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We investigate the ground-state phase diagram of an SU(N )-symmetric antiferromagnetic spin model on a
square lattice where each site hosts an irreducible representation of SU(N ) described by a square Young tableau
of N/2 rows and 2S columns. We show that negative sign free fermion Monte Carlo simulations can be carried
out for this class of quantum magnets at any S and even values of N . In the large-N limit, the saddle point
approximation favors a fourfold degenerate valence bond solid phase. In the large S limit, the semiclassical
approximation points to the Néel state. On a line set by N = 8S + 2 in the S versus N phase diagram, we
observe a variety of phases proximate to the Néel state. At S = 1/2 and 3/2, we observe the aforementioned
fourfold degenerate valence bond solid state. At S = 1, a twofold degenerate spin nematic state in which the
C4 lattice symmetry is broken down to C2 emerges. Finally, at S = 2 we observe a unique ground state that
pertains to a two-dimensional version of the Affleck-Kennedy-Lieb-Tasaki state. For our specific realization,
this symmetry-protected topological state is characterized by an SU(18), S = 1/2 boundary state that has a
dimerized ground state. These phases that are proximate to the Néel state are consistent with the notion of
monopole condensation of the antiferromagnetic order parameter. In particular, one expects spin-disordered
states with degeneracy set by mod(4, 2S).

DOI: 10.1103/PhysRevB.108.115151

I. INTRODUCTION

Spin systems are ubiquitous in nature and form one of the
most fundamental concepts in condensed matter and statis-
tical physics. Their complex collective behavior has spurred
numerous experimental and theoretical studies, aimed at un-
derstanding their nature and properties. At the same time,
modeling of spin systems represents a primary theoretical
laboratory to investigate fundamental physics. Starting with
the classical Ising model [1], spin systems have played a
crucial role in our understanding of phase transitions [2],
phases of matter, frustration and disorder [3], emergent gauge
theories [4,5], and exotic critical behavior [6]. The impact
of spin models extends beyond the realm of condensed mat-
ter physics, and has found application in other areas, such
as information processing [7] and quantum computing [8],
where the fundamental unit of information, a qubit, is a single
spin-1/2 system.

In condensed matter, spin systems are realized in Mott
insulators, which arise when charge fluctuations in a given
unit cell are suppressed. For instance, in undoped cuprates
the copper atom is in a Cu2+ state and corresponds to a net
spin S = 1/2 degree of freedom. Superexchange leads to an
S = 1/2, SU(2) Heisenberg spin model that has been studied
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numerically [9,10] and experimentally [11] at length. Higher
spin SU(2) systems arise when 2S electrons are localized on a
single orbital and a strong Hund’s rule favors a maximal spin
state with a totally symmetric wave function. For example, in
the Haldane chain realized by the CsNiCl3 compound, Ni2+

ions carry spin 1 [12]. SU(N )-invariant models, for N > 2,
naturally arise as special cases of the Kugel-Khomski model
[13,14], where spin and orbital degrees of freedom turn out
to play a very symmetric role. In particular, the observed
spin-orbital liquid behavior in Ba3CuSb2O9 [15] has been
interpreted in terms of an SU(4) quantum antiferromagnet
in the defining representation [16]. Beyond the solid state
physics, SU(N ) spin models can be realized in the realm of
cold atomic gases [17,18].

Topology plays a decisive role in the understanding of
SU(2) invariant spin systems. In fact, using a spin coherent-
state path integral approach to antiferromagnetic (AFM)
Heisenberg chains, one identifies a Berry phase. It cor-
responds to the skyrmion count of the three-component
normalized order parameter in 1+1 dimensions and at an-
gle θ = 2πS [19]. This provides a topological understanding
of the observed differences between half-integer and inte-
ger spin chains. In two spatial dimensions, topology enters
through a singular skyrmion number changing events in space
time: monopoles [20]. For a square lattice with C4 symmetry,
only quadrupole (double) monopole events are allowed for
half-integer (odd) spin by symmetry. There is no constraint
on the monopole number for even values of the spin. For
the plain vanilla SU(2) Heisenberg model at arbitrary spin
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FIG. 1. Ground-state phase diagram of the SU(N )-
antiferromagnet model Eq. (1) on the square lattice, as obtained
from QMC simulations. S identifies the chosen representation of
the su(N ) algebra of SU(N), illustrated by the Young tableau in
Fig. 2. Striped regions indicate the part of the phase diagram where
current QMC data do not allow an unambiguous identification of
the phase; in such cases we indicate between parenthesis the most
likely identified order. The insets show QMC data in the highlighted
dimerized phases, obtained through a pinning-field approach (see
Sec. IV A).

