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We propose and study a generalization of Kitaev’s Z2 toric code on a square lattice with an additional global
U (1) symmetry. Using quantum Monte Carlo simulation, we find strong evidence for a topologically ordered
ground state manifold with indications of UV-IR mixing, i.e., the topological degeneracy of the ground state
depends on the microscopic details of the lattice. Specifically, the ground state degeneracy depends on the lattice
tilt relative to the directions of the torus cycles. In particular, we observe that while the usual compactification
along the vertical or horizontal lines of the square lattice shows a twofold ground state degeneracy, compactifying
the lattice at 45◦ leads to a threefold degeneracy. In addition to its unusual topological properties, this system
also exhibits Hilbert space fragmentation. Finally, we propose a candidate experimental realization of the model
in an array of superconducting quantum wires.
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I. INTRODUCTION

Topological phases of matter have been, increasingly,
drawing attention from the physics and quantum information
communities over the past several decades [1]. These special
quantum phases exhibit exotic properties such as their topo-
logical ground state degeneracy (TGSD) and the excitation
content that cannot be captured by conventional Ginzburg-
Landau theory.

A gapped quantum system is considered to possess (in-
trinsic) topological order if it has degenerate ground states
that are locally indistinguishable. The TGSD is robust in the
presence of any local perturbation and depends only on the
topology of the underlying spatial manifold [1–5]. Topolog-
ically ordered phases exhibit long-range entanglement and
support local excitations with fractional exchange statistics
(anyons) that cannot be created in isolation by a local pro-
cess [6–10]. Topological order in two spatial dimensions has
been extensively studied in various different realizations such
as quantum spin liquids [8,11–21], fractional quantum Hall
states [10,22–24], superconductors [25], topological quantum
field theories [26,27], etc.

More recently, a notion of fracton topological order has
been introduced [28–35]. Fractonic phases of matter exhibit
fractionalized excitations (fractons) that cannot be created in
pairs. Unlike an anyon, which is created at the end points
of a stringlike operator (Wilson line) and can freely move
across space, a single fracton is immobile, since fractons are
created at the corners of membrane- or fractal-like operators.
Another difference with the usual topological order is that in
fractonic systems the ground state degeneracy (GSD) depends
not only on the topology of the manifold, but also on the
microscopic properties of the model, such as the system size
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and the lattice geometry. This is a manifestation of UV-IR
mixing in quantum field theory [36,37].

Additional classification of topological phases of matter
arises from an interplay between symmetry and topological
order. Even in the absence of intrinsic topological order, a
system invariant under a symmetry can exhibit several dis-
tinct phases that cannot be adiabatically connected to each
other, unless one violates the symmetry or closes the energy
gap. These phases do not break the considered symmetry and
are known as symmetry protected topological (SPT) phases,
with notable examples including free-fermionic topological
insulators in two dimensions (2D) [38–40] and 3D [41–44],
topological superconductors [45], and interacting bosonic
SPTs [46–49]. Furthermore, the distinct phases protected by a
symmetry need not lack intrinsic topological order. In fact, the
presence of symmetry can give rise to adiabatically discon-
nected phases with distinct topological orders, the so-called
symmetry enriched topological (SET) phases, where anyons
transform nontrivially under the symmetry [50–58].

Despite numerous attempts [19,49,51,52,54,56–62], there
is, to date, no unifying theory for all topological orders. In
the case of SETs, many classification attempts rely on con-
structing representative exactly solvable models that serve as
fixed points for each of the phases. In addition, the majority of
the work has been done on finite symmetry groups, and only
recently has there been an attempt to classify U (1)-symmetric
SETs [58].

In this paper we pose the question of what happens as
one tries to enrich the usual Z2 toric code with a global
U (1) symmetry. Although topological order has been pre-
viously enriched with U (1) symmetry through the addition
of extra degrees of freedom [58,63], here we take a differ-
ent approach and restrict the usual toric code Hamiltonian
to only interactions that are U (1) symmetric. The presence
of the extra symmetry imposes additional constraints on the
ground state loop dynamics, compared with the conventional
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Z2 toric code. We refer to the 2D lattice model as the “U (1)
symmetry enriched toric code”—or “U (1) toric code” for
short. Its Hamiltonian is not a sum of commuting projectors,
and hence not exactly solvable in any obvious way. However,
the model does not have a sign problem, which allows us to
study the model via large-scale quantum Monte Carlo (QMC)
simulation.

One of the motivations to study the model is its relation to
the so-called WXY model [64], which consists of two-body
interaction terms between “matter” and “gauge” spins, located
at the vertices and edges of a square lattice, respectively.
It possesses combinatorial Z2 gauge symmetry [64–68] in
addition to a global U (1) symmetry. The U (1) toric code is
believed to emerge after one integrates out the matter spins
in the WXY model. However, unlike the former, the WXY
model is difficult to study numerically since the unit cell is too
large for exact diagonalization and the sign problem prevents
us from employing quantum Monte Carlo.

Through our numerical studies on the U (1) toric code, we
observe a degenerate ground state manifold where nonlocal
quantum numbers are necessary to distinguish the states. We
also observe the existence of UV-IR mixing, which manifests
itself in the change of the ground state degeneracy upon
contracting the lattice on a torus through different compactifi-
cation vectors. A similar flavor of UV-IR mixing was explored
in Ref. [69]. It differs from the usual manifestation of UV-IR
mixing in fractonic models, where the GSD typically depends
only on the system size. In addition to its unusual GSD proper-
ties, the model displays Hilbert space fragmentation [70–72].
Finally, we propose a physical realization of the model in a
mesh of Josephson-coupled superconducting quantum wires.

II. LATTICE MODEL

One simple way to arrive at the model of interest is to
begin with Kitaev’s Z2 toric code [8] and then enrich it by an
additional global U (1) symmetry. (A second way, less direct
but closer to experimental settings, is presented in Sec. V.)
Consider a square lattice with sites s ≡ (i, j), where i, j are
the x and y coordinates, and elementary lattice vectors x̂ ≡
2êx = (1, 0), ŷ = 2êy = (0, 1). A spin-1/2 degree of freedom
is located on each link �. We say � ∈ s if the link � is one of the
four links adjacent to the site s, i.e., if � = s ± êx,y. We define
a star operator As(θ ) as the product of four spin-1/2 operators
σ θ

� = cos(θ ) σ x
� + sin(θ ) σ

y
� on the links adjacent to site s,

As(θ ) =
∏
�∈s

σ θ
� . (1)

σ x, σ y, and σ z are the usual Pauli spin operators. The general-
ized star operator As(θ ) for any angle θ is invariant under a Z2

local transformation, generated by the product of σ z operators
on the links of a given plaquette p:

Bp =
∏
�∈∂ p

σ z
� . (2)

In other words, [As(θ ), Bp] = 0, for all s, p, and θ , which is
similar to the usual toric code for fixed θ .

The global U (1) symmetry can be introduced by averaging
As(θ ) over all angles:

As = 1

2π

∫ 2π

0
dθ As(θ ). (3)

Keeping only the surviving terms in the integral, this star
operator can be written in terms of spin raising and lowering
operators as

As = σ+
s+êx

σ+
s+êy

σ−
s−êx

σ−
s−êy

+ σ+
s+êx

σ−
s+êy

σ+
s−êx

σ−
s−êy

+ σ+
s+êx

σ−
s+êy

σ−
s−êx

σ+
s−êy

+ H.c., (4)

with σ±
� = (σ x

� ± iσ y
� )/2. It is easy to check that the stars As

in Eq. (3) are invariant under a global z-axis rotation,

Uz = exp
(
−i

α

2
Mz

)
, (5)

where Mz = ∑
� σ z

� is the total magnetization in the z direc-
tion. Namely,

Uz As U †
z = 1

2π

∫ 2π

0
dθ As(θ + α) = As. (6)

The magnetization conservation is also apparent from Eq. (4),
since, in the σ z basis, every term flips exactly two spins up and
two spins down. The Hamiltonian can now be formally written
as the sum over all possible star and plaquette operators,

H = −λA
∑

s

As − λB

∑
p

Bp. (7)

We note that this model is not a sum of commuting projectors:
Neighboring stars do not commute, i.e., [As,As′ ] �= 0 if s is
adjacent to s′.

