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Nature of electro-optic response in tetragonal BaTiO3
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Barium titanate, BaTiO3 (BTO), has emerged as a promising electro-optic material with applications in silicon
photonics. It boasts one of the largest known electro-optic coefficients; however, the origin of this giant electro-
optic response has not been investigated in detail and is poorly understood. Here we report on a first-principles
study of the electro-optic or Pockels tensor in tetragonal P4mm BTO. We find good agreement with experiment
if the P4mm structure is viewed as a dynamic average of four lower symmetry Cm structures. The large value of
the Raman component of the EO coefficient is attributed to a low frequency and strong electron-phonon coupling
of the lowest optical mode, and we trace the equally large piezoelectric contribution to the large components of
the piezoelectric and elasto-optic tensors.

DOI: 10.1103/PhysRevB.108.115201

I. INTRODUCTION

As integrated silicon photonics (SiPh) experiences a rev-
olution, one of the key tasks is the development of compact
high-performance optical modulators [1]. Phase shifters using
the linear electro-optic (EO) effect offer an attractive op-
tion for building such devices. Bulk silicon does not exhibit
significant EO activity (the linear Pockels effect is forbid-
den by symmetry and the Kerr effect is rather small), so
new EO materials compatible with Si and methods that can
leverage the existing silicon fabrication infrastructure are be-
ing vigorously explored [2]. Recently, strained silicon and
other materials have been implemented in EO modulators
in SiPh, providing competitive speed, broad bandwidth, and
low power consumption [3–6]. The Pockels effect, describing
the change in the refractive index under an applied electric
field, offers an excellent path to building even more efficient
phase shifters, but it requires heterogeneous integration [7].
One of the highest known Pockels responses is reported for
the tetragonal phase of BTO [8]. Indeed, recently, BTO has
been successfully integrated onto SiPh platforms to fabri-
cate EO modulators based on the Pockels effect [9], showing
tremendous promise. BTO has also been epitaxially integrated
onto several semiconductor substrates in addition to Si, such
as Ge and GaAs, making it an even more versatile materi-
als platform [2,10]. The range of emergent applications of
Si-integrated-BTO films includes intrachip data transmission
[11], neuromorphic logic optical chips [12], and photonic
integrated circuits [13–15].

Traditionally, the most common use of the Pockels effect
has been in the telecommunications industry, where optical
modulators are fabricated from lithium niobate LiNbO3 (LN)
[16]. The effective Pockels coefficient of ∼30 pm/V for LN
sets a “gold standard” for an appreciable Pockels response
[17]. Additionally, LN’s broad spectral range also makes it
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attractive compared to other EO materials [18]. Some mate-
rials exhibit stronger responses, yet they are thermally and
chemically unstable under conditions needed for integration
with silicon photonics [19]. BTO, on the other hand, has a
much stronger Pockels response (∼1300 pm/V [8]), is chem-
ically and thermally stable, can be monolithically integrated
on silicon (001) used in complementary metal oxide semicon-
ductor technology, and has already been demonstrated in a
variety of applications, including SiPh [20–22].

Ab initio theoretical modeling is an indispensable tool in
modern materials design. A deeper physical understanding of
the EO response in tetragonal BTO through a detailed theo-
retical analysis would undoubtedly aid in developing a more
efficient modulator. Unfortunately, due to the large lattice
anharmonicity, tetragonal BTO exhibits imaginary phonon
frequencies (and thus dynamic instability) in traditional zero
Kelvin density functional theory (DFT) calculations, making
the direct calculation of the EO response impossible. The har-
monic approximation delivers two imaginary frequencies at
the � point in the practically important tetragonal phase (sta-
ble between 5 and 120 ◦C). The theory does better for a stable
low temperature rhombohedral R3m phase of BTO [23,24].
In principle, ab initio finite-temperature molecular dynamics
or many-body methods can stabilize the finite temperature
tetragonal phase and predict stable (real) phonon frequencies
[25,26].

In this paper, we investigate the EO response of tetrago-
nal P4mm BTO. We first include the anharmonic forces via
a self-consistent phonon (SCPH) calculation. However, we
find that this approach does not describe the Raman (ionic)
contribution to the Pockels response with sufficient accuracy
as the frequency of the now stable �-point optical mode is
too high. We trace the problem to a subtle aspect of the BTO
crystal structure. The emergence of the P4mm structure below
the cubic-to-tetragonal Curie temperature as an average of
four monoclinic Cm structures has been suggested by recent
experiments [27,28]. Also, the presence of [111] Ti displace-
ments has been reported for paraelectric cubic BTO using
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first-principles molecular dynamics [29]. According to the
authors of Refs. [27,28], the true crystal structure of tetragonal
BTO with the [001] ferroelectric atomic displacement is a
dynamic average of the four possible monoclinic structures
with [111], [1̄11], [11̄1], and [1̄1̄1] Ti displacements. Here we
explore this conjecture using first-principles calculations with
the primary goal of understanding the EO response. When we
consider this averaged atomic structure, we compute not only
the stable optical modes, but both the ionic and piezo parts of
the Pockels tensor in good agreement with experiment. The
rest of the paper is organized as follows. First, we discuss the
structural considerations and provide the necessary theoretical
background related to the computation. We then provide a
detailed analysis of the microscopic origin of the EO response
in tetragonal BTO, followed by conclusions.

