
PHYSICAL REVIEW B 108, 115202 (2023)

Band structure, g-factor, and spin relaxation in n-type InAsP alloys

Sunil K. Thapa,1,* Rathsara R. H. H. Mudiyanselage,2,* Thalya Paleologu ,1 Sukgeun Choi,3 Zhuo Yang,4

Y. Kohama ,4 Y. H. Matsuda,4 Joseph Spencer,2 Brenden A. Magill ,2 Chris J. Palmstrøm,3

Christopher J. Stanton ,1,† and Giti A. Khodaparast 2,‡

1Department of Physics, University of Florida, Gainesville, Florida 32611, USA
2Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

3Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
4Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

(Received 27 March 2023; accepted 23 August 2023; published 14 September 2023)

We present experimental and theoretical studies of the magneto-optical properties of n-type InAsxP1−x films
in ultrahigh magnetic fields at room temperature. We compare Landau level and band structure calculations
with observed cyclotron resonance (CR) measurements and extract effective g-factors and CR masses for two
different alloy concentrations, x = 0.07 and x = 0.34. In addition, we employ time-resolved magneto-optical
Kerr measurements on these ternary alloys to explore the spin relaxation time. These alloys have immense
prospects for quantum communication devices and g-factor engineering, and our study provides insights into
this underexplored narrow-gap system.
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I. INTRODUCTION

Historically, InAsP alloys have been important for device
applications due to the possibility of band gap engineering,
which can vary from around 0.36 to 1.35 eV (∼3.4 μm to
900 nm), covering parts of the midinfrared to the near infrared.
Examples of device applications include broadband photode-
tectors [1], mid-IR lasers [2], and optical telecommunications
[3]. Another important materials system in this family is In-
GaAsP, which can be lattice matched to InP. InGaAsP systems
have been widely used for optoelectronic components, such as
laser diodes, detectors, waveguides, and modulators [4].

When it comes to photodetectors for quantum informa-
tion and sensing, to preserve the entanglement, as suggested
by Vrijen and Yablonovitch [5], it is important to fabricate
photodetectors using a material that has a conduction band
effective g-factor much smaller than the valence band, so that
the photodetector can excite equally to the spin split states.
The tunability of the electron effective g-factor (including
g = 0) can provide a major advancement for semiconductor-
based quantum communication applications. Here we demon-
strate, through an experimental and theoretical study, that the
InAsP system is indeed a very good candidate in this regard
[5], and the correct choice of alloying can lead to a system
with an almost zero value for the effective g-factor. Detailed
band structure calculations and analysis of InAsP alloys have
rarely been done [6–8].

In this paper, we focus on less explored characteristics
of the n-type ternary alloy of indium arsenide phosphide
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(InAsxP1−x) grown on an InP substrate. These characteris-
tics include their band structure, cyclotron resonance (CR)
masses, g-factor tunability, and spin dynamics. We performed
experimental high magnetic field CR experiments as well as
time-resolved Kerr rotation measurements and compared our
results to theoretical calculations.

Our 1.2 μm thick InAs0.07P0.93 and InAs0.34P0.66 samples
were grown on semi-insulating InP(001) wafers; they were
made n type with Si doping, with electron densities of 9.3×
1016 and 1.5×1017 cm−3 for x = 0.07 and 0.34, respectively.
The alloy compositions were determined by high-resolution x-
ray diffraction, and the carrier concentrations were measured
by an electrochemical capacitance-voltage profiler.

The results presented in this study go beyond InAs [9–12]
and InP [13–15], which are two widely researched III-V com-
pound semiconductors when it comes to their band structures,
g-factor engineering, and spin dynamics. We should note that,
when it comes to the dynamical aspects of InAsP, previous
studies included only the spin relaxation dynamics in undoped
InAsP films, employing spin-polarized differential transmis-
sion and dynamics of localized excitonic transitions [16,17].
In this study, beyond CR measurements, we employed ul-
trafast time-resolved Kerr rotation (TRKR) measurements on
n-type InAsxP1−x ternary alloys to probe spin relaxation dy-
namics, which provided an additional window to detect the
effective g-factor.

In our work, both measurements were performed at room
temperature (RT) because the extracted information could be
important for developing practical devices. Measuring CR at
RT is somewhat difficult owing to the low mobilities of the
carriers. As a result, the measurements must be performed at
very high magnetic fields, on the order of 100 T. This com-
plicates the calculations since in narrow-gap semiconductors
(NGSs), the nonparabolicity of the conduction band E vs the k
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FIG. 1. Experimental measurements of CR in InAsxP1−x alloys at T = 300 K. (a) Experimental setup. (b) Detected transmission change
for x = 0.07 (blue) and x = 0.34 (red), sweeping the field up and down, in which the traces overlap, demonstrating reproducible observations.
The fits to the CR traces confirm the carrier density, which is on the order of 1.0×1017 cm−3.

dispersion relation means that the Landau levels are no longer
linear in the applied magnetic field. As a result, the CR masses
will differ from the conduction band edge effective mass and
will depend on the magnetic field.

