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We study pseudogap behavior in a metal near a spin density wave (SDW) instability due to thermal magnetic
fluctuations. We consider the t − t ′ Hubbard model on a square lattice at a finite doping, at intermediate coupling
strength, and analyze the thermal evolution of the electron spectral function between a SDW ordered state at
low temperatures and a normal Fermi liquid at high temperatures. We argue that for proper description of the
pseudogap one needs to sum up infinite series of diagrams for both the fermionic self-energy and the SDW order
parameter in the SDW state or the magnetic correlation length in the paramagnetic state. We use the eikonal
approach to sum up an infinite series of diagrammatic contributions from thermal fluctuations. Earlier studies
found that in the SDW state the spectral function Ak(ω) of a hot fermion at a finite T is exponentially small below
the energy scale �(T ), which scales with SDW order and vanishes at the ordering temperature TN , and has a
hump at a larger frequency �PG, comparable to the zero-temperature SDW gap �(T = 0). We argue that the
hump, which we associate with the pseudogap, survives in some T range above TN . We show that this range is
split by regions of strong and weak pseudogap behavior. In the first region, �PG is weakly temperature dependent,
despite the fact that it comes from thermal fluctuations. Such a behavior has been seen in numerical studies of the
Hubbard model. We show that to obtain it one needs to go beyond the one-loop approximation and sum up the
infinite series of diagrams. In the second regime, �PG decreases with increasing T and eventually vanishes. We
further argue that a magnetic pseudogap at a finite T emerges only if the ground state is magnetically ordered.
We present the phase diagram and apply the results to high-Tc cuprates.
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I. INTRODUCTION

The origin of the pseudogap behavior, observed in the
cuprates and other correlated materials, is still a subject of
ongoing debates. Theoretical proposals for the pseudogap can
be broadly split into three categories. One set of proposals is
that the pseudogap phase is a new state of matter with some
particle-hole order. The order can be either a conventional
one, like a spin density wave (SDW) or charge density wave
(CDW) [1–5], or less conventional, like a circulating current
[6,7]. The second type of proposals is that the pseudogap
phase is a state with a topological order, whose feedback effect
on fermions mimics that of a SDW order [8–12]. Finally, the
third set of proposals is that the pseudogap is not an ordered
state, but rather a precursor to either a SDW order [13–30],
superconductivity [20,31–37], or a pair density wave [38].

This paper is devoted to the analysis of the third scenario,
more specifically to precursors to (π, π ) antiferromagnetic
order in two dimensions (2D). The generic motivation here is
based on neutron scattering, x-ray, and other measurements,
which show that, e.g., in the cuprates, magnetic fluctuations
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remain strong in the paramagnetic phase in a sizable range
of dopings and temperatures, which includes the pseudogap
region (see e.g., Refs. [39–41] and references therein). We
note in passing that the pairing interaction, mediated by soft
overdamped spin fluctuations, is attractive in the d-wave chan-
nel; as such, a spin-fluctuation scenario for pairing has been
widely discussed for cuprates and other materials [42].

In simple words, a precursor behavior to the SDW means
the following: In the SDW ordered state the Fermi surface
gets reconstructed due to doubling of the unit cell, and a
gap �(T ) opens up for “hot” fermions, whose Fermi mo-
menta kHS [see Fig. 1(a)] are connected by the SDW wave
vector Q ≈ (π, π ). The spectral function AkHS (ω) for such
fermions has two δ-function peaks at ω + δμ ≈ ±�, where
δμ = μ − μ0, and μ and μ0 are the actual chemical potential
and the one for free fermions. A precursor to a SDW is a state
above TN , in which the spectral function is continuous and
nonzero for all ω, yet there are maxima (humps) at energies
ω + δμ ≈ ±�PG, where, over some range of T > TN , �PG is
comparable to �(T = 0) (see Fig. 1). A convention, widely
used in the interpretation of photoemission results, is that
pseudogap behavior holds when the spectral function of a hot
fermion has two peaks at a finite frequency, and a normal
metallic behavior holds when it has a single peak at zero
frequency.
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FIG. 1. (a) Fermi surface of the t − t ′ model on a square lattice. The eight blue spots indicate the “hot spots” that satisfy εk = εk+Q, where
Q = (π, π ). The orange dashed line specifies the folded Brillouin zone in the presence of (π, π ) order. [(b)–(e)] Schematic plots of the electron
spectral function at the hot spot (b) in the SDW state for T � TN , (c) in the SDW state at T close to TN , (d) in the pseudogap metal state, and (e)
in the normal Fermi-liquid state. �0 ≈ U/2 in panel (b) is the mean field SDW order parameter at T = 0. The quantity δμ = μ − μ0, shown
by a purple dashed line, is the difference between the actual chemical potential μ and the chemical potential for free fermions μ0. Determining
temperature evolution of � and �PG is the main goal of this paper. We show the results schematically in Fig. 2 and in more detail in Figs. 7
and 11.

We emphasize that precursor behavior is different from a
non-Fermi-liquid behavior caused by coupling to soft over-
damped spin fluctuations. The latter gives rise to strong
frequency dependent self-energy, which distributes the spec-
tral weight over a wide range of frequencies. Yet, the
maximum of AkHS (ω) remains at ω = 0.

To see how both non-Fermi-liquid and precursor behavior
emerge within the spin-fluctuation scenario, consider a hot
fermion, whose energy εkHS = εkHS+Q = μ0, and analyze the
one-loop self-energy due to spin fluctuation exchange [43].
On the Matsubara axis, �(kHS, ωn) = ∫

d�m dq G(kHS +
q, ωn + �m)χ (q,�m), up to a numerical factor, where G and
χ are fermionic and spin-fluctuation propagators, respectively
(we define � via G−1 = G−1

0 − �).
In a SDW state, χ (q,�) contains the δ-function piece

�2δ(�m)δ(q − Q), and the self-energy is �(kHS, ωn) =
�2G(kHS + Q, ωn) ≈ �2/(iωn − (εkHS + Q − μ)) =
�2/(iωn + δμ). On the real frequency axis, this self-energy
has a pole at ω = −δμ − i0. Using G−1(kHS, ω) = ω + i0 +
δμ − �2/(ω + i0 + δμ), one immediately finds that the spec-
tral function AkHS (ω) has two peaks at ω + δμ = ±�. A
precursor to SDW in the paramagnetic state emerges when
the self-energy still has a pole at a finite ω = −δμ, but the

pole moves to the lower frequency half plane due to finite
damping.

At T = 0 this does not happen because dynamical spin
fluctuations are Landau overdamped and are slow modes
compared to fermions. In this situation, the leading term
in the self-energy is the convolution of the local Green’s
function, integrated over the momentum component perpen-
dicular to the Fermi surface, and local bosonic propagator,
integrated over the momentum that connects two points on the
Fermi surface. This self-energy �(kHS, ωn) = ∫

d� GL(ωn +
�m)χL(�m) strongly depends on frequency and gives rise to
a redistribution of the spectral weight away from ω = 0, but it
has no pole.

The situation changes at a finite T . Now integration
over �m is replaced by summation over �m = 2πmT , and
the self-energy contains the thermal contribution from static
SDW fluctuations. The corresponding self-energy is �th =
T

∫
dq G(kHS + q, ω)χ (q, 0). It is natural to assume that

near a SDW instability χ (q, 0) has an Ornstein-Zernike form
χ (q, 0) ∝ [(q − Q)2 + ξ−2]−1, where ξ is the magnetic cor-
relation length. The integral

∫
dq χ (q, 0) is then confined

to small q − Q in dimensions d � 2. To first approximation
one can then replace G(kHS + q, ω) by G(kHS + Q, ω) and
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move it out of momentum integral. One then obtains the
same �th = (�(1)

PG)2/(ω + i0 + δμ) as in the SDW state, with
(�(1)

PG)2 = T
∫

dq χ (q, 0). This form is indeed an approximate
one as replacing G(kHS + q, ω) by G(kHS + Q, ω) and mov-
ing it out from the momentum integral is only approximately
correct when χ (q, 0) is not a δ function. In more accurate
one-loop calculations [13,31,44] the pole in �(kHS, ω) moves
to the lower half plane or transforms into a branch cut of the
complex frequency. This gives rise to broadening of the peak
in the spectral function, yet the maximum at ω + δμ = ±�

(1)
PG

survives in a finite T range. For d = 2, which we consider
below,

∫
dq χ (q, 0) ∝ log ξ and �

(1)
PG ∼ √

T log ξ .
Pseudogap behavior at a finite T in two dimensions

has been extensively studied numerically in the last few
years [23,24,26,29,45,46], using various modern computa-
tional techniques for the Hubbard model, and was clearly
detected at half filling. The fluctuation diagnostics method
identified static antiferromagnetic fluctuation as the source
of the pseudogap behavior [24]. An identification of the
pseudogap scale with the one-loop �

(1)
PG is a more subtle

issue. �PG, extracted from the numerical data, depends only
weakly on temperature in a finite temperature window above
TN [26], while �

(1)
PG ∼ T log ξ contains T as an overall scale.

The authors of Ref. [26] argued that their data for the magnetic
correlation length are consistent with the exponential behavior
ξ ∝ eT0/T . Then log ξ ≈ 1/T compensates the overall T , and
�

(1)
PG becomes T independent, like the measured �PG. How-

ever, the exponential temperature dependence of ξ holds in a
two-dimensional (2D) Heisenberg model for localized spins
[47], but there is no obvious reason why it should hold in
a metal. Indeed, using the one-loop approximation for the
spin susceptibility, one obtains that ξ only weakly depends
on T ; hence �

(1)
PG scales roughly as T , in disagreement with

the numerical data.
Another issue is the location of the pseudogap phase. At

a first glance, it should exist at a finite T as long as spin
correlation length is large, even if the ground state is not mag-
netically ordered. However, extensive quantum Monte Carlo
studies of fermion-boson models with a paramagnetic ground
state found no evidence for the pseudogap [48,49]. Recent
numerical studies of the Hubbard model at a finite doping
also argued that pseudogap phase at a finite T exists only in
the range of dopings where the ground state possesses some
magnetic order [29].

The goal of this paper is to resolve these issues. For this
we adopt the computational technique known as the eikonal
approach, which allows one to sum up thermal contributions
to the fermionic Green’s function up to an infinite order. To
the best of our knowledge, the eikonal approach has been
first applied in the solid state context in the study of one-
dimensional systems with CDW fluctuations [50] (see also
Ref. [51]). In the context of SDW fluctuations, the technique
has been applied to analyze how the pseudogap survives when
long-range magnetic order gets destroyed by thermal fluctua-
tions [22,25], and how thermal fluctuations lead to pseudogap
formation when one departs from a metal [15–17,19]. These
last studies, however, used the magnetic correlation length ξ

as an input parameter. Below we extend the eikonal approach
to spin polarization in the paramagnetic phase, from which

we extract the temperature dependent correlation length ξ (T ).
We show that the pseudogap behavior does develop above
TN , and the pseudogap scale �PG, extracted from the full
Green’s function, is comparable to the �

(1)
PG ∝ (T log ξ )1/2,

where ξ = ξ (T ) is the fully dressed correlation length. In a
sizable range of T above TN , this ξ (T ) is, to a good accuracy,
exponential in 1/T , such that �PG is nearly independent of
T . This is consistent with Ref. [26]. We further show that
when the ground state is nonmagnetically ordered the pseu-
dogap does not develop due to nonexponential but still strong
temperature variation of the full ξ (T ), which keeps the system
in a weak coupling regime.

