66).
Similarly, the quantum noise autocorrelation (α = β) is

Sq
αα = S↑↑,q

αα + S↑↓,q
αα + S↓↑,q

αα + S↓↓,q
αα , (67)

where the individual spin-polarized correlations are

Sσσ ′,q
αα = e2

h

∑
ρ,ρ ′=↑,↓

∑
γ ,δ

∫
dE Tr

[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (α, σ ′)

]
× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (68)

Equation (68) also has both thermal noise-like and shot noise-
like contributions. For the autocorrelation, i.e., α = β, the
thermal noise-like contribution is given by

Sth
αα = S↑↑,th

αα + S↑↓,th
αα + S↓↑,th

αα + S↓↓,th
αα , (69)

where the spin-polarized contributions, as derived in Ap-
pendix C 1, are given as

Sσσ ′,th
αα = 4e2

h

∫
dE fα (1 − fα )

(
Mαδσσ ′ − Rσσ ′

αα

)
. (70)

Similar to thermal noise-like contribution, shot noise-like con-
tribution to the autocorrelation is

Ssh
αα = S↑↑,sh

αα + S↑↓,sh
αα + S↓↑,sh

αα + S↓↓,sh
αα , (71)

where the spin-polarized contribution, as derived in Ap-
pendix C 2, is given as

Sσσ ′,sh
αα = 2e2

h

∫
dE

⎛
⎝∑

γ

T σσ ′
αγ ( fγ − fα ) + Mαδσσ ′ f 2

α

−
∑
γ δ

∑
ρρ ′=↑,↓

fγ fδTr
(
sσρ†

αγ sσρ ′
αδ sσ ′ρ ′†

αδ sσ ′ρ
αγ

)⎞⎠. (72)

Here Mα is the number of edge modes from contact α. Simi-
larly, for autocorrelations, the thermal noise-like contributions
are identical irrespective of voltage biases applied. Using
Eq. (70), we get

Sσσ ′,th
αα = 4e2

h
kBT

(
Mαδσσ ′ − Rσσ ′

αα

)
. (73)

B. Results for topological helical edge modes

This section considers a four-terminal system with QSH
edge modes, which is topological, and the electron motion is
helical, as shown in Fig. 2. We can apply voltages at any con-
tact and measure the current-current correlation between any
of those contacts based on a system as in Fig. 2. There we have
a constriction with reflection and transmission amplitudes r, t ,
respectively. The general s-matrix for this quantum spin Hall
bar setup is

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 teiθ 0 0 0 −ireiθ 0
0 0 0 0 0 0 0 eiφ1

0 0 0 0 eiφ2 0 0 0
0 teiθ 0 0 0 −ireiθ 0 0
0 0 −ireiθ 0 0 0 teiθ 0
0 0 0 eiφ2 0 0 0 0

eiφ1 0 0 0 0 0 0 0
0 −ireiθ 0 0 0 teiθ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (74)

The phase φ1 is determined by the path difference for the
electron reaching contact 1 from contact 4 and vice versa.
Similarly, phase φ2 is determined by path difference for elec-
tron reaching contact 2 from contact 3 or vice versa without
scattering. θ is the phase acquired during, transmission via
the constriction. An extra phase π/2 occurs whenever there is
reflection due to the constriction. The s-matrix is unitary as it
is. We have three setups. Setup 1 is defined by parameters such
that μ2 = μ3 = μ0 and μ1 = μ4 = μ condition holds. Simi-
larly, Setup 2 is defined by μ2 = μ4 = μ0 and μ1 = μ3 = μ

and Setup 3 by μ3 = μ4 = μ0 and μ1 = μ2 = μ. In all se-
tups, μ − μ0 = eV and μ,μ0 � kBT . We herein analyze the
thermal noise-like, shot noise, and quantum noise correlations
in each setup using the s-matrix given in Eq. (74).

1. Setup 1 (μ1 = μ4 = μ and μ2 = μ3 = μ0)

From the s-matrix, we can calculate the thermal and ther-
mal noise-like contributions to the total quantum noise. We
will examine the quantum noise cross-correlation between the
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probes 1 and 4. The quantum noise correlation Sq
14 between

terminals 1 and 4 is given as

Sq
14 = S↑↑,q

14 + S↑↓,q
14 + S↓↑,q

14 + S↓↓,q
14 , (75)

the individual spin-polarized contributions using Eq. (60) are
given as

Sσσ ′,q
14 = e2

h

∑
ρ,ρ ′=↑,↓

∑
γ ,δ

∫
dETr

[
Aρρ ′

γ δ (1, σ )Aρ ′ρ
δγ (4, σ ′)

]
× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (76)

Equation (76) has both the thermal noise-like contribution
(Sσσ ′,th

14 ) and shot noise-like contribution (Sσσ ′,sh
14 ). The total

thermal noise-like contribution to the quantum noise correla-
tion (Sq

14) is given by

Sth
14 = S↑↑,th

14 + S↑↓,th
14 + S↓↑,th

14 + S↓↓,th
14 . (77)

We first calculate S↑↑,th
14 using Eq. (62) and is given as

S↑↑,th
14 = −2e2

h

∫
dE [T ↑↑

14 f4(1 − f4) + T ↑↑
41 f1(1 − f1)].

(78)
Making use of the integral

∫ ∞
0 dE fα (1 − fα ) = kBT for

μ,μ0 � kBT , we get

S↑↑,th
14 = −2e2

h
kBT [T ↑↑

14 + T ↑↑
41 ] = −2e2

h
kBT (1 + R). (79)

Similar calculation shows S↑↓,th
14 = 0, S↓↑,th

14 = 0, and S↓↓,th
14 =

− 2e2

h kBT (1 + R). Thus the thermal noise-like contribution to

the quantum noise is given by Sth
14 = − 4e2

h kBT (1 + R). R is
the reflection probability for an electron to reflect from the
constriction. Here, we observe that the thermal noise-like
contribution is twice that of the chiral quantum Hall case. The
shot noise-like contribution to the quantum noise is given by

Ssh
14 = S↑↑,sh

14 + S↑↓,sh
14 + S↓↑,sh

14 + S↓↓,sh
14 , (80)

The shot noise-like contribution Sσσ ′,sh
14 can be calculated from

Eq. (66),

Sσσ ′,sh
14 = − 2e2

h

∫
dE

∑
γ ,δ

∑
ρρ ′=↑,↓

( fγ − fa)( fδ − fb)

× Tr
(
sσρ†

1γ sσρ ′
1δ sσρ ′†

4δ sσρ
4γ

)
. (81)

Once again, we consider the energy-dependent functions fa

and fb, equal to f0, which is the Fermi-Dirac distribution of
contacts 2 and 3. Using the s-matrix as in Eq. (74), we get
S↑↑,sh

14 = 0. Similarly other contributions such as S↑↓,sh
14 , S↓↑,sh

14 ,
and S↓↓,sh

14 are also zero. Thus, the shot noise-like contribution
to the quantum noise Sq

14 vanishes. The quantum noise, there-
fore, is

Sq
14 = Sth

14 = −4e2

h
kBT (1 + R). (82)

Like the chiral case, the total contribution to the quantum
noise comes from thermal noise only. Similarly, correlations
between terminals 1 and 2, 3 and 4, 2 and 3, and 1 and 4 show

similar nature where only the thermal noise contributes to the
quantum noise. These quantum noise correlations are given as

Sq
12 = Sq

34 = 1 − R

1 + R
Sq

14, Sq
23 = Sq

14. (83)

We can see that the quantum noise correlation between ter-
minals 2 and 4 is now finite, which was zero in the quantum
Hall case. The noise correlation between these two terminals
is shot noise like. It is a significant result since it distinguishes
chiral edge modes from helical ones.

The shot noise-like contribution (Ssh
24) between terminals 2

and 4 is given as

Ssh
24 = S↑↑,sh

24 + S↑↓,sh
24 + S↓↑,sh

24 + S↓↓,sh
24 , (84)

where individual spin-polarized components are

Sσσ ′,sh
24 = 〈�Iσ

2 �Iσ ′
4 〉sh, where σ, σ ′ = ↑ / ↓

= −2e2

h

∫
dE

∑
γ ,δ

∑
ρρ ′=↑,↓

( fγ − fa)( fδ − fb)

× Tr
(
sσρ†

2γ sσρ ′
2δ sσρ ′†

4δ sσρ
4γ

)
. (85)

The component S↑↑,sh
24 is given as

S↑↑,sh
24 = −2e2

h

∫
dE

∑
γ ,δ

∑
ρ,ρ ′=↑,↓

( fγ − fa)( fδ − fb)

× Tr
(
S↑ρ†

2γ s↑ρ ′†
2δ s↑ρ ′†

4δ s↑ρ
4γ

)
. (86)

Each term in the summation is zero, which can be seen
from s-matrix as in Eq. (74). Similarly, we can calculate other
spin-polarized components. S↓↓sh

24 is given as

S↓↓,sh
24 = −2e2

h

∫
dE

∑
γ ,δ

∑
ρ,ρ ′=↑,↓

( fγ − fa)( fδ − fb)

× Tr
(
S↓ρ†

2γ s↓ρ ′†
2δ s↓ρ ′†

4δ s↓ρ
4γ

)
. (87)

The summation in the above equation survives only when
γ , δ = 1, 3. Now, using the appropriate s-matrix elements as
in Eq. (74), we get

S↓↓,sh
24 = −2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (88)

The other components such as S↑↓
24 and S↓↑

24 are zero and
may become significant in the presence of spin-flip scattering.
For helical edge modes, we see that the shot noise-like contri-
bution Ssh

24 arises due to edge modes via spin-down electrons
and this is a result of both constriction and the applied volt-
age bias. In absence of the constriction, i.e., R = 0, T = 1,
or at zero applied voltage bias, i.e., eV → 0, the shot-noise
vanishes. The thermal noise-like contribution (Sth

24) is given as

Sth
24 = S↑↑,th

24 + S↑↓,th
24 + S↓↑,th

24 + S↓↓,th
24 . (89)

We first calculate S↑↑,th
24 can be calculated using Eq. (62) and

is given as

S↑↑,th
24 = −2e2

h

∫
dE [T ↑↑

24 f4(1 − f4) + T ↑↑
42 f1(1 − f1)].

(90)
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FIG. 3. (a) Behavior of quantum noise cross-correlation between terminals 2 and 4 in Setup 1 (results are identical in Setup 3 as well),
and (b) quantum noise cross-correlation between terminals 2 and 4 in Setup 2 in units of 2e2

h kBT vs R with the voltage bias (eV = 4kBT ) with
μ0 = 100kBT . This is in the regime eV � kBT .

Since there are no direct tunneling processes for an electron
from contact 2 to 4 and vice versa, we have T ↑↑

24 = T ↑↑
42 =

0, which leads to vanishing S↑↑,th
24 . Similarly, the other spin-

polarized components are zero. So, the total thermal noise-like
contribution is given as

Sth
24 = 0. (91)

The total quantum noise correlation Sq
24 is only shot noise

like, i.e.,

Sq
24 = Ssh

24 = −2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (92)

Here, we observe that the shot noise-like contribution is
nonzero for the helical edge mode transport, while it is zero
for the chiral edge mode transport. This gives the distinction
between chiral and helical edge modes. Here, we have two
distinct regimes. In the regime eV � kBT , the quantum noise
correlation (Sq

24) becomes

Sq
24 = −2e2

h
RT (eV − 2kBT ). (93)

In this regime, the chiral and topological helical edge modes
can be distinguished and have been shown in Fig. 3(a) and
in the regime kBT � eV , Sq

24 is very small but still helps
in distinguish chiral and topological helical edge modes as
shown in Fig. 4(a).