II. EXPERIMENTAL CYCLOTRON RESONANCE
IN ULTRAHIGH MAGNETIC FIELDS

Our CR measurements were conducted in the infrared
regime by employing pulsed ultrahigh magnetic fields
(<150 T) generated using a single-turn coil technique
[18–20]. The external field was applied along the growth
direction. The source of infrared radiation was a CO2 laser.
The transmission data were obtained by means of a fast
liquid-nitrogen-cooled HgCdTe detector, where a multichan-
nel digitizer placed in a shielded room recorded the signals
from the detector as well as the pickup coil. The mea-
surements were carried out in the Megagauss laboratory at
the University of Tokyo. In Fig. 1(a), we show the CR
measurement process for InAsxP1−x at RT with σ+ exci-
tation (electron active) energy of 117 meV (10.6 μm), and
Fig. 1(b) shows the transmission coefficients for x = 0.07
(blue) and x = 0.34 (red). The estimated cyclotron masses
MCR using the resonant magnetic field Br are 0.0907m0 and
0.0751m0, respectively, where m0 is the free electron mass.
Also, using the linewidth of the resonances, the mobili-
ties are estimated to be 994 cm2 V−1 s−1 for x = 0.07 and
813 cm2 V−1 s−1 for x = 0.34.

III. CALCULATIONS OF THE CONDUCTION BAND
LANDAU LEVELS, CYCLOTRON EFFECTIVE MASS,

AND THE EFFECTIVE g-FACTOR

To understand magneto-optical responses in NGSs such as
InAs, one typically utilizes a modified or extended Pidgeon-

Brown-type model [21] which is based on an eight-band k · P
model that includes the twofold spin degenerate conduction,
heavy hole, light hole, and spin-orbit split bands and allows
for coupling to higher-order bands. This model works ex-
tremely well for bulk materials as well as for heterostructures
such as multiple quantum wells for binary materials. While, in
principle, the Pidgeon-Brown model can be applied to alloys
and tertiary materials such as InAsP, the difficulty lies in
determining how to interpolate the many parameters that go
into the Pidgeon-Brown model [21] such as the band gaps Eg;
optical matrix element P; Luttinger parameters γ1, γ2, and γ3;
and the F parameter (which takes into account the coupling to
higher-order bands) between the binary materials (i.e., InAs
and InP for the InAsP alloy system).

Focusing solely on the conduction band CR, one can use
an easier model based on a simplified Kane model. We pre-
viously applied this model with success to model effective
masses in near-surface InAs quantum wells [12]. Here we
extend this model to include ternary alloy materials. In the
simplest model for a NGS, the dispersion for the conduction
band in zero magnetic fields is given by:

ε(1 + αε) = h̄2k2

2m∗
0

. (1)

In this expression, the dispersion relation is quadratic in k
for small energies and becomes linear in k for large energies.
The nonparabolicity parameter α is given by the inverse band
gap energy α = 1/Eg, ε is the conduction band energy with
respect to the bottom of the conduction band, k is the wave
vector, and m∗

0 is the conduction band effective mass at the
band edge (k = 0). This model works very well for the con-
duction band of NGSs such as InAs and InSb and is clearly
extended to medium-gap (and large-gap) materials like InP
since α is even smaller.
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FIG. 2. The band gap, effective mass, and spin-orbit splitting � for InAsxP1−x as a function of x, using linear interpolations between room
temperature values for InP (x = 0) and InAs (x = 1), me is the free electron mass.

When a magnetic field B = Bẑ is applied, one can make
the replacement [22–24]:

k2 = k2
x + k2

y + k2
z → k2

z + 2m∗
0

h̄2

(
n + 1

2

)
h̄ωc0, (2)

where ωc0 = eB
m∗

0
is the band edge CR frequency and n =

0, 1, 2, . . . is the Landau level index. Therefore, after adding
a Zeeman term, we can rewrite Eq. (1) as:

ε(1 + αε) = h̄2k2
z

2m∗
0

+
(

n + 1

2

)
h̄ωc0 ± 1

2
μBg∗

0B, (3)

where g∗
0 is the band edge effective g-factor and μB is the

Bohr magneton. To calculate g∗
0 we use Eq. (A5) from Yuan

et al. [12]:

g∗
0 = 2

[
1 +

(
1 − 1

m∗
0

)
�

3εg + 2�

]
, (4)

where εg is the band gap energy and � is the valence band
spin-orbit splitting. This approximation works well for NGSs
but, as we see later, needs to be slightly modified for medium-
gap materials. In our simple model for the conduction band
of InAsxP1−x, we follow Zhao et al. [25] and take a linear
interpolation of the band gap εg(x) as well as m∗

0(x) and
�(x). We should note that we did not take into account any
bowing. We note that the linear interpolation of the band
edge effective mass agrees with the experimental results at
77 K from Nicholas et al. (we refer to their Fig. 2 in [6]). In
Figs. 2(a)–2(c) we present the band gap, the electron effective
mass, and the spin-orbit splitting at RT as a function of the
alloy concentration x (x = 1 for InAs and x = 0 for InP).

Taking Eq. (3), setting kz = 0, and solving for the conduc-
tion energy band, we get an expression for the Landau levels
(for kz = 0) as a function of the level index n and magnetic
field B:

εc,n =
−1 +

√
1 + 4α[(n + 1

2 )h̄ωc0 ± 1
2μBg∗

0B]

2α
. (5)

Here the plus sign corresponds to spin up (↑), and the minus
sign corresponds to spin down (↓).