II. BACKGROUND AND METHODS

The Pockels effect describes how the refractive index of a
crystal changes under the influence of an applied electric field
[30]. It is traditional to introduce it in the context of a change
of the optical indicatrix as follows [31]:

�

(
1

n2
i j

)
= �(ε−1)i j =

∑
γ

ri jγ Eγ , (1)

where ni j is refractive index, (ε−1)i j is the inverse of the elec-
tronic dielectric tensor, ri jγ the linear electro-optic tensor (EO
tensor or Pockels tensor) and i, j, and γ stand for Cartesian
coordinates. It can also be written as the first-order change to
the dielectric tensor induced by an applied electric field Eγ

[32]:

dεi j = −
∑

γ

ri jγ εiiε j jdEγ (ω). (2)

A detailed account of the density functional perturbation
theory (DFPT) description of the Pockels response calculation
can be found in Refs. [24,33]. Here we give only a cursory
overview, relevant for this paper. In a piezoelectric material,
such as BTO, the Pockels response can be broken up into three
contributions: electronic, Raman or ionic, and piezoelectric.
The electronic portion, relec

i jγ which is proportional to χ
(2)
i j ,

comes from the interaction of the electric field with valence
electrons, assuming the ions are fixed at their equilibrium
positions. It is related to the second harmonic generation
effect. In perovskite oxides it is usually not very large when
compared to the other two contributions. For example, in
strained SrTiO3 it is only −0.1 pm/V [34] and LiNbO3 and
KNbO3 have the largest relec

i jγ of 5.8 pm/V and 3.7 pm/V,
respectively [35].

The ionic term captures the change in the dielectric tensor
induced by shifts in the atomic positions in response to the
applied electric field. It can be expressed as
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where ni is the principal refractive index, χ
(1)
i j is the linear

dielectric susceptibility, and τκα refers to displacement of
atom κ in the α direction. Z∗

k′γ β is the Born effective charge,
where γ is the direction of the components of electric field,
and um(κ ′β ) is the eigendisplacement of mode m, describing
atom κ ′ shifting in the β direction. ωm is the frequency of
mode m, and

√
�o is the square root of the unit cell volume.

More compactly, the ionic term can be written as

rion
i jγ = − 4π√

�on2
i n2

j

∑
m

αm
i j pm,γ

ω2
m

. (4)

The expression in the first bracket of Eq. (3) is the Raman
susceptibility αm

i j divided by
√

�o. It describes the modulation
of the linear susceptibility χ (1) by atomic vibrations [36]. The
second bracket is the mode polarity pm,γ that describes the
dipole moment of a mode.

The piezoelectric contribution is the third piece of the
Pockels tensor; it describes the effect of strain caused by the
converse piezoelectric effect. If the frequency of the applied
electric field is sufficiently high, the EO response will be
“clamped,” referring to the lattice vectors staying fixed. We
assume the applied field frequency is low enough to trig-
ger the converse piezoelectric effect. Thus, we compute the
unclamped response, which can be written in terms of the
clamped Pockels tensor rη

i jγ , the piezoelectric strain coeffi-
cients dγμν , and elasto-optic coefficients pi jμν :

rσ
i jγ = rη

i jγ +
3∑

μ,ν=1

pi jμνdγμν. (5)

The piezoelectric strain coefficients can be calculated di-
rectly using first-principles software packages such as ABINIT

(see below). However, the elasto-optic coefficients must be
calculated “by-hand”. They are defined as the derivatives of
the inverse dielectric tensor with respect to strain. We can
rewrite the second term of Eq. (5) in terms of the inverse
dielectric tensor and convert the derivative into a finite-
difference form:

�(ε−1)piezo
i j =

3∑
μ,ν=1

pi jμνημν, (6)

pi jμν ≈ �(ε−1)i j (η
+) − �(ε−1)i j (η

−)

2ημν

+ O(η2). (7)

ημν is the (μ,ν) element of the strain tensor describing the
lattice distortion due to the electric field. We give a definition
of strain for the purpose of this calculation in Appendix. Fol-
lowing the methods of previous studies [37], pi jμν is obtained
by finite difference. First, the high-frequency dielectric tensor
is calculated in the equilibrium configuration. Then the lattice
vectors are strained, and the internal coordinates relax in this
new unit cell. For the shear component of the elasto-optic
coefficient p2323 (p44 in the Voigt notation), we apply the shear
strain η23 to the cell and do not relax the internal coordinates.
We compute the dielectric tensor for unit cells under different
strain values, then evaluate Eq. (7) using a centered, finite-
difference derivative with respect to parametrized strain.