In the regime eV = kBT also, we can see the distinction
between these two edge modes, which has been shown in
Fig. 5(a). In this regime, Sq

24 is given as

Sq
24 = −2e2

h
RT

(
coth

[
1

2

]
− 2

)
kBT . (94)

The quantum noise correlation between terminals 1 and 3 is
only due to the shot noise-like contribution since the thermal
noise-like contribution vanishes, which is the same for the
chiral case. The reason behind Sq

13 being only shot noise like
can be understood in a similar way as one understands why
Sq

24 is shot noise like.

The quantum noise correlation between terminals 1 and 3
gives us

Sq
13 = Ssh

13 = −2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (95)

Further, we can calculate the autocorrelations as well. The
autocorrelation in terminal 1 is

Sq
11 = S↑↑,q

11 + S↑↓,q
11 + S↓↑,q

11 + S↓↓,q
11 . (96)

The thermal noise-like contributions to S↑↑,q
11 can be calculated

from Eq. (70) and is given as

S↑↑,th
11 = 4e2

h

∫ ∞

0
dE f (1 − f )(M1 − R↑↑

11 )

= 4e2

h

∫ ∞

0
dE f (1 − f ) (97)

where, using the s-matrix as in Eq. (74), one can get R↑↑
11 =

|s↑↑
11 |2 = 0 and the number of edge modes (M1) is 1 due to

spin-up electrons in terminal 1.
Similarly, the shot noise-like contribution can be derived

from Eq. (72) and is given by

S↑↑,sh
11 = 2e2

h

∫
dE

(
T ↑↑

12 ( f0 − f ) + f 2

−
∑
γ δ

∑
ρρ ′=↑,↓

fγ fδTr
(
sσρ†

1γ sσρ ′
1δ sσ ′ρ ′†

1δ sσ ′ρ
1γ

))
. (98)

In Eq. (98), the summation survives only if γ , δ = 2, 4 as
can be seen by the s-matrix as in Eq. (74). S↑↑,sh

11 is therefore

S↑↑,sh
11 = 2e2

h

∫
dE

(
T ( f0 − f ) + f 2 − f 2R2

− f 2
0 T 2 − 2 f f0RT

)
. (99)
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FIG. 4. (a) Behavior of quantum noise cross-correlation between terminals 2 and 4 in Setup 1 (results are identical in Setup 3 as well), and
(b) quantum noise cross-correlation between terminals 2 and 4 in Setup 2 in units of 2e2

h kBT vs R with the voltage bias (eV = 0.01kBT ) with
μ0 = 100kBT . This is in the regime eV 
 kBT .

Adding Eqs. (97) and (99) and simplifying further, the
quantum noise Sq

11 is therefore

S↑↑,q
11 = 2e2

h

∫ ∞

0
dE [ f (1 − f ) + R f (1 − f )

+ T f0(1 − f0) + RT ( f − f0)2]. (100)

On integration, Eq. (100) becomes

S↑↑,q
11 = 4e2

h
kBT + 2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
.

(101)

Similarly, S↓↓,sh
11 can also be calculated from Eqs. (70) and

(72). The thermal noise-like contribution S↓↓,th
11 is

S↓↓,th
11 = 4e2

h

∫ ∞

0
dE f (1 − f ), (102)

and the shot noise-like contribution is given as

S↓↓,sh
11 = 2e2

h

∫
dE

(
T ↓↓

12 ( f0 − f ) + f 2

−
∑
γ δ

∑
ρ,ρ ′=↑,↓

fγ fδTr
(
s↓ρ†

1γ s↓ρ ′
1δ s↓ρ ′†

1δ s↓ρ
1γ

))
. (103)

Here, T ↓↓
12 = |s↓↓

12 |2 = 0 from the s-matrix as in Eq. (74), and
performing the summation using the same s-matrix, S↓↓,sh

11

goes to zero. It implies that S↓↓,q
11 is only thermal noise like,

which is given as

S↓↓,q
11 = 4e2

h
kBT . (104)

Similarly, other spin-polarized components such as S↑↓,q
11

and S↓↑,q
11 can also be calculated and all of them vanish since

there is no spin-flip scattering. However, these may become
significant in the presence of spin-flip scattering. The quantum

FIG. 5. (a) Behavior of quantum noise cross-correlation between terminals 2 and 4 in Setup 1 (results are identical in Setup 3 as well),
and (b) quantum noise cross-correlation between terminals 2 and 4 in Setup 2 in units of 2e2

h kBT vs R with the voltage bias (eV = kBT ) with
μ0 = 100kBT . This is in the regime eV = kBT .
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FIG. 6. (a) Quantum noise autocorrelation Sq
22 = Sq

44 in Setup 1 (results are identical in Setup 3 as well) in units of 2e2

h kBT vs the voltage
bias (eV ) in units of kBT with R = 0.5 and μ0 = 100kBT . (b) Quantum noise autocorrelation Sq

22 = Sq
44 in Setup 1 (results are identical in

Setup 3 as well) in units of 2e2

h kBT vs reflection probability (R) in units of kBT with eV = kBT and μ0 = 100kBT . This is in the regime
eV = kBT .

noise autocorrelation in terminal 1 is therefore

Sq
11 = 2e2

h
4kBT + 2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
.

(105)

In the regime eV � kBT , Sq
11 = 2e2

h RT (eV − 2kBT ),

in eV 
 kBT , Sq
11 = 2e2

h 4kBT , and in the regime eV =
kBT , Sq

11 = 2e2

h 4kBT + 2e2

h RT 0.16kBT . While in the regime
eV 
 kBT , the quantum noise autocorrelation is thermal
noise like and it exactly matches that of the chiral result, which
does not help in distinguishing these two edge modes.

We can also calculate the other autocorrelations by a simi-
lar method used to calculate Sq

11 and we find all of them to be
same, i.e.,

Sq
11 = Sq

22 = Sq
33 = Sq

44, (106)

which differentiates helical from the chiral case. For chiral,
Sq

11 = Sq
33 �= Sq

22 = Sq
44. Again, we observe another profound

difference. For chiral edge modes, the quantum noise Sq
22 =

Sq
44 is pure thermal noise like, but for helical edge modes,

shot noise-like contribution also contributes to autocorrela-
tion. This distinguishes chiral from helical edge modes, which
is shown in Figs. 6(a) and 6(b) in the regimes eV � kBT and
eV = kBT respectively.

2. Setup 2 (μ1 = μ3 = μ and μ2 = μ4 = μ0)

As explained earlier, the thermal noise-like contributions
does not change for different setups as explained in Eqs. (64)
and (73) in Sec. III A. The quantum noise cross-correlation
between different terminals is

Sq
14 = Sth

14 = Sq
23 = Sth

23 = −4e2

h
kBT (1 + R), (107)

Sq
12 = Sq

34 = 1 − R

1 + R
Sq

14, (108)

Sq
13 = 0, (109)

Sq
24 = Ssh

24 = −2e2

h
4RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (110)

Above Eqs. (107), (108), (109), and (110) imply Ssh
14 = Ssh

23 =
Ssh

12 = Ssh
34 = 0 and Sth

24 = 0. The reason behind shot noise-like
contribution vanishing can be understood using the s-matrix as
in Eq. (74) as vanishing s-matrix elements result in vanishing
shot noise. In this setup also, one can see that Sq

24 distinguishes
between chiral and helical edge modes since in the chiral case
it is zero. This can also be understood using s-matrix given in
Eq. (74). The autocorrelation for quantum noise in this setup
is only thermal noise like, i.e.,

Sq
ii = Sth

ii = 2e2

h
4kBT , i ∈ {1, 2, 3, 4}. (111)

Here the shot noise-like contributions to each quantum noise
correlation vanish, i.e., Ssh

ii = 0 for i ∈ {1, 2, 3, 4}. This can
also be explained using the s-matrix as in Eq. (74). We can
calculate Sq

11 as follows. The Sσσ ′,th
11 components can be calcu-

lated using Eq. (70) and they are given as

S↑↑,th
11 = S↓↓,th

11 = 4e2

h

∫ ∞

0
dE f (1 − f ). (112)

After integrating, we get the thermal noise-like contribution
as

Sth
11 = S↑↑,th

11 + S↓↓,th
11 = 2e2

h
4kBT . (113)

Similarly, the shot noise-like contribution can be calcu-
lated. Using Eq. (72), we can calculate the spin-polarized
components. S↑↑,sh

11 is given as

S↑↑,sh
11 = 2e2

h

∫ ∞

0
dE ( f0(1 − f0) − f (1 − f )) = 0, (114)

where we used Eq. (63) in the limit μ,μ0 � kBT . Similarly,
S↓↓,sh

11 is given as

S↓↓,sh
11 = 2e2

h

∫ ∞

0
dE ( f0(1 − f0) − f (1 − f )) = 0. (115)

The other spin-polarized components such as S↑↓,sh
11 and S↓↑,sh

11
are zero, which might become significant in the presence of
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spin-flip scattering. Therefore, the total shot noise-like contri-
bution Ssh

11 is zero and Sq
11 is only thermal noise like. Using

the same method used for Sq
11, we can calculate Sq

22, Sq
33,

and Sq
44 and find them all to be thermal noise like. Here, the

autocorrelations are also thermal noise like and therefore do
not provide any distinction between chiral and topological
helical edge modes in Setup 2.

3. Setup 3 (μ1 = μ2 = μ and μ3 = μ4 = μ0)

For this setup, again the thermal noise-like contributions
does not change, but the shot noise-like contributions to the
quantum noise cross-correlation Sq

13, Sq
24 are nonzero now. We

see distinctive results for chiral and helical edge modes via Sq
24

for this setup. The quantum noise cross-correlation between
different terminals can be calculated using Eqs. (61), (62),
(65), and (66) and they are given as

Sq
14 = Sth

14 = Sq
23 = Sth

23 = −4e2

h
kBT (1 + R),

Sq
12 = Sth

12 = Sq
34 = Sth

34 = 1 − R

1 + R
Sq

14,

Sq
13 = Ssh

13 = Sq
24 = Ssh

24

= −2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (116)

Here, Eq. (116) implies that

Ssh
14 = Ssh

23 = Ssh
12 = Ssh

34 = 0, Sth
13 = Sth

24 = 0. (117)

Similarly, the quantum noise autocorrelations can be derived
using Eqs. (69), (70), (71), and (72) and they are given as

Sq
11 = Sq

22 = 2e2

h

∫
dE (4 f (1 − f ) + RT ( f − f0)2),

Sq
33 = Sq

44 = 2e2

h

∫
dE (4 f0(1 − f0) + RT ( f − f0)2),

(118)

which on integrating gives

Sq
ii = 2e2

h
4kBT + 2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
,

i ∈ {1, 2, 3, 4}. (119)

Here, the autocorrelations are combinations of equilibrium
(thermal noise) and transport (shot noise) fluctuations. The
reason behind this behavior can be explained in a similar
fashion as was done for Setup 1 below Eq. (96). Here, we have

three distinct regimes: eV � kBT , eV 
 kBT , and eV =
kBT . For eV � kBT , we have

Sq
ii = 2e2

h
RT (eV − 2kBT ), i ∈ {1, 2, 3, 4}. (120)

For eV 
 kBT , we have

Sq
ii = 2e2

h
4kBT , i ∈ {1, 2, 3, 4}, (121)

and in the regime eV = kBT ,

Sq
ii = 2e2

h
4kBT + 2e2

h
RT

(
coth

[
1

2

]
− 2

)
kBT ,

i ∈ {1, 2, 3, 4}. (122)

The thermal noise-like contributions are

Sth
ii = 2e2

h
4kBT , i ∈ {1, 2, 3, 4}, (123)

and the shot noise-like contributions are

Ssh
ii = 2e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
, i ∈ {1, 2, 3, 4}.

(124)

In this setup, we also see a difference, i.e., the autocorrela-
tions Sq

22 and Sq
44 are thermal noise like for chiral edge modes

and for the transport via helical edge modes, they are the sum
of thermal and shot noise-like contributions.