S, the spin-wave approximation captures well the ground
state and topological excitations lie high in the spectrum.
In this context, the theory of deconfined quantum criticality
essentially poses the question of the nature of the quantum
phase transition that emanates when one decreases the en-
ergy of monopoles and ultimately condenses them [6]. For
half-integer spin systems, where only quadrupole monopole
insertions are allowed, one can conjecture that the Hilbert
space splits into four orthogonal subspaces characterized by
the number of monopoles modulo four. This provides an un-
derstanding of how the fourfold degenerate valence bond solid
(VBS) state emerges for condensing topological excitations
of the quantum antiferromagnet [21]. Similarly, for spin-1
(spin-2) systems, condensing monopoles should generate a
twofold (zerofold) degenerate disordered state.

A crucial question is how to control the monopole energy.
The seminal work of Read and Sachdev [22–24] shows that
the discussion above can be carried over to SU(N ) spin sys-
tems, N � 2. Furthermore, enhancing N has the potential of
lowering the monopole energy. In this paper, we show that
it is possible to formulate negative sign-free auxiliary field
(AF) quantum Monte Carlo (QMC) simulations [25–29] of
the SU(N ) AFM spin-S Heisenberg model for representations
given by a Young tableau with N/2 rows and 2S columns.
This generalizes the work of Ref. [30] to generic values of
S. Specifically, we consider the model

Ĥ = J
∑
〈i, j〉,a

Ŝ(a)
i Ŝ(a)

j , (1)

FIG. 2. Young tableau corresponding to the irreducible represen-
tation of su(N ) considered here; N is even and S is semi-integer.

where the sum extends over the pair of nearest-neighbor sites
〈i, j〉, and a runs over N2 − 1 generators of the said repre-
sentation of the su(N ) algebra of SU(N ). The main result of
this paper is the rich phase diagram illustrated in Fig. 1. Re-
markably, and for each considered value of S = 1/2, 1, 3/2, 2
just above the threshold value of N above which Néel order
disappears, we observe four-, two-, and zerofold degenerate
disordered states at half-integer, odd and even values of S.

This paper is organized as follows. In Sec. II, we discuss
how we construct the Hamiltonian Eq. (1) with the spin op-
erators in the desired representation of Fig. 2. In Sec. III,
we illustrate its actual implementation within a fermionic
representation, which can be sampled by means of QMC
simulations in the AF approach. In Sec. IV, we present and
discuss our QMC results for the phase diagram of the model.
In Sec. V, we summarize our findings. In Appendix A, we dis-
cuss a formula giving the eigenvalue of the quadratic Casimir
operator of a representation in terms of its Young tableau.
In Appendix B, we prove an upper bound on the eigenvalue
of the Casimir operator of the irreducible representations
emerging from a tensor product of representations discussed
in Sec. II. In Appendix C, we discuss the systematic error in
the QMC formulation, arising from the Trotter discretization.
In Appendix D, we prove a lower and upper bound for a bond
observable used to diagnose the phases.

II. GENERAL FORMULATION OF THE HAMILTONIAN

In the Hamiltonian Eq. (1), the operators S(a)
i form an irre-

ducible representation of the su(N ) algebra. This is uniquely
specified by its maximum Dynkin weight �α or, alternatively,
by a Young tableau, from which the components �αk can be
read off as [31]

�αk = lk − lk+1, k = 1, . . . , N − 1, (2)

where lk is the length of the kth row of the Young tableau, and
one can assume lN = 0 for representations of su(N ).

Here we consider, on each lattice site, the representation
corresponding to a Young tableau illustrated in Fig. 2, whose
corresponding maximum Dynkin weight is

�αk = 2Sδk,N/2. (3)

The dimension of an irreducible representation can be
computed with the hook-length formula, or with Weyl’s
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formula [31]:

dim =
N∏

i< j

li − l j + j − i

j − i
. (4)

For the present case, we have

dim =
N/2−1∏

j=0

(
2S + N

2 + j
)
! j!

(2S + j)!
(

N
2 + j

)
!
. (5)

To realize this representation, we first introduce on each
lattice site 2S independent irreducible representations. Their
tensor product decomposes into different irreducible represen-
tations, including, in particular, the one of Fig. 2. In a second
step, we project the Hilbert space onto that of the desired
representation by maximizing the quadratic Casimir operator.