In Fig. 3 we plot the calculated conduction band Landau
level fan diagrams (for kz = 0), using Eq. (5) and the linear
interpolations shown in Fig. 2 as a function of B for InAsxP1−x

for x = 0, 0.07, 0.34, and 1.0. We see that at high magnetic
fields and large Landau level indices, the Landau levels are

no longer linear in B. The curvature of the Landau levels with
increasing B increases as x is varied from 0 to 1. This can be
attributed to the decreasing band gap with increasing x, which
results in the bands becoming more nonparabolic, which in
turn leads to deviations from the linear in B dependence to
that of

√
B. This occurs even for x = 0 and x = 0.07.

In Fig. 3, we also show with green arrows where the simple
theory predicts a CR transition to occur for our laser excitation
at 0.117 eV (10.6 μm). For x = 0.07 and x = 0.34, we expect
to see CR at B = 92.3 T and B = 77.4 T, respectively. This
agrees well with the observed resonances at B = 91.7 T and
B = 75.9 T [see Fig. 1(b)]. In addition, for x = 0.34, we plot
a yellow arrow that corresponds to a weaker n = 1 to n = 2
transition. Our theory predicts that this transition should occur
at B = 96.4 T and should give rise to a small shoulder in
the CR line shape. This agrees very well with the observed
small shoulder in the experimental x = 0.34 curve (see Fig. 1)
as well as with Fig. 4, where we compare the theoretical
calculations with the experimental data.

FIG. 3. Calculated Landau levels from our simple model in
InAsxP1−x for (a) x = 0.0, (b) x = 0.07, (c) x = 0.34, and (d) x =
1.0. All energy values are with respect to the bottom of the conduc-
tion band. Green arrows show the dominant transition for excitation
by a 10.6 μm laser. The yellow arrow for x = 0.34 shows a secondary
transition from the n = 1 Landau level to the n = 2 Landau level and
gives rise to the small shoulder feature seen in Fig. 4 as well as in
Fig. 1(b).
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FIG. 4. Comparison of the experimental CR (solid black curves)
with the calculated CR (green and red curves). The bright green
curves show the two different predicted transitions for x = 0.34.
The first transition is mostly hidden behind the red x = 0.34 curve,
which represents the sum of the two predicted transitions. The red
curves show the predicted CR results for x = 0.34 (left) and x = 0.07
(right).

We now compare the cyclotron masses between the ex-
periment and our calculations. The cyclotron mass for the
n = 0 → 1 transition can be obtained from the conservation
of energy at the resonance. It is defined in terms of the bare
electronic mass me as [18]:

MCR = 2µBB

εc1,↑ − εc0,↑
me. (6)

Figure 5 shows the magnetic field dependence of the cy-
clotron mass calculated using Eq. (6). Clearly, with increasing
As concentration x, there is an increase in nonlinearity which
is reflective of the increased coupling between the conduction
and valence bands. Near B = 0 T, the cyclotron mass MCR is
equal to the bare electronic effective masses. For InP (x = 0.0)
and InAs (x = 1.0), the cyclotron mass near B = 0 T is equal
to the conduction band effective mass m∗

0 used in our k · P

FIG. 5. Calculated CR mass for InAsxP1−x for different As con-
centrations. me is the free electron mass.

TABLE I. Comparison of calculated and measured effective
masses in ultrahigh magnetic fields.

MCR

As concentration x Theory (Expt.)

0.07 0.0913 0.0907
0.34 0.0766 0.0751

calculations. At B = Br (where Br is the resonance field), our
calculated CR mass from the simple model shows excellent
agreement with the experimental observation, as shown in
Table I. In addition, the carrier mobility can also be estimated
from the FWHM of the CR. We note that, due to the measure-
ments at very high magnetic field, the effective mass is not
equal to the bare effective mass and the mobility is not equal
to the dc mobility.

To find the dependence of g∗ on the magnetic field as well
as on the As concentration for the lowest Landau Level, n = 0,
we define it as follows:

g∗ = εc0,↑ − εc0,↓
μBB

, B �= 0, (7)

where εc0,↑ and εc0,↓ refer to the calculated conduction bands
(for n = 0) with up and down spins, respectively [see Eq. (5)].
Figure 6 shows the calculated g-factors using Eq. (4) for the
four different As concentrations: x = 0.0 (purple), 0.07 (blue),
0.34 (orange), and 1.00 (green). We observe that for all B, the
effective g-factor decreases from a small positive number to a
large negative number as x increases from 0 to 1, where g∗ ≈ 0
at x = 0.34. This suggests the existence of a well-defined As
concentration in InAsP such that g∗ ≈ 0 at B = 0.

The g-factor for InP (x = 0.0) starts as a small positive
number, which at B = 0 is mostly determined by its funda-
mental parameters such as the band gap, spin splitting, and
Kane energy Ep [18], which remains almost unaltered by the
magnetic field B. When x is increased to 0.07, the magnitude
decreases but still remains positive throughout. It is when x
increases to 0.34 that we observe a significant change. The

FIG. 6. Magnetic field dependence of g∗ as a function of mag-
netic field, plotted for InAsxP1−x with different values of x.