Due to the existence of helical edge modes, the shot noise-
like contribution contributes in some cases, such as Sq

24 for all
setups, and Sq

22, Sq
44 in Setups 1 and 3, which makes the total

quantum noise results for the helical case distinct from the
chiral case, as has been highlighted in Figs. 6(a) and 6(b) in
the regimes eV � kBT and eV = kBT , respectively.

C. Results for trivial Helical edge modes

We consider a trivial quantum spin Hall setup shown
in Fig. 7. In this case, up spin electron can get backscat-
tered as a spin-down electron preserving spin-momentum
locking [8]. In this situation, the electron has a finite prob-
ability p for a change in its direction of motion and spin
with the help of intraedge scattering. In our paper, we will
show how the topological and trivial helical edge modes
two different helical edge modes are distinguished from
each other via quantum noise cross-correlations as well as
autocorrelations.

Similar to chiral and topological helical setups, we can
apply different voltages at any of the contacts and measure
quantum noise cross- and autocorrelation in the trivial QSH
setup. Here, we work with three different setups similar to that
used for transport via topological helical edge modes. Here, in
addition to scattering from the constriction, we have spin-flip
scattering, and the general s-matrix for this system, as shown
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in Fig. 7 is

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i
√

p teiθ
√

1 − p 0 0 0 −ireiθ
√

1 − p 0

−i
√

p 0 0 0 0 0 0
√

(1 − p)eiφ1

0 0 0 −i
√

p
√

(1 − p)eiφ2 0 0 0

0 teiθ
√

1 − p −i
√

p 0 0 −ireiθ
√

1 − p 0 0

0 0 −ireiθ
√

1 − p 0 0 −i
√

p teiθ
√

1 − p 0

0 0 0
√

(1 − p)eiφ2 −i
√

p 0 0 0√
(1 − p)eiφ1 0 0 0 0 0 0 −i

√
p

0 −ireiθ
√

1 − p 0 0 0 teiθ
√

1 − p −i
√

p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(125)

At p = 0, we correctly reproduce the s-matrix for topo-
logical helical edge modes as shown in Eq. (74). We herein
analyze the thermal noise, shot noise, and quantum noise
using the s-matrix given in Eq. (125).

1. Setup 1 (μ1 = μ4 = μ and μ2 = μ3 = μ0)

From the s-matrix as in Eq. (125), we can find ther-
mal and shot noise-like contributions to quantum noise
cross- and autocorrelations. The quantum noise correlation
Sq

14 is defined in Eq. (76) for a spin-polarized system in
general. For this setup, the thermal noise-like contribu-
tions to quantum noise correlation between terminals 1 and
4 is

Sth
14 = S↑↑,th

14 + S↑↓,th
14 + S↓↑,th

14 + S↓↓,th
14 . (126)

FIG. 7. Four-terminal quantum spin Hall sample having, trivial
edge modes with a constriction. The black solid and dashed line
depicts the edge mode for a spin-up electron, and the red solid and
dashed line depicts the edge mode for a spin-down electron. Solid
lines are for the edge modes transmitting, and dashed lines are for
the edge modes reflecting via constriction.

S↑↑,th
14 from Eq. (78) is

S↑↑,th
14 = −2e2

h

∫
dE [T ↑↑

14 f4(1 − f4) + T ↑↑
41 f1(1 − f1)],

(127)

Making use of integration
∫ ∞

0 dE fα (1 − fα ) = kBT for α =
1, 2, 3, 4 and μ,μ0 � kBT , we have

S↑↑,th
14 = −2e2

h
kBT (1 + R)(1 − p). (128)

Similarly, we can calculate other spin-polarized components
such as S↑↓,th

14 , S↓↑,th
14 , and S↓↓,th

14 . We get

S↑↓,th
14 = S↓↑,th

14 = 0, S↓↓,th
14 = S↑↑,th

14 . (129)

The thermal noise-like contributions Sth
14 is thus

Sth
14 = −4e2

h
kBT (1 + R)(1 − p). (130)

The thermal noise-like contribution here comes as a result
of direct tunneling of electrons from terminal 1 to 4 and vice
versa.

To calculate shot noise-like contribution to quantum noise,
from, Eq. (72), the spin-polarized shot noise-like contribution
to the quantum noise Sq

14 is

Sσσ ′,sh
14 = −2e2

h

∫
dE

∑
γ ,δ=1,4

∑
ρρ ′=↑,↓

( fγ − f0)( fδ − f0)

× Tr
(
sσρ†

1γ sσρ ′
1δ sσ ′ρ ′†

4δ sσ ′ρ
4γ

)
. (131)

We have again considered the energy-dependent functions fa

and fb to be f0, as was shown previously in Sec. II B.
After calculating the above correlation, we get

S↑↑,sh
14 = S↓↓,sh

14 = 0, (132)

S↓↑,sh
14 = −2e2

h
4p(1 − p)

∫
dE ( f − f0)2, (133)

S↑↓,sh
14 = (1 − T )S↓↑,sh

14 . (134)

Using
∫ ∞

0 dE ( f − f0)2 = eV coth[ eV
2kBT ] − 2kBT , we get the

total quantum noise correlation between terminals 1 and 4,
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FIG. 8. Quantum noise Sq
14 in units of 2e2

h kBT for Setup 1 as a
function of applied bias voltage (eV ) in units of kBT at μ0 = 100kBT
and R = 0.5.

Sq
14 = Sth

14 + Ssh
14 to be

Sq
14 = −2e2

h
(1 − p)(1 + R)

(
2kBT + 4p

×
(

eV coth

[
eV

2kBT

]
− 2kBT

))
. (135)

Here, we can see that as a consequence of spin-flip scat-
tering, shot noise contribution is finite for noise correlation
Sq

14. Here, the spin-flipper responsible for spin-flip scattering,
along the edges, acts as a virtual constriction with reflection
and transmission probabilities p and 1 − p, respectively. The
shot noise vanishes if there is no spin-flipper, i.e., p = 0 or
applied voltage bias is zero.

From, Eq. (135), the distinction between the topological
and trivial helical edge modes is shown in Fig. 8. For topologi-
cal helical edge modes (p = 0), the quantum noise is constant.
In contrast, quantum noise for trivial helical edge modes with
different spin-flip probabilities changes symmetrically with
respect to the applied voltage eV .

There are three different regimes, i.e., eV � kBT , eV 

kBT , and eV = kBT . For, eV � kBT , we get

Sq
14 = −−2e2

h
(1 − p)(1 + R)(2kBT + 4p(eV − 2kBT )).

(136)

In this regime, we can easily distinguish between the triv-
ial and topological helical edge modes, where shot noise
dominates over thermal noise, which has been highlighted in
Fig. (8). In the regime eV 
 kBT , we get

Sq
14 = −2e2

h
2(1 − p)(1 + R)kBT . (137)

In this regime as well, we can see a difference in topologi-
cal and trivial helical edge modes via magnitude, where the
thermal noise dominates over shot noise. The quantum noise
in this regime is maximum for the transport via topological
helical edge modes, whereas it reduces for the transport via
trivial helical edge modes. This is a very important result; it
explains how the distinction can be made even if there is no
applied bias voltage across the setup.

FIG. 9. Behavior of quantum noise Sq
12 in units of 2e2

h kBT for
Setup 1 as a function of applied bias voltage (eV ) in units of kBT at
μ0 = 100kBT and R = 0.5. Sq

34 gives, equally similar results too.

For, eV = kBT , we get

Sq
14 = −2e2

h
(1 − p)(1 + R)(2 + 0.64p)kBT . (138)

Here, in this regime as well, we can see the distinction
between topological and trivial helical edge modes via mag-
nitude.

Similarly, other quantum noise cross-correlations are cal-
culated using general definitions as in Eqs. (61), (62), (71),
and (72). They are given as

Sq
12 = Sq

34 = −2e2

h
(1 − R)(1 − p)

×
(

2kBT + p

(
eV coth

[
eV

2kBT

]
− 2kBT

))
. (139)

The shot noise appears due to spin-flip scattering. It will be
zero if either p is zero or applied voltage bias is zero. Equa-
tion (139) also distinguishes between topological and trivial
helical edge modes, shown in Fig. 9. Here as well, we can
distinguish between the topological and trivial helical edge
modes. The expressions for the quantum noise correlations
in these different regimes have been shown via a Table in
Sec. IV.

Similarly, we can calculate the quantum noise correlation
between terminals 1, 3. We had already seen that the total
contribution to this correlation comes from shot noise-like
contribution only. The thermal noise-like contribution is zero.
So, in the trivial case, the actual contribution comes only from
shot noise-like contribution. The shot noise-like contribution
to Sq

13 reduces the correlation for higher spin-flip scattering
and this is given as

Sq
13 = Ssh

13 = −2e2

h
RT (1 − p)2

(
eV coth

[
eV

2kBT

]
− 2kBT

)
.

(140)

Similar to Sq
13, we see only the shot noise-like contribution

to Sq
24 is finite, and it is equal to Sq

13. However, the quantum
noise correlation between terminals 2, 3 is always thermal
noise like, i.e.,

Sq
23 = −4e2

h
kBT (1 + R)(1 − p). (141)
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Since there is direct tunneling of electrons from terminal 2
to 3 and vice versa with probabilities T ↑↑

23 = T ↓↓
32 = (1 − p)

and T ↓↓
23 = T ↑↑

32 = R(1 − p), the shot noise-like contribution
can also be calculated. Using Eq. (125), we can calculate
each spin-polarized component. The general spin-polarized

component S
σσ ′

, sh
23 is given as

S
σσ ′

, sh
23 = −2e2

h

∫
dE

∑
γ ,δ

∑
ρ,ρ ′=↑,↓

( fγ − f0)( fδ − f0)

× Tr
(
sσρ†

2γ sσρ ′
2δ sσ ′ρ ′†

3δ sσ ′ρ
3γ

)
. (142)

For the case σ, σ ′ =↑, the summation only survives for γ =
δ = 3, which makes the total quantity zero since f3 = f0.
Similarly, other spin-polarized components will also vanish,
which makes the total shot noise-like contribution Ssh

23 to be
zero. Now, we can see that the shot noise-like contribution
is zero for both topological (p = 0) and trivial helical edge
modes. In this situation, thermal noise can be used as a tool
to distinguish trivial from topological helical edge modes via
magnitude and this is possible due to the presence of finite
temperatures only, since at zero temperature Sq

23 vanishes
identically for both topological and trivial helical edge modes,
which will not help distinguish between these two helical edge
modes. It shows that the quantum noise correlation can still
distinguish the edge modes even if there is no applied voltage
bias across the system via thermal noise-like contribution.

The quantum noise autocorrelation in each terminal can
also be found, using the definition in Eqs. (69), (70), (71),
and (72). The quantum noise autocorrelation in terminal 1 is
Sq

11 = Sth
11 + Ssh

11. Here, we provide the derivation for Sq
11.

For Setup 1, the thermal noise-like contribution in terminal
1 is

Sth
11 = 2e2

h

∫ ∞

0
dE (4(1 − p) f (1 − f )), (143)

where

S↑↑,th
11 = 4e2

h

∫ ∞

0
dE f (1 − f ). (144)

Similarly, other spin-polarized contributions are

S↑↓,th
11 = −4e2

h

∫ ∞

0
dE f (1 − f )p,

S↓↑,th
11 = −4e2

h

∫ ∞

0
dE f (1 − f )p, (145)

S↓↓,th
11 = 4e2

h

∫ ∞

0
dE f (1 − f ),

and the shot noise-like contribution is given as

Ssh
11 = 2e2

h

∫ ∞

0
dE

(
T (1 − p)( f0 − f )

+ ((1 − p2) − 2p(1 − p)R − (1 − p)2R2) f 2

− (2p(1 − p)T + 2(1 − p)2RT ) f f0 − (1 − p)2T 2 f 2
0

)
.