Let {Ta}, a = 1, . . . , N2 − 1 be a basis of the su(N ) al-
gebra. We start by introducing on each lattice site i the
antisymmetric self-adjoint representation Ta → �(Ta) = T̂a,i.
Its maximum weight in the Dynkin representation is

�αk = δk,N/2, (6)

which matches Eq. (3) for S = 1/2. Equivalently, in agree-
ment with Eqs. (2), this representation corresponds to a Young
tableau with one column and N/2 boxes.

Next, we consider, for each lattice site i, 2S independent
representations T̂a,i,α , α = 1 . . . 2S. We refer to α as the fla-
vor index. The composite generators, i.e., the generators for
the tensor product of the 2S representations, define the spin
operators appearing in Eq. (1) and are given by

Ŝ(a)
i =

2S∑
α=1

T̂a,i,α, (7)

Using Eq. (7), the interaction term in Eq. (1) is written as [32]

ĤJ = J
∑
〈i j〉

N2−1∑
a=1

Ŝ(a)
i Ŝ(a)

j

= J
∑
〈i j〉

N2−1∑
a=1

2S∑
α,β=1

T̂a,i,αT̂a, j,β . (8)

The operators Ŝ(a)
i in Eq. (7) form a reducible representation

of su(N ), which decomposes into several irreducible repre-
sentations, illustrated in Fig. 3. As proven in Appendix B,
among the resulting representations, the one of Fig. 2 exhibits
the maximum eigenvalue of the quadratic Casimir operator.
To explicitly compute it, we choose a basis {Ta} of su(N ) such
that

Tr{TaTb} = 1
2δab. (9)

With this choice, the structure constants of the algebra are
completely antisymmetric and the chosen basis is, up to
a trivial normalization, self-dual with respect to the bilin-
ear form Eq. (9). Thus, given an irreducible representation
� : su(N ) → GL(d,C), we define the quadratic Casimir
operator as

Ĉ2 =
∑

a

�(Ta)�(Ta) ≡ C1d , (10)

... =

...

FIG. 3. Decomposition of the tensor product of 2S antisymmet-
ric self-adjoint representations, whose maximum Dynkin weight is
given in Eq. (6), into irreducible ones.

where we have used the fact that C2 ∝ 1d (Schur’s Lemma)
to introduce the eigenvalue of the Casimir operator C [33].
Using Eq. (7) in Eq. (10), the quadratic Casimir operator on
the lattice site i is

Ĉ2,�i =
N2−1∑
a=1

2S∑
α,β=1

T̂a,i,αT̂a,i,β . (11)

To project the Hilbert space to the subspace of the desired
representation, we introduce on each site a term in the Hamil-
tonian which favors the states with the highest Casimir value,

ĤCasimir = −JH

∑
i

Ĉ2,�i

= −JH

∑
i

N2−1∑
a=1

2S∑
α,β=1

T̂a,i,αT̂a,i,β , (12)

with JH > 0. The term of Eq. (12) effectively introduces a
ferromagnetic interaction between different flavors, with cou-
pling strength JH .

The Hamiltonian that we will solve numerically reads

Ĥ = ĤJ + ĤCasimir. (13)

Importantly, [ĤJ , ĤCasimir] = 0, such that the projection onto
the desired irreducible representation turns out to be very
efficient. And since the projection is a local on-site term, we
expect it to scale independent from system size.

III. QMC FORMULATION

A. Fermionic representation

As discussed in Sec. II, the Hamiltonian is constructed
using as basic building blocks antisymmetric self-adjoint rep-
resentations, defined by the maximum weight of Eq. (6) or,
equivalently, by a Young tableau with one column and N/2
boxes. The corresponding operators T̂a,i,α entering in Eqs. (8)
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and (12) can be realized by introducing, for every lattice site i
and for every flavor index α, N nonrelativistic fermions, with
creation and annihilation operators ĉ†

i,α,σ , ĉi,α,σ , σ = 1 . . . N ,
and fixing the total charge (i.e., the number of fermions) to
half-filling, i.e., to N/2. For every i and α, a basis of this
Hilbert space is generated by the states

(ĉ†
i,α,1)ni,α,1 · · · (ĉ†

i,α,N )ni,α,N |0〉, ni,α,σ = 0, 1, (14)

with the constraint
N∑

σ=1

ni,α,σ = N

2
, ∀i, α. (15)

In this space, the (representation of the) su(N ) generators are

T̂a,i,α =
∑
σ,σ ′

ĉ†
i,α,σ (Ta)σσ ′ ĉi,α,σ ′ . (16)

It is easy to check that the maximum weight in the Dynkin rep-
resentation agrees with Eq. (6), thus providing us the needed
building block to simulate the Hamiltonian Eq. (1).