All calculations are performed within the framework of
DFT, using the ABINIT [33,38,39] and VASP [40–45] soft-
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ware packages. In ABINIT, the Ceperley-Alder local density
approximation [46,47] was used to calculate the exchange-
correlation energy. We use norm-conserving pseudopotentials
with valence electron configurations 5s25 p66 s2 for the bar-
ium atom (s and p electrons included as semicore states),
3s23 p64 s23 d2 for the titanium atom, and 2s22 p4 for the
oxygen atoms [48]. We achieved convergence of 1×10−5

eV/atom with a cutoff energy of 1600 eV and a 12×12×12
Monkhorst-Pack k-point grid. Following Veithen et al. [33],
we adopt the 2n + 1 theorem and use DFPT to calculate the
clamped Pockels tensor. The details of the theory can be found
in [24,33]. Using the formulation implemented in ABINIT, we
are able to compute all the terms needed to construct the
Pockels tensor, including the Raman susceptibility, phonon
frequencies and displacement patterns, and mode polarities.
For the SCPH calculation at finite temperature, we considered
2×2×2 supercell structures of the primitive BTO lattice of
the P4mm phase to reduce the computational cost. The forces
were converged to less than 1×10−7 eV/atom. The second-,
third-, and fourth-order anharmonic interatomic force con-
stants are considered using the SCPH software ALAMODE

[26]. As ABINIT does not support ALAMODE, we have used
VASP for this calculation. In VASP, we use projected aug-
mented wave potentials with valence electron configurations
5s25 p66 s2 for the barium atom (s- and p-electrons included
as semicore states), 3s23 p64 s23 d2 for the titanium atom, and
2s22 p4 for the oxygen atoms [47]. We reach convergence of
1×10−5 eV/atom using a plane-wave cutoff energy of 600 eV
and a 12×12×12 Monkhorst-Pack k-point grid [49]. We find
that for P4mm BTO, ALAMODE gives phonon frequencies at
the � point similar to those reported using another SCPH
software, SCAILD [50,51].

III. RESULTS AND DISCUSSION

Before considering the ionic part of the Pockels tensor, let
us discuss the structure of tetragonal BTO that we have used
in this paper in more detail. In the ferroelectric atomic dis-
placement pattern of the tetragonal P4mm phase, the titanium
and oxygen atoms exhibit opposite displacements along the
z direction (the [001] direction, coinciding with the c axis of
the cell), giving the cell its spontaneous ferroelectric polar-
ization. However, recent experimental reports suggest that Ti
displacement is not really in the [001] direction but is rather an
average of four [111], [1̄11], [11̄1], and [1̄1̄1] displacements
[27,28]. Each one of these configurations with a [111]-type
displacement is monoclinic, with Cm space group. If the crys-
tal rapidly samples these four configurations, on average, the
structure appears to have 4mm space group symmetry, as if
[001] was the direction of displacement. Thus, in this study,
after failing to adequately describe the relevant phonon mode
using many-body renormalization (see below), we consider all
four monoclinic Cm BTO configurations with the [111]-type
displacement. We start with the tetragonal cell with the initial
[111] displacement of Ti and fully relax the atomic coordi-
nates. The atomic positions for the optimized P4mm and the
Cm configurations are listed in Table I. The displacement in
the Cm cell is not precisely along [111], but we will call it that
for simplicity. We find that the Cm configuration gives stable

TABLE I. Fractional atomic coordinates for P4mm and Cm
BaTiO3.

P4mm Cm

Element x Y z x y z

Ba 0 0 0 0 0 0
Ti 0.5 0.5 0.513 0.507 0.507 0.513
O1 0 0.5 0.487 0 0.494 0.488
O2 0.5 0 0.487 0.494 0 0.488
O3 0.5 0.5 0.98 0.495 0.495 0.981

phonon modes and is lower in energy when compared to the
original [001] P4mm structure.

Some care needs to be taken when considering the cell
volume. The tetragonal phase of BTO is observed at room
temperature, and our optimization is performed at zero Kelvin
[52]. We consider a slightly expanded volume of the Cm cell
to take thermal expansion into account. To estimate the ther-
mal expansion we used experimental data interpolated for a
pseudocubic cell [53]. Starting with the theoretical minimum,
we gradually expanded the volume, keeping the experimental
c/a ratio, until the cell volume is 1.02 times larger than the
theoretically optimized one while checking for dynamic sta-
bility along the way. After stabilizing the Cm configuration,
we find the lowest stable optical phonon frequency at the
� point to be 17 cm−1 (the reported experimental value is
34 cm−1 [54]). We then use this Cm configuration to calculate
the EO tensor for tetragonal BTO. The values of the tensor
components for the P4mm cell are computed by averaging the
values computed for the four Cm cells (see Fig. 1).