(146)

Using above expressions, one can find quantum noise cor-
relation Sq

11. For Setup 1, the quantum noise correlation Sq
11 in

the limit μ,μ0 � kBT in terminal 1 (also other autocorrela-
tions) is

Sq
11 = Sq

22 = Sq
33 = Sq

44 =
2e2

h

(
2(1 − p)(2 − pT 2 − RT ) + T (1 − p)(1 − T (1 − p))

eV

kBT
+ (2p(1 − p)T + 2(1 − p)2RT )

eV

kBT
(
e

eV
kBT − 1

)
)

kBT .

(147)

Here, we can see that all the quantum noise autocorrela-
tions are same in the limit μ,μ0 � kBT . We had already
seen that for the topological helical case (p = 0), the quan-
tum noise autocorrelation changes symmetrically with the
applied voltage. In the helical case, both thermal and shot
noise are finite. This has been explained below Eq. (96).
Similarly, the autocorrelations for trivial helical edge modes
are a combination of both thermal and shot noise. They change
symmetrically for different values of spin-flip probability (p),
but they differ in magnitudes in different regimes, which
has been highlighted in Table IV. Herein the shot noise-like
contribution appears due to the spin flipper being a virtual con-
striction with spin-flip scattering probability p, which means
if we put p = 0, we will get the topological helical result as
shown in Eq. (105).

The quantum noise autocorrelation in terminal 1, which is
the same to the autocorrelations in other terminals in the limit
μ,μ0 � kBT . Here, we can have three distinct regimes.

In the regime kBT 
 eV , we get

Sq
11 = Sq

22 = Sq
33 = Sq

44 = 4e2

h
kBT (1 − p). (148)

In this regime thermal noise dominates over shot noise and is
maximum for transport due to topological helical edge modes
(p = 0) and reduces for transport via trivial helical edge
modes (for different values of p). It shows that the thermal
noise comes to the rescue and helps in distinguishing trivial
and topological helical edge modes via magnitude when the
shot noise is zero. This is only possible at finite temperatures.
Similarly, in other regimes such as eV = kBT and eV � kBT ,
we can see the distinction via magnitudes, which has been
highlighted in Table IV.

2. Setup 2 (μ1 = μ3 = μ and μ2 = μ4 = μ0)

For this setup, we see both quantum noise cross- and auto-
correlation can distinguish between trivial and topological
helical edge modes, and they are given as

Sq
12 = Sq

34

= −2e2

h
(1 − R)(1 − p)

×
(

2kBT + p

(
eV coth

[
eV

2kBT

]
− 2kBT

))
,
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FIG. 10. Quantum noise Sq
12 in units of 2e2

h kBT for Setup 2 as a
function of applied bias voltage (eV ) in units of kBT at μ0 = 100kBT
and R = 0.5. Sq

34 gives similar results.

Sq
14 = Sq

23

= −2e2

h
(1 + R)(1 − p)

×
(

2kBT + p

(
eV coth

[
eV

2kBT

]
− 2kBT

))
,

Sq
13 = 0,

Sq
24 = Ssh

24

= − 2e2

h
4RT (1 − p)2

(
eV coth

[
eV

2kBT

]
− 2kBT

)
.

(149)

We again have three regimes, i.e., eV � kBT , eV 
 kBT ,
and eV = kBT . For eV � kBT , we have

Sq
12 = Sq

34 = −2e2

h
(1 − R)(1 − p)(2kBT + p(eV − 2kBT )).

(150)

In this regime, shot noise dominates over thermal noise and
the distinction between topological and trivial helical edge
modes can be easily made, which has been shown in Fig. 10.
For eV 
 kBT , we have

Sq
12 = Sq

34 = −4e2

h
(1 − R)(1 − p)kBT . (151)

In this regime also, where thermal noise dominates over
shot noise, we can see the distinction between topological
(p = 0) and trivial helical edge modes (p �= 0) by magnitude.
For eV = kBT , we have

Sq
12 = Sq

34 = −2e2

h
(1 − R)(1 − p)(2 + 0.16p)kBT . (152)

In this regime as well, we can see a clear differ-
ence between topological and trivial helical edge modes by
magnitude. Equation (149) implies that the thermal noise-like
contribution to Sq

12, Sq
34, Sq

14, Sq
23 are given as

Sth
12 = Sth

34 = −2e2

h
(1 − R)(1 − p)2kBT ,

Sth
14 = Sth

23 = (1 + R)

(1 − R)
Sth

12, (153)

FIG. 11. Quantum noise Sq
14 in units of 2e2

h kBT for Setup 2 as
a function of applied bias voltage (eV ) in units of kBT for μ0 =
100kBT and R = 0.5. Sq

23 gives similar results.

and the shot noise-like contributions are

Ssh
12 = Ssh

34 = −2e2

h
(1 − R)p(1 − p)

×
(

eV coth

[
eV

2kBT

]
− 2kBT

)
,

Ssh
14 = Ssh

23 = (1 + R)

(1 − R)
Ssh

12. (154)

In Fig. 10, we see that for topological helical edge modes,
Sq

12 is constant since it is contributed by thermal noise only.
In contrast, for trivial helical edge modes, i.e., for nonzero
spin-flip scattering values, it changes symmetrically with the
applied voltage (eV ). It effectively distinguishes between
topological and trivial helical edge modes. Similar results are
obtained for other quantum noise cross-correlations such as
Sq

14 and Sq
23 shown in Fig. 11. Similar to the quantum noise

correlations Sq
14 and Sq

12 of the Setup 1, here also we can see
the distinction between the topological and trivial helical edge
modes in three distinct regimes, which has been shown via
Tables in Sec. IV.

In Setup 2, the thermal noise-like contribution in terminal
1 is given as

Sth
11 = 2e2

h

∫ ∞

0
dE

(
4(1 − p) f (1 − f )

)
, (155)

The thermal noise-like contribution is same as that of setup
as this is independent of the setup as explained in Eq. (73).
The shot noise-like contribution is given as

Ssh
11 = 2e2

h

∫ ∞

0
dE

(
2(1 − p)( f0 − f ) + 2(1 − p2) f 2

− 4p(1 − p) f f0 − ((1 − p)2T 2 + 2(1 − p)2RT

+ (1 − p)2(R2 + 1)) f 2
0

)
. (156)
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FIG. 12. Behavior of autocorrelation quantum noise Sq
11 = Sq

22 =
Sq

33 = Sq
44 in units of 2e2

h kBT for Setup 2 as a function of applied
voltage (eV ) in units of kBT with R = 0.5 and μ0 = 100kBT .

We can find the quantum noise autocorrelation using
Eqs. (155) and (156) and in the limit μ, μ0 � kBT , this is
given as

Sq
11 = Sq

22 = Sq
33 = Sq

44

=
(

4(1 − p)2 + 2p(1 − p)
eV

kBT
+ 4p(1 − p)eV

kBT (e
eV

kBT − 1)

)
kBT .

(157)

As we know in this setup for topological helical edge
modes (p = 0), the quantum noise autocorrelations are only
thermal noise like, see Eq. (111). Here, the shot noise appears
as a result of spin-flip scattering due to the spin flipper being a
virtual constriction, which means if either p = 0 or eV → 0, it
vanishes. We can see the quantum noise autocorrelations help
in distinguishing trivial from topological helical edge modes
as has been shown in Fig. 12.

The quantum noise autocorrelation in terminal 1, is same
as the autocorrelations in other terminals, in the limit μ,μ0 �
kBT . Here, we can have three distinct regimes.

In the regime kBT 
 eV , we get

Sq
11 = Sq

33 = 4(1 − p)kBT . (158)

Here also, we see that thermal noise can help distinguish
trivial and topological helical edge modes via magnitudes in
the regime eV 
 kBT . Similarly, in the regime eV � kBT ,
shot noise dominates over thermal noise and the distinction
has been shown via Fig. 12 and highlighted in Table V. In the
regime eV = kBT also we can see the distinction between the
topological (p = 0) and trivial (p �= 0) helical edge modes by
magnitude.

3. Setup 3 (μ1 = μ2 = μ and μ3 = μ4 = μ0)

In this setup, the difference between the topological and
trivial helical edge modes can be shown via quantum noise
cross-correlations: Sq

12, Sq
14, and Sq

23. The quantum noise cor-
relation between different terminals is given as

Sq
12 = −2e2

h
(1 − R)(1 − p)

×
(

2kBT + 4p

[
eV coth

[
eV

2kBT

]
− 2kBT

])
,

FIG. 13. Quantum noise Sq
14 = Sq

23 in units of 2e2

h kBT for Setup
3 as a function of applied voltage bias (eV ) in units of kBT at μ0 =
100kBT and R = 0.5.

Sq
14 = Sq

23

= − 2e2

h
(1 + R)(1 − p)

×
(

2kBT + p

[
eV coth

[
eV

2kBT

]
− 2kBT

])
,

Sq
34 = −4e2

h
(1 − R)(1 − p)kBT ,

Sq
13 = Sq

24 = Ssh
13 = Ssh

24

= − 2e2

h
R(1 − R)(1 − p)2

(
eV coth

[
eV

2kBT

]
− 2kBT

)
.

(159)

Here, thermal noise-like contributions are independent of
setups and same as that of other setups. The shot noise-like
contribution comes due to spin-flip scattering meaning if ei-
ther p or eV are zero, it vanishes. In this setup, we can have
three regimes, i.e., eV � kBT , eV 
 kBT , and eV = kBT .
For eV � kBT , we have

Sq
12 = −2e2

h
(1 − R)(1 − p)

(
2kBT + 4p(eV − 2kBT )

)
.

(160)

In this regime, shot noise dominates over thermal noise and
the distinction between topological and trivial helical edge
modes can be easily made, which has been shown in Fig. 13.
For eV 
 kBT , we have

Sq
12 = −4e2

h
(1 − R)(1 − p)kBT , (161)

In this regime also, where thermal noise dominates over
shot noise, we can see the distinction between topological
(p = 0) and trivial helical edge modes (p �= 0) by magnitude.
For eV = kBT , we have

Sq
12 = −2e2

h
(1 − R)(1 − p)(2 + 0.64p)kBT . (162)

In this regime as well, we can see a clear difference
between topological and trivial helical edge modes by mag-
nitude. Similarly, we can see the distinction between these
two helical edge modes via other cross-correlations such as
Sq

14, Sq
23.
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Equation (159) implies that the thermal noise-like contri-
butions to Sq

12, Sq
14, Sq

23, Sq
13, Sq

24 are given as

Sth
12 = 2e2

h
(1 − R)(1 − p)2kBT ,

Sth
14 = Sth

23 = (1 + R)

(1 − R)
Sth

12, Sth
13 = Sth

24 = 0,

(163)

and the shot noise-like contributions are

Ssh
12 = −8e2

h
(1 − R)p(1 − p)

(
eV coth

[
eV

2kBT

]
− 2kBT

)
,

Ssh
14 = Ssh

23 = (1 + R)

4(1 − R)
Ssh

12. (164)

In this setup as well, the quantum noise autocorrelations
can also be derived. In this setup, Sq

11 and Sq
22 are same, while

Sq
33 and Sq

44 are also same, which can be found by interchang-
ing μ and μ0 in Sq

11.