We study the model by means of finite-temperature AF
QMC [25,26,28] and projective AF QMC [27,28,34]. In this
framework, we sample, respectively, the grand canonical and
canonical ensembles at half filling, and charge fluctuations
are generally present. Therefore, we need to additionally im-
pose the constraint of Eqs. (15). Notice that, unlike available
techniques for canonical QMC simulations [35,36], where
the global charge of the system is fixed, here we need to
impose half filling on each lattice site. To this end, we add a
repulsive Hubbard U term on each site i and flavor α:

ĤU =U
∑

i

2S∑
α=1

(
n̂i,α − N

2

)2

, n̂i,α ≡
N∑

σ=1

ĉ†
i,α,σ ĉi,α,σ . (17)

In summary, the Hamiltonian simulated with the AF QMC
method is the sum of the interaction term given in Eq. (8),
the Casimir term [Eq. (12)], and the Hubbard term [Eq. (17)],
with the operators {T̂a,i,α} given in Eq. (16). Equations (8) and
(12) can be further simplified using the following summation
identity [37]:

N2−1∑
a=1

(Ta)σσ ′ (Ta)εε′ = 1

2

(
δσε′δσ ′ε − 1

N
δσσ ′δεε′

)
, (18)

which holds for a choice of generators that satisfies Eq. (9).
Using Eq. (18) and collecting the terms in Eqs. (8), (12), and
(17), the QMC Hamiltonian is

ĤQMC = ĤJ + ĤCasimir + ĤU

= − J

4

∑
〈i, j〉,α,β

{D̂(i,α),( j,β ), D̂†
(i,α),( j,β )}

+ JH

2

∑
i

∑
α>β

{D̂(i,α),(i,β ), D̂†
(i,α),(i,β )}

+ U
∑
i,α

(
n̂i,α − N

2

)2

, (19)

where

D̂(i,α),( j,β ) ≡
∑

σ

ĉ†
i,α,σ ĉ j,β,σ , (20)

FIG. 4. Sketch of the structure of the QMC Hamiltonian for
2S = 2. ĤU : Hubbard term for freezing out charge degrees of
freedom. ĤCasimir: Term for maximizing the eigenvalue of the
Casimir operator. ĤJ : Antiferromagnetic interaction between ele-
mental spins.

{Â, B̂} ≡ ÂB̂ + B̂Â, and n̂i,α as defined in Eq. (17). The Hamil-
tonian now takes the form of the Heisenberg model considered
in Ref. [30] and the proof for the absence of the sign problem
is similar. In Fig. 4, we sketch the resulting interactions for the
case S = 1.

Before proceeding, we would like to comment on the
computational cost of the AF QMC algorithm [28] for this
model. The total number of orbitals is given by L22S such
that matrix operations required to compute, e.g., the single-
particle spectral function, scales as (L22S)3β, where β is the
inverse temperature. It turns out, that, in contrast to the generic
Hubbard model with L22S sites, this is not the leading com-
putational cost. The number of Hubbard-Stratonovitch fields
per imaginary time slice scales as L2S2. Using fast updates,
refreshing one field involves (L22S)2 floating point opera-
tions, such that the total cost of the updating scales as L6S4β.
Hence, large values of S are computationally expensive. In
Appendix C, we show that the computational cost does not
explicitly scale with N . We note that this estimate of the
computational cost does not take into account auto-correlation
times.

B. Test of projections

As discussed above, the Hamiltonian Eq. (19) is equiv-
alent to Eq. (1) in the limit JH → ∞, and U → ∞, under
which the Hilbert space is projected to the representation
of Fig. 2. To optimally test the projections, we use the
finite-temperature AF QMC method, which evaluates 〈Ô〉 =
Tr[e−βĤ Ô]/Tr[e−βĤ ], where the trace runs over the grand
canonical ensemble.