Summary of the results

We study thermal evolution of the spectral function in the
Hubbard model with hopping t between nearest neighbors and
t ′ between next-nearest neighbors, by varying T and U at
a given hole doping x > 0. At large U , the relevant energy
scale for magnetic fluctuations is J = 4t2/U . Like we said,
we focus on hot fermions, for which εk ≈ εk+Q ≈ μ0.

Thermal fluctuations in the magnetically ordered state at
T < TN have been analyzed before, and we use these ear-
lier results as input for our studies [22,25]. The strength
of thermal fluctuations is controlled by the dimensionless
parameter t∗ = T

J | log ε| ∝ T
TN

, where ε is a deviation from
two-dimensionality (the parameter that cuts 2D logarithms
at infinite ξ ). Deep in the ordered phase at T � TN , the
spectral function of a fermion at a hot spot nearly vanishes
below the scale set by the true SDW order �(T ), and is
peaked at ω + δμ = ±�(T ) [Fig. 1(b)]. In this regime, δμ

is negative and is comparable by magnitude to �(T ). For
such low T , the one-loop mean field approximation works
well. As T increases, the SDW order parameter �(T ) shrinks,
and the spectral function displays two features: (i) a true gap
below �(T ) (up to e−�(T )/T corrections) and (ii) a hump at
ω + δμ = ±�PG(T ) > �(T ), where �PG(T ) ∼ U

√
t∗ ∼ U

near TN . The chemical potential is located between the SDW
gap �(T ) and the hump energy �PG(T ) [see Fig. 1(c)]. In the
extreme case of U much larger than the bandwidth, �PG ≈
U/2 and δμ ≈ μ ≈ −U/2, with corrections of order J . The
humps are then located at ω ≈ U and at ω ∼ −J . At T = TN ,
�(T ) vanishes and the spectral function becomes nonzero at
all finite frequencies. Yet, the spectral function still has peaks
at ω + δμ = ±�PG.

The key result of our analysis is the identification of the
system behavior in the paramagnetic phase. We argue that the
strength of the thermal contribution to the self-energy is deter-
mined by the dimensionless coupling λ = λ(T ) ∝ T ξ 2(T ). A
pseudogap behavior develops when λ is larger than critical
λc = O(1). This definitely holds above TN , where ξ (T ) di-
verges.

We argue that the proper description of thermal fluc-
tuations at large λ requires one to sum up infinite series
of diagrams for the fermionic self-energy and for the po-
larization bubble, from which we extract the fully dressed
correlation length ξ (T ). The series can be viewed pertur-
batively as an expansion in t0 ∼ T

J | log ξ0|, where ξ0 is the
bare magnetic correlation length. In our calculations, we
reexpress the series in terms of t ∼ T

J | log ξ |, where ξ is
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FIG. 2. Energy scales that determine the evolution of the spec-
tral function with temperature: the SDW order parameter � (green
line), the pseudogap energy from eikonal series �

(e)
PG (red line), the

characteristic fermion energy vF ξ−1 (blue line), and the pseudogap
energy from the one-loop calculation �

(1)
PG (purple line). The energy

evolution of the pseudogap scale �PG over the whole temperature
range is highlighted in gray. The pseudogap emerges below TN ,
remains almost a constant up to Tcross, and then decreases and even-
tually vanishes at Tp. The regions below and above Tcross are termed
“strong” and “weak” pseudogap regimes. Note that quantum fluctu-
ations become relevant at roughly the same Tp, where the pseudogap
disappears (see Sec. I A for the detailed discussion). We show more
specific results in Fig. 7 for �

(1)
PG and in Fig. 11 for �, �

(e)
PG, and

vF ξ−1.

the actual, fully renormalized correlation length, which we
compute self-consistently. We explicitly sum up the series
by converting them into certain integrals, which we evaluate
analytically and obtain exact analytical formulas for the fully
dressed fermionic Green’s function and the correlation length.
We find that the dressed ξ is exponential in T0/T , where
T0 ∼ J . The parameter t ∼ (T/J ) log ξ is then O(1), which
in turn justifies the need to sum up infinite series of thermal
contributions to the self-energy and the polarization bubble.
The fully dressed pseudogap scale, defined as �

(e)
PG, scales as

(T log ξ )1/2, like the one-loop pseudogap, and is almost inde-
pendent of T . Its magnitude is the same as �

(e)
PG in the SDW

state near TN . These results are in agreement with the numer-
ical data [26]. We show the spectral function in this regime
in Fig. 1(d). It was termed a “strong pseudogap regime,”
based on the analysis of the experimental data from various
probes [15,41].

For smaller λ, but still larger than the critical one, the
self-energy due to thermal fluctuations changes because one
cannot pull the fermionic Green’s function out of the mo-
mentum integral. This in turn changes the behavior of the
correlation length, which is no longer exponential in 1/T .
We argue that λ(T ) decreases with increasing T , and the
pseudogap energy also decreases and eventually vanishes at
T = Tp (Fig. 2). This regime was termed a “weak pseudogap
regime” [15,41]. The shrinking and eventual vanishing of �PG

is adequately described within the one-loop approximation.
We also argue that quantum spin fluctuations (the ones with
nonzero bosonic Matsubara frequencies) become comparable
to thermal ones starting from Tq ∼ Tp, i.e., to a reasonable
approximation the end point of the pseudogap behavior is
also the boundary between thermal and quantum regimes. At

T > Tp, the system displays a conventional metallic behavior
[Fig. 1(e)].

Right above a quantum critical point (QCP), we find that
ξ−2(T ) scales as T , modulo logarithms. The coupling λ is
then independent of T . We find that its value is below the
critical λc, hence pseudogap behavior does not emerge. The
same holds when ξ is finite at T = 0. Our results then show
that pseudogap behavior emerges only when the ground state
is magnetically ordered [Fig. 3(a)]. This agrees with recent
numerical study of the Hubbard model [29] and with quantum
Monte Carlo analysis of a fermion-boson model near a (π, π )
SDW instability [52].

We apply the results to the cuprates and show the location
of the pseudogap region due to thermal SDW fluctuations in
Fig. 3. Most experiments indicate that in hole-doped cuprates
a magnetic order is lost well before optimal doping. Our
results indicate that in this situation the observed pseudogap
behavior below T ∗(x) in these materials is not due to thermal
magnetic fluctuations and is either the result of strong pairing
fluctuations [31,32,34,35,37] or reflects a hidden, possibly
topological order below T ∗ [6,7,9–11,53,54] [Fig. 3(b)]. If,
however, a magnetic order [not necessarily a (π, π ) one]
survives up to optimal doping, pseudogap behavior due to
thermal magnetic fluctuations extends over a much wider
range, and Tp, up to which this order holds, may be close
to T ∗ [Fig. 3(c)]. This last behavior holds in electron-doped
cuprates, where a SDW order extends almost up to optimal
doping [40].

The paper is organized as follows. In Sec. II we intro-
duce the model and review the mean field solution for the
magnetically ordered state. Here we list the results for the
dynamical magnetic susceptibility, the Goldstone modes, and
the magnon-fermion vertex function. In Sec. III we discuss
the procedure to study the pseudogap behavior from static
thermal fluctuations. We first review the one-loop results both
in the SDW ordered phase and in the paramagnetic phase,
and then discuss the eikonal approach, again first in the SDW
phase and then in the paramagnetic phase, where we also
discuss infinite series for the spin polarization bubble, from
which we extract the temperature dependence of the correla-
tion length. In Sec. IV we present our numerical solutions of
eikonal equations for �(T ), �

(e)
PG(T ), and vF ξ−1 and analyze

the evolution of the fermion spectral function. In Sec. IV A
we locate the region, in which thermal fluctuations dominate,
on the phase diagram of the spin-fermion model on the (T, x)
plane, and compare our phase diagram with the experimen-
tal one for high-Tc cuprates. In Sec. V we summarize our
findings.

II. THE MODEL

The point of departure for our analysis is the one band
Hubbard model for spin-1/2 fermions on a square lattice with
nearest- and next-nearest-neighbor hopping t and t ′:

HHubbard =
∑

k

∑
σ

εka†
k,σ

ak,σ + U
∑

i

ni,↑ni,↓, (1)

where εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. For nu-
merical calculations we set t = 0.3 eV and t ′ = −0.06 eV.

115156-4



LOCATION AND THERMAL EVOLUTION OF THE … PHYSICAL REVIEW B 108, 115156 (2023)

FIG. 3. (a) A schematic phase diagram, obtained from our calculations (see Sec. IV A). A QCP corresponds to x = xc [U = Uc(x)].
There is a SDW order at smaller x (larger U ) and paramagnetic behavior holds for larger x (smaller U ). Pseudogap develops in the
regime, where the thermal contribution to the self-energy (the one from zero bosonic Matsubara frequency) is larger than the quantum
one. The temperature Tp, where pseudogap disappears, roughly coincides with the boundary of the thermal region. In the quantum-critical
region, thermal and quantum contributions to the self-energy are comparable in strength. In the Fermi-liquid region, Im �(ω) ∝ ω2.
(b), (c) Two possible phase diagrams for the cuprates, based on our calculations. In both diagrams, the pseudogap behavior due to thermal
magnetic fluctuations, denoted as “tm-PG,” develops only above the (π, π ) ordered state. In the strong pseudogap regime due to thermal
fluctuations (Strong tm-PG), the pseudogap energy weakly depends on temperature, while in the weak thermal pseudogap regime (Weak
tm-PG), it decreases with increasing T and vanishes at T ∗. In panel (b), SDW order holds only at x far smaller than the one for an optimal
doping. This mimics the case of hole-doped curates. We conjecture that the pseudogap behavior, observed in hole-doped cuprates below
T ∗(x), which extends to near-optimal doping, is not caused by thermal spin fluctuations and is either a precursor to superconductivity
or to Mott physics, or a different state of matter, possibly with a topological order. We label this regime as “non-tm-PG.” In panel (c),
SDW order extends to near-optimal doping, and the boundary of the magnetic pseudogap, Tp, becomes close T ∗. In this situation, the
experimentally detected pseudogap behavior well may be due to thermal spin fluctuations. This, we believe, mimics the case of electron-doped
cuprates.