The thermal noise-like contributions in terminal 1 in Setup
3 is

Sth
11 = Sth

22 = 2e2

h

∫ ∞

0
dE4(1 − p) f (1 − f ), (165)

and the shot noise-like contribution is

Ssh
11 = 2e2

h

∫ ∞

0
dE

(
(R + 1)(1 − p)( f0 − f ) + (2(1 − p2)

− 2p(1 − p)T − T 2(1 − p)2) f 2 − (2pR(1 − p)

+ 2RT (1 − p)2 + 2p(1 − p)) f f0

− (R2 + 1)(1 − p)2 f 2
0

)
. (166)

The total quantum noise correlation Sq
11 can be found out

using Eqs. (165) and (166) and is given as

Sq
11 = Sq

22 = Sq
33 = Sq

44 =
(

2(1 − p)(2 − p − R + (1 − p)R2) + (1 − p)(p + R − (1 − p)R2)
eV

kBT

+(2pR(1 − p) + 2RT (1 − p)2 + 2p(1 − p))
eV

kBT (e
eV

kBT − 1)

)
kBT . (167)

Similar to Setup 1, we can see that all the quantum noise
autocorrelations are same in the limit μ,μ0 � kBT . We had
already seen that for the topological helical case (p = 0), the
quantum noise autocorrelation changes symmetrically with
the applied voltage. In this case, both thermal and shot noise
appear. This has been explained below Eq. (117). Similarly,
the autocorrelations for trivial helical edge modes change
symmetrically for different values of spin-flip probability (p),
but they differ in magnitudes in different regimes, which has
been highlighted in Table VI. The extra shot noise contri-
bution appears as a result of spin-flip scattering p, which
means at p = 0 we will get the topological helical result as
in Eq. (119). Similar to Setup 1, the quantum noise autocor-
relations change symmetrically with applied voltage eV for
both the topological (p = 0) and trivial (p �= 0) helical edge
modes, which does not distinguish these two helical edge
modes via behavior but they distinguish via magnitude as
shown in Table VI in different regimes.

In Setup 3, we observe that the topological and trivial
helical edge modes are distinguished via the quantum noise
correlations Sq

12, Sq
14, Sq

23 as shown in Figs. 13 and 14. Like
Setup 2, we do not see any instance where the quantum
noise auto-correlation can discriminate between topological
and trivial helical edge states.

IV. ANALYSIS

This section analyses all the possible cross- and auto-
quantum noise correlations for different setups via Tables in
the regimes eV � kBT , eV = kBT , and eV 
 kBT .

In Table I, we have summarized the behavior of all the pos-
sible cross- and auto-correlations as a function of the voltage
bias (eV = μ − μ0) for Setup 1 with the condition μ1 = μ4 =
μ and μ2 = μ3 = μ0. We observe that the quantum noise
cross-correlations behave very similarly in the presence of
chiral and helical edge modes except Sq

24, shown in Fig. 3.
For chiral edge modes, it is zero. In contrast, in the presence
of topological helical edge modes transport contribution is
finite, which gives nonvanishing quantum noise correlation
Sq

24. Similarly, for Setup 1, we see the distinction between
trivial helical and topological helical edge modes via quantum
noise correlation such as Sq

12, Sq
14, Sq

34, which are all con-
stant for topological helical edge modes, while change while

FIG. 14. Quantum noise Sq
12 in units of 2e2

h kBT for Setup 3 as a
function of applied voltage bias (eV ) in units of kBT at μ0 = 100kBT
and R = 0.5.
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TABLE I. Nature of quantum noise cross- and autocorrelation as a function of voltage bias for Setup 1.

Edge modes Sq
12 = Sq

34 Sq
14 Sq

24 Sq
22 = Sq

44

Chiral Constant [Eq. (28)] Constant [Eq. (27)] Zero [Eq. (30),
Fig. 3(a)]

Constant [Eq. (44),
Fig. 6(a)]

Helical (topological) Constant [Eq. (83), Fig. 9] Constant [Eq. (82), Fig. 8] Symmetric [Eq. (92),
Fig. 3(a)]

Symmetric [Eq. (106),
Fig. 6(a)]

Helical (trivial) Symmetric [Eq. (139), Fig. 9] Symmetric [Eq. (136), Fig. 8] Symmetric [Eq. (140)] Symmetric [Eq. (147)]

TABLE II. Nature of quantum noise cross- and autocorrelation as a function of voltage bias for Setup 2.

Edge modes Sq
12 = Sq

34 Sq
14 = Sq

23 Sq
24 Sq

11 = Sq
22 = Sq

33 = Sq
44

Chiral Constant [Eq. (46)] Constant [Eq. (45)] Zero [Eq. (47), Fig. 3(b)] Constant [Eq. (48)]
Helical (topological) Constant [Eq. (108),

Fig. 10]
Constant [Eq. (107), Fig. 11] Symmetric [Eq. (110),

Fig. 3(b)]
Constant [Eq. (111), Fig. 12]

Helical (trivial) Symmetric [Eq. (149),
Fig. 10]

Symmetric [Eq. (149),
Fig. 11]

Symmetric [Eq. (149)] Symmetric [Eq. (157),
Fig. 12]

TABLE III. Nature of quantum noise cross- and autocorrelation as a function of voltage bias for Setup 3.

Edge modes Sq
12 Sq

14 = Sq
23 Sq

24 Sq
22 = Sq

44

Chiral Constant [Eq. (54)] Constant [Eq. (54)] Zero [Eq. (54), Fig. 3(a)] Constant [Eq. (55), Fig. 6(a)]
Helical (topological) Constant [Eq. (116),

Fig. 14]
Constant [Eq. (116), Fig. 13] Symmetric [Eq. (116),

Fig. 3(a)]
Symmetric [Eq. (119),

Fig. 6(a)]
Helical (trivial) Symmetric [Eq. (159),

Fig. 14]
Symmetric [Eq. (159),

Fig. 13]
Symmetric [Eq. (159)] Symmetric [Eq. (167)]
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being symmetric with respect to the sign of voltage bias (eV )
for trivial helical edge modes. It is shown in Figs. 8 and
9. Similarly, we have also looked into auto-correlations and
summarized them in Table I. Chiral is distinguished from
topological helical edge mode transport via the quantum noise
auto-correlations Sq

22 and Sq
44 as in Fig. 6(a). We have analyzed

the results via magnitudes in the regimes such as eV � kBT ,
eV = kBT , and eV 
 kBT in Table IV.

Similarly, quantum noise cross- and autocorrelations for
Setup 2 with the condition μ1 = μ3 = μ and μ2 = μ4 = μ0

are summarized in Table II. We did not observe any examples
of chiral and topological helical edge modes distinguished
via quantum noise cross-correlation in this setup. Similar to
Setup 1, most of the examples clearly distinguish between the
helical edge modes, trivial and topological, via the quantum
noise cross-correlations Sq

12, Sq
14, Sq

23, Sq
34 as shown in Figs. 10

and 11. Here, autocorrelations do not discriminate between
chiral and topological helical edge modes. However, they
distinguish between topological and trivial helical edge
modes, which can be seen in Fig. 12. The autocorrelations are
constant due to topological helical edge modes and change
symmetrically with respect to the change in sign of voltage
bias for trivial helical. We have also analyzed the results via
magnitudes in the regimes such as eV � kBT , eV = kBT
and eV 
 kBT in Table V.

For the third setup with the condition μ1 = μ2 = μ and
μ2 = μ3 = μ0, the results are summarized in Table III. The
distinction between chiral and topological helical is not seen
for the cross-correlations of quantum noise. However, it is
seen between topological and trivial helical edge modes
for the quantum noise correlations Sq

12, Sq
14, Sq

23 as shown in
Figs. 13 and 14. Similar to Setup 1, the quantum noise auto-
correlations Sq

22 and Sq
44 clearly distinguish between the chiral

and topological helical edge modes as shown in Fig. 6(a).
Herein too we have analyzed the results via magnitudes in
the regimes such as eV � kBT , eV = kBT and eV 
 kBT in
Table VI.

A. Question of finite-frequency quantum noise correlations

In the previous sections, we have concentrated only on
zero-frequency quantum noise correlations. However, one
may take finite frequency too. In that case, as we show below,
quantum noise successfully distinguishes between different
edge modes at finite temperatures. The calculation of quantum
noise correlations can be extended to finite frequency as well
by using the general expression given in Eq. (7) for chiral edge
modes, and in Eq. (59) for both topological helical and trivial
helical edge modes. In our setups, we do not have energy
dependence in the s-matrix. The only frequency dependence
comes from the Fermi-Dirac distribution. First, we will ex-
plain the effect of finite frequency for Setup 1 (see Figs. 1
and 2) in the case of both chiral and topological helical edge
modes, where μ1 = μ4 and μ2 = μ3. Next, we will discuss
the distinction between topological and trivial helical.

In Setup 1, see Fig. 6(a), chiral and topological helical
edge modes can be easily distinguished via the quantum noise
autocorrelation Sq

22 at ω = 0. For chiral, the shot noise-like
contribution vanishes but for the topological helical case, both
thermal as well as shot noise contribute.
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FIG. 15. (a) Quantum noise correlation Sq
22 for chiral edge modes. (b) Quantum noise autocorrelation Sq

22 in units of 2e2

h kBT vs the voltage
bias eV in units of kBT with R = 0.5 and μ0 = 100kBT at zero frequency as well as finite frequencies in Setups 1 and 3.

The quantum noise correlation given in Eq. (7) are at finite
frequency. Now, the quantum noise autocorrelation Sq

22 can be
written for chiral case as

Sq
22(ω) = 2e2

h

∑
γ ,δ

∫
dE [Aγ δ (2; E , E + h̄ω)

× Aδγ (2; E + h̄ω, E )( fγ (E )[1 − fδ (E + h̄ω)]

+ [1 − fγ (E )] fδ (E + h̄ω)), (168)

where Aγ δ (2; E , E + h̄ω) = δ2γ δ2δ − s†
2γ (E )s2δ (E + h̄ω).

The s-matrix elements are energy independent, thus Sq
22

reduces to

Sq
22(ω) = 2e2

h

∑
γ ,δ

∫
dE [Aγ δ (2)Aδγ (2)

× ( fγ (E )[1 − fδ (E + h̄ω)]

+ [1 − fγ (E )] fδ (E + h̄ω)). (169)

Using the s-matrix for the chiral case as given in Eq. (12),
we get

Sq
22 = 4e2

h

∫ ∞

0
dE ( f0(E )(1 − f0(E + h̄ω))

+ (1 − f0) f0(E + h̄ω)), (170)

where

f0(E ) = 1

1 + e
E−μ0
kBT

, f0(E + h̄ω) = 1

1 + e
E−μ0+h̄ω

kBT

.

At ω = 0, Eq. (170) becomes

Sq
22 = 8e2

h

∫ ∞

0
dE f0(1 − f0), (171)

which is same as Eq. (42) for chiral edge mode transport in
Setup 1.

Equation (170) gives us the effect of finite frequency as
seen in Fig. 15. For ω = 0, we recover the zero-frequency
autocorrelation, which is only thermal noise like for chiral
case, as also shown in Fig. 15(a); it is constant with respect to
the applied voltage eV . At finite frequencies also, it is constant
with a different magnitude and with only thermal noise-like
contribution, see Eq. (171).

Similarly, we can analyze the quantum noise correlation
at finite temperature as well as finite frequency in the case
of topological helical edge modes in Setup 1 using Eq. (59)
and the s-matrix given in Eq. (74). The general expression for
quantum noise autocorrelation Sq

22 is

Sq
22 =

∑
σ,σ ′=↑/↓

S
σσ ′

, q
22 , (172)

where

S
σσ ′

, q
22 = e2

h

∑
ρ,ρ ′=↑,↓

∑
γ ,δ

∫
dETr

[
Aρρ ′

γ δ (2, σ )Aρ ′ρ
δγ (2, σ ′)

]
× ( fγ (E )[1 − fδ (E + h̄ω)]

+ [1 − fγ (E + h̄ω)] fδ (E )), (173)

with Aρρ ′
γ δ (2, σ ) = δ2γ δ2δδσρδσρ ′ − sσρ†

2γ sσρ ′
2δ . For the helical

case, we do not have energy dependence in s-matrix ele-
ments, so the only frequency dependence in Sq

22 comes from
the Fermi-Dirac distribution. Taking care of all the spin-
polarized components, the quantum noise autocorrelation Sq

22
for nonzero frequencies is given as

Sq
22 = e2

h

∫ ∞

0
dE (2( f0(E )(1 − f0(E + h̄ω)) + (1 − f0(E )) f0(E + h̄ω)) + T 2( f (E )(1 − f (E + h̄ω))

+ f (E + h̄ω)(1 − f (E )))RT ( f0(E )(1 − f (E + h̄ω)) + (1 − f0(E )) f (E + h̄ω) + f (E )(1 − f0(E + h̄ω))

+ f0(E + h̄ω)(1 − f (E ))) + R2( f0(E )(1 − f0(E + h̄ω)) + f0(E + h̄ω)(1 − f0(E )))). (174)

For ω = 0, we get back Eq. (106) for the topological he-
lical case. The behavior is shown in the plot Fig. 17(b). We

can see that for finite frequencies also the quantum noise
autocorrelation Sq

22 changes with applied bias voltage eV .
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FIG. 16. (a) Quantum noise correlation Sq
22 for topological helical edge modes. (b) Quantum noise autocorrelation Sq

22 in units of 2e2

h kBT
vs the voltage bias eV in units of kBT with R = 0.5, p = 0.5 and μ0 = 100kBT at zero frequency as well as finite frequencies in Setup 2.