One can easily check that the Hamiltonian commutes with
total magnetization Mz and all the plaquettes {Bp},

[H, Mz] = 0 and [H, Bp] = 0 ∀p, (8)

which are conserved quantities associated with the global
U (1) and local Z2 gauge symmetry, respectively.

For any local closed loop γ composed of a sequence of
connected links, the loop operator

W (γ ) =
∏
�∈γ

σ z
� (9)

commutes with the Hamiltonian, [H,W (γ )] = 0, and can be
represented as a product of plaquette operators Bp enclosed
by γ . When putting the system on a torus, two additional
loop operators, Wx and Wy, defined along the shortest non-
contractible loops that wind around the torus in the x and
y directions are also conserved. The U (1) toric code can
be block diagonalized in the common eigenbasis of these
operators, so that each sector is characterized by a set of
independent conserved quantities {Mz,Wx,Wy, {Bp}}. We are
particularly interested in the four sectors categorized by Wx =
±1, Wy = ±1, as they underscore the topological features. In
the following, we refer to these four sectors as topological
sectors, with respective quantum numbers (Wx,Wy) = (+,+),
(+,−), (−,+), and (−,−).

Interestingly, we find that within each symmetry block
the Hilbert space further splits into multiple even-smaller
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fragments (or Krylov subsectors), indicating that the system
exhibits Hilbert space fragmentation [70–72]. An exact diag-
onalization (ED) study that we carried out suggests that in
the vicinity of zero magnetization, the Hilbert space of each
symmetry sector is dominated by a single large fragment, an
indication of weak Hilbert space fragmentation. This implies
that in these symmetry sectors the lowest energy eigenstates
belong to this large fragment (see Appendix A). We note
that the fragmentation structure for a different system whose
dynamics we can map to that of the U (1) toric code in the
sector of {Wx = +1,Wy = +1, {Bp = +1}} has been shown
to be weak [73–76], which is consistent with our ED results.

III. NUMERICAL RESULTS

The U (1) toric code in Eq. (7) is free of a sign problem,
which allows us to study it via the stochastic series expansion
quantum Monte Carlo (SSE QMC) method using a general-
ized version of the sweeping cluster update algorithm [77–79].
This algorithm is designed to perform simulations not only
within any symmetry sector, but also within any Hilbert space
fragment, specified by an initial basis state from that fragment
(see Appendix B for technical details). In our studies we
always choose an initial state within the largest fragment in
the symmetry sector of interest.

In this paper, we focus on the even-parity sector where all
Bp = +1, which encompasses the ground states of the Hamil-
tonian (7) for sufficiently large λB (we set λA = 1 henceforth).
Within the even-parity sector, we then study all four topolog-
ical sectors that are characterized by Wx = ±1 and Wy = ±1.
We are particularly interested in whether the lowest energy
states from different topological sectors are degenerate, as this
degeneracy might indicate the existence of topological order
in the system.

In addition, we examine the dependence of the ground state
properties of the lattice on a torus with various compactifica-
tions. We introduce two orthogonal compactification vectors
�L1 and �L2, parametrized by two non-negative integers a and b,
as

�L1 = L(ax̂ + bŷ), �L2 = L(−bx̂ + aŷ), (10)

where L (a positive integer) is the linear system size. We
choose the vector (a, b) to be the shortest integer vector in its
direction, i.e., a and b are coprimes. Vectors �L1, �L2 define the
compactification scheme in the sense that any spatial vector
�r is identified with vectors �r + �L1 and �r + �L2. An example of
a small lattice with a nontrivial compactification scheme is
shown in Fig. 1.

We define the noncontractible loops γx and γy along �L1

and �L2 directions as shown in Fig. 1 by the purple and yellow
dotted lines, respectively. The noncontractible loop operators
are given by the products of spin operators along these two
loops as

Wx =
∏
i∈γx

σ z
i , (11)

Wy =
∏
i∈γy

σ z
i . (12)

FIG. 1. An example of a lattice with compactification a = 1,
b = 2 and linear size L = 2. Any vector �r is identified with vectors
�r + �L1 and �r + �L2. The whole lattice is shown in bright colors, while
the monochromatic region denotes repeating parts of the lattice due
to the periodic boundary condition. Two noncontractible loops γx and
γy are shown as purple and yellow dotted lines, respectively, along
two compactification vectors �L1 and �L2.

Note that there is freedom in the choice of noncontractible
strings entering the definition of the operators W , since two
string operators going around the torus in the same direction
can be deformed into each other by multiplications of Bp

operators. Also note that even though the symmetry gener-
ators, Mz,Wx,Wy, {Bp}, are independent of each other, their
quantum numbers might be incompatible. Compatibility of
quantum numbers depends on the compactification scheme,
as well as the linear size L. For example, in the case of
a = 1, b = 0 compactification, it is not possible to have a zero
magnetization state within the (+,+) and (−,−) topological
sectors when the linear size L is odd (see Appendix C).

Below we explore in detail two lattice compactifications
on a torus: (a) 0◦-tilt compactification, corresponding to
a = 1, b = 0—the usual compactification along the vertical
and horizontal lines of the square lattice; and (b) 45◦-tilt
compactification, with a = 1, b = 1. We focus on the cases
with L even, for which we observe that the ground states have
magnetization Mz = 0 in all of the topological sectors. Cases
with L odd are explored in Appendix E, and compactifications
with other tilt angles are discussed in Appendix F.

A. 0◦-tilt compactification

We observe a finite energy gap of order O(1) between
sectors (Wx,Wy) = (+,−) and (−,−) for all system sizes L
considered. The sectors (+,−) and (−,+) have identical en-
ergy spectra due to the C4 rotation symmetry of the lattice. On
the other hand, the energy difference between sectors (+,+)
and (−,−) vanishes as L increases, with the lowest energy
state in the sector (−,−) in all cases (see Fig. 2). We find that
this energy difference becomes essentially zero within error
bars beyond system sizes as small as L = 6. We conclude
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FIG. 2. Energy gaps between the ground states in different
topological sectors as a function of system size L in the 0◦-tilt com-
pactification. EWx Wy,W ′

x W ′
y

labels the energy difference between sectors
(Wx,Wy ) and (W ′

x ,W ′
y ). For all system sizes, the sector (−, −) has the

lowest energy. The inset shows that the finite-size gap 
E++,−− → 0
as L → ∞. The results indicate that the system has a twofold TGSD.

that the system has a twofold degeneracy associated with
sectors (+,+) and (−,−), to which we henceforth refer as a
topological ground state degeneracy (TGSD) distinguished by
quantum numbers associated with operators (Wx,Wy) defined
on noncontractible loops.