At small enough U , the ground state of HHubbard is a Fermi
liquid with a Fermi surface whose size is related to electron
density 1 − x by the Luttinger theorem. We show the Fermi
surface of noninteracting fermions in Fig. 1(a). Near half fill-
ing (at small x), the Fermi surface contains eight special points
called hot spots, for which k and k + Q = k + (π, π ) are both
on the Fermi surface (εk = εk+Q = μ0). For free fermions, the
spectral function Ak(ω) at a hot spot is a δ function δ(ω). At
finite T and U , the δ function broadens due to the fermionic
self-energy, but remains peaked at ω = 0 [Fig. 1(e)].

We assume that at larger U > Uc, the ground state at half
filling is a SDW state with ordering wave vector Q. The value
of Uc is determined by solving the mean field equation for
the SDW order parameter (see Fig. 14 for the solution of Uc

at different dopings). We further assume that the parameters
are such that a commensurate SDW order holds at a finite
doping x, up to a critical xc(U ). We do not consider here an
incommensurate spin order at a finite x, and stripe configu-
rations, which emerge when an incommensurate order melts
down [55–59]. We describe the ground state and the finite
temperature state proximate to the SDW by studying the mean
field Hamiltonian and low-energy fluctuations on top of it. In
the strong coupling limit U/t � 1, this corresponds to the
renormalized classical regime of the nonlinear sigma model
[60]. Our main interest here is to study the physics in the
intermediate coupling regime, when the Hubbard U and the
bandwidth are comparable.

We first review the mean field Hamiltonian, the low-energy
magnon dispersion, and the magnon-fermion coupling [61].

The mean field Hamiltonian reads

HMF =
′∑
k

∑
σ

(a†
k,σ

a†
k+Q,σ

)

×
(

εk −�0sgnσ

−�0sgnσ εk+Q

)(
ak,σ

ak+Q,σ

)
(2)

where �0 = U
2 〈∑k a†

k+Qσzak〉 is the SDW order parameter,

and
∑

k and
∑′

k denote the summation over the full and folded
Brillouin zone, respectively [see Fig. 1(a)].

The standard Bogoliubov transformation diagonalizes the
mean field Hamiltonian to

HMF =
′∑
k

εv
kγ

v †
k,σ

γ v
k,σ + εc

kγ
c †
k,σ

γ c
k,σ , (3)

where εc,v
k = ε+

k ± Ek with ε+
k = εk+εk+Q

2 , ε−
k = εk−εk+Q

2 , and

Ek =
√

�2
0 + (ε−

k )2. The valence and conduction band op-
erators γ v

k,σ and γ c
k,σ are related to the original ak,σ and

ak+Q,σ as (
ak,σ

ak+Q,σ

)
= Vk,σ

(
γ v

k,σ

γ c
k,σ

)
,

Vk,σ =
(

vk −sgn(σ )uk

sgn(σ )uk vk

)
, (4)

where vk =
√

1
2 (1 − ε−

k
Ek

) and uk =
√

1
2 (1 + ε−

k
Ek

).
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FIG. 4. Magnon-fermion vertex. Wavy line, magnon propagator;
solid straight line, fermion propagator; a filled (empty) circle • (◦),
magnon-fermion vertex with outgoing spin-down (spin-up) fermion
and incoming spin-up (spin-down) fermion. Note that in the SDW
state, each vertex must connect one conduction fermion and one
valence fermion.

The low-energy fluctuations in the SDW state are the
Goldstone modes. They can be obtained by computing
the magnetic susceptibility [62,63]. The propagators of the
magnon mode eq are

D+,(0)(q,�m) = −〈Tτ eq(τ )e†
q(0)〉�m = 1

i�m − �q
,

D−,(0)(q,�m) = −〈Tτ e†
q(τ )eq(0)〉�m = −1

i�m + �q
(5)

where 〈O(τ )〉�m = ∫ β

0 dτei�mτ 〈O(τ )〉. In the small t ′/t limit,

�q ≈ 4JS
√

1 − γ 2
q , where γq = 1

2 (cos qx + cos qy) and J =
4t2/U . The dispersion �q is gapless at q = (0, 0) and (π, π ),
corresponding to the two Goldstone modes of fluctuations
transverse to the SDW order.

The electron-magnon coupling is

Hel-mag = U√
N

∑
k,q

[ηq(e†
−q + eq)a†

k+q,σ
ak,σ ′

+ η̄q(e†
−q − eq)a†

k+q,σ ak+Q,σ ′sgn(σ )]δσ,−σ ′, (6)

where δσ,−σ ′ is present because magnons are transverse fluc-
tuations (we set the SDW staggered magnetization along
z). The coherence factors are ηq = 1√

2
( 1−γq

1+γq
)1/4 and η̄q =

1√
2
( 1+γq

1−γq
)1/4. We see that the magnon-fermion coupling scales

as
√|q| at small q and diverges as 1/

√|q − Q| at q near Q.
In terms of the conduction and valence fermions γ c,v , this
interaction is

Hel-mag = U√
N

′∑
k

∑
q

{
γ

c†
kσ

γ v
k+q,σ ′[(ηq − η̄q)e†

q + (ηq

+ η̄q)e−q] + H.c.
}
δσ,−σ ′ + . . . , (7)

where dots stand for the terms that involve only conduction or
only valence fermions. Because the corresponding interaction
vertices are small in |q|, we will not include these terms in our
analysis.

This interaction is illustrated graphically in Fig. 4. We use a
wavy line for the magnon propagator, a solid straight line for
the fermion propagator, and a filled (empty) circle • (◦) for
the magnon-fermion vertex with outgoing spin-down (spin-
up) fermion and incoming spin-up (spin-down) fermion.

III. PSEUDOGAP FROM QUASISTATIC SPIN
FLUCTUATIONS

In this section, we discuss how hot fermions develop pseu-
dogap behavior at a finite T in both the SDW state and
paramagnetic state, due to the singular self-energy contribu-
tion from thermal (static) spin fluctuations. We will identify
a framework to study the effects of thermal fluctuations to
infinite order in perturbation theory. To set the stage for
our analysis, in Sec. III A we first review and extend the
one-loop calculation of the fermion self-energy from thermal
fluctuations and rationalize the need to include higher-loop
contributions. In Sec. III C, we discuss the computational pro-
cedure that allows one to sum up infinite series of thermal
contributions to the fermionic self-energy and the bosonic
polarization. This will allow us to determine self-consistently
the fermionic Green’s function, the chemical potential, the
SDW order parameter, and the spin correlation length in the
paramagnetic phase.

A. One-loop analysis

The effects of quasistatic spin fluctuations have been stud-
ied both in the SDW state [22,25] and in the paramagnetic
state [13–19,21,26]. Here, we review and extend one-loop
calculations in both phases and rationalize the need to include
higher-loop contributions.

1. SDW state

For definiteness, consider the SDW ordered state at half
filling. The thermal one-loop correction to the SDW order
parameter diverges logarithmically in two dimensions and im-
mediately destroys long-range SDW order, in agreement with
the Mermin-Wagner theorem [64]. The one-loop fermionic
self-energy is also logarithmically singular, but its effect is
more nuanced, as we will see below. To circumvent the di-
vergencies in two dimensions, we will consider the physics
in dimension 2 + ε and use ε � 1 to regularize the logarith-
mic singularity. Physically, systems with small but finite ε

are highly anisotropic three-dimensional systems with small
hopping along the z direction.

The one-loop correction to SDW order changes the order
parameter � from U/2, which is its value at T = 0 and U �
t, t ′, to

� = U 〈Sz〉 = U

2
(1 − t∗/2) (8)

FIG. 5. One loop self-energy. (a) Leading order diagram (at
| log ε|) in the SDW state. c and v denote the conduction and valence
band fermions; ↑ and ↓ denote the spin-up and spin-down state.
(b) Leading order diagram (at | log ξ |) in the paramagnetic state from
magnetic fluctuations in the transverse channel.
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where

t∗ = 2T

πJS
ln

π2

2ε2
(9)

is a dimensionless parameter, which measures the strength of thermal fluctuations.
The one-loop self-energy for a conduction electron is given by the diagram in Fig. 5(a), using the magnon-fermion coupling

vertex in Eq. (7). In analytical form,

�c(1)(k, iωn) = − U 2 T

N

∑
q,m

Gv(0)(k + q, iωn + i�m)
(
(ηq − η̄q)2D−,(0)(q, i�m) + (ηq + η̄q)2D+,(0)(−q, i�m)

)
�m=0= − U 2 T

N

∑
q

Gv(0)(k + q, iωn)
(
(ηq − η̄q)2D−,(0)(q, 0) + (ηq + η̄q)2D+,(0)(−q, 0)

)

=U 2 T

N

′∑
q

2
(
η̄2

q + η2
q

)
�q

Gv(0)(k + q, iωn) +
′∑

q+Q

2
(
η̄2

q+Q + η2
q+Q

)
�q+Q

Gv(0)(k + q + Q, iωn)

≈U 2T
2

JS

| ln ε|
2π

Gv(0)(k, iωn). (10)

Here and below we define the sign of � by requesting that
G−1 = G−1

0 − �.
In the second line of Eq. (10), we kept only the term with

zero Matsubara frequency �m = 0, whereas in the last line we
present the result of the momentum integration with logarith-
mical accuracy, using

∫
d2q 1

�q
∼ ∫

d2q 1
|q| + ∫

d2q 1
|q−Q| ∼

| log ε| [a more accurate result is log π/(
√

2|ε|)]. The con-
tribution to �c(1) from Gc(0) is a subleading one, due to the
gradient nature of the electron-magnon coupling for small
momentum transfer. Substituting the form of Gv(0)(k, iωn)
into (10), we find

�c(1)(k, iωn) ≈ t∗(U/2)2

iωn − (
εv

k − μ
) . (11)

A similar analysis for valence fermions yields

�v(1)(k, iωn) ≈ t∗(U/2)2

iωn − (
εc

k − μ
) . (12)

Treating � perturbatively as a correction to the Green’s
function near its mass shell, we find that at large U each self-
energy changes the fermionic energy from εc,v ≈ ±U/2 +
O(t ) to

εc,v ≈ ±U

(
〈Sz〉 + t∗

4

)
+ O(t ). (13)

Substituting 〈Sz〉 from (8), we find that the corrections of
order t∗ cancel out, hence the energies of the conduction
and valence fermions remain εc,v ≈ ±U/2. This feature has
been interpreted as an indication that the gap between the
conduction and the valence bands is the Hubbard U , set by
Mott physics, and it survives even when 〈Sz〉 vanishes, despite
the fact that at the mean field level this gap is defined as
2U 〈Sz〉 [22,61].