We see there is a clear difference between chiral and topo-
logical helical edge modes at zero frequency as well as at
finite frequencies. The ability for quantum noise to distinguish
between chiral and topological at zero frequency and finite
temperature is retained at finite frequencies and finite temper-
atures too.

Now, to distinguish trivial helical from topological helical,
we look at Sq

22 in Setup 2, because in Setup 1, Sq
22 is unable

to distinguish between trivial and topological helical edge
modes, because in Setup 1 Sq

22 consists of both thermal noise
as well as shot noise-like contributions for both trivial and
topological helical edge modes, which makes the distinction
between them impossible. To calculate Sq

22 for trivial helical,
we use Eq. (173) and the s-matrix given in Eq. (125). Taking
care of all the spin-polarized components, we get Sq

22 to be

Sq
22 = e2

h

∫ ∞

0
dE (2(1 − p)2( f (E )(1 − f (E + h̄ω))

+ (1 − f (E )) f (E + h̄ω)) + 2(1 − p)

× p( f0(E )(1 − f (E + h̄ω))

+ f (E + h̄ω)(1 − f0(E ))) + 2(1 + (1 − p)2)

× ( f0(E )(1 − f0(E + h̄ω))

+ f0(E + h̄ω)(1 − f0(E )))

+ 2(1 − p)p( f (E )(1 − f0(E + h̄ω))

+ f0(E + h̄ω)(1 − f (E )))). (175)

At zero frequency in Eq. (175), in case of topological
helical edge modes (p = 0), we get back Eq. (111), and for
trivial helical edge modes, we get back Eq. (157) for Setup
2. One can distinguish between trivial and topological helical
edge modes as shown in Fig. 16. In Figs. 16(a) and 16(b),
we have plotted the quantum noise autocorrelation Sq

22 for
topological (a) and trivial helical edge modes (b) in Setup 2
with μ1 = μ3 and μ2 = μ4. At zero frequency, for topological
helical edge mode, Sq

22 is constant as a function of applied
voltage bias (eV ), but for trivial helical edge mode it changes
symmetrically, which distinguishes trivial from topological
helical edge modes at zero frequency. Similarly, at finite fre-
quencies too, the autocorrelation Sq

22 for topological helical
is constant, whereas for trivial helical it changes with applied
voltage bias symmetrically. Therefore, we conclude that in the

presence of finite frequencies also one can see the distinction
between different edge modes of quantum transport.

V. EXPERIMENTAL REALIZATIONS AND CONCLUSIONS

First, we will look at how to distinguish between thermal
and shot noise experimentally in our setups, by looking at a
simple two-terminal setup. The general expression for both
quantum noise autocorrelation and cross-correlation in the
case of a two-terminal quantum Hall sample in the presence
of a constriction as shown in Fig. 17 is

Sq
11 = Sq

22 = −Sq
12 = −Sq

21

= 2e2

h
T 4kBT

+ 4e2

h
|eV |T (1 − T )

(
coth

[
eV

2kBT

]
− 2kBT

eV

)
,

(176)

with T = the transmission probability of the constriction, V
= the voltage bias applied between terminals 1 and 2. T is
Temperature of the setup, and e is the electronic charge.

The derivation of Eq. (176) is shown in Appendix A 1 us-
ing wavepacket approach and Appendix A 2 using Buttiker’s
approach. The first term in Eq. (176), which is proportional to
kBT is thermal noise-like contribution (Sth

12). The second term
is the shot noise-like contribution (Ssh

12), which is proportional
to both the applied voltage |eV | and T (1 − T ) and arises due
to the quantum nature of charge particles. We can distinguish

FIG. 17. Two-terminal quantum Hall setup with chiral edge
modes with one constriction. Blue solid lines are for the edge modes
transmitting and red solid lines are for the edge modes reflecting via
constriction.
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the thermal noise and shot noise experimentally in the follow-
ing way.

(1) Having a finite temperature is a necessary and suffi-
cient condition to see thermal noise. So, it will be significant if
the applied voltage bias goes to zero or in the limit eV 
 kBT .
The shot noise-like contribution (Ssh

12) according to Eq. (176)
is

Ssh
12 = −4e2

h
|eV |T (1 − T )

(
coth

[
eV

2kBT

]
− 2kBT

eV

)
.

(177)

In the regime eV 
 kBT , coth[ eV
2kBT ] = 2kBT

eV , which gives

Ssh
12 = 0. (178)

Thus, the total quantum noise is given as

Sq
12 = Sth

12 = −8e2

h
T kBT . (179)

(2) Experimentally, we can distinguish the shot noise in
the regime eV � kBT or at zero kelvin. At zero temperature,
the thermal noise-like contribution Sth

12 vanishes, and there will
be only a shot noise-like contribution. At T −→ 0, the shot
noise contribution (Ssh

12) becomes

Ssh
12 = −4e2

h
|eV |T (1 − T ). (180)

To conclude, this paper has made an essential contribu-
tion to distinguishing between topological and trivial helical
edge modes. By analyzing the finite-temperature quantum
noise cross-correlation and autocorrelation, we have been able
to distinguish between different edge modes, such as chi-
ral, topological, and trivial helical edge modes. The results,
presented in Tables I–VI provide valuable insights into the
behavior of these edge modes under different conditions and
demonstrate the usefulness of noise correlations in distin-
guishing between topological and trivial helical edge modes.
Our study has considered finite temperatures and a diversity
of setups, which are critical factors in experimental studies.
The findings of our study have important implications for
future research and may help guide the development of new
experimental techniques.

This paper provides a significant result, which is of ex-
perimental relevance since we have taken care of finite
temperatures. This study can be further extended to systems
with a temperature gradient instead of a voltage gradient,
so-called �T noise, where the average current in the system
is zero. This field is exciting and the experimental work [21]
has shown the �T noise in a two-terminal ballistic sample.
This �T noise has been studied theoretically in [22,23] in
the context of fractional quantum Hall systems. By studying
the �T noise, one can also have a more in-depth study of the
nature of edge modes as well, which is one of our future aims.
The nature of edge modes can still be studied in the presence
of both temperature gradient as well as voltage gradient by
imposing the average current to be zero. We also plan to
extend our study to thermoelectric properties, which would
also be an exciting area of research that could shed further
light on the nature of topological and trivial edge modes.
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APPENDIX A: HISTORICAL PERSPECTIVE
ON QUANTUM NOISE

In Appendix A, we have given a historical perspective
regarding the calculation of quantum noise correlations via
the wavepacket approach in Appendix A 1 and directly by
Buttiker’s approach using Eq. (8) in Appendix A 2 using
a two-terminal QH sample and showed the inconsistency
in using Buttiker’s result, while calculating quantum noise
cross-correlation. Although the thermal noise-like contribu-
tions were similar to that of the wavepacket approach, but
shot noise-like correlations were not matching with that of the
wavepacket approach, which has been resolved by introducing
two energy-dependent functions fa and fb. Next, we derived
thermal noise like contribution in Appendix B 1 as well as
shot noise-like contributions in Appendix B 2 for chiral edge
mode transport in a multiterminal QH sample. Similarly, the
derivations for both thermal noise-like and shot noise-like
contributions for helical edge mode transport are given in
Appendixes C 1 and C 2 for a multiterminal QSH sample. In
the main text, we have used these expressions to distinguish
different modes of transport such as chiral, helical, and trivial
edge modes.

Here, we give a historical perspective on the need for two
energy-dependent functions fa and fb in a more detailed way
via an example. Consider a QH setup with two reservoirs with
Fermi-Dirac distributions f1 and f2 with chemical potentials
μ1 and μ2 respectively at finite temperature T as shown in
Fig. 17. Suppose, we apply a voltage bias across the conduc-
tor, i.e., μ1 − μ2 = eV . Inside the setup, there is a scatterer,
with an s-matrix given by

s =
(

r t
t r

)
, (A1)

where r and t are the reflection and transmission amplitude
of the scatterer, and R = |r|2, T = |t |2 are the reflection and
transmission probabilities of the scatterer, respectively. In
the following subsections, we will derive the quantum noise
cross-correlation Sq

12 or Sq
21 via two approaches, one is by

wavepacket approach as given in [16–18] and the other us-
ing the formulas derived above using the approach used in
[15,19].

1. Wavepacket approach or Martin and Landaeur’s
approach [16–18]

Here, we derive the two-terminal quantum noise in a chi-
ral quantum Hall setup using the wavepacket approach. The
current-current correlation between any terminal α and β is
given as

Sαβ (t ) = 1

T̄

∫
dt ′〈�Iα (t ′)�Iβ (t + t ′)〉, (A2)
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where �Iα (t ′) is the deviation of current from its average,
i.e., �Iα (t ′) = Iα (t ′) − 〈Iα (t ′)〉 where T̄ is the time period.
The noise power (quantum noise) can be found by taking the
Fourier transform of current I (t ′). The noise power is given as

S11(ω)= lim
T̄ →∞

1

T̄
〈|�I1(ω)|2〉, (A3)

where 〈|�I (ω)2|〉 = 〈I1(ω)2〉 − 〈I1(ω)〉2. According to the
wavepacket approach, the current in terminal 1 through a
sample is given as

I1(t ) =
∑

n

jn(t − nτ )gn. (A4)

Here, the current is seen as a superposition of successive
wavepackets, with jn(t − nτ ) being the current associated
with nth wavepacket, and τ is the difference in time between
two successive wavepackets. These wavepackets, which rep-
resent the electrons, are separated in time and can in principle
overlap in space. Considering the energy states in the en-
ergy interval [E − �E/2] and [E + �E/2] means within the
small energy range �E , which is very small, τ becomes
h̄/�E , which can ensure that the successive wavepackets
can be orthogonal to each other. The wavepackets can be
viewed as pulses, with gn as an occupation factor associated
with the particular pulse as shown in Fig. 2 of [16]. It will
take the value +1 if the electron travels from the left terminal
to the right terminal of the sample, −1 if the electron travels
in the opposite direction, and 0 if no electron is transmitted at
all. Now, using the Fourier component of current to be

I1(ω) =
∑

n

gn j(ω)eiωnτ . (A5)

For an electric charge, 〈|I1(ω)|2〉 is given as

〈|I1(ω)|2〉 =
∫ ∞

0
dt |I1(ω)|2 = e2

∑
m,n

〈gmgn〉eiωτ (m−n), (A6)

where ∫ ∞

0
dt j(ω)2 = e2. (A7)

Now, since the mth and nth wavepacket do not overlap and
are orthogonal to each other, then only the term m = n will
survive to the summation. So, the above equation becomes

〈|I1(ω)|2〉 = e2
∑

n

〈
g2

n

〉
. (A8)

Similarly, the square of the average of |〈I1(ω)〉|2 =
e2 ∑

n〈gn〉2. So |�I1(ω)|2 is give as

〈|�I1(ω)|2〉 = 〈|I1(ω)|2〉 − 〈|I1(ω)|〉2

= e2
∑

n

(〈
g2

n

〉 − 〈gn〉2
)
. (A9)

All pulses contribute to the noise in the same fashion, so the
summation over n in Eq. (A9) is T̄ /τ . Considering states in
the wavepacket with energy states within the energy interval
�E and choosing τ = h̄/�E and ω = 0, Eq. (A9) becomes

〈|�I1(ω)|2〉 = e2T̄ �E

π h̄
(〈g2〉 − 〈g〉2). (A10)

Here, we dropped the index n and used gn = g for any n.
The quantum noise autocorrelation using Eq. (A3) at ω = 0 is

S11(ω = 0) = 4�Ee2

h
(〈g2〉 − 〈g〉2). (A11)

Now, doing the summation over all energy intervals, we
get the quantum noise autocorrelation in terminal 1 at zero
frequency to be

S11(ω = 0) = 4e2

h

∫
dE (〈g2〉 − 〈g〉2). (A12)

In Eq. (A12), the extra factor of 2 has been taken to take
care of spin degeneracy. We calculate 〈g2〉 − 〈g〉2 as follows.
The reservoirs have the occupation probabilities, given by
Fermi-Dirac distributions f1 and f2. Below, we describe all
possibilities by considering the trajectories of two electrons
from terminal 1 and terminal 2.