The interaction term of Eq. (8) and the Casimir term of
Eq. (12) manifestly conserve the charge on each lattice site i.
Hence, in the Gibbs density matrix exp(−βĤ ), the Hubbard
term factorizes out, resulting in an effective exponential sup-
pression of the charge fluctuations,

〈(n̂i,α − N/2)2〉 ∝ e−βU , (21)

independent from system size. The suppression of charge fluc-
tuations is therefore particularly efficient. This is illustrated in
Fig. 5, where we show 〈(n̂i,1 − N/2)2〉 in a semilogarithmic
scale for N = 2 and S = 1/2 and as a function of βU . Besides
the case of a Hamiltonian containing the Hubbard interaction
[Eq. (17)] only, for which any observable depends only on
βU , we consider the presence of the AFM interaction Eq. (8)
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FIG. 5. Suppression of the charge fluctuations 〈(n̂i,1 − N/2)2〉 as
a function of βU for N = 2 and S = 1/2. We consider a Hamiltonian
containing the Hubbard term only and the case of a model with an
antiferromagnetic interaction [Eq. (8)], with coupling constant J = 1
on a system size L = 4, and for different inverse temperatures β. The
charge fluctuations fall off asymptotically as exp(−βU ) [Eq. (21)].

for a lattice of linear size L = 4. In the latter case, there is
an additional dependence on the inverse temperature β, which
we illustrate by considering four values. In line with Eq. (21),
we observe an exponential suppression of the charge fluctu-
ations as a function of βU . Interestingly, in the interacting
case, 〈(n̂i,1 − N/2)2〉 decreases with the temperature for any
given value of βU , even for U = 0. This implies that the
AFM coupling itself suppresses the charge fluctuations. In
Appendix A, we discuss a formula that gives the value of
the Casimir eigenvalue in terms of the Young tableau of the
representation [38]. Employing this result, in Appendix B we
determine, for the representation of Fig. 2:

C(N, S) = NS(2S + N )

4
. (22)

Furthermore, in Appendix B, we prove that Eq. (22) is the
maximum Casimir eigenvalue among the irreducible repre-

FIG. 6. Difference between the Casimir eigenvalue C(N =
2, S = 1) [Eq. (22)] of the representation S = 1, N = 2, and the sam-
pled one 〈Ĉ〉, as a function of the effective interaction strength βJH

[Eq. (12)] with J = 0, and for four inverse temperatures. Data shown
are obtained for a lattice of size L = 4, with a Hubbard interaction
βU = 6 [Eq. (17)], vanishing nearest-neighbor antiferromagnetic
interaction J = 0, and a Trotter discretization �τ = 0.1.

FIG. 7. Casimir eigenvalue for representations with S = 1 and
as a function of N . We compare the predicted value of Eq. (22) with
the sampled Casimir eigenvalue from QMC simulations of a lattice
with size L = 4, with a Hubbard interaction U = 2 [Eq. (17)], an-
tiferromagnetic coupling J = 1 [Eq. (1)], projection strength JH = 1
[Eq. (12)], and a Trotter discretization �τ = 0.1. In the inset, we plot
the difference between the sampled and expected value.

sentations arising from the tensor product of 2S self-adjoint
antisymmetric representations given in Eq. (16), and that there
is a finite gap O(1) in the eigenvalues of the quadratic Casimir
operators between the maximally symmetric representation of
Fig. 2 and the other irreducible representations arising from
the tensor product. Therefore, the term of Eq. (12) effectively
selects a single representation, and the projection is efficient.

To control the projection, we compute the expectation
value of the quadratic Casimir operator from the QMC sim-
ulations and compare it with the expected result of Eq. (22).
An example of such a projection is shown in Figs. 6 and
7. In Fig. 6, we plot the difference between the computed
and expected Casimir eigenvalue C, as a function of βJH ,
for different inverse temperatures and in a semilogarithmic
scale. The deviation from the expected result is exponentially
suppressed in βJH , underscoring the effectiveness of the pro-
jection. In Fig. 7, we show, as a function of N , the sampled
value of C along with the expected result, and in the inset we
plot their difference, which vanishes within error bars.

IV. RESULTS

A. Order parameters and phases

We have simulated the Hamiltonian Eq. (19) using the
ALF package [29,39], which provides a comprehensive
library to program QMC simulations of interacting models
of fermions, using the AF algorithm [25,26,28]. In particular,
we used the projective formulation of the algorithm, which
projects a trial wave function |T〉 onto the ground state of
the system. Observables are evaluated through

〈Ô〉 = 〈T | e−�Ĥ Ôe−�Ĥ | T〉
〈T | e−2�Ĥ | T〉 , (23)

with � the projection parameter. The algorithm employs
a Hubbard-Stratonovich decomposition of the interaction
terms. This results in a free fermionic system, where any
observable can be computed via the Wick’s theorem from the
Green’s functions. The QMC method consists of a stochastic
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sampling of the Hubbard-Stratonovich fields. We refer to
Ref. [28] for a discussion of the AF QMC method.