115202-4



BAND STRUCTURE, g-FACTOR, AND SPIN … PHYSICAL REVIEW B 108, 115202 (2023)

g-factor becomes very close to zero at B ≈ 0 and stays well
below 0.5 over all the magnetic field ranges.

For x = 1, the semiconductor is pure InAs. The band edge
g-factor has a large magnitude, and it is negative. This can
be seen from Eq. (4) and this fact occurs because InAs has a
much smaller band gap than InP. The g-factor changes rapidly
to a smaller magnitude (but remains negative) as the magnetic
field is increased. All these facts point to the viability of a
zero-g-factor InAsP alloy at B = 0, with a well-defined As
concentration [26].

IV. ULTRAFAST TIME-RESOLVED KERR ROTATION

Our Kerr rotation measurements at RT were performed on
InAs0.34P0.66 using a degenerate time-resolved pump-probe
technique. The pump energy was 1.305 eV (950 nm), with
σ− polarization and 120 mW of power (corresponding to a
fluence of ∼7 μJ/cm2), where we used a Ti:sapphire oscil-
lator with a 100 fs pulse width and 80 MHz repetition rate.
The estimated excited carrier density was ∼3×1017 cm−3.
Although the same excitation energy was used for the probe
pulses, the polarization was linear, and the intensity was about
100 times lower than the pump pulses. Figure 7(a) shows the
TRKR profile on a short timescale of 300 ps.

A biexponential fit results in two time constants, τ1 =
7.24 ± 1.15 ps and τ2 = 38.2 ± 1.66 ps. Figure 7(b) is a
similar data set at the same pump energy and intensity, with
the measurements recorded for a longer time range of 1300
ps but with a larger time step. This data set is selectively
fitted with exponential decay functions. The fit between 13.0
and 306 ps (in orange) results in a shorter time constant τ3

of 39.1 ± 1.38 ps, and the fit between 173 and 1213 ps (in
magenta) gives a much longer time constant τ4 of 394 ± 39.6
ps. In the upcoming sections, we relate these time constants to
various spin relaxation processes.

Unfortunately, to precisely theoretically model the ultra-
fast Kerr rotation, we need both the conduction band and
valence band contributions. As a result, we cannot utilize the
simple model used to determine the conduction band CR.
Instead, theoretical explorations of InAsxP1−x start with the
single-particle electronic band structure calculation, using the
eight-band Pidgeon-Brown model for a bulk semiconductor in
an external magnetic field of B = Bzẑ [18,27]. The effective
mass Hamiltonian of the system is given by:

H = HL + HZ , (8)

where HL is the k-dependent Landau Hamiltonian and HZ is
the k-independent Zeeman Hamiltonian. The explicit matrix
representation is adopted from elsewhere [18], wherein the
matrix elements are expressed in terms of empirical param-
eters such as the band gap Eg, the spin-orbit splitting �, the
Luttinger parameters (γ1, γ2, and γ3), the conduction electron
effective mass mc, and the Kane energy Ep. For InAsxP1−x,
these parameters are all estimated by using linear interpola-
tion between InAs and InP with bowing parameters wherever
applicable [28] and were determined to produce agreement
with the experimental CR data. Using envelope functions
within the axial approximation, the energy eigenvalues and
eigenfunctions were calculated.

FIG. 7. (a) TRKR profile for a short duration of 300 ps in
InAs0.34P0.66. The green curve is the experimental plot, and the red
curve is the biexponential fit with the time constants τ1 = 7.24 ±
1.15 ps and τ2 = 38.2 ± 1.66 ps. The vertical arrow points to the
biexponential nature of the data. (b) TRKR profile for a longer
duration of 1300 ps with τ3 of 39.1 ± 1.38 ps from fit F1 (in orange)
and τ4 of 394 ± 39.6 ps from fit F2 (in magenta).

In nonmagnetic semiconductors such as n-type GaAs [29]
and n-type InAsxP1−x, the spin polarization of conduction
electrons can be achieved by ultrafast photoexcitation with
circularly polarized light even in the absence of the magnetic
field. For example, Fig. 8 shows a sample schematic band
structure of InAsxP1−x and the allowed optical transitions. For
circularly polarized light, the green vertical line shows the
heavy hole (HH) transition, the brown line shows the light
hole (LH) transition, and the black line shows the split-off
hole (SH) transition to the conduction band for α ↑ and α ↓
absorption.

In particular, for σ− excitation energy E � Eg + �, the
selection rules, governed by conservation of spin angular mo-
mentum, permit HH ↑→ CB ↑ (α ↑), LH ↑→ CB ↓ (α ↓),
and SH ↑→ CB ↓ (α ↓) transitions. On the other hand for
σ+, HH ↓→ CB ↓ (α ↓), LH ↓→ CB ↑ (α ↑), and SH ↓→
CB ↑ (α ↑) are the allowed transitions. The strengths of the
transition for HH and SH are, respectively, 3 and 2 times
greater than that for the LH transition [30]. For energies
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FIG. 8. Sample schematic band structure at B = 0 showing the
allowed optical transitions between the SH, LH, HH, and CB for a
circularly polarized photon of energy greater than Eg + �.