The observation of an O(1) energy separation between
topological sectors suggests that the system is gapped. How-
ever, this observation alone does not rule out the possibility
that the system is gapless within each of the (+,+) and
(−,−) ground state sectors. To support the claim that the
system is gapped within each of these sectors, we compute
the spin-spin correlation functions along the x direction, C(r),
and along the 45◦ diagonal direction, Cd (r), defined as

C(r) = 1

L

∑
α

σ z
(êx+αŷ)σ

z
(êx+αŷ)+rx̂, (13a)

Cd (r) = 1

L

∑
α

σ z
(êx+αêx̄y )σ

z
(êx+αêx̄y )+rêxy

, (13b)

where êxy = êx + êy, êx̄y = −êx + êy. We observe that both
correlation functions decay rapidly to zero within a short
distance on the order of two lattice sites, as shown in Fig. 3(a),
for the (−,−) sector (see Appendix D for correlations in other
topological sectors). This rapid decay is consistent with the
absence of long-range magnetic order and provides evidence
that the system is gapped within each topological sector.

We observe a spatial checkerboard pattern in the measure-
ments of the star-star correlator 〈As As′ 〉, shown in Fig. 3(b).
This pattern suggests that the ground states spontaneously
break translation symmetry. This staggered pattern appears
in both degenerate topological sectors (−,−) and (+,+),
indicating the coexistence of spontaneous symmetry breaking
with topological degeneracy, i.e., the total ground state degen-
eracy is 4, the product of the twofold TGSD by a factor of 2
originating from the symmetry breaking.

FIG. 3. (a) Spin-spin correlation function in the x and 45◦ di-
rection [C(r) and Cd (r), respectively] for different system sizes
L. The correlation function decays to zero rapidly, indicating that
the system is gapped. (b) Intensity plot of the star-star correlation
〈As=(0,0) As′=(x,y)〉, indicating translational symmetry breaking. The
system size is L = 16. Both results shown here correspond to the
0◦-tilt compactification, in the sector (−, −) and with Mz = 0.

B. 45◦-tilt compactification

We repeat the studies above for the 45◦-tilted lattice. The
essential observation here is that the state in the (−,−) sector
has higher energy than the states in the other three sectors
(+,+), (+,−), and (−,+), which are degenerate, thus yield-
ing a threefold TGSD (see Fig. 4). We find, again, that the
spin-spin correlation functions are fast decaying for all three
states in the ground state manifold, just as in the case of 0◦-
tilt compactification. This suggests the absence of long-range
magnetic order and provides strong evidence for a gapped
ground state manifold (see Appendix D).

IV. DISCUSSION OF THE GROUND STATE DEGENERACY

The results above establish numerically that the TGSD
depends on the tilt angle of the compactification of the lattice.
For the 0◦ tilt, we find a TGSD of 2 [sectors (+,+) and
(−,−)], while for the 45◦ tilt we find a TGSD of 3 [sectors
(+,+), (+,−), and (−,+)]. This result is peculiar for two
reasons. First, a change of the TGSD upon changing the com-
pactification of the lattice is a clear manifestation of UV-IR
mixing, a feature quite common in gapped fractonic phases. In
fractonic systems the TGSD typically depends on the system
size and on the relative dimensions of the lattice [28–34],
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FIG. 4. Energy gaps between the ground states in different
topological sectors as a function of system size in the 45◦-tilt com-
pactification. The notation is the same as in Fig. 2. The state in the
(−, −) sector has higher energy and is separated from the states in
the other three sectors (+,+), (+, −), and (−, +), which are de-
generate. [Note that (+,−) and (−, +) sectors have identical energy
spectra due to the C4 rotation symmetry of the lattice.]

while here it depends on the choice of compactification di-
rections (vectors) defining a torus.

Second, the threefold topological degeneracy in the 45◦
tilt poses a puzzle. The U (1) toric code Hamiltonian equa-
tion (7) is time-reversal symmetric. The observed threefold
topological degeneracy is quite unusual when coming from
a time-reversal (T ) invariant Z2 gauge theory. Typically,
topological quantum field theories with T symmetry are
characterized by Hilbert space dimensions that are either
the square of an integer or numbers that decompose into
Pythagorean prime ones [80]. Neither is consistent with a de-
generacy of 3. One logical possibility is that the T symmetry
is spontaneously broken. If this is the case, it is not manifest
through long-range magnetic order, since we find that the
ground states have zero magnetization and that the spin-spin
correlation functions decay exponentially.

Since we do not have an analytical solution with which to
compare the numerical features that we observe, we follow a
phenomenological approach to see what features the theory
must have in order to be consistent with our numerical results.
Let us posit the existence of nonlocal tunneling operators Tx,y,
which are not necessarily unitary, that flip the eigenvalues
of the nonlocal winding loop operators Wx,y. As opposed to
the usual toric code, one cannot explicitly write down these
operators (or at least we do not know of a way, yet).

Consider first the case of 45◦-tilt compactification, and op-
erators T 45◦

x and T 45◦
y , depicted as a red solid arrow and a black

dashed arrow in Fig. 5; these operators change the eigenvalues
of Wx and Wy, respectively. The three ground states can be
indexed as

|++〉 , |−+〉 ∼ T 45◦
x |++〉 , |+−〉 ∼ T 45◦

y |++〉 . (14)

To be consistent with the numerical result, that the fourth state
|−−〉, is an excited state and not yet another ground state,
the application of the product T 45◦

x T 45◦
y to the reference state

FIG. 5. Mapping between topological sectors in 0◦-tilt (right
side) and 45◦-tilt (left side) compactifications. The ground state
manifold is depicted with the red frames, while topological sectors
with excited lowest energy states are depicted with gray dashed
frames. We assume the existence of nonlocal and nonunitary tun-
neling operators, T 45◦

x (red arrows) and T 45◦
y (dashed black arrows),

that in the 45◦-tilt case take the state |++〉 to states |−+〉 and |+−〉,
respectively. Simultaneous application of both tunneling operators
to |++〉 annihilates the state, and therefore |−−〉 does not belong
to the ground state manifold. In the 0◦-tilt case, assuming the same
orientation of the tunneling operators with respect to the microscopic
details of the lattice, both T 45◦

x and T 45◦
y take state |++〉 to |−−〉, and

hence states |+−〉 and |−+〉 remain out of the ground state manifold.

|++〉 must be orthogonal to the ground state manifold, or
equivalently, i.e., it must annihilate the reference state in the
ground state manifold,

T 45◦
x T 45◦

y |++〉 ∼ 0. (15)

This scenario parallels that of SU (2)2 topological order (host-
ing Ising anyons), where one can insert fluxes (corresponding
to the tunneling operators, T 45◦

x or T 45◦
y ) through one or the

other hole of the torus and switch ground states, but not insert
flux through both (see, for example, Ref. [81]). The net effect
is to make the fourth ground state inaccessible as in Eq. (15).
(References [82,83] give examples of systems with SU (2)2

topological order where the tunneling operators Tx,y can be
constructed and their algebra is studied.)

These tunneling operators also allow us to propose a
heuristic argument that connects the topological ground state
degeneracy in the two compactification schemes. For the case
of 0◦-tilt compactification, the two tunneling operators T 45◦

x
and T 45◦

y (again, depicted as a red solid arrow and a black
dashed- arrow in Fig. 5) wind across the torus along the +45◦
and −45◦ directions. Along both directions, the tunneling
operators flip both winding loop eigenvalues Wx and Wy, and
we write the two ground states as

|++〉 , |−−〉 ∼ T 45◦
x |++〉 ∼ T 45◦

y |++〉 . (16)
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Because both T 45◦
x and T 45◦

y have the same action on |++〉,
they provide us with only one additional state, |−−〉, and
thus a topological ground state degeneracy of 2 in the 0◦-tilt
compactification.

Again, the argument for the exclusion of the fourth sector,
|−−〉, from the ground state manifold in the case of 45◦-tilt
compactification parallels that in the case of Ising anyons.
These arguments suggest a logical possibility that the U (1)
toric code may realize non-Abelian topological order. A thor-
ough investigation of this possibility is left for future work.