We have also investigated the energy barrier to changing
the direction of the polarization of the Cm configuration using
a nudged elastic band (NEB) method. In the NEB calculation,
a series of “images” is produced by linearly interpolating
between the initial and final states. The images, or sets of
coordinates and lattice vectors, are connected by “springs,”
which figure in the optimization toward the most likely path
across the adiabatic potential energy surface from the initial
to final state [55]. We use VASP in our NEB calculations. For
all energy paths, the initial configuration is the Cm cell with
polarization pointing in the [111] direction. The final state

FIG. 1. Ball and stick model of [111]-displacement type mono-
clinic Cm BaTiO3. The different colors of the arrows represent the
[111], [1̄11], [11̄1], and [1̄1̄1] displacements that are averaged in the
tetragonal P4mm BaTiO3.
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FIG. 2. The energy barriers for the polarization switching from
the [111] direction (reaction coordinate = 0) to other possible di-
rections (reaction coordinate = 1) in a Cm cell with a c/a ratio of
1.007. There are five different ways to change polarization. Three
paths lead to the polarization switching from an “up” to “down”
configuration. And two paths correspond to switching between four
possible “up” configurations. The energy barrier is more than an
order of magnitude lower for the transitions that do not change the
“polarity.”

can be the same cell with polarization pointing “down” in the
[111̄], [11̄1̄], [1̄11̄], or [1̄1̄1̄] directions, alternatively it may
correspond to switching polarization between the four possi-
ble upward directions ([111], [11̄1], [1̄11], and [1̄1̄1]). Since
the [11̄1̄] state is the same as the [1̄11̄] state and the [11̄1]
state is the same as the [1̄11] state, there are only five different
configurations for the final state. The results for the barriers
are shown in Fig. 2. We see that the barrier between the
structures of same polarity is small (∼0.5 meV), consistent
with the assertion that the P4mm structure is a time average of
these lower symmetry configurations. The barrier to switch
the polarity is about 8 meV, consistent with the previously
reported value of 10 meV [56].

We start our discussion with the ionic part of the Pockels
tensor. As seen in Eq. (3), the ionic Pockels tensor compo-
nent is a sum over the phonon modes at the � point; each
mode’s contribution is scaled by the inverse of the square of
the corresponding phonon frequency. According to Eq. (4),
we need the frequency, Raman susceptibility and mode po-

larity for each mode at the � point. Therefore, the critical
step in calculating the ionic response comes from a care-
ful analysis of the low frequency phonon modes. These are
found to be unstable in the harmonic approximation for the
tetragonal P4mm phase of BTO. Using the frozen-phonon
method [57] we obtained the � point frequencies listed in
Table II. We include frequencies calculated both with and
without the Lydanne-Sachs-Teller (LST) correction [58], as
the short-range (excluding long-range Coulomb effects de-
scribed by LST) frequencies are used in the Pockels tensor
calculation. Similar to previous DFT calculations [59,60],
ours yielded two imaginary, degenerate frequencies. Com-
paring several experimental results from Raman spectroscopy
[61–63], it appears that these two modes are somewhat dif-
ficult to detect. For low probing frequencies, the laser used
in Raman spectroscopy interferes with detection. However,
some have claimed to observe a soft E doublet at 34 cm−1

at 22 ◦C, with the mode getting softer for low temperatures
[54]. Consequently, we expect this lowest soft optical mode
to be somewhere between 0 and 34 cm−1. This may seem
like a large range, but this mode’s frequency is quite sensitive
to the environment (temperature [54], strain [34,60,64], etc.).
To consider the effect of finite temperature, we calculate the
anharmonic phonon frequencies of tetragonal BTO using the
SCPH theory [26]. We include anharmonic force constants up
to fourth order using the SCPH software package, ALAMODE

[26,65]. We are indeed able to obtain the stable phonon modes
at 300 K. However, the value of the lowest optical phonon
frequency at the � point is 170 cm−1, which is too high
compared with the experimental value of 34 cm−1. Simi-
larly, a recent theoretical paper by Peng [50] considered the
phonon-phonon interaction with the self-consistent ab initio
lattice dynamics using the code SCAILD. They found the low-
est optical phonon frequency of the tetragonal P4mm BTO
to be around 170 cm−1 at room temperature [50,51]. But
according to Eq. (4), such a high value of the phonon fre-
quency will render the ionic Pockels tensor far too small. This
suggests that the problem may not be as simple as the anhar-
monic renormalization. We believe that it is structural as has
been pointed out experimentally [27,28] and more recently
theoretically [66].

TABLE II. Phonon frequencies at the � point, for each case discussed. All the transverse modes are doubly degenerate for P4mm BTO.
For the Cm configuration, the soft mode is not degenerate.