2. Paramagnetic state

Next, we consider the paramagnetic state at a finite tem-
perature. To lowest order in U , the (Hartree-Fock) self-energy

is purely static and renormalizes the hoppings and the chem-
ical potential. We move one step ahead and include into
the self-energy multiple insertions of particle-hole bubbles.
This effectively splits the interaction into charge and spin
components. At the random-phase approximation level, the
self-energy can be expressed as [Fig. 5(b)]

�(k, ωm) = − T

2

∑
m,β

∫
d2q

(2π )2
G(k + q, ωm + �m)

× �αβ;βα (q,�m) (14)

where

�αβ,γ δ (q,�m) = U

2

(
δαβδγ δ

1 + U�(c)(q,�m)

− �σαβ · �σγ δ

1 − U�(s)(q,�m)

)
(15)

and �(c,s)(q,�m) is the particle-hole bubble in the charge
and spin channels [65]. For example, without coupling with
collective excitations, �(c,s)(q,�m) can be determined from
the convolution of two free fermion propagators, and satisfies
�(c)(q,�m) = �(s)(q,�m) = �(q,�m). Near a SDW insta-
bility at U�(s)(Q, 0) = 1, the dominant interaction comes
from spin fluctuations. Dropping the charge component of �,
we obtain an effective model with the interaction mediated by
spin fluctuations. Approximating the static 1 − U�(s)(q) by
Ornstein-Zernike form 1 − U�(s)(q) = c((q − Q)2 + ξ−2),
where c is a dimensionless constant, we obtain the thermal
self-energy at a hot spot in the form [13,14,18,21,26]

�(1)
para (kHS, iωn) = 3ḡT

∫
dq

(2π )2

1

iωn − vF q̃⊥

1

q̃2
⊥ + q̃2

‖ + ξ−2

= −isgnωm
3ḡT

2πvF ξ−1
f

( |ωn|
vF ξ−1

)
(16)

where ḡ ∼ c−1U is an effective coupling,

f (y) = 1√
y2 − 1

log(y +
√

y2 − 1), (17)
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FIG. 6. Spectral function at the hot spot from the one-loop cal-
culation [Eq. (21)]. As the dimensionless coupling λ = 3ḡT

2π (vF ξ−1 )2

increases, the spectral function shows pseudogap behavior when
λ > λc = 0.47.

and the factor of 3 comes from spin summation. It is conve-
nient to introduce the dimensionless coupling

λ = 3ḡT

2π (vF ξ−1)2
(18)

and dimensionless frequency wm = ωm/(vF ξ−1). The Green’s
function is

G(kHS, ωm)

=
[

ivF ξ−1

(
wm+λsgnwm

log(|wm| +
√

(wm)2 − 1)√
(wm)2 − 1

)]−1

.

(19)

To see the effect of the self-energy, it is instructive to convert
this expression onto the real axis, iωm → ω + iδ. The retarded
self-energy is

�(1)
para (kHS, ω)

= vF ξ−1λ

(
log

(
w + √

w2 + 1
)

√
w2 + 1

− i
π/2√
w2 + 1

)
, (20)

where the real part of �(1)
para (kHS, ω) is an odd function of w.

The retarded Green’s function is

Gret (kHS, w)

=
(

vF ξ−1

(
w−λ

log
(
w + √

w2 + 1
)

√
w2 + 1

+iλ
π/2√
w2 + 1

))−1

.

(21)

We plot the spectral function A(kHS, w) =
−(1/π ) ImGret(kHS, w) in Fig. 6. We see that, at small
λ, A(kHS, w) is peaked at w = 0, as is expected for weakly
interacting fermions with momenta at the Fermi surface.
The key effect of the self-energy at these λ is to introduce
a finite width of A(kHS, w). However, once λ exceeds the
critical value λc ≈ 0.47, the maximum of A(kHS, w) shifts
to a finite |w| ∼ √

λ − λc, while at zero frequency A(kHS, 0)
now becomes a minimum (see Fig. 6). This implies that
thermal fluctuations in the paramagnetic state do give rise
to pseudogap behavior already at one-loop order, if the

FIG. 7. The ratio of the pseudogap scale �
(1)
PG, extracted from

the one-loop Green’s function, and vF ξ−1. Orange dots: The ratio,
extracted from the numerical analysis of Eq. (21). Blue dots: The fit
to the analytical expression �

(1)
PG/(vF ξ−1) = ( 1

2 λ log bλ)1/2. The best
fit is for b = 14.8.

coupling exceeds the threshold value. We define the one-loop
pseudogap as �

(1)
PG.

At small frequencies, the evolution of the spectral function
with increasing λ can be obtained analytically. Expanding
A(kHS, w) near w = 0, we obtain

A(kHS, w) = λ

2vF ξ−1

1
π2λ2

4 + w2
[
(1 − λ)2 − λ2π2

8

] . (22)

We see that the maximum of A(kHS, w) remains at w =
0 as long as λ(1 + π/(2

√
2) < 1. The critical value λc =

2
√

2/(2
√

2 + π ) = 0.4738.
We next consider large λ. We assume and then verify that

the position of the maximum of A(kHS, w) moves to w � 1,
i.e., to ω � v f ξ

−1 For such w, the momentum integration
in the expression for the self-energy is fully confined to the
bosonic term 1

q̃2
⊥+q̃2

‖+ξ−2 , while the fermionic Green’s function

can be moved out of the momentum integral. For the retarded
self-energy we obtain for such w with logarithmic accuracy

�(1)
para (kHS, ω) = vF ξ−1λ

(
log w

w
− i

π

2w

)
. (23)

The retarded Green’s function is

Gret (kHS, w) =
(

vF ξ−1

(
w − λ

log (w)

w
+ +iλ

π

2w

))−1

,

(24)

and the spectral function is

A(kHS, w) = λw
2vF ξ−1

1
π2λ2

4 + (w2 − λ log w)2 . (25)

This function has a maximum at w ≈ ( λ log λ

2 )1/2. The correc-
tions to this expression are of order log(log(λ)). They change
the prefactor for λ under the logarithm to log(b(λ)λ), where
b(λ) is a slowly varying function of λ. In Fig. 7 we plot
�

(1)
PG/(vF ξ−1), which we obtained numerically, without ex-

panding at large w, along with the analytical �
(1)
PG/(vF ξ−1) =

(λ log (bλ))1/2. We found a good match by setting b = 14.8
independent of λ. We emphasize that �

(1)
PG/(vF ξ−1) is large
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at large λ, which justifies the assumption that we used to
obtain (9).

Because λ ∝ ξ−2, the (λ log λ)1/2 dependence at large λ

can be approximated by a more simple λ| log ξ |, which is
more convenient for calculations beyond one-loop order. In di-
mension d = 2 + ε, log ξ is replaced by L = 0.5 log π2

2(ε2+ξ−2 ) .
Using these modifications and extending the result to k near,
but not necessarily at, a hot spot, we obtain at large λ

�(1)
para (k, ω) ≈ (vF ξ−1)2 λL

ω − (εk+Q − μ)
. (26)

At ξ−1 = 0, this expression has the same form as the
one-loop self-energy at the end point of the SDW state
[Eqs. (11) and (12)], once we set � → 0+ and identify
εv

k → min{εk, εk+Q}, εc
k → max{εk, εk+Q}. The prefactors in

(26) and (11) and (12) match if we set the prefactor c in (1 −
U�(s)(q, 0)) = c(ξ−2 + (q − Q)2) to be c ∼ J/U ∼ (t/U )2.
While c ∼ (t/U )2 holds deep in the SDW state when � ∼
U/2, we will not discuss here how to justify the expression for
c in the paramagnetic state and use it as a phenomenological
element of our analysis. With the choice of c ∼ J/U as the
proper prefactor, the one-loop self-energy in the paramagnetic
state at |ω − (εk+Q − μ)| � vF ξ−1 is

�′(1)
para (k, ω) = t(U/2)2

ω − (εk+Q − μ)
, (27)

where

t = 4T

πJS
L = 2T

πJS
ln

π2

2(ε2 + ξ−2)
. (28)

At ξ−1 = 0, this coincides with t∗ from Eq. (9). The
pseudogap energy �

(1)
PG = (U/2)

√
t.

The correlation length at the one-loop order is given by

ξ =
(

A

1 − U�(s)(Q, 0)

)1/2

, (29)

where the polarization bubble �(s)(Q, 0) is constructed out
of Green’s functions of free fermions. Evaluating �(s)(Q, 0)
for t − t ′ dispersion, we find that ξ is weakly temperature
dependent. We label this correlation length as ξ0 later in the
text to distinguish it from the fully dressed ξ , which, as we
will show, is strongly T dependent.

B. Rationale to go beyond one-loop analysis

We now rationalize the need to go beyond the one-loop
analysis

For the SDW state, the one-loop formulas for 〈Sz〉 and for
the self-energy are the leading terms in an expansion in t∗.
Meanwhile, the SDW order vanishes at T = TN , at which t∗ =
O(1), as is clear from (8). To understand how 〈Sz〉 evolves at
these t∗ values, we clearly need to include terms beyond the
one-loop order. The same holds for the fermionic self-energy,
which also evolves at t∗ = O(1). One can easily verify that
for both 〈Sz〉 and the self-energy, n-loop order terms are of
order (t∗)n, i.e., terms up to an infinite loop order have to be
included in the analysis at t∗ = O(1).

The rationale for the paramagnetic phase is similar. First,
at t = O(1), higher-loop diagrams for the thermal self-energy

are of the same order as the one-loop one, and have to be
kept. Second, the corrections to the polarization �(s)(Q, 0),
which determines the correlation length via (29), also scale as
powers of t and should all be kept at t = O(1). In this respect,
there is a similarity between the correlation length ξ in the
paramagnetic state and 〈Sz〉 in the SDW state—both have to
be computed by summing up infinite series in either t or t∗.

C. Infinite summation in the quasistatic limit

In this subsection, we collect contributions to order (t∗)m

and tm with m up to infinity and apply the eikonal formalism
to obtain fully dressed variables.

For the SDW state, the diagrammatic series are determined
kinematically by the structure of the electron-magnon cou-
pling in Eqs. (6) and (7). We show below that the analysis
of the full spectral function shows that there are two energy
scales. One is the fully renormalized SDW order parameter
� = U 〈Sz〉, below which A(k, ω) vanishes, and the other is
the pseudogap scale �

(e)
PG, where the spectral function has a

hump.
In the paramagnetic state, there are again two energy

scales, the pseudogap �
(e)
PG in the full Green’s functions, ob-

tained in the eikonal approach, and vF ξ−1, where ξ is given
by (29) with the fully renormalized polarization bubble. We
show that �

(e)
PG is comparable to the one-loop �

(1)
PG, but the full

ξ = ξ (T ) differs from the one-loop result and is strongly T
dependent.