One way to test the robustness of the ground state degen-
eracy is to perturb the Hamiltonian (7) using arbitrary local
terms, such as longitudinal and transverse magnetic fields

H → H̃ = H − gx

∑
�

σ x
� − gz

∑
�

σ z
� . (17)

However, we encounter the following difficulties in numeri-
cally carrying out such tests using either ED or QMC: ED is
limited to small system sizes, posing the numerical challenge
of distinguishing effects due to the perturbation from those
due to the finite size (the correlation length, even if small as
suggested by the decay of spin-spin correlations in Fig. 3, is
not zero). In the case of QMC, our update algorithm is built
so as to conserve all quantum numbers, {Bp}, Mz,Wx,Wy, and
cannot incorporate perturbations that break the conservation
of these quantities without significant modification of the
update scheme. (It is unclear what modifications would be
required in the QMC update algorithm to accommodate such
perturbations.)

V. A PHYSICAL REALIZATION OF THE STAR TERM
OF THE U (1) TORIC CODE

Here we illustrate how the four-spin interaction term As

in our Hamiltonian in Eq. (4) appears naturally in a physical
setup proposed in Ref. [64] using arrays of superconducting
quantum wires coupled via Josephson junctions. Consider, for
each star s, a 4 × 4 array of vertical and horizontal wires
intersecting at 16 crossings, as depicted in Fig. 6. Each of
the four vertical wires n = 1, . . . , 4 is coupled to each of the
four horizontal wires i = 1, . . . , 4 by a Josephson junction.
The sign of each coupling is encapsulated by a matrix W with
diagonal elements Wn=i = −1 (corresponding to a π junction)
and off-diagonal elements Wn �=i = +1 (corresponding to a
regular junction).

The Hamiltonian at a given site s for such a system is given
by

H = HJ + HK (18a)

with

HJ = −J
∑
n,i

Wni cos(φn − θi ) (18b)

and

HK = 1

2Cm

∑
n

q2
n + 1

2Cg

∑
i

Q2
i , (18c)

where Cm and Cg are the self-capacitances. φn and θi are the
superconducting phases in each wire, and qn and Qi are their
conjugate charges, respectively. On the lattice, we refer to the

FIG. 6. A proposed physical realization of the star term As in
the U (1) toric code lattice Hamiltonian. The center “waffle” is high-
lighted as an example. It is composed of intersecting superconducting
wires coupled by Josephson junctions. The junctions in the diagonal
(red) denote π couplings. Vertical wires (blue) are “matter” degrees
of freedom labeled by phase φn. Horizontal wires (gold) are “gauge”
degrees of freedom with phases θi. Only the gauge degrees of free-
dom (black) couple to other, neighboring, waffles.

φ as “matter” phases, and they are not connected to wires on
any other site. On the other hand, we refer to the θ as “gauge”
phases, and they are shared by neighboring sites. (Here we
focus on a single star; on a lattice, gauge wires are shared
between neighboring stars.)

The form of the W matrix guarantees that this Hamiltonian
has local Z2 symmetry, per combinatorial gauge symmetry
(CGS). At the same time, this Hamiltonian also has global
U (1) symmetry; hence it is a natural starting point for the
U (1) toric code.

There are two types of limits that one usually considers
in Josephson junction Hamiltonians—phase and charge. The
former is dominated by large J where the flux is typically
treated classically and then one considers the quantum fluctua-
tions perturbatively. We are interested in the opposite charging
limit, where both capacitances are small and we are in the
quantum regime at the outset. To treat this case, we will
proceed in two steps: First take the limit of small Cm, and then
take the limit of small Cg.

Small Cm limit. First, we add a bias voltage q̄ to each matter
wire so that the kinetic term becomes

1

2Cm
(qn − q̄)2. (19)

If the bias is close to q̄ = N + 1/2 (N is an integer) such
that two quantized states qn = N and qn = N + 1 are close in
energy, then the matter wires become two-level systems, be-
cause the small capacitance penalizes all other charge states.
For our purposes we consider a gate bias very close to the
half-integer point. At this point the operators e±i φn increase
or decrease the charge value, and we can replace them by
ordinary spin raising and lowering operators e±i φn → μ±

n ,
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where μ±
n = μx

n ± iμy
n [84]. The Hamiltonian (18b) in this

limit becomes

HJ = −J
∑
n,i

Wni
(
μ+

n e+iθi + μ−
n e−iθi

)
. (20)

The μ spins can be integrated out exactly by diagonalizing,
for each n, a 2 × 2 spin-1/2 Hamiltonian (treating the θi’s as
slow fields). Keeping only the lowest energy terms, the result
is an effective potential as a function of θi’s only:

H eff
J = −|J|

∑
n

⎡
⎣∑

i,j

WniWnj cos(θi − θj )

⎤
⎦

1/2

. (21)

Notice that this Hamiltonian still has the global U (1) symme-
try as well as the discrete Z2 symmetry, which we can write
as

θi → θi + π

2

(
1 − σ z

i

)
, σ z

i = ±1, if σ z
1 σ z

2 σ z
3 σ z

4 = +1.

(22)

Small Cg limit. Now we will follow a similar procedure
with the gauge wires and add a bias Q̄ = M + 1/2 (M is an
integer) to all Qi. This restricts the charge on each gauge wire
to two values.

Mathematically, however, we take a different approach.
Rather than replacing the flux operators by Pauli matrices
immediately, we will first expand Eq. (21) in a Fourier series,
keeping only the terms e±iθi , i.e., those that change the charge
from 1 to 0 or vice versa on each wire. It is straightforward to
check that the only terms that appear in the Fourier expansion
have the form of As in Eq. (4) but with each spin operator σ±

i
standing for e±iθi .

We note that this procedure realizes the star term As, but
we do not generate the plaquette term Bp. It remains a problem
for future work to systematically study different sectors with
given eigenvalues of Bp to determine whether the ground
states of Hamiltonian equation (7) with λB = 0 remain those
in the sector with Bp = +1 for all p, which were justified
in our quantum Monte Carlo studies by the presence of the
sufficiently large λB coupling in the Hamiltonian.

VI. CONCLUSIONS

In this paper, we studied a spin-1/2 lattice model—the
U (1) toric code—that is invariant under both a global U (1)
symmetry and local Z2 gauge transformations. We presented
evidence that the system is gapped and the U (1) global sym-
metry is not spontaneously broken. The exponential decay of
spin-spin correlators supports the claim that the system is a
gapped spin liquid. We found topologically degenerate ground
states, labeled by noncontractible string operators.

The model displays quite distinct topological degeneracies
that depend on the tilt of the lattice that is wrapped around
the torus, a form of UV-IR mixing unlike those encountered,
for example, in fractonic models. The number of degenerate
ground states is also puzzling. It is difficult to explain the
threefold topological degeneracy for the 45◦-tilt compactifi-
cation as coming from Abelian topological order if the U (1)
toric code is described by a doubled theory (for example,

the usual toric code which is described by a doubled Chern-
Simons theory).

One logical possibility is that the enrichment of the Z2 toric
code by the global U (1) symmetry may turn the topological
order non-Abelian. We presented a heuristic argument aimed
at relating the threefold topological degeneracy for the 45◦-tilt
compactification to the twofold topological degeneracy for the
0◦-tilt compactification based on a mapping of posited logical
operators that switch between topological ground states in
both geometries.