As a trial wave function |T〉, we used the half-filled
ground state of

ĤT =
∑
〈i, j〉

2S∑
α=1

(D̂(i,α),( j,α) + H.c.). (24)

We scaled the projection parameter � with linear system
size L, usually comparing the results obtained with � = L/4
and � = L/2, ensuring that they reflect ground-state proper-
ties. Furthermore, we chose the parameters for suppression
of charge fluctuations and projection onto the maximally
symmetric representation around U = 4/�, JH = 4/θ , while
always checking that charge fluctuations are sufficiently sup-
pressed and 〈Ĉ〉 = C(N, S) [cf. Eq. (22)].

To detect the realization of different ground states, we have
sampled the spin two-point function S(k) and the correlations
of the dimer operator Di j (k) in momentum space, defined as

S(k) ≡ 1

(N2 − 1)N2
r

∑
r,a

eikr〈Ŝ(a)
0 Ŝ(a)

r

〉
, (25)

Di j (k) ≡ 1

(N2 − 1)N2
r

∑
r,a,b

eikr·

× [〈(
Ŝ(a)

0 Ŝ(a)
0+ei

)(
Ŝ(b)

r Ŝ(b)
r+e j

)〉
− 〈

Ŝ(a)
0 Ŝ(a)

0+ei

〉〈
Ŝ(b)

r Ŝ(b)
r+e j

〉]
, (26)

where Nr = L2 is the number of sites in a lattice of linear size
L and ei is the elementary lattice unit vector on the ith direc-
tion. The normalization in Eqs. (25) and (26) ensure a finite
thermodynamic and large-N limit. Using these observables,
we can distinguish the Néel state and different dimerized
ground states, to be discussed below.

The AFM Néel state exhibits long-range spin-spin corre-
lations at momentum k = (π, π ). Thus, it can be detected by
the staggered magnetization m:

m2 = S(k = (π, π )). (27)

The valence bond state (VBS) breaks the lattice rotation and
translation symmetries, realizing a fourfold degenerate pattern
of strong and weak dimers. This is realized by different sets of
bond configurations, illustrated in Figs. 8(a)–8(c). Beyond the
commonly identified columnar order, sketched in Fig. 8(a),
there are two additional VBS states [Figs. 8(b) and 8(c)]. No-
tably, all three patterns break the lattice translation symmetry,
but only columnar and ladder order break the fourfold rotation
symmetry. VBS order can be detected by a suitable order
parameter φ defined in terms of the dimer correlations:

φ2 ≡ Dxx(k) + Dyy(k), k = (π, 0). (28)

We average φ over the two equivalent momenta (π, 0), and
(0, π ) as to obtain an improved estimator.

For integer values of S, we investigate the possible real-
ization of the Haldane nematic Affleck-Kennedy-Lieb-Tasaki
(AKLT) phase [22–24,40]. This state is twofold degenerate
and breaks the rotational symmetry but, unlike the VBS state,
does not break translational symmetry. We illustrate it in
Fig. 8(d). For such a phase, we have φ = 0 and a suitable order

(a) Columnar (b) Plaquette (c) Ladder

(d) Nematic (e) AKLT(d) Nematic (e) AKLTLL

FIG. 8. Sketch of possible dimerized ground states. (a)–(c) The
VBS states. Each of those states is fourfold degenerate, the corre-
sponding states can be obtained by rotations and translations. (d) A
Haldane nematic state, an equivalent state is obtained by rotations
of 90◦. (e) A unique ground state. States (d) and (e) are at best
understood within an AKLT construction, in which, very much as
done in our calculation, the spin S on each site is constructed by
a totally symmetric superposition of 2S states that are denoted by
bullets around each site on the right-hand side of (d) and (e). These
bullets correspond to an irreducible representation of su(N ), with one
column (S = 1/2) and N/2 rows. In the nematic state, each spin-1/2
forms a singlet with the nearest neighbor along the axis of the broken
symmetry. The AKLT state is relevant for the S = 2 state, where
each spin-1/2 on a given site can be combined into a singlet with
a nearest-neighbor spin-1/2 without breaking a lattice symmetry.

parameter can be defined as [41]

ψ2 ≡ Dxx(k) + Dyy(k) − Dxy(k) − Dyx(k), k = 0. (29)

ψ is designed to pick up rotation symmetry breaking in the
dimers and therefore does also not vanish for columnar and
ladder order. Therefore, ψ distinguishes the plaquette with C4

symmetry from VBS order with broken C4 symmetry.
Finally, a two-dimensional version of the AKLT phase,

with singlets on all bonds as sketched in Fig. 8(e), is also pos-
sible for S = 2. This nondegenerate state does not break any
symmetry, therefore all previously defined order parameters
vanish. In Table I, we summarize the different orders.