Mode Number P4mm SR (cm−1) P4mm LR (cm−1) Cm SR (cm−1) Cm LR (cm−1) SCPH (cm−1) Exp. [54] (cm−1)

4 −176 i −176 i 17 57 161 34
5 −176 i −176 i 78 170 171 180
6 164 170 170 174 174 189
7 170 170 174 175 174
8 170 185 175 235 264
9 287 287 236 284 281
10 287 287 284 294 281 304
11 291 291 294 296 282 308
12 315 453 295 452 465 471
13 457 457 471 472 490 498
14 457 457 471 492 510
15 515 718 495 674 710 725
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FIG. 3. Magnitude of displacement of each atom for the � point
optical modes. Mode number 4 represents the lowest optical mode,
and the mode number 15 represents the highest optical mode. Atoms
1, 2, 3, 4, and 5 represent Ba, Ti, O1, O2, and O3 atoms, respectively.

The optical phonon frequencies under the different approx-
imations for the P4mm and Cm configurations at the � point
are listed in Table II. As discussed in the previous section,
the Cm cell gives a low soft mode phonon frequency at the
� point. Therefore, in the following we will use the Cm
configuration to calculate the EO tensor for BTO. The values
for the tetragonal P4mm symmetry are computed by averaging
the values computed for the four Cm cells with the “upward”
polarization.

The mode eigendisplacements also matter, as they enter the
ionic Pockels contribution in both the mode polarity and Ra-
man susceptibility calculations [see Eq. (3)]. Figure 3 shows
the magnitude of the eigendisplacements of the Cm cell.
Thanks to the frequency squared term in the denominator, the
lowest frequency modes give the largest contributions. Com-
pared to the previous study of the rhombohedral BTO phase
(rh-BTO), the relative displacement magnitudes are similar

FIG. 4. Mode polarities of the Cm phase at the � point for each
optical mode.

FIG. 5. The largest component of the averaged Raman suscepti-
bility for each optical mode. Note that the lowest frequency mode,
mode number 4, has the largest Raman susceptibility value among
other optical modes that induces the large ionic Pockels response.

to those of rh-BTO [24], but the Cm structure has an ionic
Pockels response that is about ten times larger.

Let us now discuss the mode polarity, pm,γ , that is the last
bracket on the right-hand side of Eq. (3). Figure 4 shows
the value of polarity for each optical mode. The x and y
components have the same value for all optical modes. For the
two lowest frequency modes, the polarities p4,x (=p4,y), and
p5,x (=p5,y), are the largest. However, the mode polarity itself
may not be the reason for the large value of the EO tensor of
this polymorph. Previous theoretical studies have shown even
larger values of the mode polarity and still obtained smaller
electro-optic response compared to the current study [24,34].

The last term to consider for the ionic Pockels response
is the Raman susceptibility, ∂χi j

∂τκα
. To obtain ∂χi j

∂τκα
, we compute

the optical dielectric tensor and thus the first-order electronic
susceptibility. We tested a variety of finite-difference deriva-
tives with varying orders of accuracy and atomic displacement

FIG. 6. Band gap change with respect to the magnitude of dis-
placement for the Raman active (mode 4) and the inactive mode
(mode 8). The Raman active displacement causes a significantly
bigger change of the band gap than the Raman inactive displacement.
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FIG. 7. The averaged eigenmode pattern of Cm phase for the (a)
Raman active mode (mode 4), and the (b) Raman inactive mode
(mode 8). Mode 4 shows an out-of-phase displacement pattern be-
tween Ti and O atoms, while mode 8 shows an in-phase displacement
pattern, in which the bonding characteristic between Ti and O atoms
barely changes.

step sizes and found a very uniform linear response. Figure 5
shows the largest component of the Raman susceptibility ten-
sor averaged over for the four Cm configurations of the same
polarity. The lowest optical mode (mode number 4), which is
the Raman active mode, has the largest Raman susceptibility.
Compared to the rh-BTO case, we see that rh-BTO has twice
the value of αm

i j for the lowest frequency mode [24]. This sug-
gests that the critical factor determining the anomalously large
ionic EO response of tetragonal BTO at room temperature is
the low frequency of the optical mode.

From the electronic structure point of view the value of the
Raman susceptibility is largely controlled by the sensitivity of
the smallest energy difference electronic transition that is the
band gap, to the mode atomic displacement [24]. To see why
mode number 4 has such a large Raman susceptibility, and
mode number 8 has the smallest Raman susceptibility value,
we compare the band gap change in response to displacing
the atoms along the eigenvectors of the corresponding modes.
In Fig. 6, we plot the band gap change with respect to the
amplitude. This is achieved by scaling the normalized mode
eigenvector from 0 to 0.03 Å The plot shows that the active
mode opens the band gap notably, while the inactive mode
barely changes the band gap.