1. SDW state

In the SDW state, the full Green’s function Gc,v with self-
energy corrections to all loop orders reads

Gc,v (k, iωn) = Gc,v(0)(k, iωn)
∑

m

Cm

(
t∗U 2

4

)m

× (Gv,c(0)(k, iωn)Gc,v(0)(k, iωn))m. (30)

The combinatoric factor Cm = m! is determined by counting
the number of nonequivalent diagrams of order (t∗)m at the
mth loop order. The number is set by the structure of the
fermion-magnon vertices in Eq. (7), which requires that each
magnon propagator must be attached to one solid circle vertex
(•) and one empty circle vertex (◦). This requirement is due to
the spin conservation, i.e., the U (1) spin rotation symmetry in
the collinear SDW state. In Fig. 8, we show the diagrammatic
series for the full Green’s function up to three-loop order.

The series in Eq. (30) can be summed exactly by us-
ing Cm = �(m + 1) = ∫ ∞

0 dx xme−x and expressing the full
Green’s function in the integral form as

Gc,v (k, ω) = Gc,v(0)(k, ω)
∫ ∞

0
dte−t 1

1 − uk,ωt
, (31)

where uk,ω = t∗(U/2)2Gc(0)(k, ω)Gv(0)(k, ω) and Gc,v(0) are
the bare Green’s functions for conduction and valence
fermions, but with the exact chemical potential μ =
μ(x, T ) and fully renormalized SDW order parameter � =
�(x, T ) = U 〈Sz〉. To determine the chemical potential and
the SDW order parameter, we express the fermion density
and �(x, T ) in terms of the fermionic spectral functions
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FIG. 8. Diagrammatic series for the full Green’s function up to three-loop order. In the SDW state, logarithmic corrections come from the
transverse magnetic fluctuations, but not from the longitudinal ones. Keeping only transverse fluctuations, we obtain the combinatoric factor
for the set of equivalent mth order diagrams Cm = m! [see the discussion below Eq. (30)]. In the paramagnetic state, magnetic fluctuations
are SU (2) symmetric, i.e., all three components of the magnetic susceptibility equally contribute to the self-energy. We verified, however, that
the result for the self-energy does not change qualitatively if we only keep n = 2 components. In this case, for which we report the results,
C ′

m = m! also in a paramagnetic state.

Ac,v
k (ω) = − 1

π
ImGc,v (k, ω + iδ) as [22]

1 − x

2
=

∫
dω

∫
d2k

(2π )2
nF (ω)Ak(ω)

=
∫

dω

∫
d2k

(2π )2
nF (ω)

(
u2

kAc(k, ω) + v2
kAv (k, ω)

)
,

〈Sz〉 =
∫

dω

∫
d2k

(2π )2
nF (ω)ukvk(Ac

k(ω) − Av
k(ω)), (32)

where nF (ω) = 1/(exp(ω/T ) + 1) is the Fermi function, and
the coherence factors uk and vk are the same as in Eq. (4), but
with �0 in Ek replaced by � = 〈Sz〉/U .

Solving Eq. (31) we find

Gc,v (k, ω) = Gc,v(0)(k, ω)
e−1/uk,ω

uk,ω

(
Ci

(
1

uk,ω

)

+ Si

(
1

uk,ω

)
− iπsgn

(
�
(

1

uk,ω

)))
, (33)

where Ci(...) and Si(..) are the cosh integral and sinh integral.
Substituting the expression for uk,ω and evaluating the imagi-
nary part of the full Green’s function, we obtain

A(k, ω) = |ω̄ + ε−
k |

t∗(U/2)2
exp

[
− ω̄2 − E2

k

t∗(U/2)2

]
�

(
ω̄2 − E2

k

)
(34)

where ω̄ = ω + μ − ε+
k , Ek =

√
(ε−

k )2 + �2, and we re-

mind the reader that ε+
k = εk+εk+Q

2 and ε−
k = εk−εk+Q

2 . At a
hot spot, ε−

k = 0, hence Ek = �, and ω̄ = ω + δμ, where
δμ = μ − μ0, the latter being the chemical potential of free
fermions. The spectral function as a function of ω̄ vanishes
at |ω̄| < �, and has a maximum at |ω̄| = �

(e)
PG, where �

(e)
PG =

1√
2
(U/2)(t∗)1/2. For � > �

(e)
PG, the spectral function shows

two peaks at ±� ≈ ±�0 [see Fig. 1(b)], and when � < �
(e)
PG,

the spectral function vanishes below the SDW scale � and
displays the humps at ±�

(e)
PG, which is comparable to �0 [see

Fig. 1(c)]. If one further includes the nonthermal contribu-
tion to the fully renormalized fermion Green’s function, finite
jumps in the spectral function at ω̄ = ±� likely become the
peaks [22]. Substituting the spectral function into (32), we find

the self-consistent equations for μ(x, T ) and �(x, T ) in an
integral form as

1 − x

2
=

∫
dω

∫
dk

(2π )2

|ω̄ + ε−
k |

t∗(U/2)2

× exp

[
− ω̄2 − E2

k

t∗(U/2)2

]
�

(
ω̄2 − E2

k

)
nF (ω), (35)

1

U
=

∫
dω

∫
dk

(2π )2

−sgnω̄

t∗(U/2)2

× exp

[
− ω̄2 − E2

k

t∗(U/2)2

]
�

(
ω̄2 − E2

k

)
nF (ω). (36)

Analyzing the equations analytically, we find that the SDW
gap at T = 0 splits at finite T into �

(e)
PG, determined by the

argument of the exponent in Eqs. (35) and (40), and �, deter-
mined by the � function in Eq. (35).

We present the numerical results for �
(e)
PG, �, and the spec-

tral function in Sec. IV.

2. Paramagnetic state

In the paramagnetic state, the full Green’s function is ex-
pressed as

G(k, iωn) = G(0)(k, iωn)
∑

m

C ′
m

(
t
U 2

4

)m

× (G(0)(k, iωn)G(0)(k + Q, iωn))m. (37)

The combinatoric factor is determined by the number n of
fluctuating spin components. For isotropic fluctuations, n = 3,
and C ′

m = (2m + 1)!! [16,22]; for transverse fluctuations, n =
2, and C ′

m = m!, the same as in the SDW state. We verified
that in both cases the system develops pseudogap behavior,
the difference being only quantitative. Since the n = 2 case is
simpler from a computational perspective, below we present
the results for n = 2 (the coupling λ for n = 2 is the same
as in (18), but with the overall factor 2 instead of 3). The
Green’s function G(k, iωn) can be presented in an integral
form, similar to Eq. (31):

G(k, ω) = G(0)(k, ω)
∫ ∞

0
dte−t 1

1 − uk,ωt
, (38)
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FIG. 9. Diagrammatic series for the spin polarization bubble.
The quantity we need is �(s)(Q, 0) = �ss(Q, 0) − �ss̄(Q, 0), where
s =↑ and s̄ =↓ are spin components at the two side vertices.

where uk,ω = t(U/2)2G(k, ω)G(k + Q, ω). Solving this
equation, we obtain the spectral function

A(k, ω) = |ω̄ + ε−
k |

t(U/2)2
exp

[
− ω̄2 − (ε−

k )2

t(U/2)2

]
�(ω̄2 − (ε−

k )2),

(39)

where, we remind the reader, ω̄ = ω + μ − ε+
k . This spectral

function has two unknowns: the chemical potential μ(x, T )
and the spin correlation length ξ (x, T ), which appears in t ∼
ln ξ . One condition on μ and ξ is the constraint on the fermion
density:

1 − x

2
=

∫
dω

∫
dk

(2π )2
A(k, ω)nF (ω)

=
∫

dω

∫
dk

(2π )2

|ω̄ + ε−
k |

t(U/2)2

× exp

[
− ω̄2 − (ε−

k )2

t(U/2)2

]
�(ω̄2 − (ε−

k )2)nF (ω). (40)

To get the other condition, we relate ξ to the particle-hole po-
larization bubble in the same way as in the one-loop formula,
ξ = (A/(1 − U�(s)(Q, 0)))1/2 [see Eq. (29) in Sec. III A 2],
but including the series of thermal corrections into �(s)(Q, 0).

To evaluate �(s)(Q, 0), we note that both vertex cor-
rections and corrections to the fermion Green’s function
should be included on an equal footing. The spin structure
of the electron-magnon coupling implies that �(s)(Q, 0) =
�zz(Q, 0) = �ss(Q, 0) − �ss̄(Q, 0), where �ss′ denotes the
bubble diagram with spin indices s and s′ at the two side ver-
tices, and s =↑, s̄ =↓. We show the corresponding diagrams
in Fig. 9. We find (see Appendix for details)

�(s)(Q, 0) = −1

t(U/2)2

∫
dω

∫
dk

(2π )2

(
nF (ω)sgn(ω̄)

× �(ω̄ − (ε−
k )2) exp

(
− ω̄2 − (ε−

k )2

t(U/2)2

))
. (41)

Note that because we included the same number n = 2 of
fluctuating spin modes in the SDW and the paramagnetic state,
the condition ξ−1 = 0, i.e., �(s)(Q, 0) = 1/U , is equivalent to
the condition on � = 0+ in Eq. (36).

We present the results in the next section. Before that, two
comments are in order. First, the eikonal approach, which we
employ here, is valid when the momentum integration in each
diagram can be fully confined to the bosonic propagator. This
holds when the pseudogap energy �

(e)
PG (the half distance be-

tween the humps in the full spectral function) found from the
eikonal approach exceeds vF ξ−1. Once this condition breaks
down, one can no longer pull out the Green’s functions from
the momentum integrals. In this situation, the eikonal ap-
proach becomes uncontrollable. We will discuss this in more
detail in the next section. Second, we reiterate that for the
fully self-consistent analysis, one should include longitudinal
spin fluctuations across TN . To account for these fluctuations
in the SDW state, one would need to introduce another tunable
parameter log δamp for the amplitude mode.

We also note that Eqs. (34), (35) and (36) below TN and
Eqs. (39), (40) and (41) above TN can be reproduced in the
path-integral analysis, which maps the eikonal approximation
onto the annealed disorder problem, similar to the discussions
in Refs. [16,19,34]. We discuss the path-integral approach in
the Appendix.

IV. RESULTS AND DISCUSSIONS

In this section, we present the solutions of Eqs. (34)–(36)
below TN and Eqs. (39)–(41) above TN at the hole doping x =
0.05, for different values of the Hubbard U .

We present the results for (i) the spectral function A(ω);
(ii) the spectral intensity Ā(ω) = A(ω)nF (ω), proportional to
photoemission intensity; (iii) the SDW order parameter �;
(iv) the pseudogap energy �

(e)
PG, which is the half distance

between the two peaks in the spectral function; (v) the en-
ergy scale vF ξ−1 associated with magnetic fluctuations; (vi)
the temperature dependence of the coupling constant λ(T ) ∝
T/(vF ξ−1)2; and (vii) the change of chemical potential, δμ =
μ − μ0, from which we determine self-consistently that the
total fermionic density equals 1 − x.

In Fig. 10 we show the spectral function A(ω) (upper panel)
and the spectral intensity Ā(ω) (lower panel) for U = 2 eV.
The left and right panels show the results in the SDW state
and the paramagnetic state, respectively. The spectral function
in the SDW state has a true gap � and two maxima separated
by 2�

(e)
PG ∼ U . The spectral intensity in both cases shows only

a maximum (a pseudogap) at the energy ω = −(�(e)
PG + δμ).