Given a local order parameter O at momentum p, one can
define the correlation ratio RO as

RO ≡ 1 − CO(p + δp)

CO(p)
, (30)

where CO(p) is the two-point function of the order parameter
in Fourier space, and δp is the minimum nonzero momen-
tum on a finite lattice. On the square lattice, δp = (2π/L, 0)
or δp = (0, 2π/L); as usual, one can average over the two
minimum displacements to obtain an improved estimator.
The correlation ratio is closely related to the second-moment
finite-size correlation length ξ , which on a square lattice can
be defined as [42,43]

ξ = 1

2 sin(π/L)

√
CO(p)

CO(p + δp)
− 1. (31)

In a disordered phase, ξ as defined in Eq. (31) converges to
the second-moment correlation length for L → ∞, such that
ξ/L → 0 and R0 → 0. In an ordered phase, due to the lack
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TABLE I. List of considered ground states with their ordering momenta in reciprocal space and matrix of order parameters defined in
Eqs. (27)–(29).

Phase Ordering momenta C4 Lattice symmetry preserved m φ ψ

Néel (π, π ) yes �= 0 0 0
Columnar (π, 0) or (0, π ) no 0 �= 0 �= 0
Plaquette (π, 0) and (0, π ) yes 0 �= 0 0
Ladder (π, 0) or (0, π ) no 0 �= 0 �= 0
Nematic (0, 0) no 0 0 �= 0
2d AKLT (0, 0) yes 0 0 0

of spontaneous symmetry breaking in any finite size, ξ/L di-
verges for L → ∞ and, conversely, R0 → 1. In the vicinity of
a critical point, RO and ξ/L are renormalization-group invari-
ant quantities. Their crossing can be used to locate the onset
of the phase transition, rendering them powerful quantities to
diagnose the ground-state order and to study phase transitions.

An ergodic QMC simulation averages over all symmetry-
breaking states. As a result, we are not able to observe the
ordered state directly, but have to refer to correlation functions
that do not average out to zero when averaging over all de-
generate ground states. Unfortunately, such an approach does
not distinguish between the different VBS states illustrated
in Figs. 8(a)–8(c). To obtain additional insights, we use the
method of a pinning field [44,45]. In this approach, we explic-
itly break the symmetry by making one AFM interaction at
the origin Jpin

∑
a Ŝ(a)

0 Ŝ(a)
0+ex

stronger than the other interactions

J
∑

a Ŝ(a)
r Ŝ(a)

r+ei
. The resulting Hamiltonian reads

Ĥ = J
∑

(r,i)�=(0,x)

∑
a

Ŝ(a)
r Ŝ(a)

r+ei
+ Jpin

∑
a

Ŝ(a)
0 Ŝ(a)

0+ex
, (32)

with Jpin > J . Therefore, we explicitly choose one of multiple
degenerate ground states by pinning the bond (0, 0 + ex) and
the bond observable

Bi(r) ≡ 1

C(N, S)

〈∑
a

Ŝ(a)
r Ŝ(a)

r+ei

〉
i = x, y (33)

does not vanish as in the unpinned case. We notice that the
AFM interactions in the Hamiltonian favors a minimization of
Bi(r). As proven in Appendix D, Bi(r) � −1 and approaches
−1 when the two spins form a singlet.

We have chosen Jpin such that the pinned bond satisfies

〈∑
a

Ŝ(a)
0 Ŝ(a)

0+ex

〉
≈ 1

2

⎛
⎝ 1

2Nr

∑
(r,i),a

〈
Ŝ(a)

r Ŝ(a)
r+ei

〉 − C(N, S)

⎞
⎠.

(34)

The right-hand side corresponds to the point halfway between
the background and the minimal value of 〈∑a Ŝ(a)

0 Ŝ(a)
0+ex

〉. This
results in Jpin between 1.2J and 1.5J .

At large distances from the pinned bond, one will either be
able to explicitly observe the selected order through Bi(r) (if
φ or ψ are nonzero), or the order will vanish.