To further understand this spectral change, we plot the
phonon eigenmode pattern averaged over the four Cm config-
urations of the same polarity for modes 4 and 8 in Fig. 7. The
Raman active mode 4, exhibits an out-of-phase displacement
pattern between the Ti and O atoms along the [100] direction.
This displacement changes the overlap between the titanium d
states and oxygen p states. The change of the overlap results
in a change of the hopping integral that, in turn, affects the
magnitude of the band gap. This sensitivity leads to a large
Raman susceptibility. In contrast, Raman inactive mode 8,

shows an in-phase displacement pattern, which does not affect
the bonding characteristic significantly and, consequently, the
Raman susceptibility is small.

The Pockels tensor is third rank; the first two indices refer
to the indicatrix and the third one to the direction of the
applied electric field. The tensor is symmetric in the first two
indices and may be collapsed using Voigt notation. We have
explored each component of the clamped Pockels response
including the displacement pattern, mode polarity, and the
Raman susceptibility for each mode. These quantities for each
mode are combined with the optical mode frequencies (the
lowest two are 17 and 78 cm−1) and result in a very large
rclamped

42 (=rclamped
51 ) component of the ionic Pockels tensor. As

the phonon frequency squared term is in the denominator,
the lowest frequency phonon mode gives the largest ionic
EO response. In Table III, we list the clamped Pockels ten-
sor computed for each Cm cell and in Table IV we show
the averaged electronic and ionic parts of the Pockels tensor
consistent with P4mm symmetry. Note that the large rclamped

42
value mainly comes from the ionic part. If we compare this
to the experimental clamped Pockels tensor, the agreement
is fair. Zgonik et al. report rclamped

42 = 730 pm/V, rclamped
13 =

10 pm/V, and rclamped
33 = 40 pm/V [67]. Both rclamped

13 , and
rclamped

33 are relatively small compared to r42 and less important
for our discussion. Recall that the ionic term is a sum over
the modes, but the lowest optical phonon mode dominates
rclamped

42 , providing 96% of the total ionic EO response.
Let us now discuss the piezocontribution to the Pockels

response. As Eq. (5) states, the piezocontribution is a sum
over the product of the piezoelectric strain tensor dγμν and the
elasto-optic tensor pi jμν . The results of our ABINIT calculation
can be found in Tables IV and V. The piezoelectric strain ten-
sor, dγμν , is calculated by multiplying the compliance tensor,
sγμmn, and the piezoelectric stress tensor, emnν using the rela-
tionship between the strain and stress [30]. We first calculate
the average compliance tensor and piezoelectric stress tensor
to take into account four different Cm configurations. Once we
average out the compliance tensor and the piezoelectric strain
tensor, the P4mm symmetry for those two tensors is recovered.
After we get the correct symmetry, we multiply the averaged
compliance tensor and the piezoelectric stress tensor to get
the piezoelectric strain tensor. The only nonzero elements for
the piezoelectric strain tensor are d13, d33, and d42. Both the
piezoelectric stress tensor and the compliance tensor can be
directly calculated using DFPT implemented in ABINIT [33].
As one can see in Table V, the absolute values of d13 and
d33 are 40 and 38 pC/N, respectively, and are comparable to
the experimental values, and d42, which is the most important

TABLE III. Ionic contribution to Pockels tensor ri j for Cm BaTiO3 for each displacement with the polarization “upward”.

[111] [11̄1] [1̄11] [1̄1̄1]⎡⎢⎢⎢⎢⎢⎢⎣

1812
−1584
−11
−767
817
22

−1583
1812
−11
824

−760
52

−25
−25
41
−6
−6
−12

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1811
−1583
−11
767
817
−22

1582
−1810

11
824
759
52

−25
−25
41
6

−6
12

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

−1806
1578
11
765
815
22

−1578
1806
−11
822
757
−52

−25
−25
41
−6
6

12

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

−1810
1582

11
−766
816
−22

1581
−1809

11
823

−758
−52

−25
−25
41
6
6

−12

⎤⎥⎥⎥⎥⎥⎥⎦
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TABLE IV. Electronic and ionic contribution to the Pockels ten-
sor ri j , averaged to tetragonal BaTiO3.

Electronic Pockels Tensor (pm/V) Ionic Pockels Tensor (pm/V)⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

0.76
0

0
0
0

0.76
0
0

0.7
0.7
2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1.8
−1.8

0
0.25
816
0

0.5
0.25

0
823
0.5
0

−25
−25
41
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

component for rpiezo
42 element is computed to be 469 pC/N.

Results of another DFPT study by Sanna and co-workers
performed using the P4mm structure [68] that does not de-
scribe the d42 well, and experimental values are included in
Table V for comparison. The d42 element determines rpiezo

42 that
is significant to the total unclamped Pockels tensor value.