At large U , �
(e)
PG ≈ U/2, and δμ ≈ −U/2, the sum is of order

J . At intermediate U = 2 eV, the frequency where Ā(ω) has a
maximum is comparable with �0. The shaded region in the
paramagnetic state marks the condition |ω + δμ| < vF ξ−1,
for which the eikonal approach is not applicable. In Fig. 11
we show how the different characteristic energies vary with
temperature. The results for U = 2 and 1 eV, for which the
ground state is SDW ordered over a wide range of T , are
shown in the left and middle columns. The bandwidth is set
to be W = 8t = 2.4 eV. In Figs. 11(a) and 11(b) we show
the temperature evolution of �, �

(e)
PG, and vF ξ−1 and in

Figs. 11(d) and 11(e) we show the temperature dependence
of the one-loop coupling constant λ ∝ T ξ 2 (purple line) with
ξ (T ), obtained by summing up eikonal series.
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FIG. 10. Spectral function A(ω) (blue line in the upper pan-
nel) and spectral intensity Ā(ω) (orange line in the lower pannel)
in (a, c) the SDW state for T = 0.01 eV, from Eq. (34), and
(b, d) the pseudogap regime for T = 0.04 eV, from Eq. (39). We set
x = 0.05,U = 2 eV, ε = 0.01, and TN = 0.013 eV. The gray shaded
area in panel (b) is the region |ω + δμ| < vF ξ−1, where the eikonal
approach breaks down.

We see that the pseudogap does develop in the SDW state,
and the pseudogap energy �

(e)
PG increases with T , roughly as√

T , while the SDW order parameter � decreases with T and
vanishes at TN . Within our numerical accuracy the pseudogap
becomes visible above a small, but finite T . Analytically, we
found that it develops already at infinitesimally T .

In the paramagnetic phase above TN , we find that the pseu-
dogap energy is quite flat (more so for larger U = 2 eV). We
call this a strong pseudogap behavior. Because the pseudogap
energy �

(e)
PG ∼ √

T log ξ , the near temperature independence
of �

(e)
PG implies that the fully renormalized ξ decreases rapidly,

almost exponentially with 1/T . In Fig. 12 we plot log ξ as a
function of the inverse temperature. We see that the tempera-
ture evolution of log ξ is indeed nearly linear in 1/T , i.e., to a
reasonable accuracy ξ ∼ eT0/T . We verified this result analyti-
cally. We emphasize that this result is obtained by computing
ξ self-consistently from the four-point correlation function in
the metallic state, which we compute by including self-energy
and vertex corrections due to thermal magnetic fluctuations
to all orders in perturbation theory. The exponential behavior
mimics the one in the nonlinear sigma model of localized
spins [47,66–68], but we emphasize that we found this be-
havior in a metal.

For U = 2 eV the pseudogap energy �
(e)
PG remains larger

than vF ξ−1 over the whole T range covered in Fig. 11, and
in most of this range the system displays a strong pseudogap
behavior.

For smaller U = 1 eV, the condition �
(e)
PG remains larger

than vF ξ−1 up to a certain Tcross > TN [Fig. 11(b)]. At larger T ,
the eikonal approach breaks down. To understand the behavior
at these T , we note that the actual pseudogap energy, �PG,

obtained from the full Green’s function, is comparable to
one-loop pseudogap energy �

(1)
PG. The ratio of the latter and

vF ξ−1 is controlled by the parameter λ, defined in (18), and
is large when λ is large. Accordingly, the eikonal approach is
valid when λ � 1. We plot λ(T ) ∝ T ξ 2(T ) in Figs. 11(d) and
11(e), using ξ (T ) extracted from the fully dressed polarization
bubble. We see that λ is indeed large when �PG > vF ξ−1.
It diverges at the boundary of the SDW order where ξ (T )
diverges.

At λ = O(1), we expect the one-loop expression for the
self-energy to be sufficient, at least for qualitative reasoning.
The one-loop pseudogap still exists at λ � 1, but the pseudo-
gap energy �

(1)
PG decreases with decreasing λ and vanishes at

λ = λc = 0.47 (see Fig. 2). We follow Ref. [15] and call this
a weak pseudogap regime. In Fig. 13, we show the spectral
function in both regimes. How far in T a weak pseudogap
behavior extends depends on temperature variation of λ in
the blue region in Fig. 11(e), where the eikonal approach
is no longer controllable, and the temperature variation of ξ

cannot be obtained rigorously. Yet, we see from Fig. 11(e)
that λ still strongly decreases with T when �

(e)
PG and vF ξ−1

become comparable. It is then natural to assume that it con-
tinues decreasing at higher T and reaches critical λc at some
Tp. We expect a weak pseudogap behavior to exist also for
U = 2 eV, but at temperatures higher than the ones that we
probe numerically.

Overall, for the values of U , for which the ground state
is ordered, the pseudogap develops inside the SDW state,
remains finite at TN , persists into the paramagnetic phase, and
remains weakly T dependent up to Tcross > TN . It then de-
creases with increasing T and eventually vanishes at T = Tp

(see Fig. 2). This behavior is quite consistent with the results
of several numerical studies [26].

In Figs. 11(g) and 11(h) we show for these U the temper-
ature evolution of the shift of the chemical potential δμ =
μ − μ0, where, we remind the reader, μ is the actual chemical
potential and μ0 is the chemical potential for free fermions.
We emphasize that δμ is negative in the whole temperature
range, where our approach is valid. In the same panels we plot
�

(e)
PG − |δμ| and � − |δμ|. When the difference is positive

(which is the case for �
(e)
PG − |δμ| for all T and for � − |δμ| at

low T ), the spectral intensity Ā(ω) at a hot spot has peaks at a
negative ω, where |ω| = �

(e)
PG − |δμ| and � − |δμ|. We next

discuss what happens when the ground state is not ordered.
We plot critical Uc(x), at which the SDW order disappears
at T = 0 at a given x, in Fig. 14. Note that this is the mean
field value of Uc as we consider only thermal fluctuations.
For x = 0.05, Uc = 0.58. In Figs. 11(c), 11(g), and 11(i) we
present the results for x = 0.05 and U = 0.6 eV, which is
close to Uc. In numerical calculations we find no SDW order
above T ≈ 0.002 eV for this U , and very tiny SDW order
� ≈ 0.01 eV at T � 0.002 eV. Because both �

(e)
PG, generated

by thermal fluctuations, and ξ−1 necessarily vanish at the
SDW QCP, whether a strong pseudogap behavior exists at a
finite T right above the QCP depends on the interplay be-
tween temperature variations of �PG and vF ξ−1, and whether
a weak pseudogap behavior exists depends on whether the
temperature dependent coupling λ is larger than the critical
λc. We see from Fig. 11(c) that vF ξ−1 > �PG at all T , except
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FIG. 11. Results for U = 2.0 eV (left column), U = 1.0 eV (middle column), and U = 0.6 eV (right column). We used t = 0.3 eV,

t ′ = −0.06, x = 0.05, ε = 0.01. [(a)–(c)] Temperature evolution of the energy scales (in eV) �, �
(e)
PG, and vF ξ−1. [(d)–(f)] Temperature

evolution of λ ∝ T ξ 2, which determines the behavior of the one-loop pseudogap �
(1)
PG. Note that the numerical prefactors for λ are not taken

into account in the plots. [(g)–(i)] Temperature evolution of the shifted chemical potential due to interaction, δμ = μ − μ0. The distances
of the pseudogap and SDW gap from the chemical potential are plotted as �

(e)
PG − |δμ| and � − |δμ|. Yellow, green, and blue areas denote,

respectively, the SDW state, paramagnetic state with strong pseudogap behavior, and paramagnetic state with weak pseudogap behavior. The
results in the blue shaded area are approximate as the eikonal approach breaks down in this region (see text).

the very lowest. We decreased U to Uc and to 0.57 eV < Uc

and verified that within our numerical accuracy, �PG < vF ξ−1

for all T . This implies that strong pseudogap behavior does
not develop if there is no SDW order at T = 0. Furthermore,
we see from Fig. 11(f) that λ remains smaller than λc for all
T > 0.002 eV. We verified that at U = Uc, λ < λc at all T
within our numerical reach [see Fig. 15(b) and discussions
in Sec. IV A]. Hence, a weak pseudogap behavior also does
not develop if the ground state is not SDW ordered. In other
words, the pseudogap behavior holds only above the SDW
ordering temperature TN (x), but does not extend to dopings,
for which TN = 0.

It is instructive to compare our results with the ones by
Schmalian, Pines, and Stojković (SPS) [16], who also studied
the evolution of the spectral function in the paramagnetic
state in a nonperturbative fashion (see also Refs. [17,19]).

SPS assumed that the static magnetic susceptibility can be
factorized as

χ (q̃ + Q, 0) ∼ 1

ξ−2 + q̃2
‖ + q̃2

⊥
⇒ ξ−1

ξ−2 + q̃2
‖

ξ−1

ξ−2 + q̃2
⊥

.

(42)

This allowed them to obtain the iterative equation for the
fermion Green’s function between jth and ( j + 1)th loop or-
ders and sum up the contributions from all loop orders. In the
limit vF ξ−1 � �PG, their and our approaches yield the same
diagrammatic series for G, whereas for vF ξ−1 � �PG the two
results agree up to a numerical factor. The advantage of the
SPS approach, based on (42), is in that it allows one to ana-
lyze analytically the crossover between the strong and weak
pseudogap regimes. The disadvantage is that it does not allow
one to connect to pseudogap behavior in the SDW phase,
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FIG. 12. Spin correlation length ξ as a function of temperature
T . Over a temperature range [above TN and when ξ (T ) � 1], we
find the fitting functions ξ−1(T ) = 1.86e− 0.06

T −0.0015 for U = 2 eV and
ξ−1(T ) = 1.26e− 0.04

T −0.0027 for U = 1 eV. The deviation from the 2D
n = 3 nonlinear sigma model (NLSM) behavior ξ−1 ∼ e−ρs/T in the
denominator of the exponential factor is due to the cutoff ε intro-
duced in the computation, which is not relevant when ε < ξ−1 at
T > TN . At high temperature when ξ ∼ O(1), the numerical results
also deviate from the 2D NLSM behavior.

because when ξ → ∞ it yields
∫

d2qχ (q̃ + Q, 0) = O(1)
instead of divergent

∫
d2qχ (q̃ + Q, 0) ∼ log ξ , which we ob-

tained without factorization. We also note that SPS took ξ

as an input parameter, while we compute it self-consistently,
in the same eikonal-type approach. This is essential for the
understanding of the temperature evolution of �PG in the para-
magnetic phase. In particular, we argue in the next section that
temperature dependence of the fully dressed ξ is such that
the pseudogap does not develop if the ground state is not
magnetically ordered.