Eg � E � Eg + �, only LH and HH transitions can occur,
thereby resulting in the following maximum net spin polar-
ization:

S+ = 1

2

(
α ↑ −α ↓
α ↑ +α ↓

)
= 1

2

(
1 − 3

1 + 3

)
= −1

4
(9a)

for σ+ and

S− = 1

2

(
α ↑ −α ↓
α ↑ +α ↓

)
= 1

2

(
3 − 1

3 + 1

)
= 1

4
(9b)

for σ− polarization. For E � Eg + � transitions from SH
bands are also possible. However, since SH, LH, and HH
transitions occur at different nonzero k and the band masses
are different, the joint density of states is different for them.
Also, due to nonzero band mixing at k �= 0, the strength of
the transitions is not exactly 3:2:1. All of these contribute to a
small, but nonzero, spin polarization [31].

As an example, Fig. 9 shows spin polarization as a function
of photon energy for both σ+ and σ− helicities. The dashed

FIG. 9. Sample spin polarization at B = 0 for InAs0.34P0.66 for
σ+ (green) and σ− (blue) helicities at T = 300 K and zero magnetic
field with the broadening FWHM = 5 meV.

vertical line shows the spin polarization magnitude of 0.05
at a pump energy of 1.305 eV (950 nm), which is small but
not zero. The spin polarization seems to be close to ±0.25 at
around a band gap energy of 0.986 eV.

A. Spin relaxation

The spin polarizations mentioned above are at the instant of
excitation, which decays due to processes like carrier recom-
bination and spin relaxation. Right after the photoexcited spin
polarization, the electrons thermalize to become hot electrons
through electron-electron scattering among themselves. What
then follows is the relaxation of the momentum of the hot elec-
trons by means of momentum scattering with LO phonons,
ionized impurity, alloy centers, etc., with a characteristic mo-
mentum scattering time τ of a few picoseconds [32]. In this
process, the electron spin polarization (magnetization) also
dissipates, which is characterized by spin relaxation time τs.
This can be measured by time-resolved Kerr rotation of an
ultrafast probe light of linear polarization since the transient
Kerr rotation is directly proportional to the spin polarization
[33]. The details of the spin relaxation are provided in Ap-
pendix A. The measured spin relaxation times in this study
are compared with the calculated ones using Dyanokov-Perel
(DP) [34] and Elliot-Yafet (EY) [35,36] mechanisms.

Now we discuss the connection between momentum scat-
tering and spin relaxation. We start with the EY mechanism
[35,36], according to which spin dephasing occurs due to spin-
orbit interaction. In NGSs with large spin-orbit splitting �

(such as InAs and InSb) as well as the Rashba effect [37], the
conduction bands states are an admixture of both spin-up and
spin-down states. Right after an event of momentum scattering
due to the lattice or impurities, an electron can scatter to a
different spin state than it was in before. This results in the
spin dephasing in the EY mechanism. Using the perturbative
method, the spin relaxation time τs in the nondegenerate limit
is given as [38]:

1

τEY
s

= Aβ2 (αkBT )2

Eg

1

τ
, (10a)

with

α ≈ γ

(
1 − γ

2

1 − γ

3

)
. (10b)

Here τ is the momentum relaxation time, and A is deter-
mined by the dominant momentum relaxation process. Here
Eg and me are the band gap and the electron effective mass,
respectively. On the other hand, in semiconductors such as
GaAs and InP, � is small due to weak spin-orbit coupling. But
due to the bulk inversion asymmetry of the crystal structure,
spin splitting occurs in the conduction bands such that they
become nondegenerate for k �= 0. This is called the Dressel-
haus effect [39]. This k-dependent splitting can be thought of
as being due to a k-dependent effective magnetic field BEff (k).

The spin polarization components in Eq. (A1) undergo
precession around the direction of BEff (k) with a k-dependent
precession frequency. During the momentum scattering
events, the electron wave vector k changes to k′, resulting in a
new BEff (k′) with a new direction. Consequently, the preces-
sion frequency of the spin polarization components changes,
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and spin dephasing occurs. This is called DP spin relaxation
[34]. Again, using the perturbative method, it is found that
the spin relaxation time τDP

s is inversely proportional to the
momentum relaxation time τ in the nondegenerate limit [38]
and is given by:

1

τDP
s

= Qβ2 (kBT )3

h̄2Eg
τ, (11a)

with

β ≈ 4γ√
3 − γ

me

m0
, (11b)

where

γ ≈ �

Eg + �
. (11c)

The momentum relaxation time τ is fundamental to the
spin relaxation times, with both DP and EY mechanisms, and
it can be related to the dc mobility μ by:

μ = eτ

me
⇒ τ = μme

e
. (12)

τ and μ depend on the type of scattering the electrons un-
dergo. In order to calculate the spin relaxation time in the
absence of a magnetic field using the DP mechanism in
Eq. (11) and the EY mechanism in Eq. (10), we first cal-
culate the dc mobility μ and momentum relaxation time τ

for all three different scattering mechanisms mentioned in
Appendix B. We recall that the material parameters εs, ε∞, θ ,
me, and a in InAsxP1−x are a function of the As concentration
x through the linear interpolation [28,32]. For example, the
effective mass me and εs are given by:

me(x) = xme,InAs + (1 − x)me,InP (13a)

and

εs(x) = xεs,InAs + (1 − x)εs,InP. (13b)