Finally, we presented a physical realization of the U (1)-
symmetric star terms in the Hamiltonian in a system of
superconducting quantum wires coupled by Josephson junc-
tions at their crossings. We believe that the possibility that the
model may be realizable with physical Hamiltonians should
further motivate future theoretical studies of the unusual topo-
logical properties of the U (1) toric code.
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APPENDIX A: HILBERT SPACE FRAGMENTATION

A symmetry operator Ô, one that commutes with the
Hamiltonian, block-diagonalizes the Hamiltonian into sym-
metry sectors associated with quantum numbers, i.e., eigen-
values of Ô.

Sometimes, even after resolving all symmetries of the
model, a symmetry block might appear to be further block
diagonalized into smaller blocks that are not associated with
any obvious symmetry operators. This phenomenon is called
Hilbert space fragmentation, and the corresponding (quan-
tum) dynamically disconnected blocks are called Hilbert
space fragments or Krylov subsectors [70–72]. In the thermo-
dynamic limit, the number of Krylov subsectors originating
from Hilbert space fragmentation scales much faster (propor-
tional to the number of degrees of freedom) than the number
of symmetry sectors from any type of symmetry (unless it is
a local gauge symmetry) [72]. The corresponding conserved
operators (which can be constructed, e.g., by writing down a
projector on the observed block in the Hamiltonian) are highly
nonlocal and nontrivial.

Hilbert space fragmentation typically arises in models with
local kinetic constraints. Such constraints are present in the
U (1) toric code. As an example, consider the two states in
Fig. 7. They belong to the same symmetry sector. Namely,
they belong to the block with quantum numbers Mz = 0,
Wx = Wy = +1, and Bp = +1 for every plaquette p. However,
the state at the top is completely inert, since none of the
stars are flippable, while in the state at the bottom every star
is flippable. These states are dynamically disconnected and
belong to different Krylov subsectors. In fact, the inert state
comprises its own one-dimensional Krylov subsector. Another
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FIG. 7. (a) Two states from the same symmetry sector, but from
different Krylov subsectors: an inert state with no flippable stars
(top), and a state where every star is flippable (bottom). (b) Basis
states of a seven-dimensional Krylov subsector. Black dots denote
spin down, and white dots (or the absence of a dot) denote spin up.

example of a seven-dimensional Krylov subsector is shown in
Fig. 7(b). If we translate this pattern of spins in space, we will
obtain a different Krylov subsector with the same quantum
numbers.

Hilbert space fragmentation in a model that straightfor-
wardly maps to the topological (+,+) sector of the U (1)
toric code has been studied in Refs. [73,76]. The dynamics
of domain walls in the same setting has been studied in
Refs. [74,75].

Using explicit enumeration of states, we study Hilbert
space fragmentation in systems of size N = 4 × 4 × 2, 6 ×
4 × 2, and 8 × 4 × 2 (the first two numbers are the num-
bers of stars in the x and y directions; the last factor of 2
corresponds to the two spins in a unit cell). We concentrate
on the symmetry sector with all Bp = +1. We define Dmax

as the dimensionality of the largest Krylov subsector and D
as the dimensionality of the corresponding symmetry sector.
The ratio Dmax/D for different magnetization and topological
symmetry sectors is presented in Fig. 8.

One can see that in the vicinity of zero magnetization, the
largest Krylov subsector completely dominates the Hilbert
space of its symmetry sector. We conjecture that this be-
havior carries over to the thermodynamic limit. In addition,
by a simple combinatorial argument, it is apparent that the
largest symmetry sectors are with Mz = 0. Since larger ran-
dom matrices have a larger spread of eigenvalues than smaller
random matrices, we can safely assume that the ground state
of each of the four topological symmetry sectors belongs to
its largest Krylov subsector in the Mz = 0 sector. The authors
of Ref. [73] prove this with even more rigor, although their
results translate directly only to our (+,+) topological sector.
In addition, we confirm the results of Ref. [73] by observing
the same “dynamical freezing transition,” which can be seen
as a sharp drop in the Dmax/D value at intermediate values
of magnetization [except for the (−,−) sector; however, this
might be a finite-size effect].

APPENDIX B: GENERALIZED SWEEPING CLUSTER
UPDATE ALGORITHM

The model we consider does not have a sign problem.
Therefore a QMC simulation is possible. We employ the

FIG. 8. Exact enumeration study of the fragmentation fraction
defined as Dmax/D, where Dmax is the size of the largest fragment
and D is the size of the sector. From top to bottom are the (+, +),
(+, −), (−,+), and (−,−) topological sectors, respectively.

SSE QMC with a modification of the sweeping cluster up-
date algorithm, previously used to study the quantum dimer
model [79,85].

As is typically done in SSE simulations, the partition func-
tion is expanded in a series of powers of the Hamiltonian H .
Terms from this series are sampled as classical configurations,
where slices of “imaginary time” contain “vertices” that take
one local classical configuration to another one, according to
one of the terms in the Hamiltonian. For a comprehensive
review of the SSE, see Ref. [78]. In the U (1) toric code, there
are only six allowed off-diagonal vertices with equal weight,
as shown in Fig. 9(a). In order to perform the simulation, all
diagonal terms have to be nonzero. To achieve this, we add a
constant to the Hamiltonian, which then allows an additional
16 diagonal vertices as shown in Fig. 9(b). The constant is
chosen such that all the vertices have equal weight. Vertices
with two-up–two-down configurations are called “flippable
stars” and are marked by green frames in Fig. 9. In the fol-
lowing, we set the weight of all vertices to 1.

Each Monte Carlo step consists of two parts. First, the
standard diagonal update is performed. If an imaginary time
slice is empty, then a diagonal operator on a random star might
be inserted; if an imaginary time already contains a diagonal
operator, then it might be removed. The probabilities of these
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FIG. 9. (a) Six allowed off-diagonal vertices from the Hamil-
tonian. Black (white) dots denote spin up (spin down). The four
dots below (above) the line denote the classical configuration of the
four spins on a star before (after) the application of a Hamiltonian
term. (b) Sixteen additional allowed diagonal vertices after adding a
constant to the Hamiltonian. The 12 vertices marked by green frames
are the flippable stars.

two processes are

Pinsert = βNs

(M − n)
, Premove = (M − n + 1)

βNs
. (B1)

Here, β = 1/T is the inverse temperature, Ns = Lx × Ly is the
total number of stars, M is the total length of the operator
string (i.e., the number of imaginary time slices), and n is the
total number of nonidentity operators present in the current
operator string. Off-diagonal operators are left untouched dur-
ing this step.

After the diagonal update, a sweeping cluster update is
performed. The construction of a cluster starts with randomly
choosing a flippable star, either diagonal or off-diagonal. This
creates four defect lines, which propagate upward along the
imaginary time direction and start growing the cluster. We
then sweep over imaginary time slices and keep track of the
defect lines. If a vertex is hit by one or more defect lines, we
update the vertex according to specific rules and propagate the
defect lines further. The number of defect lines exiting a vertex
might be different from how many defect lines entered it. At
some point, the cluster will converge, and the defect lines will
terminate at another flippable star. A pictorial representation
of a cluster is shown in Fig. 10. We note that the case in which
a vertex has a different number of entering and exiting lines
has been explored in Ref. [85] using a different approach. Our
model (as well as the dimer model) has a special property that
allows the cluster to build in one direction.

To determine the rules for the vertex updates, we proceed
in the following way. Consider a vertex that is hit by some
number of defect lines from below. We flip the correspond-
ing spins and obtain an intermediate vertex configuration, as
shown in Fig. 11. At this point, there are four possibilities.

(1) If the configuration of the bottom four spins of an
intermediate vertex is nonflippable, then there is only one
way to propagate the defect lines through the vertex. Some
examples are shown in Fig. 11(a).