The last element needed for the unclamped Pockels ten-
sor, is the elasto-optic tensor, pi jμν . As discussed above,
we calculate the elasto-optic tensor using a finite difference
Eq. (7) for both Cm and P4mm phases [70]. As one can see in
Table VI, the Cm configuration agrees with experiment better;
some components are an order of magnitude off when using
P4mm. In particular, the p44 is 0.81 for the Cm configuration,
while it is significantly underestimated for P4mm. This com-
ponent is of most interest for runclamped

42 . Components of the
piezocontribution of the Pockels tensor are listed in Table VI.
Adding together the electronic, ionic, and piezo parts of the
Pockels tensor, we obtain the total unclamped Pockels ten-
sor, runclamped

42 = rclamped
42 + rpiezo

42 = 1564 pm/V in reasonable
agreement with the experimental value of ∼1300 pm/V.

IV. CONCLUSIONS

We report a detailed theoretical analysis of the linear EO
effect in P4mm BTO, using ab initio calculations. We consider
P4mm BTO to be a dynamic average of a lower symmetry
Cm structure with a [111]-type ferroelectric displacement,
and find good agreement with experiment, and provide in-
sights into the origin of BTO’s uniquely large EO response.
To describe tetragonal BTO, we average over four such Cm
structures with the same “upward” polarization to calculate
the Pockels tensor. Interestingly, neither Raman susceptibility
nor the mode polarity of this phase are particularly differ-
ent from those found in other BTO polymorphs, however,
the small frequency of the lowest optical mode results in
a very large ionic response. This particular mode boasts a
winning combination of a low frequency and a displacement
pattern that triggers a large change in the dielectric tensor,
resulting in large Raman susceptibility. We also calculate the

TABLE V. The absolute value of piezoelectric strain tensors ob-
tained through ABINIT, other theory [68], and experiment [67,69].

This work Other Theory [68] Expt.

d31(pC/N) 40 15 33 [67], 34 [69]
d33(pC/N) 38 90 90 [67], 85.6 [69]
d42(pC/N) 469 10 282 [67], 392 [69]

TABLE VI. Unique elements of the elasto-optic tensor (unitless)
and the piezo part of the Pockels tensor.

Elasto-optic Element Cm P4mm Expt. [67]

p11 0.93 0.53 0.50
p12 0.058 0.61 0.11
p13 0.087 0.42 0.2
p31 0.037 0.37 0.07
p33 0.80 0.0085 0.77
p44 0.81 0.17 1.0

rpiezo
13 (pm/V) 3.5 2 −2

rpiezo
33 (pm/V) 30 6 65

rpiezo
42 (pm/V) 760 81 570

piezoelectric response, which is severely underestimated us-
ing the conventional P4mm cell, and find good agreement with
experiment. Overall, we obtain runclamped

13 = −20.8 pm/V,
runclamped

33 = 73 pm/V, and runclamped
42 = 1564 pm/V for the

unclamped Pockels tensor in reasonably good agreement
with experiment. Importantly, the ionic (optical phonons) and
piezoresponses (strain or acoustic phonons) each account for
approximately half of the total unclamped response, while
the electronic component related to χ (2) is relatively small
and comparable to that of lithium niobate. This suggests
that though the BTO EO response will diminish at frequen-
cies above the acoustic resonance, it should still outperform
lithium niobate even at high frequencies in qualitative agree-
ment with recent experiments [71]. It also suggests that if the
tetragonal phase is stabilized by suppressing the phase tran-
sition, e.g., by epitaxial strain, the material should maintain
a sizable EO response at low temperature when the optical
phonons are “frozen out” [24].
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APPENDIX: STRAIN

The elastic properties are usually derived by considering a
crystal as a homogenous continuous medium rather than a pe-
riodic array of atoms [72]. One can imagine three orthogonal
unit vectors, x̂, ŷ, ẑ, initially embedded in the material. After
a deformation, the new axes may be written in terms of the old
ones:

x′ = (1 + εxx )x̂ + εxyŷ + εxz ẑ, (A1a)

y′ = εyxx̂+(1 + εyy)ŷ+εyz ẑ, (A1b)

z′ = εzxx̂+εzyŷ + (1 + εzz )ẑ (A1c)

The coefficients εi j describe the deformation with a unit-
less parameter measuring the relative change in magnitude of
a component of the unit vector. If an atom is originally at
r = x(x̂) + y(ŷ) + z(ẑ), after the lattice deforms its position
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will be r′ = x(x′) + y(y′) + z(z′). The displacement R can
then be written as

R ≡ r′ − r = x(x′ − x̂) + y(y′ − ŷ) + z(z′ − ẑ), (A2a)

R(r) ≡ (xεxx + yεyx + zεzx )x̂ + (xεxy + yεyy + zεzy)ŷ

+ (xεxz + yεyz + zεzz )ẑ, (A2b)