Figure 10(a) shows the theoretical estimation of μ as a
function of the As concentration x for different momentum
scattering processes. The green curve corresponds to the mo-
bility μLO due to the LO scattering given by Ehrenreich’s
formula in Eq. (B1). The orange curve represents the mobility
μIm due to the impurity scattering using Eq. (B2), and the
mobility μAl is due to the alloy scattering (purple curve) in
Eq. (B3). The black curve in Fig. 10 represents the effective
mobility μEff calculated using Matthiessen’s rule:

1

μEff
= 1

μLO
+ 1

μIm
+ 1

μAl
, (14)

where it is assumed that these scattering processes are in-
dependent of each other. Meanwhile, the dashed blue curve
represents the mobility obtained by using the interpolation
between the mobilities of InAs and InP [40], given by:

μIP = xμInAs + (1 − x)μInP − x(1 − x)b. (15)

Here for electron density n = 1.0×1017cm−3, we use
μInP = 2500 cm2 V−1 s−1 using Hilsum’s formula [41] and
μInAs = 25 000 cm2 V−1 s−1 [9]. The bowing parameter
b = 30 000 cm2 V−1 s−1 [40].

FIG. 10. Top: Calculated dc mobilities for InAsxP1−x due to LO
scattering (green), ionized-impurity scattering (orange), and alloy
scattering (purple). The black curve represents effective mobility,
and the blue dashed curve shows mobility from direct interpolation.
Bottom: Momentum relaxation time using Eq. (12).

The effective mobility (black curve) suggests that LO scat-
tering is the dominant process, followed by ionized-impurity
scattering. The alloy scattering is the least significant pro-
cess. However, between x = 0.3 and x = 0.5, it is comparable
with the ionized-impurity scattering. The direct interpolation
method can be a good approximation of the effective mobility
due to its very close proximity. The momentum relaxation
times vary somewhat differently, as shown in the bottom
graph. This may be attributed to the x dependence of the elec-
tron effective mass me in the mobility formula in Eq. (12). The
momentum relaxation time τ was calculated and can be used
to obtain the spin relaxation time, under the DP mechanism in
Eq. (11) and the EY mechanism in Eq. (10).

Figure 11 shows the spin relaxation under the DP mecha-
nism. The relaxation time τDP

Eff represented by the black curve
corresponds to the effective momentum relaxation time τEff ,
whereas τDP

IP corresponds to τIP. Since LO scattering domi-
nates the momentum relaxation process, we assume Q = 0.8
[9,38]. The DP relaxation time for InAs0.34P0.66 is around 360
ps, as shown in Fig. 11(b), whereas for pure InAs it is around
40 ps, as shown in Fig. 11(a), which is in good agreement
with the calculation by Murzyn et al. [9], with me = 0.026m0
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FIG. 11. (a) Calculated DP spin relaxation time as a function
of As concentration x for InAsxP1−x . (b) Expanded view, with the
vertical dashed line showing the values for InAs0.34P0.66.

for InAs, which is slightly different from our estimated
me = 0.023m0.

On the other hand, Fig. 12 shows the spin relaxation under
the EY mechanism. The black curve represents the relaxation
time τEY

Eff corresponding to the effective momentum relaxation
time τEff , and τEY

IP corresponds to τIP. For this calculation, we
set A = 2.0 in Eq. (10) due to dominating LO scattering [38].
The EY relaxation time for InAs0.34P0.66 is around 6 ns, as
shown in Fig. 12(b).

A closer look at Fig. 12(a) shows that for pure InAs, the re-
laxation time is around 184 ps. Like in the DP case, very good
agreement between the effective and interpolated relaxation
times are obtained for x larger than 0.5. In Table II, we present
a comparison between the experimental and calculated values
of the spin relaxation times for InAs0.34P0.66. The last column
contains the relaxation times obtained from the TRKR data
in Fig. 7; here τ1 and τ2 are taken from the biexponential fit
in Fig. 7(a), while τ3 and τ4 are taken from the exponential fit
in Fig. 7(b). Although they are taken from somewhat different
data sets, τ2 and τ3 can be considered to equally represent the
same relaxation process.

FIG. 12. (a) Calculated EY spin relaxation time as a function
of As concentration x for InAsxP1−x . (b) Expanded view, with the
vertical dashed line showing the values for InAs0.34P0.66.

Since the excitation energy of 1.305 eV is more than
Eg + � = 1.154 eV, the photoexcited electrons are hot [42],
and it may be that τ1 = 7.24, τ2 = 38.2, and τ3 = 39.1 ps
correspond to the loss of spin polarization due to the thermal-
ization of these hot electrons by electron-electron scattering
and electron-phonon scattering [43]. At the same time, the
electrons may also lose their original spin orientation due to
trapping in the impurity centers [44]. Due to strong spin-orbit
interaction between the hole bands, the relaxation of hole
spins also occurs around the same time. It can therefore be
concluded that the longer relaxation time τ4 = 394 ps corre-
sponds to the electrons’ spin polarization.