(2) If the defect lines flip the bottom four spins into a flip-
pable configuration, and there are less than four lines hitting
the vertex, then there are two possible ways to propagate the
defect lines. The resulting vertex can be either diagonal or
off-diagonal, with probability 1/2 each. Examples are shown
in Fig. 11(b).

FIG. 10. Example of a cluster. It starts as four defect lines com-
ing out of a flippable star. The defect lines propagate upward along
the imaginary time direction, modifying the vertices they encounter
according to specified rules. After a vertex, the number of defect lines
might potentially increase or decrease. Finally, the cluster terminates
at another flippable star.

(3) If four defect lines hit a flippable vertex and the total
number of defect lines is more than 4, then we propagate all
the lines and flip the entire vertex.

(4) If four defect lines hit a flippable vertex and the total
number of defect lines is exactly 4, then we terminate the
cluster.

Note that the update from a nonflippable vertex to a flip-
pable vertex has probability 1/2, while the reverse process
does not. Thus, to satisfy the detailed balance, we have to keep

FIG. 11. Examples of vertex updates. Blue arrows denote the
defect lines propagating along the imaginary time direction (from
bottom to top). (a) If a new configuration of the bottom four spins is
not flippable, there is a unique way to propagate the defect lines, such
that the new vertex remains allowed. (b) If fewer than four defect
lines hit a vertex and update the bottom four spins to a flippable
configuration, there are two possible ways to propagate the defect
lines. We choose one of them with probability 1/2. Processes marked
by the orange frame are the updates from a nonflippable vertex
to a flippable vertex, for which the reverse process does not have
probability 1/2.
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FIG. 12. Ground state energy in four topological sectors of a
system of size 4 × 4 stars. Dots show the values obtained from the
SSE QMC with the generalized sweeping cluster update algorithm;
dashed lines show the values obtained from the ED calculation.

track of how many times these processes occur. Consider an
operator string A that updates to an operator string B through
a flip of a cluster constructed using the aforementioned proce-
dure. During this update, the number of nonflippable vertices
that turned into flippable ones is Nn→ f , while the number of
flippable vertices that turned into nonflippable ones is Nf →n.
To satisfy detailed balance, the acceptance probability for the
process A → B (through the flip of the constructed cluster)
should then be

P(A → B) = Nv (A)

Nv (B)

(
1

2

)Nf →n−Nn→ f

, (B2)

where Nv is the number of flippable vertices present in the
corresponding operator string.

It is worth pointing out that the update procedure we de-
scribed conserves all quantum numbers, {Mz,Wx,Wy, {Bp}}.
Even more than that, the update procedure cannot take the
system out of a specific Hilbert space fragment (Krylov sub-
sector). In this way, by choosing an appropriate initial state,
we are able to target a Hilbert space fragment that is dy-
namically connected to that initial state. As we explain in
Appendix A, in the vicinity of zero magnetization, the Hilbert
space of symmetry sectors is dominated by a single large
fragment, which will most probably contain the lowest energy
eigenstate. We benchmark our QMC results by comparing
them with the results obtained from an ED calculation of a
small system size. The results are presented in Fig. 12.

APPENDIX C: ENERGIES IN DIFFERENT
MAGNETIZATION SECTORS

For a system with size Lx × Ly on a square lattice, there
are 2LxLy+1 sectors associated with the Z2 plaquette operators,
(2LxLy + 1) sectors associated with the global U (1) symme-
try, and four sectors associated with the string operators Wx,y.
However, not all of these sectors have states (i.e., they are of
nonzero dimension).

FIG. 13. Energy differences between the lowest states with total
magnetization Mz = 2, 4, 6, 8 and the lowest state with magnetiza-
tion Mz = 0, within the (+,+) sector, as a function of inverse system
size 1/L. The system has 45◦-tilt compactification.

For example, in a system with L even, the sector with
{Bp = +1} and (Wx,Wy) = (+,+) is incompatible with odd
magnetization Mz = ±1,±3,±5,±7,±9, . . ., meaning that
such sectors have vanishing dimension, or equivalently, they
are nonexistent. Conversely, in a system with L odd, all sec-
tors with {Bp = +1} and (Wx,Wy) = (+,+) can only have
odd magnetization, and consequently all even-magnetization
sectors vanish.

In Fig. 13, we show the difference in energy between the
lowest states in each magnetization sector and the lowest state
with Mz = 0, within the topological sector (+,+). The results
indicate that the state with Mz = 0 has the lowest energy.

APPENDIX D: SPIN-SPIN CORRELATION FUNCTIONS
IN DIFFERENT SECTORS FOR 0◦ AND 45◦

COMPACTIFICATIONS

The spin-spin correlation functions in Eq. (13) were pre-
sented for the (−,−) sector and for 0◦-tilt compactification in
Fig. 3.

We show in Fig. 14 the QMC results for spin-spin corre-
lations obtained in the other topological sectors, (+,+) and
(+,−), for 0◦-tilt compactification. [The results for the sec-
tors (+,−) and (−,+) are identical by symmetry.] The data
show a rapid decay of correlations in all topological sectors.

In Fig. 15, we present the spin-spin correlation functions
for 45◦-tilt compactification, for all topological sectors. We
again observe rapidly decaying spatial correlations, consistent
with the absence of long-range magnetic order.

In the 45◦-tilt compactification scheme we also observe
that the star-star correlators 〈As As′ 〉 present a staggered pat-
tern, similar to what we observed for the 0◦-tilt case and
showed in Fig. 3. This provides evidence that within each
topological sector we have a twofold degeneracy associated
with spontaneous translational symmetry breaking. Account-
ing for this additional factor of 2, the total ground state space
is sixfold degenerate. (Note that this additional degeneracy is
not topological and can be lifted by local perturbations.)
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FIG. 14. Spin-spin correlation functions in sectors (+, +) (upper
two panels) and (+, −) (lower two panels) for 0◦-tilt compactifica-
tion. The correlations decay to zero for distances of the order of two
lattice sites.

APPENDIX E: ODD-SYSTEM-SIZE RESULTS FOR 0◦

AND 45◦ COMPACTIFICATIONS

In Fig. 16, we show the QMC results of the energy in four
different topological sectors with odd system size L on both
the 0◦ and 45◦ compactifications.

With odd system size L, as shown in Fig. 16(a) for the
case of 0◦ tilt, we find that sectors (+,+) and (−,−) are
not compatible with even magnetization. Therefore the lowest
energy levels in these sectors have Mz = ±1, not Mz = 0.
These states can be split by a local longitudinal field perturba-
tion term in the Hamiltonian. On the other hand, sectors with
(+,−) and (−,+) are compatible with even magnetization,
and the lowest energy states have Mz = 0. Based on the above
observation, we believe that in case the topological order is
present in the system, the TGSD has to come from the (+,−)
and (−,+) sectors.

In the case of 45◦ tilt, all four topological sectors are
compatible with even magnetization, and the lowest energy
states have Mz = 0. As shown in Fig. 16(b), we find that
states from (+,−), (−,+), and (−,−) become degenerate
at low temperatures (β = 1/T ), indicating a threefold TGSD.
Compared with the even-L case, the TGSD stays the same,
but instead of the (+,+) sector, the reference sector is now
(−,−).

APPENDIX F: ED RESULTS FOR OTHER
COMPACTIFICATIONS

For other compactification schemes, we study the ground
state energy in different topological sectors using ED (see

FIG. 15. Spin-spin correlation functions in the topological sec-
tors (+, +) (top), (+,−) or (−, +) (middle), and (−,−) (bottom)
for the 45◦-tilt setup. All the results show a fast decaying within the
order of two lattice sites for all system sizes L.