Phase diagram

To convert our results into the phase diagram in the (T, x)
plane, we need to locate the parameter range where the ther-
mal contribution to the self-energy is larger than the combined

FIG. 13. The spectral function in the (a) strong pseudogap
regime (�(e)

PG > vF ξ−1) and (b) weak pseudogap regime (�(e)
PG <

vF ξ−1), where �
(e)
PG is the pseudogap obtained within the eikonal

approach by summing up an infinite series of thermal contributions
to the self-energy (blue solid line). The gray shaded area is the
frequency range where the eikonal approach breaks down, and one
should instead use the full one-loop result for the self-energy (gray
solid line). �

(1)
PG is the pseudogap energy from such a one-loop

calculation.

contribution from nonzero bosonic Matsubara frequencies.
For systems with localized spins, there is no such regime
because ξ−1 is linear in T , and for typical momenta q ∼ ξ−1,
the static part of the inverse bosonic propagator ξ−2 + q2

has the same T 2 temperature dependence as the dynamical
ω2

m ∼ T 2 term. Then thermal and quantum fluctuations are
comparable in strength in the whole low-energy range above
a QCP. The phase diagram contains an ordered phase, a
renormalized classical phase adjacent to it, a quantum-critical
phase where ξ−1 ∝ T , and a quantum-disordered phase [47].
For metals with dynamical exponent z = 1 (the case when
Landau damping of critical fluctuations is absent by kinematic
reasons) the phase diagram is similar, with an extra region of
Fermi-liquid phase on the paramagnetic side of the QCP.

For metals with z > 1, the static part of the inverse bosonic
propagator scales as ξ−2, for typical momenta q ∼ ξ−1, while
the dynamical part scales as T 2/z. The two T dependencies
are generally different, even if ξ−1 ∼ T . At small T , it is
natural to expect that ξ−2 is smaller than properly normalized
T 2/z. Then thermal fluctuations give the largest contribution
to the self-energy. As T increases, this condition ξ−2 < T 2/z

may or may not hold, depending on the thermal evolution
of ξ . If it holds for all T , where the low-energy descrip-
tion is applicable, thermal fluctuations completely determine
system behavior above a QCP. If it breaks down at some
T = Tq within the low-energy regime, then at this temperature
the system crosses over from thermal fluctuation dominated
non-Fermi-liquid behavior at T < Tq to still non-Fermi-liquid
behavior, but with the largest contribution to the self-energy
coming from the terms with a nonzero bosonic Matsubara
frequency.

This reasoning holds when in the thermal regime the sys-
tem displays a pseudogap behavior (strong or weak). In our
notations, this implies that Tq must be larger than or, at most,
comparable to Tp. If Tq < Tp, a separate consideration is re-
quired for the region Tq < T < Tp.

To compare the two temperatures, we note that Tp corre-
sponds to λ = λc. Using the definition of λ = λ(T ) [Eq. (18)],
we find that Tp is the solution of Tpξ

2(Tp) ∼ v2
F /ḡ. The tem-

perature Tq is determined by comparing the Landau damping
term at ω ∼ T and q ∼ ξ−1 to ξ−2. The Landau damping
of spin excitations comes from scattering into low-energy
fermions, and the effective coupling for this process is the
same ḡ as in Eq. (26) for the self-energy. Evaluating the
Landau damping term, we find that the equation on Tq is, up to
a numerical factor, the same as for Tp: Tqξ

2(Tq) ∼ v2
F /ḡ. Then

Tq and Tp are comparable, i.e., the thermal region is also the
pseudogap region.

Whether Tp is finite right above the SDW QCP depends
on the temperature variation of ξ−2(T ). If this variation was
analytic ξ−2(T ) ∼ T 2, the coupling λ ∝ T ξ 2(T ) would nec-
essarily be large at small T , and hence Tp would be finite.
In this situation the pseudogap region would extend into the
doping range where the ground state is not magnetically or-
dered. We find, however, that above the SDW QCP, ξ−2 ∝ T
[see Fig. 15(a)]. In this case, λ becomes T independent, and
pseudogap develops if this constant λ is larger than λc and
does not develop if it is smaller. As we already said, our
results show that λ < λc [see Fig. 15(b)], hence the pseudogap
does not develop right above the QCP. By continuity, it also
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FIG. 14. Threshold Uc above which the (π, π ) SDW is a mean
field solution at different doping x. Uc is the smallest at xvh at
which the Fermi surface changes topology. See figure insets for the
noninteracting Fermi surface (dark blue line) below xvh (left inset)
and above xvh (right inset).

does not exist in the range where the ground state is not
magnetically ordered. We caution, however, that this result is
likely model dependent, and in a more generic model with
a nonlocal interaction the magnitude of λ above a QCP may
exceed λc. In such a case the pseudogap extends into the range
where the ground state is not ordered.

The linear in T behavior of ξ−2 above a QCP (modulo
log T ) holds in the Hertz-Millis theory of the SDW quantum
criticality [69], where it appears due to thermal bosonic self-
energy from the phenomenologically introduced mode-mode
coupling. In a microscopic theory, mode-mode coupling ap-
pears as an effective four-boson interaction—a square made
out of four fermionic propagators. The contribution from this
effective interaction to bosonic self-energy is the same one
as from inserting self-energy and vertex corrections into the
polarization bubble [43], which are elements of our diagram-
matic series for the fully dressed ξ . Not surprisingly then,
we obtain the same linear in T dependence of ξ−2 as in
Hertz-Millis theory. We note, however, that we collected an
infinite number of graphs for the bosonic propagator, not only
the lowest order vertex and self-energy corrections.

We are now in a position to obtain the phase diagram in
variables x and T . For this, we combine our results (i) that
there is no pseudogap at T = 0 from dynamical fluctuations,
(ii) that the pseudogap behavior at a finite T exists only for
x < xc when there is a SDW order in the ground state, (iii)
that there is a quantum-critical behavior at T > Tp, and (iv)

FIG. 15. (a) (vF ξ )−2 and (b) λ ∝ T ξ 2 as functions of tempera-
ture at the critical Uc = 0.58 eV for doping x = 0.05.

that at x > xc there is a Fermi-liquid behavior at the smallest
T . We show the phase diagram in Fig. 2.

In the two right panels in Fig. 3 we present the phase
diagrams for the cuprates, suggested by our study. In both fig-
ures pseudogap behavior due to thermal magnetic fluctuations
exists only when the system has a SDW (π, π ) order at T = 0.
In Fig. 3(b) this range is narrow and ends well before optimal
doping. This phase diagram is likely applicable to hole-doped
cuprates, where the SDW region is quite narrow. We argue
therefore that the pseudogap behavior, observed in these sys-
tems, is not caused by thermal spin fluctuations and is instead
either a precursor to superconductivity [31,32,34,35,37], or
a novel state of matter with currentlike or topological order
[6,7,9–11,53,54]. In the phase diagram in Fig. 3(c), the range
of SDW order is wider and extends to near-optimal doping.
In this case pseudogap behavior due to thermal magnetic
fluctuations exists in a wider parameter range, and Tp, up to
which it holds, may be close to the experimental boundary
of the pseudogap phase. This last behavior holds in electron-
doped cuprates [40], and we believe that pseudogap behavior,
observed in these materials, may actually be due to thermal
spin fluctuations.

A comment is in order here. In this paper we restricted our
analysis to (π, π ) SDW order. The recent numerical study
[29] suggested that the pseudogap may exist as long as the
ground state has a stripe magnetic order, which can be viewed
as partly melted incommensurate (π, Q)/(Q, π ) SDW order
[29,56,70–74]. Such an order has been extensively studied,
chiefly in La-based cuprates (see, e.g., Refs. [75,76] and
references therein). This may potentially widen the range of
magnetically induced pseudogap behavior even in hole-doped
cuprates.

V. SUMMARY

To summarize, in this paper, we analyzed the precursor
scenario for pseudogap behavior of interacting fermions near
a magnetic instability. We considered the Hubbard model on
the square lattice and analyzed the thermal evolution of the
spectral function. We adopted the eikonal-type approach, and
summed up thermal contributions to the fermion two-point
and four-point correlation functions to infinite order both in
the SDW ordered state and in the paramagnetic state. In the
latter, the eikonal-type computational procedure is valid at
large enough magnetic correlation lengths, which we com-
pute self-consistently. For Hubbard U values comparable
to the fermionic bandwidth, we found pseudogap behav-
ior due to magnetic fluctuations and identified two different
regimes: strong pseudogap behavior, which emerges after
the summation of an infinite series of thermal contributions
to two-point and four-point correlation functions, and weak
pseudogap behavior, which emerges in the parameter range
where the one-loop approximation is adequate. In the strong
pseudogap regime we found that the magnetic correlation
length decreases with T nearly exponentially, as eT0/T , such
that the pseudogap energy scale �PG ∝ T log ξ is almost in-
dependent of T , despite the fact that it originates from thermal
fluctuations. The near-exponential decrease of ξ mimics the
behavior in the nonlinear sigma model of localized spins, but
we emphasize that we obtained this behavior in a metal with
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strong correlations. The near independence of the pseudo-
gap energy on T is consistent with numerical studies of the
Hubbard model in the regime where the ground state is SDW
ordered [26]. At higher T and higher dopings x, we found
the crossover to the weak pseudogap regime, in which the
pseudogap energy gradually decreases with increasing T or
x and eventually vanishes at Tp.

Our calculations showed that the pseudogap behavior ex-
ists only above SDW ordering temperature and does not
extend to dopings, where the ground state is disordered. This
in turn is consistent with quantum Monte Carlo studies of
the effective models of fermions interacting with magnetic
fluctuations, as these studies did not detect pseudogap be-
havior in the parameter range where the ground state is not
magnetically ordered [48,49,52]. We presented in Fig. 2 the
phase diagram based on our model calculations and presented
in Fig. 3 the phase diagram for the cuprates. We argue that the
magnetic pseudogap covers the range where the pseudogap
behavior has been detected in electron-doped cuprates, but
does not cover the range of the observed pseudogap behavior
in hole-doped cuprates. The pseudogap behavior in the latter
is then either due to superconducting precursors, or is a novel
ordered state. We note, however, that we did not analyze a
potential pseudogap behavior above a stripe order [29].