The calculated DP relaxation times τDP
Eff = 359 ps and

τDP
IP = 626 ps are based on the effective momentum scattering

times τEff and the interpolated scattering time τIP, respectively.
The electron effective masses are also taken from the linear
interpolation. Our experimental value of τ4 = 394 ps shows
very good agreement with the calculated DP relaxation time
τDP

Eff . However, the EY relaxation times overestimate τ4 by
at least an order of magnitude, which could be because the

TABLE II. Comparison of the calculated spin relaxation times with the experimental fits for InAs0.34P0.66.

μ (cm2 V−1 s−1) τ (ps) τDP (ps) τEY (ps) τs (ps),
Expt.

μEff = 5956 τEff = 0.203 τDP
Eff = 359 τEY

Eff = 7420 τ1 = 7.24 ± 1.15
τ2 = 38.2 ± 1.66

μIP = 3418 τIP = 0.117 τDP
IP = 626 τEY

IP = 4260 τ3 = 39.1 ± 1.38
τ4 = 394 ± 39.6
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FIG. 13. Magneto-optical kerr effect (MOKE) at different mag-
netic fields. Solid lines without symbols represent fitting with a
damping function.

spin-orbit interaction in InAs0.34P0.66 is not as strong as those
of InAs and InSb [9,45,46].

Also, the estimated mobility from the linewidth of the
CR measurement is around 810 cm2 V−1 s−1, which suggests
a low momentum scattering time τ . However, we note that
this estimation could be premature because the CR resonance
occurs at a very high magnetic field (around 75 T), and an ac-
curate magnetic dependence of the mobility is unavailable at
this time. Nonetheless, since the DP relaxation time is related
inversely to τ , this supports the argument for the DP mecha-
nism being the dominant relaxation mechanism for the spin.

An earlier study on n-type GaAs samples with low mo-
bilities showed very long spin lifetimes [29] under the DP
mechanism. However, in another study of high-mobility
GaAs, the DP mechanism was suppressed [47] as well as in
n-type InAs [9]. In a related study of an undoped InAs0.4P0.6

film, the spin relaxation time showed a sensitive response
to excitation energies and temperature [16]. Therefore, it is
clear that the spin relaxation time in III-V semiconductors
depends on many factors such as mobility, doping density,
temperature, photoexcitation energy, and intensity. For a more
definitive conclusion, further explorations including several of
these factors are necessary.

B. Effect of magnetic field on spin polarization

As an important extension, we also study the effect of
weak magnetic fields at RT on the spin relaxation in the Voigt
configuration under the same experimental conditions as in
the previous section. As shown in Appendix B, the presence
of such a field results in a precession of the spin polarization
about the field, with Larmor’s frequency given as:

� = gμBB

h̄
. (16)

FIG. 14. Magnetic field dependence of Larmor’s frequency
(blue) and the effective g-factor (orange) for InAs0.34P0.66.

Figure 13 shows TRKR for InAs0.34P0.66 at different mag-
netic fields B, including 0 and 800 mT, where the colored
symbols represent the experimental data. The solid lines with-
out symbols are from fitting the data beyond the delay time of
0 ps. The data at 0, 200, and 300 mT are fitted with �θ ≈ e− t

τ

due to the absence of oscillation. On the other hand, the data
at 400, 550, 700, and 800 mT are fitted with an oscillating
decay function, �θ ≈ e− t

τ sin(�t + φ0), where τ is the spin
relaxation time and � is Larmor’s frequency. In Figs. 14(a)
and 14(b), we show the B dependence of Larmor’s frequency
� and the effective g-factor calculated based on Eq. (16).

The g-factor as determined by the experimental TRKR
is different from the calculation done in the previous sec-
tions based on the simple Kane-like model, for which we
found the g-factor was close to zero. This is not surprising, and
as pointed out by Pfeffer and Zawadzki [48], the expression
for the band edge g-factor, g∗

0 given in Eq. (4), is valid for
NGSs but needs to be modified for medium-gap semiconduc-
tors to take into account higher bands. As a result, the simple
model predicts a g-factor close to zero, but in fact, the TRKR
measurements show that it is most likely closer to −1 (we
note that the TRKR measurements do not give the sign of the
g-factor). This indicates that the alloy concentration x for a
zero g-factor is most likely less than 0.34. We note, however,
that the simple Kane-like model is sufficient to determine the
cyclotron’s effective masses.

V. CONCLUSIONS

In this work, we experimentally studied the magneto-
optical properties of InAsxP1−x films at RT by employing
ultrahigh magnetic fields (by employing CR measurements)
and compared our results, with good agreement, with two
different theoretical models. The InAsP alloys have important
applications for devices owing to the possibility of changing
the gap from 0.36 to 1.35 eV, which covers a broad optical
spectrum from mid- to near infrared, as well as the possibility
of designing a material with the right alloy concentration x
that has a g-factor close to zero.

Theoretical calculations were based on the Pidgeon-Brown
model as well as a simpler, single-band, nonparabolic model
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that we previously used to investigate effective masses in
near-surface InAs quantum wells [12]. To describe our CR
experiments, we used a simpler, single, nonparabolic model
since this avoids the need to determine how the many
parameters in the Pidgeon-Brown model vary with alloy
concentration. We found that our simpler model produced
excellent agreement with the experimental results for the CR
masses and their dependence on alloying using just a simple
linear interpolation of both the band gap and spin-orbit split-
ting. The simple model also predicted a g-factor close to zero
for the concentration x = 0.34.