(1) When an electron transmits from the left terminal to
the right terminal, the probability P1 (weight factor) is f1(1 −
f2)T . Here, we can understand this process in the following
way. The electron incident from the left with probability f1

then transmits via the barrier with probability T and then is
incident onto the right terminal of an unoccupied electron state
with probability (1 − f2). We can thus find the total probabil-
ity for this process. The g value is +1, since the electron has,
transmitted from terminal 1 to terminal 2.

(2) The probability P2 (weight factor) for an electron to
transmit from terminal 2 to 1 is given as f2(1 − f1)T and the
value of g recorded is −1.

(3) The probability (weight factor) for the electron to re-
flect terminal 1 after it is incident from terminal 1 is f1(1 −
f2)(1 − T ). Here, after the reflection the electron is incident
on the unoccupied state with probability (1 − f2). This situ-
ation is quite similar to the situation (1) but with reflection.
Here, no current results with the pulse g = 0.

(4) The probability (weight factor) for the electron to
reflect to terminal 2 after it is incident from terminal 2 is
f2(1 − f1)(1 − T ), where again no current results with the
pulse g = 0.

〈g〉 is the average value of the pulse. Now, the deviation of
g value from its average 〈g〉 in each of the above trajectory are
given as

(1) 1 − 〈g〉, (2) −1 − 〈g〉, (3) −〈g〉, (4) −〈g〉.
Now, the expression 〈g2〉 − 〈g〉2 is found by squaring the

above deviations and multiplying by its weight factor. This
can be written as

〈g2〉 − 〈g〉2 = (1 − 〈g〉)2P1 + (1 + 〈g〉)2P2

+ 〈g〉2(1 − P1 − P2). (A13)

Equation (A13) is rewritten as

〈g2〉 − 〈g〉2 = P1 + P2 − 2〈g〉(P1 − P2) + 〈g〉2. (A14)

The average net pulse 〈g〉 can be written as P1 − P2. Using
〈g〉 in Eq. (A14), we get

〈g2〉 − 〈g〉2 = P1 + P2 − (P1 − P2)2. (A15)

Substituting the value of P1 and P2, we get

〈g2〉 − 〈g〉2 = f1(1 − f1)T + f2(1 − f2)T

+ T (1 − T )( f1 − f2)2. (A16)
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So, according to the wavepacket approach, the quantum
noise correlation is given as

Sq
11 = 4e2

h

∫ ∞

0
dE (T f1(1 − f1) + T f2(1 − f2)

+ T (1 − T )( f1 − f2)2
)
. (A17)

According to the current conservation, we require �I1 =
−�I2, which gives rise to 〈(�I1)2〉 = −〈�I1�I2〉. Then the
quantum noise cross-correlation Sq

12 is given as

Sq
12 = −4e2

h

∫ ∞

0
dE (T f1(1 − f1) + T f2(1 − f2)

+ T (1 − T )( f1 − f2)2). (A18)

This is the appropriate form for the quantum noise cross-
correlation between terminals 1 and 2. The first two terms
are thermal noise-like contribution, which deals with the di-
rect tunneling of electrons from one terminal to another, and
always thermal noise like. The second term is transport con-
tribution, which is a nonequilibrium phenomenon. Now, the
integrals involving the Fermi function can be written as

∫ ∞

0
dE f1(1 − f1) = kBT

(
1 − 1

1 + e
μ1

kBT

)
,

∫ ∞

0
dE f2(1 − f2) = kBT

(
1 − 1

1 + e
μ2

kBT

)
,

∫ ∞

0
dE ( f1 − f2)2 = kBT

[
− 2 + 1

1 + e
μ1

kBT

+ 1

1 + e
μ1

kBT
+ coth

(
μ − μ0

kBT

)

× (
log

[
1 + e

μ1
kBT

] − log
[
1 + e

μ2
kBT

])]
.

(A19)

For μ1, μ2 � kBT ,∫ ∞

0
dE f1(1 − f1) =

∫ ∞

0
dE f2(1 − f2) = kBT ,

∫ ∞

0
dE ( f1 − f2)2 = (μ1 − μ2) coth

[
(μ1 − μ2)

2kBT
− 2kBT

]
.

(A20)

We get the final quantum noise cross-correlation to be

Sq
12= −8e2

h
kBTT − 4e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
,

(A21)

where μ1 − μ2 = eV . At zero temperature and for |eV | =
0, quantum noise vanishes, which can be confirmed by
Eq. (A21). The first term in Eq. (A21) is the thermal noise-like
contribution, whereas the second term is a shot noise-like
contribution.

2. Buttiker’s approach [15,19]

In a two-terminal QH setup, current conservation demands
�I1 = −�I2, where �Ii is fluctuation in the current from its
average value, i.e., �Ii = Ii − 〈Ii〉 for i = 1, 2. We can also
find quantum noise cross-correlation (Sq

12) for a two-terminal
QH setup with chiral edge modes directly using Eq. (8), which
is Buttiker’s approach. According to Eq. (8), Sq

12 is given as

Sq
12 = 2e2

h

∑
γ ,δ=1,2

∫
dE [Aγ δ (1)Aδγ (2)]

× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (A22)

where Aγ δ (i) = δiγ δiδ − s†
iγ siδ for i = 1, 2. Using the s-matrix

given in Eq. (A1), we get Sq
12 as

Sq
12 =−4e2

h

∫ ∞

0
dE (T f1(1 − f1) + T f2(1 − f2)

+ T (1 − T )( f1 + f2)2). (A23)

The first two terms are thermal noise-like contributions,
which is same as that of Eq. (A18), but the third term, which is
expected to be shot noise like is not same as that of Eq. (A18).
Further, doing the integration in the limit μ1, μ2 � kBT for
shot noise-like contribution, we get

Ssh
12 = −4e2

h
RT

(
μ1 + 3μ2−2

(
eV

(e
eV

kBT − 1)

)
− 2kBT

)
.

(A24)

As we can see, this expression is not the same as that in
Eq. (A21). Secondly at eV = 0, i.e., μ1 = μ2, we get

Ssh
12 = −4e2

h
RT 4μ2. (A25)

From Eq. (A25), we see that for eV = 0, the shot noise-
like contribution Ssh

12 is nonzero as μ2 is nonzero in the limit
μ1, μ2 � kBT , which contradicts the results obtained from
the wavepacket approach in Eq. (A21) and this is an unphys-
ical result, since for zero applied bias voltage there will be
no current. Therefore the shot noise should vanish in such
a situation. This problem can be resolved in the following
way. We first decompose the quantum noise expression Sq

αβ

into thermal noise-like and shot noise-like contributions and
further modify shot noise-like contribution as done in [15,19]
to match with that of the wavepacket approach.

If both the terminals are at the same chemical potential
means the same Fermi-Dirac distribution f1, then Eq. (A22)
becomes

Sq
12 = 4e2

h

∫
dE

⎛
⎝ f1(1 − f1)

∑
γ ,δ=1,2

[Aγ δ (1)Aδγ (2)]

⎞
⎠.

(A26)

Now ∑
γ ,δ=1,2

Tr[Aγ δ (1)Aδγ (2)]

=
∑

γ ,δ=1,2

Tr(I1δ1γ δ1δδ2γ δ2δ − δ2γ δ2δs†
1γ s1δ

− δ1γ δ1δs†
2δs2γ + s†

1γ s1δs†
2δs2γ ). (A27)
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Doing the summation over γ and δ and using unitarity of
s-matrix

∑
δ s†

δβsδγ = Iβδβγ , we get

∑
γ ,δ

Tr[Aγ δ (1)Aδγ (2)] = Tr[−s†
12s12 − s†

21s21],

= −T21 − T12, (A28)

Tαβ is the transmission probability for an electron to scatter
from terminal β to terminal α for α, β = 1, 2. So, the ther-
mal noise-like contribution when all the terminals have same
Fermi-Dirac distribution is

Sth
12 = −4e2

h

∫ ∞

0
dE f1(1 − f1)[T12 + T21]. (A29)

Since terminals 1 and 2 are maintained at different chemical
potentials, i.e., f1 and f2 respectively, then the thermal noise-
like contribution in this case is

Sth
12 = −4e2

h

∫ ∞

0
dE [ f2(1 − f2)T12 + f1(1 − f1)T21].

(A30)

As we know T12 = T21 = T and after the integration in the
limit μ1, μ2 � kBT , we get

Sth
12 = −8e2

h
T kBT . (A31)

Here, we recover the correct thermal noise-like contribution
(Sth

12) to Sq
12, which is the same as both wavepacket approach

as in Eq. (A21).
For shot noise-like contribution Ssh

12, we have to subtract
thermal noise-like contribution Sth

12 as given in Eq. (A30) from
the quantum noise cross-correlation Sq

12 as given in Eq. (A22),
i.e., Ssh

12 = Sq
12 − Sth

12. Using the relation

∑
δ=1,2

fδ

⎛
⎝ ∑

γ=1,2

Tr[Aγ δ (1)Aδγ (2)]

⎞
⎠

=
∑

γ=1,2

fγ

⎛
⎝ ∑

δ=1,2

Tr[Aγ δ (1)Aδγ (2)]

⎞
⎠ = −T12 f2 − T21 f1

(A32)

gives the shot noise-like contribution to be

Ssh
12 = −4

e2

h

∫
dE

∑
γ ,δ=1,2

fγ fδTr(s†
1γ s1δs†

2δs2γ ). (A33)

Summing over γ and δ, we get

Ssh
12 = −4

e2

h

∫
dERT ( f1 + f2)2. (A34)

As we can see the shot noise-like expression is same as that of
in Eq. (A23) and we have already discussed its disadvantage,
i.e., at zero applied voltage bias it does not vanish, which
is an unphysical result. This can be tackled by introduc-
ing two energy-dependent functions fa and fb in Eq. (A33).
So, the modified shot noise-like cross-correlation is given

as [15]

Ssh
12 = −4

e2

h

∫
dE

∑
γ ,δ

( fγ − fa)( fδ − fb)Tr(s†
1γ s1δs†

2δs2γ ).

(A35)

Now, using fa = fb = f2, we get Ssh
12 to be

Ssh
12 = −4e2

h

∫ ∞

0
dERT ( f1 − f2)2. (A36)

Now, after the integration in the limit μ1, μ2 � kBT ,
we get

Ssh
12 = −4e2

h

(
eV coth

[
eV

2kBT

]
− 2kBT

)
. (A37)

Here, fa and fb are chosen to be f2. There is no unique
choice for fa and fb. In general, it can be any energy-
dependent function. The proper reason behind choosing fa

and fb to be f2 is it allows us to correctly reproduce the result
of shot noise-like contribution as derived via the wavepacket
approach as mentioned in Appendix A 1. Secondly with this
choice, the shot noise-like contribution vanishes for eV = 0.