R(r) = u(r)x̂ + v(r)ŷ + w(r)ẑ. (A2c)

The coefficients of each unit vector in Eq. (A2c) comprise
the sum of the first-order Taylor expansion of the difference
r′ − r if we use xεxx ≈ x ∂u/∂x, yεyx ≈ y ∂u/∂y, etc. Using
this formulation, we can actually define the strain tensor in
terms of these partial derivatives. Normal strain ηii, which
only involves changes in the magnitude of the orthogonal
unit vectors and no change in their respective angles, can be
written as

ηxx ≡ εxx = ∂u

∂x
; ηyy ≡ εyy = ∂v

∂y
; ηzz ≡ εzz = ∂w

∂z
. (A3)

While sheer strain ηi j (i 	= j) measures the change in the
angles when the lattice vectors have been rotated toward
or away from each other. This can be written in terms of
the components of the rotated lattice vectors as differentials
∂u, ∂v, ∂w and the original magnitudes of the lattice vectors
∂x, ∂y, ∂x:

ηxy ≡ x′ · y′ = 1

2
(εyx + εxy) = 1

2

(
∂u

∂y
+ ∂v

∂ax

)
, (A4a)

ηyz ≡ y′ · z′ = 1

2
(εzy + εyz ) = 1

2

(
∂v

∂z
+ ∂w

∂y

)
, (A4b)

ηzx ≡ z′ · x′ = 1

2
(εzx + εxz ) = 1

2

(
∂u

∂z
+ ∂w

∂x

)
. (A4c)

This can also be measured by finding the change in the
angle between the lattice vectors (
L′

i being the new ones),
assuming they were originally orthogonal [73]:

ηi j = π/2 − cos−1

( 
L′
i · 
L′

j

|
L′
i||
L′

j |

)
. (A5)

In the limit of small angles, Eqs. (A4) and (A5) are the
same in a Taylor expansion. From Eqs. (A4) and (A5), one can
see that the tensor ηi j is symmetric from the interchangeable
indices. Together, Eqs. (A3)–(A5) define all the components
of strain. For normal strain, the sign convention dictates that
elongation be positive and compression negative. Shear strain
is considered positive if the angle between lattice vectors de-
creases and negative if it increases. Although this may sound

counterintuitive, it ensures that positive shear stress causes
positive shear strain.

In practice, we distorted the lattice vectors of the unit cell to
take derivatives at the desired strain. To take derivatives with
respect to normal strain, we first elongated one of the lattice
vectors along the direction of its unit vector, according to
Eq. (A3). For example, to consider the strain of ηxx = 0.005,
we made the first lattice vector 
L1 = 1.005 [3.994 0 0], keep-
ing the other vectors constant. Then we relaxed the internal
coordinates to allow for the strain-induced atomic relaxations
that also affect the dielectric tensor. Once we had the new
relaxed cell, we calculated the dielectric tensor for that con-
figuration. We repeated this for 
L1 = 0.995 [3.994 0 0]. Then
we could obtain the elasto-optic tensor using Eq. (7).

For shear strain, we rotated the two lattice vectors of inter-
est toward and away from each other (positive and negative
steps in the finite-derivative), according to Eqs. (A4a)–(A4c).
To give the effect of ηyz = 0.01 strain, we rotated both the
second and third lattice around the x axis. Specifically, we
applied the rotation matrix M̄ with θ = −0.005 radians to the
second lattice vector 
L2:


L′
2 = M̄ 
L2 =

⎛⎝1 0 0
0 cos (−0.005) − sin (−0.005)
0 sin(−0.005) cos(−0.005)

⎞⎠⎛⎝ 0
3.994

0

⎞⎠
(A6)

to obtain 
L′
2 = [0 3.99395 0.01996]. 
L′

3 is obtained by a
similar process:


L′
3 = M̄ 
L3 =

⎛⎝1 0 0
0 cos (0.005) − sin (0.005)
0 sin(0.005) cos(0.005)

⎞⎠⎛⎝ 0
0

4.0038

⎞⎠.

(A7)

Bear in mind that the sign of θ changes to ensure they
are both lattice vectors rotating toward each other. This yields

L′

3 = [0 0.02019 4.03794]. If we apply Eq. (A4a), we get

ηyz ≡ y′ · z′ = εzy + εyz = ∂v

∂z
+ ∂w

∂y

= 0.02019

4.038
+ 0.01996

3.994
= 0.010. (A8)

Equivalently, we could apply Eq. (A5) to 
L′
2 and 
L′

3 to
get ηyz = 0.010. To apply ηyz = −0.010, we would repeat the
process, but flip the signs of θ for each rotation. After straining
the lattice vectors, we relax the internal coordinates, then
compute the dielectric tensor for the shear strain derivative.
Thus, we are able to obtain all the elasto-optic constants.
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