Furthermore, for our reported time-resolved measure-
ments, we needed to use the full Pidgeon-Brown model since
both the conduction band and valence band Landau lev-
els are needed to determine the spin polarization relaxation.
Using the FWHM of the experimental CR curves, the AC
electron mobilities can be estimated. This information was
used to model the time resolved magneto-optical kerr effect
(TRMOKE) and to estimate the spin relaxation time in a low
magnetic field regime in the Voigt configuration.

The observed precession of the spin polarization with the
B-dependent Larmor’s frequency (at low magnetic fields) was
also used to estimate the effective g-factor for InAs0.34P0.66.
These results showed that the g-factor is not zero for x = 0.34,
but probably closer to −1. This indicates that while the simple
model does very well in predicting the CR effective masses
at high magnetic fields, it does not do as well for the g-
factor. This is not surprising since InAsxP1−x for x = 0.34 is a
medium-gap material. While the simple model presented here
for modeling the g-factor works well for NGSs, it has been
pointed out in the literature that for medium-gap materials,
coupling to higher conduction bands can influence the value
of the g-factor [6,48].

A thorough analysis of the g-factor suggests the poten-
tial for engineering a zero-g-factor InAsP alloy. Our results
showed that the proper As concentration for a zero g-factor
most likely is slightly less than the current value of x = 0.34
predicted by the simple model presented in this study.
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APPENDIX A: BLOCH EQUATIONS
FOR SPIN RELAXATION

The dissipation of the spin polarization can be described by
Bloch equations for a homogeneous spin polarization vector
function S(t) in a magnetic field, say, B = (0, 0, B0), as:

dSx

dt
= −�Sy + Sx

T2
(A1a)

and

dSy

dt
= −�Sx + Sy

T2
(A1b)

for the transverse components. Here � is Larmor’s frequency,
with which the Sx and Sy precess around Bz, given by

� = gμBBz

h̄
, (A1c)

where g is the electron g-factor and μB is Bohr’s magneton.
For the longitudinal component we have

dSz

dt
= S0 − Sz

T1
, (A1d)

where S0 is the equilibrium spin polarization due to B0. T1

is called the longitudinal relaxation time, which is the time
taken by Sz to reach its equilibrium value S0. It involves loss
of energy from the spin system due to scattering with the
lattice and therefore is equivalent to the thermalization time
of the spin system with the lattice [30]. T2 is called the spin
dephasing time, during which the phases of the transverse
components Sx and Sy are destroyed due to the spatiotemporal
fluctuations in the precession frequency � brought about due
to momentum scattering. In cubic isotropic semiconductors,
T1 and T2 can be approximated to be equal when B is not
very high [30]. Hereafter, we call T1 and T2 the spin relaxation
time τs.

APPENDIX B: ESTIMATION OF THE MOBILITIES

The mobility μLO due to LO scattering given by Ehrenre-
ich’s variational calculation is [49,50]:

μLO = 4eh̄

3
√

πm3
eRkBT

(
εsε∞

εs − ε∞

)(
eθ/T − 1

θ/T

)
G(1)e−ξ . (B1)

Here εs and ε∞ are the low- and high-frequency dielectric
constants, respectively. θ is the optical phonon Debye tem-
perature, and R = 13.6 eV is Rydberg’s constant. G(1)e−ξ is
estimated from the calculation in Ref. [49]. Electrons lose
momentum by scattering with the impurities as well. Accord-
ing to Brooks [51,52], the electron mobility due to ionized
impurity scattering is given by:

μIm = 128
√

2π

NI e3√me
(εsε0)2(kBT )3/2

(
ln

(
1 + γ 2

B

) − γ 2
B

1 + γ 2
B

)−1

,

(B2a)

with

γ 2
B = 24

me(εsε0)(kBT )2

e2h̄2NI
. (B2b)

Here ε0 is the permittivity of free space, and NI is the
density of impurity and is approximated by a constant density
of 1.0×1017 cm−3.

Since InAsxP1−x is a semiconductor alloy, it is important
to consider the mobility due to alloy scattering. It is given by
[32,53,54]:

μAl = 128
√

2eh̄4

9π3/2(�EAl)2(kBT )1/2

1

m1/5
e x(1 − x)a3

, (B3)
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where x is the alloy ratio, a is the lattice constant of the
alloy, and �EAl is the alloy scattering potential, which is
set equal to 0.581 [32]. The material parameters involved
in the above equations, including εs, ε∞, θ , me, and a, are
obtained by using linear interpolation between InAs and
InP [28,32]. Therefore, they are also functions of the As
concentration x.

However, since the prefactors Q and A involved in Eqs. (11)
and (10) vary for different momentum scattering processes, it
is suggested that the best way is to measure the mobility of
the sample using different experimental methods such as the
Hall effect. In our case, alternatively, the estimated mobilities
in Sec. II from the CR measurements can be the starting point
for estimating the momentum relaxation time using Eq. (12).
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