Fig. 17). The total number of stars is Ns = (a2 + b2)L2, and
the total number of spins is N = 2Ns. Here, we show the
results only for zero magnetization, as we find that the states
with Mz = 0 have lower energy than other states with nonzero
magnetization.

Due to size limitations to the computations, it is only
possible to study compactification schemes with small values
of a and b. Here we show results for three different cases:
(a) a = 2, b = 1, and L = 2 (Ns = 20); (b) a = 3, b = 1, and
L = 1 (Ns = 10); and (c) a = 3, b = 2, and L = 1 (Ns = 13).
In case (a), we find energy features similar to the 0◦-tilt case
with an even system size L. The lowest energy states of sectors
(+,+) and (−,−) are well separated from the lowest energy
states of (+,−) and (−,+) sectors and are, possibly, the two
topologically degenerate ground states, with the small energy
difference between them being a finite-size effect. Likewise,
for case (b), we find that the energies behave similarly to the
45◦-tilt case. The (+,−), (−,+), and (−,−) sectors con-
tain the three topologically degenerate ground states, again,
separated by a small finite-size gap and well separated from
the (+,+) sector. In case (c), sectors (+,+) and (−,−) are
incompatible with even magnetization, and states from the
(+,−) and (−,+) sectors are degenerate, similarly to the
0◦-tilt case with odd system size L.
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FIG. 16. QMC results of energies in four topological sectors for
(a) 0◦ tilt with system size L = 13, where only the sectors (+, −) and
(−, +) are compatible with zero magnetization, and (b) 45◦ tilt with
system size L = 5, where the TGSD remains 3 as in the even-size
system, but the degenerate sectors are (+, −), (−, +), and (−, −).
Ns denotes the total number of stars on the lattice.

Based on the above observations, we find that the TGSD
is always either 2 or 3, depending on the compactification
scheme. The results can be summarized in the following way:
If (a2 + b2) is even, TGSD = 3; if (a2 + b2) is odd, TGSD =
2. In the case of TGSD = 3, if L is even, the ground states
belong to the (+,+), (+,−), and (−,+) sectors, while if L is
odd, they belong to the (−,−), (+,−), and (−,+) sectors. In
the case of TGSD = 2, for even L, the ground states lie in the
(+,+) and (−,−) sectors, while for odd L, the (+,+) and
(−,−) sectors are not compatible with zero magnetization
and the ground states lie in sectors (+,−) and (−,+).

APPENDIX G: VANISHING OF CERTAIN CORRELATION
FUNCTIONS

It is a known result that a nonvanishing gap in a sys-
tem with short-range interactions implies exponential decay
of the two-point connected correlation functions, C(�r) ≡

FIG. 17. ED results for the energy of the lowest states in each of
the topological sectors with m = 0 for different compactifications.
(a) a = 2, b = 1, L = 2. (b) a = 3, b = 1, L = 1. (c) a = 3, b = 2,
L = 1.

〈Ô(0)Ô(�r)〉 − 〈Ô(0)〉〈Ô(�r)〉, for any local operator Ô [86].
However, the converse statement, that exponentially decaying
two-point correlation functions imply the existence of a finite
gap, is not necessarily true. The decay of the correlator largely
depends on the excitation content captured by the chosen
correlator. For example, one could have a gapless system with
both gapped and gapless modes in which the chosen correlator
only couples to the gapped degree of freedom, leading to an
exponential decay of the correlation function. It is nonetheless
common to use the exponential decay of a correlation function
as a common diagnostic tool to provide numerical evidence
that hints towards the existence of a nonvanishing gap. A
justification is that, with the exception of special cases, a
simple typical operator should couple to all excitations of the
system; thus the correlator decay is dominated by the slowest
decay, and so its correlations would typically be a power law
for a gapless system. If such power-law decay is not observed,
it is more likely than not that the system is gapped.

Further evidence that the system we consider is a spin
liquid is that a large class of operators has zero expectation
value, including σ xσ x, σ yσ y, and any Pauli string with an odd
number of σ z’s or σ x’s (where σ y counts as both σ x and σ z).
This fact, together with numerical evidence of the exponential
decay of the 〈σ z(0)σ z(r)〉 correlator presented in the main
text, is strong evidence (although not a strict proof) for the
presence of a gap.

We now derive the class of Pauli strings, P̂, for which the
expectation value is exactly zero in the ground state manifold
(consequently, any operator that is a linear combination of
these Pauli strings will also have zero expectation value). We
express P̂ as a product of only σ x’s and σ z’s, by replacing
σ y with iσ zσ x. Next, let us use the fact that any ground state
has all Bp = +1. This implies that unless all σ x’s in the Pauli
string form closed loops on the dual lattice, P̂ anticommutes
with some Bp and therefore 〈P̂〉 = 0. As a simple example,
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consider the expectation value of P̂ = σ x
i at site i, and ground

state |g〉. Using the fact that Bp |g〉 = |g〉, we have the follow-
ing: 〈

σ x
i

〉 = 〈
g
∣∣ σ x

i

∣∣g〉 (G1)

= 〈
g
∣∣ Bp σ x

i Bp

∣∣g〉 (G2)

= 〈
g
∣∣ Bp (−Bp σ x

i )
∣∣g〉 (G3)

= − 〈
σ x

i

〉
. (G4)

Therefore we have 〈σ x
i 〉 = − 〈σ x

i 〉 = 0.

This implies that a necessary condition for the nonvan-
ishing expectation value is that there is an even number of
σ x’s in the Pauli string. Furthermore, note that in the ground
state manifold the Hamiltonian commutes with the operator
F x ≡ ∏

i σ
x
i (a global spin flip), since Mz = 0. Therefore a

Pauli string with an odd number of σ z’s (and an even number
of σ x) would anticommute with F x and have zero expectation
value. To sum up, the only Pauli strings that potentially might
have a nonzero expectation value are the ones with an even
number of σ z’s and where all σ x’s form closed loops (where
σ z and σ x can potentially be applied to the same site to
form σ y).

[1] X.-G. Wen, Int. Scholarly Res. Not. 2013, 198710 (2013).
[2] F. J. Wegner, J. Math. Phys. 12, 2259 (1971).
[3] X. G. Wen, Phys. Rev. B 40, 7387 (1989).
[4] X. G. Wen, Int. J. Mod. Phys. B 04, 239 (1990).
[5] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[6] D. P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phys.

B 251, 117 (1985).
[7] F. Wilczek, Phys. Rev. Lett. 69, 132 (1992).
[8] A. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).
[9] A. Kitaev, Ann. Phys. (Amsterdam) 321, 2 (2006).

[10] A. Stern, Ann. Phys. (Amsterdam) 323, 204 (2008).
[11] N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989).
[12] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[13] X. G. Wen, Phys. Rev. B 44, 2664 (1991).
[14] L. Balents, M. P. A. Fisher, and C. Nayak, Phys. Rev. B 60,

1654 (1999).
[15] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850 (2000).
[16] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
[17] R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65,

024504 (2001).
[18] L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B 65,

224412 (2002).
[19] M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
[20] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).
[21] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R.

Norman, and T. Senthil, Science 367, eaay0668 (2020).
[22] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 (1982).
[23] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[24] S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett.

62, 82 (1989).
[25] T. Hansson, V. Oganesyan, and S. Sondhi, Ann. Phys.

(Amsterdam) 313, 497 (2004).
[26] E. Witten, Commun. Math. Phys. 117, 353 (1988).
[27] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[28] C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).
[29] S. Bravyi, B. Leemhuis, and B. M. Terhal, Ann. Phys.