In this paper we used the eikonal approach and set the
limit of its applicability at �

(e)
PG ∼ vF ξ−1. The eikonal ap-

proach treats vertex and self-energy corrections equally, and
the applicability limit is the same for both types of diagrams.
It is possible that there exists an intermediate regime of
�

(e)
PG ∼ vF ξ−1, where self-energy corrections are numerically

stronger. In this situation, one has to include infinite series
of self-energy corrections to the fermionic Green’s function
without including vertex corrections. This is equivalent to
evaluating the Green’s function in the self-consistent one-
loop approximation (the self-energy is given by the one-loop
diagram, but with the full Green’s function without vertex
corrections of an internal fermion). Such an approximation
has been widely used in the context of the large-N limit of the
Sachdev-Ye-Kitaev model and its variations [77]. The spectral
function, obtained within the self-consistent one-loop approx-
imation, gets broadened compared to the spectral function of
free fermions, but the peak of A(kF , ω) remains at ω = 0, and
the pseudogap does not develop. The analysis of the interplay
between the eikonal and self-consistent one-loop approxima-
tion is somewhat involved and will be discussed separately.
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APPENDIX: PATH-INTEGRAL DESCRIPTION

Here, we demonstrate the path-integral representation for
the fully renormalized fermion Green’s function and spin
susceptibility with only static magnetic fluctuations. We first
review the path-integral formulation in the quasistatic limit
and then obtain the expressions for the two-point and four-
point correlation functions. The point of departure is the
effective action for the spin-fermion model:

Z =
∫

D[ψ̄, ψ]e−SSF ,

SSF =
∫

τ

∫
τ ′

(∑
k,s

ψ̄k,s(τ )
(−G−1

0,kψk,s(τ
′)
)

− 2g2
∑

q

χq(τ − τ ′) �̂Sq(τ ) · �̂S−q(τ ′)

)
, (A1)

where
∫
τ

= ∫ β

0 dτ , G−1
0,k(τ − τ ′) = −(∂τ + εk − μ)δ(τ − τ ′),

�̂Sq(τ ) = 1
2

∑
k ψ̄k+q,s(τ ) �̂σs,s′ψk,s′ (τ ). Here, ψ is the

Grassmann fermionic field. For now, we define g as a
phenomenological coupling constant. In the Matsubara
frequency representation, the action becomes

SSF =
∑
k,σ,n

ψ̄k,σ,n(−iωn + εk − μ)ψk,σ,n

− 2g2β−1
∑
q,m

χq(�m) �̂Sq(�m) · �̂S−q(−�m) (A2)

where β = 1/T , ψ (τ ) = 1√
β

∑
n e−iωnτψn, Ŝ(τ ) =

1
β

∑
m ei�mτ Ŝm, χq(τ − τ ′) = 1

β

∑
m χq(�m)ei�m (τ−τ ′ ), and

χq(�m) = χ0

�2
m+v2

s (q−Q)2+v2
s ξ−2 .

We next insert the identity
∫
D[�S] e− β

2

∑
q χ−1

q (�m )�Sq,m �S−q,−m =
1, and through the Hubbard-Stratonovich transformation, the
partition function becomes

Z =
∫

D[ψ̄, ψ, �S]e−SSF ,

SSF =
∑

k,s,n,k′,s′,n′
ψ̄k,s,n

(
− (iωn − εk + μ)δkk′δss′δnn′

− g �Sq,m · �σss′

2
δk+q,k′δm+n,n′

)
ψk′,s′,n′

+ β

2

∑
q,m

χ−1
q (�m)�Sq,m · �S−q,−m. (A3)

Note that no approximation is made to obtain Eq. (A3), but it
cannot be solved exactly in general.

To consider only the static spin fluctuations, we restrict to
the zero Matsubara frequency for the spin field �S; the partition
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function becomes

Z =
∫

D[ψ̄, ψ, �S]e−Sstatic ,

Sstatic =
∑

k,s,n,k′,s′
ψ̄k,s,n

(
− (iωn − εk + μ)δkk′δss′

− 2g �Sq · �σss′

2
δk+q,k′

)
ψk′,s′,n + β

2

∑
q

χ−1
q �Sq · �S−q.

(A4)

Here, we have replaced �Sq with �Sq,0 for convenience, and
χ−1

q = (v2
s (q − Q)2 + v2

s ξ
−2)/χ0 is the static spin suscepti-

bility. Equation (A4) may be viewed as an annealed disorder
problem, with �Sq as the static spin impurity. Integrating out the
fermion field ψ , we get the effective action in terms of only

the spin fields:

Z =
∫

D[�S] exp

⎛
⎝tr lnM(�S) − β

2

∑
q

χ−1
q �Sq · �S−q

⎞
⎠.

(A5)

[M(�S)]ks,k′s′ = ((iωn − εk + μ)δkk′δss′ + g �Sk′−k · �σss′ ) is the
inverse Green’s function in a particular spin configuration
determined by �Sk′−k. To compute the n-point correlation func-
tion, we define the generating functional as

W (η̄, η) =
∫

D[ψ̄, ψ, �S] exp(−(ψ̄η + η̄ψ + Sstatic )),

(A6)

with the shorthand notation ψ̄η = ∑
k,s,n ψ̄k,s,nηk,s,n.

The full Green’s function, i.e., the two-point correlation
function, reads

G(iωn, k, k′)ss′ = 〈G(iωn, k, k′)|�S)ss′ 〉�S = 1

Z
∂2W (η, η̄)

∂η̄s∂ηs′
|η,η̄=0

=
∫
D[�S][M(�S)−1]ks,k′s′ exp

(
tr lnM(�S) − β

2

∑
q χ−1

q �Sq · �S−q
)

∫
D

[�S]
exp

(
tr lnM(�S) − β

2

∑
q χ−1

q �Sq · �S−q
)

≈
∫
D[�S][M(�S)−1]ks,k′s′ exp

(− β

2

∑
q χ̃−1

q �Sq · �S−q
)

∫
D[�S] exp

(− β

2

∑
q χ̃−1

q �Sq · �S−q
) . (A7)

From the second to the third line, we assume that the feedback effects on �S from the fermions, written as tr lnM(�S), can be
fully captured by replacing the spin susceptibility χ with a renormalized one χ̃ , which is determined independently from the
four-point correlation function.

The static spin polarization �αβ (q) can be expressed as the four-point correlation function

�αβ (q) = 〈�αβ (q|�S)〉�S = 1

Z
∂4W (η, η̄)

∂η̄∂η∂η̄∂η

∣∣∣∣
η,η̄=0

≈
∫
D[�S]tr

[− 1
2σα[M(�S)−1]k+q,k′σβ[M(�S)−1]k′−q,k

]
exp

(− β

2

∑
q χ̃−1

q �Sq · �S−q
)

∫
D

[�S]
exp

(− β

2

∑
q χ̃−1

q �Sq · �S−q
) , (A8)

where the spin index in η and η̄ is omitted.
To determine χ̃q, we note that it is related to the irreducible particle-hole polarization �αβ (q) as

χ̃q = �αα (q)/2

1 − U�αα (q)
(A9)

where we have used the fact that due to the SU(2) symmetry in the paramagnetic state, the static spin polarization is diagonal, i.e.,
�α,β �=α (q) = 0. Assuming that χq takes the standard Ornstein-Zernike form near q ≈ Q, i.e., χ̃q = χ0/(v2

s (q − Q)2 + v2
s ξ

−2),
the spin correlation length ξ in χ̃q reads

ξ−2 = χ0

v2
s

1 − U�zz(Q)

�zz(Q)
≈ 2Uχ0

v2
s

(1 − U�zz(Q)). (A10)

Plugging (A8) into (A10), we can solve for ξ self-consistently. To simplify the evaluation, it is convenient to integrate out the
spin fields �S and obtain a compact form for (A7) and (A8). Here, following the suggestion from the one-loop calculation as
demonstrated in Sec. III C, we ignore the spacial fluctuations of the fermion fields. This allows us to replace �Sq with �SQ in the
fermion propagator, i.e.,

[M(�S)]ks,k′s′ ≈ ((iωn − εk)δkk′δss′ + gβ−1 �SQ · �σss′δk+Q,k′ ). (A11)
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Including only the spatial fluctuations for the spin fields, we have

exp

⎛
⎝− 1

2β

∑
q

χ̃−1
q �Sq · �S−q

⎞
⎠ ≈ exp

⎛
⎜⎝− 1

2β

⎛
⎝∑

q

χ̃q

⎞
⎠

−1

�SQ · �S−Q

⎞
⎟⎠ = exp(−4 t−1 �SQ · �SQ), (A12)

where we remind the reader that t = 4T
πJ ln π2/2+ξ−2

ε2+ξ−2 . To obtain the last line, we have rescaled �SQ as β−1 �SQ ⇒ �SQ, and will use
this definition hereafter. Using Eqs. (A11) and (A12), the two- and four-point correlation functions are approximated as

G(iωn, k, k′)ss′ = 〈G(iωn, k, k′)|�S)ss′ 〉�S ≈
∫

d �SQ [M(�S)−1]ks,k′s′ exp(−4 t−1 �SQ · �SQ)∫
d �SQ exp(−4 t−1 �SQ · �SQ)

,

�αβ (q) = 〈�αβ (q|�S)〉�S ≈ −1

2

∫
d �SQ

∑
si

σα
s1s2

[M(�S)−1]k+Qs2,k
′s3

σβ
s3s4

[M(�S)−1]k′−Qs4,ks1
exp(−4 t−1 �SQ · �SQ)∫

d �SQ exp(−4 t−1 �SQ · �SQ)
(A13)

where

[M(�S)−1]k,k′ = 1

1 − g2/4�SQ · �SQHk,n

(
G(0)(k, iωn)1σ δk,k′ − g

2
�SQ · �σHk,nδk+Q,k′

− g
2
�SQ · �σHk,nδk,k′+Q G(0)(k + Q, iωn)1σ δk+Q,k′+Q

)
(A14)

with Hk,n = G(0)(k, iωn)G(0)(k + Q, iωn).
Below and close to TN , we restrict the spin fluctuations to the transverse channel, i.e., �SQ = (Sx, Sy, 〈Sz〉) = (Sx, Sy,�/U ),

and only Sx and Sy are the static fluctuating fields. Now, we identify the coupling g/2 with the Hubbard interaction U .
Equation (A13) becomes

G(iωn, k, k)ss = G(0)(k, iωn)

1 − �2Hk,n

∫ ∞

0

1

1 − uωt
exp(−t ),

G(iωn; k, k + Q)ss = sgns
−�Hk,ω

1 − �2Hk,n

∫ ∞

0

1

1 − uωt
exp(−t ),

�zz(q)
T >TN= −4

t
T

∑
n,k

∫
dSx dSy

2Hk

1 − U 2(S2
x + S2

y )Hk,n
exp(−4t−1(S2

x + S2
y ))

= − 1

t(U/2)2

∫
dω

π
nF (ω)Im

[∫ ∞

0
dt

1

t − u−1
ω

exp(−t )

]

= − 1

t(U/2)2

∫
dωnF (ω)sgn(ω̄)�(ω̄ − (ε−

k )2) exp

(
− ω̄2 − (ε−

k )2

t(U/2)2

)
(A15)

where uω = (U/2)2Hk,ω

1−�2Hk,ω
, nF (ω) = (exp(ω) + 1)−1, ω̄ = ω + μ − ε+

k , E2
k = (ε−

k )2 + �2. At T > TN , � = 0.
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