So, the total quantum noise cross-correlation Sq
12 in a two-

terminal QH sample using the approach of Buttiker is given
as

Sq
12 = −8e2

h
T kBT − 4e2

h
RT

(
eV coth

[
eV

2kBT

]
− 2kBT

)
.

(A38)

This expression is same as that of the wavepacket approach as
in Eq. (A21).

APPENDIX B: DERIVATION OF THERMAL NOISE-LIKE
AND SHOT NOISE-LIKE CONTRIBUTIONS
FOR CHIRAL EDGE MODE TRANSPORT
FOR A MULTITERMINAL QH SAMPLE

In this Appendix, we separately derive the thermal noise-
like and shot noise-like contributions for the transport via
chiral edge modes.

1. Derivation of thermal noise-like contribution

The quantum noise correlation for chiral edge modes as
derived in Eq. (8) is

Sq
αβ = 2e2

h

∑
γ ,δ

∫
dETr[Aγ δ (α)Aδγ (β )]( fγ (E )[1 − fδ (E )]

+ [1 − fγ (E )] fδ (E )). (B1)

If the system is in thermal equilibrium at temperature T , the
Fermi-Dirac distribution in all the terminals is same (assum-
ing the chemical potential in each terminal is same), and we
denote it by f (E ). Now, the above expression reduces to

Sth
αβ = 4e2

h

∫
dE f (E )[1 − f (E )]

∑
γ ,δ

Tr[Aγ δ (α)Aδγ (β )].

(B2)
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Here, Aγ δ (α) = Iαδαγ δαδ − s†
αγ sαδ and similarly, Aδγ (β ) =

Iβδβδδβγ − s†
βδsβγ . Next, we evaluate Sth

αβ in Eq. (B2) by first
doing a summation of Tr[Aγ δ (α)Aδγ (β )] over γ and δ,∑

γ ,δ

Tr[Aγ δ (α)Aδγ (β )]

=
∑
γ δ

Tr(Iαδαγ δαδδβγ δβδ − δβγ δβδs†
αγ sαδ

− δαγ δαδs†
βδsβγ + s†

αγ sαδs†
βδsβγ ). (B3)

After the summation over γ and δ and using unitarity of
s-matrix

∑
α s†

αβsαγ = Iβδβγ , we get

∑
γ ,δ

Tr[Aγ δ (α)Aδγ (β )] = Tr[2Iαδβα − s†
αβsαβ − s†

βαsβα].

(B4)

Thus, Eq. (B2) can be written as

Sth
αβ = 4e2

h

∫
dE f (E )[1 − f (E )]

× [2Nαδαβ − Tr(s†
αβsαβ − s†

βαsβα )], (B5)

where Tr[Iα] = Nα is the number of edge modes in terminal
α. This equation is the Nyquist-Johnson noise. It is a result of
thermal fluctuations alone.

For the autocorrelation (α = β), we see the thermal noise-
like contributions to be

Sth
αα = 8

e2

h

∫
dE ( f (E )(1 − f (E )))[Nα − Rαα], (B6)

Rαα is the reflection probability for an electron to reflect from
terminal α.

For α �= β, the thermal noise-like fluctuation is

Sth
αβ = −4e2

h

∫
dE ( f (E )(1 − f (E )))(Tαβ + Tβα ), (B7)

here, we have assumed the contacts were connected to the
reservoirs with the same chemical potential. For the general
case, wherein the distribution function at terminals α and β

are different, this is given as,

Sth
αβ = −4e2

h

∫
dE [Tαβ fβ (1 − fβ ) + Tβα fα (1 − fα )],

(B8)

where fβ and fα are Fermi-Dirac distribution function of
terminals β and α.

2. Derivation of shot noise-like contribution

To derive the expression for transport-like correlation, we
have to subtract the thermal noise-like fluctuation from the
quantum noise correlation, and for autocorrelation (α = β), it
is given as

Ssh
αα = Sq

αα − Sth
αα, (B9)

where

Sq
αα = 2e2

h

∑
γ ,δ

∫
dETr[Aγ δ (α)Aδγ (α)]

× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (B10)

and

Sth
αα = 8

e2

h

∫
dE ( f (E )(1 − f (E )))[Nα − Rαα]. (B11)

Using the relation given in Eq. (B4), we can simplify
Eq. (B10) as

∑
δ

fδ

⎛
⎝∑

γ

Tr[Aγ δ (α)Aδγ (β )]

⎞
⎠

= Tr[Iα − 2s†
ααsαα] fα +

∑
α

Tr(sαδs†
αδ ) fδ. (B12)

After doing the algebra, we find Ssh
αα to be

Ssh
αα = 4e2

h

∫
dE

( ∑
γ

Tαγ ( fγ − fα ) + Mα f 2
α

−
∑
γ δ

Tr(sαγ sαδsαδsαγ )

)
. (B13)

For the cross-correlation α �= β, the shot noise-like contri-
bution is

Ssh
αβ = Sq

αβ − Sth
αβ, (B14)

where

Sq
αβ = 2e2

h

∑
γ ,δ

∫
dE Tr[Aγ δ (α)Aδγ (β )]

× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )), (B15)

and from Eq. (B8)

Sth
αβ = −4e2

h

∫
dE [Tαβ fβ (1 − fβ ) + Tβα fα (1 − fα )].

(B16)

Again using Eq. (B4), we get

∑
δ

fδ

⎛
⎝∑

γ

Tr[Aγ δ (α)Aδγ (β )]

⎞
⎠

=
∑

γ

fγ

(∑
δ

Tr[Aγ δ (α)Aδγ (β )]

)
= −Tαβ fβ − Tβα fα.

(B17)

We get the shot noise-like contribution to be

Ssh
αβ = −4

e2

h

∫
dE

∑
γ ,δ

fγ fδTr(s†
αγ sαδs†

βδsβγ ). (B18)

Usage of Eq. (B18), we have certain disadvantages, which
can be understood by studying a simple two-terminal QH
sample as has been done in Appendix A 2, which motivated
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Buttiker to use two energy-dependent functions fa and fb

in Eq. (B18). So, the final correct expression for the shot
noise-like contribution [15] is

Ssh
αβ = −4

e2

h

∫
dE

∑
γ ,δ

( fγ − fa)( fδ − fb)Tr(s†
αγ sαδs†

βδsβγ ).

(B19)

APPENDIX C: DERIVATION OF THERMAL NOISE-LIKE
CONTRIBUTIONS FOR HELICAL EDGE MODE

TRANSPORT FOR A MULTITERMINAL QSH SAMPLE

In this Appendix, we derive the thermal and shot noise-like
contributions separately for helical edge modes. The quantum
noise correlation Sq

αβ in setup with helical edge mode transport
is given as

Sq
αβ =

∑
σ,σ ′=↑/↓

Sσσ ′,q
αβ , (C1)

where Sσσ ′,q
αβ is a spin-polarized component to Sq

αβ .

1. Derivation of thermal noise-like contributions

The spin-polarized components of the quantum noise in the
presence of helical edge modes are

S
σσ ′

, q
αβ = e2

h

∑
ρ,ρ ′=↑,↓

∑
γ ,δ

∫
dETr

[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (β, σ ′)

]
× ( fγ (E )[1 − fδ (E )] + [1 − fγ (E )] fδ (E )). (C2)

The quantum noise expression, if the Fermi-Dirac distribution
in all the terminals are same, is thermal noise-like, which is
given by

Sσσ ′,th
αβ = 2

e2

h

∫
dE f (E )[1 − f (E )]

×
∑
γ ,δ

∑
ρ,ρ ′

Tr
[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (β, σ ′)

]
. (C3)

We proceed further using the expression for Aρρ ′
γ δ (α, σ ) and

we get

Sσσ ′,th
αβ = 2e2

h

∫
dE f (E )[1 − f (E )]

×
∑
γ ,δ

Tr
[(

δαγ δαδ − sσρ†
αγ sσρ ′

αδ

)

× (
δβδδβγ − sσ ′ρ ′†

βδ sσ ′ρ
βγ

)]
. (C4)

Further, by simplifying the algebra as we did for the chiral
case, we get

Tr
[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (β, σ ′)

]
= [

2Nαδβαδσσ ′ − Tr
(
sσσ ′†
αβ sσσ ′

αβ

) − Tr
(
sσσ ′†
βα sσσ ′

βα

)]
. (C5)

So, the final expression for thermal noise-like contributions is
given as

Sσσ ′,th
αβ = 2e2

h

∫
dE

(
f (E )(1 − f (E )

) × −(
T σσ ′

αβ + T σσ ′
βα

)
.

(C6)

Here, we have assumed the contacts were connected to the
reservoirs with the same chemical potential. For a general
case, where the distribution function at terminals α and β is
different, we can write

Sσσ ′,th
αβ = −2e2

h

∫
dE

[
T σσ ′

αβ fβ (1 − fβ ) + T σσ ′
βα fα (1 − fα )

]
,

(C7)

where fβ and fα are Fermi-Dirac distribution of contacts β

and α. The thermal noise-like contributions Sth
αβ is thermal

noise-like only, which deals with direct tunneling of electrons
from one terminal to another, which can be written as

Sth
αβ =

∑
σ,σ ′=↑/↓

Sσσ ′,th
αβ . (C8)

Similarly, for α = β, the thermal noise-like contributions is

Sσσ ′,th
αα = 4e2

h

∫
dE fα (1 − fα )

(
Nαδσσ ′ − Rσσ ′

αα

)
. (C9)

2. Derivation of shot noise-like contributions

To derive the shot noise-like contribution, we need to sub-
tract the thermal noise-like fluctuation from the quantum noise
correlation. For the autocorrelation α = β, we have to subtract
Eq. (C9) from Eq. (C2). After doing some algebra, we get the
shot noise-like contribution to be

Sσσ ′,sh
αα = 2e2

h

∫
dE

( ∑
γ

T σσ ′
αγ ( fγ − fα ) + Mαδσσ ′ f 2

α

−
∑
γ δ

∑
ρρ ′=↑,↓

Tr
(
sσρ†

αγ sσρ ′
αδ sσ ′ρ ′†

αδ sσ ′ρ
αγ

))
. (C10)

For the cross-correlation case α �= β, we find

Sσσ ′,sh
αβ = Sσσ ′q

αβ − Sσσ ′,th
αβ . (C11)

We use the formula

∑
δ

fδ

⎛
⎝∑

γ

Tr
[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (α, σ )

]⎞⎠

=
∑

γ

fγ

(∑
δ

Tr
[
Aρρ ′

γ δ (α, σ )Aρ ′ρ
δγ (α, σ )

])

= −T σσ ′
αβ fβ − T σσ ′

βα fα. (C12)

Using, Eq. (C12) and (C13) in Eq. (C2), we find that

Sσσ ′,sh
αβ = −2

e2

h

∫
dE

∑
γ ,δ

fγ fδTr
(
sσρ†
αγ sσρ ′

αδ sσ ′ρ†
βδ sσ ′ρ ′

βγ

)
.

(C13)

Similar to the chiral case, one can study the quantum noise
cross-correlation via wavepacket approach, and by Buttiker’s
approach in a two-terminal QSH sample with a constriction,
again will find inconsistency in Buttiker’s result, which will
require the introduction of two energy-dependent functions fa

and fb in, Eq. (C13).
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So, the final expression for the shot noise-like contribution for the cross-correlation is given as

Sσσ ′,sh
αβ = −2

e2

h

∫
dE

∑
γ ,δ

( fγ − fa)( fδ − fb)Tr
(
sσρ†
αγ sσρ ′

αδ sσ ′ρ†
βδ sσ ′ρ ′

βγ

)
. (C14)
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