(Amsterdam) 326, 839 (2011).
[30] J. Haah, Phys. Rev. A 83, 042330 (2011).
[31] B. Yoshida, Phys. Rev. B 88, 125122 (2013).
[32] J. Haah, Commun. Math. Phys. 324, 351 (2013).
[33] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 92, 235136 (2015).
[34] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 94, 235157 (2016).

[35] M. Pretko, X. Chen, and Y. You, Int. J. Mod. Phys. A 35,
2030003 (2020).

[36] N. Seiberg and S.-H. Shao, SciPost Phys. 10, 027 (2021).
[37] N. Seiberg and S.-H. Shao, SciPost Phys. 9, 046 (2020).
[38] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[39] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[40] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[41] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).
[42] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[43] R. Roy, Phys. Rev. B 79, 195322 (2009).
[44] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
[45] M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
[46] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 (1979).
[47] F. Haldane, Phys. Lett. A 93, 464 (1983).
[48] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.

Lett. 59, 799 (1987).
[49] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,

1604 (2012).
[50] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[51] M. Levin and A. Stern, Phys. Rev. B 86, 115131 (2012).
[52] A. M. Essin and M. Hermele, Phys. Rev. B 87, 104406 (2013).
[53] L.-Y. Hung and X.-G. Wen, Phys. Rev. B 87, 165107 (2013).
[54] A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013).
[55] C.-Y. Huang, X. Chen, and F. Pollmann, Phys. Rev. B 90,

045142 (2014).
[56] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 93, 155121 (2016).
[57] M. Cheng, Z.-C. Gu, S. Jiang, and Y. Qi, Phys. Rev. B 96,

115107 (2017).
[58] Q.-R. Wang and M. Cheng, Phys. Rev. B 106, 115104 (2022).
[59] A. Kitaev, in Advances in Theoretical Physics: Landau Memo-

rial Conference, AIP Conference Proceedings 1134 (American
Institute of Physics, Melville, NY, 2009), pp. 22–30.

[60] X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski,
Phys. Rev. X 5, 041013 (2015).

[61] N. Tarantino, N. H. Lindner, and L. Fidkowski, New J. Phys.
18, 035006 (2016).

[62] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, Phys. Rev.
B 100, 115147 (2019).

[63] M. Levin, F. J. Burnell, M. Koch-Janusz, and A. Stern, Phys.
Rev. B 84, 235145 (2011).

115159-13

https://doi.org/10.1155/2013/198710
https://doi.org/10.1063/1.1665530
https://doi.org/10.1103/PhysRevB.40.7387
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1016/0550-3213(85)90252-4
https://doi.org/10.1103/PhysRevLett.69.132
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1103/PhysRevB.40.7133
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1103/PhysRevB.44.2664
https://doi.org/10.1103/PhysRevB.60.1654
https://doi.org/10.1103/PhysRevB.62.7850
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevB.65.024504
https://doi.org/10.1103/PhysRevB.65.224412
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.62.82
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1007/BF01223371
https://doi.org/10.1007/BF01217730
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1142/S0217751X20300033
https://doi.org/10.21468/SciPostPhys.10.2.027
https://doi.org/10.21468/SciPostPhys.9.4.046
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.86.115131
https://doi.org/10.1103/PhysRevB.87.104406
https://doi.org/10.1103/PhysRevB.87.165107
https://doi.org/10.1103/PhysRevB.87.155115
https://doi.org/10.1103/PhysRevB.90.045142
https://doi.org/10.1103/PhysRevB.93.155121
https://doi.org/10.1103/PhysRevB.96.115107
https://doi.org/10.1103/PhysRevB.106.115104
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1103/PhysRevB.84.235145


KAI-HSIN WU et al. PHYSICAL REVIEW B 108, 115159 (2023)

[64] C. Chamon, D. Green, and A. J. Kerman, PRX Quantum 2,
030341 (2021).

[65] C. Chamon, D. Green, and Z.-C. Yang, Phys. Rev. Lett. 125,
067203 (2020).

[66] K.-H. Wu, Z.-C. Yang, D. Green, A. W. Sandvik, and C.
Chamon, Phys. Rev. B 104, 085145 (2021).

[67] D. Green and C. Chamon, SciPost Phys. 15, 067 (2023).
[68] H. Yu, G. Goldstein, D. Green, A. E. Ruckenstein, and C.

Chamon, arXiv:2212.03880.
[69] T. Rudelius, N. Seiberg, and S.-H. Shao, Phys. Rev. B 103,

195113 (2021).
[70] V. Khemani, M. Hermele, and R. Nandkishore, Phys. Rev. B

101, 174204 (2020).
[71] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann,

Phys. Rev. X 10, 011047 (2020).
[72] S. Moudgalya and O. I. Motrunich, Phys. Rev. X 12, 011050

(2022).
[73] O. Hart and R. Nandkishore, Phys. Rev. B 106, 214426 (2022).
[74] F. Balducci, A. Gambassi, A. Lerose, A. Scardicchio, and C.

Vanoni, Phys. Rev. Lett. 129, 120601 (2022).
[75] F. Balducci, A. Gambassi, A. Lerose, A. Scardicchio, and C.

Vanoni, Phys. Rev. B 107, 024306 (2023).

[76] A. Yoshinaga, H. Hakoshima, T. Imoto, Y. Matsuzaki, and R.
Hamazaki, Phys. Rev. Lett. 129, 090602 (2022).

[77] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
[78] A. W. Sandvik, in Lectures on the Physics of Strongly Correlated

Systems XIV, AIP Conference Proceedings, Vol. 1297 (Ameri-
can Institute of Physics, Melville, NY, 2010), pp. 135–338.

[79] Z. Yan, Y. Wu, C. Liu, O. F. Syljuåsen, J. Lou, and Y. Chen,
Phys. Rev. B 99, 165135 (2019).

[80] D. Delmastro and J. Gomis, J. High Energy Phys. 2021, 6
(2021).

[81] M. Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S. Tewari,
Ann. Phys. (Amsterdam) 322, 1477 (2007).

[82] H. B. Xavier, C. Chamon, and R. G. Pereira, SciPost Phys. 14,
105 (2023).

[83] T. Iadecola, T. Neupert, C. Chamon, and C. Mudry, Phys. Rev.
B 99, 245138 (2019).

[84] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret,
Phys. Scr. 1998, 165 (1998).

[85] R. G. Melko and A. W. Sandvik, Phys. Rev. E 72, 026702
(2005).

[86] M. B. Hastings and T. Koma, Commun. Math. Phys. 265, 781
(2006).

115159-14

https://doi.org/10.1103/PRXQuantum.2.030341
https://doi.org/10.1103/PhysRevLett.125.067203
https://doi.org/10.1103/PhysRevB.104.085145
https://doi.org/10.21468/SciPostPhys.15.2.067
http://arxiv.org/abs/arXiv:2212.03880
https://doi.org/10.1103/PhysRevB.103.195113
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevX.12.011050
https://doi.org/10.1103/PhysRevB.106.214426
https://doi.org/10.1103/PhysRevLett.129.120601
https://doi.org/10.1103/PhysRevB.107.024306
https://doi.org/10.1103/PhysRevLett.129.090602
https://doi.org/10.1103/PhysRevE.68.056701
https://doi.org/10.1103/PhysRevB.99.165135
https://doi.org/10.1007/JHEP03(2021)006
https://doi.org/10.1016/j.aop.2006.08.001
https://doi.org/10.21468/SciPostPhys.14.5.105
https://doi.org/10.1103/PhysRevB.99.245138
https://doi.org/10.1238/Physica.Topical.076a00165
https://doi.org/10.1103/PhysRevE.72.026702
https://doi.org/10.1007/s00220-006-0030-4