B. S = 1/2

We first study the representations of Fig. 2 with S = 1/2.
In Fig. 9, we show the structure factor S(k) [Eq. (25)], and
the two combinations of dimer correlations Di j (k) appearing
in the definitions of the order parameter φ [Eq. (28)] and
ψ [Eq. (29)]. By considering three values of N , we analyze
the evolution of the order parameters across the transition
between the Néel and VBS order. For N = 2, we realize a
standard S = 1/2 Heisenberg model on the square lattice,
which displays a Néel order in the ground state. As expected,
S(k) shows a strong peak at (π, π ); in comparison, the other
order parameters are suppressed. Upon increasing N to N = 4,
we observe the emergence of peaks at (π, 0) and (0, π ) for the
other order parameters. As shown below using the correlation
ratios, though close to the phase transition to the VBS state,
the ground state is still Néel ordered. For N = 6, we observe
a strong peak at (π, 0) and (0, π ) for the Dxx(k) + Dyy(k)
order parameters, indicating the realization of the VBS phase.
To obtain a reliable determination of the ground state, we
study the correlation ratios of the three order parameters dis-
cussed in Sec. IV A. In Fig. 10, we show the three correlation
ratios Rm, Rφ , and Rψ as a function of N for lattice sizes
L = 4, 8, 12, 16. The crossing plot of Rm indicates the dis-
appearance of Néel order at N ≈ 4. At the same time, the
curves of Rφ and Rψ exhibit a crossing for values of N > 4; in

FIG. 9. Correlation functions S(k) [Eq. (25)] and Di j (k)
[Eq. (25)] for the representation of Fig. 2 with S = 1/2 and different
values of N .
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FIG. 10. Correlation ratios of the staggered magnetization m
[Eq. (27)], φ [Eqs. (28)] and ψ [Eqs. (29)] order parameters for
S = 1/2, as a function of N , and for lattice sizes L = 4 − 16.

particular, for N = 4 both Rφ and Rψ decrease with the lattice
size, indicating that both VBS and nematic order are short
ranged for N = 4. Therefore, as anticipated above, for N = 4
the ground state is still a Néel order. This confirms the result of
Refs. [46–48]. At N = 6, Rm decreases with L, while Rφ and
Rψ increases in L for L � 6; the L = 4 data set is dominated
by finite-size effects. Accordingly, for N = 6 the ground state
realizes VBS order. These observations are confirmed by
the real-space plot of the bond intensity shown in Fig. 11,
as obtained with the pinning-field method. For N = 4, in the
vicinity of the pinned bond we observe a pattern reminiscent
of the VBS order of Fig. 8. However, at larger distances the
modulation of bond intensity quickly decays, confirming that
VBS order is actually short ranged. For N = 6, we observe a
very clear pattern of strong and weak bonds that realize the
VBS order.

C. S = 1

In studying the representations with S = 1, we proceed
analogously to the S = 1/2 case discussed in Sec. IV B. In
Fig. 12, we show the order parameters in momentum space
for the case S = 1 and three representative values of N . For
N = 8, a clear peak of the spin structure factor at (π, π ), along
with a comparatively smoother momentum dependence of the
other order parameters, indicate the presence of Néel order. At
N = 10, we observe instead the emergence of a clear signal
of the nematic order parameter at zero momentum. The VBS
order parameter exhibits a similar peak at zero momentum,
whose signal predominantly arises from the nematic order
parameter, while at momentum (π, 0) a subdominant peak is
observed. The Néel order parameter instead does not show a
predominant signal at (π, π ) but rather equally large values at
the corners of the Brillouin zone. These behaviors suggest the

FIG. 11. Real-space value of bonds Bi(r) [Eq. (33)], as measured
after pinning the central bond, for S = 1/2 and lattice size L = 18.
Due to the observed different variations in the bond strength, to better
highlight the patterns of bond correlations we have used different
color scales for the region close and far from the pinned bond. The
biggest error of the outer bonds is indicated by two red lines on
the color scale. We have symmetrized the results with regards to
inversions y → −y, x → −x around the pinned bond.

onset of the twofold degenerate nematic order. For N = 12,
a clear signal at (π, 0) momentum appears in the VBS order
parameter. Along with the sharp zero-momentum value of the
nematic order parameter, these findings suggest the realization
of VBS order for N = 12. As we did for the S = 1/2 case, the
above qualitative observations on the momentum dependence

FIG. 12. Same as Fig. 9 for S = 1
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FIG. 13. Same as Fig. 10 for S = 1.

of the various order parameters can be put on firm ground by
examining the correlation ratios shown in Fig. 13. The mag-
netic correlation ratio Rm displays a crossing at about N ≈ 8,
such that for N > 8, Rm decreases with the lattice size. On the
other hand, at N = 8 both Rφ and Rψ decrease on increasing
L, implying that both VBS and nematic order are short ranged.
Therefore, one can conclude that for N = 8 the ground state
is antiferromagnetically ordered. The behavior of Rφ shows
rather important finite-size corrections. In fact, while curves
for L � 10 cross for 8 < N < 10, the crossing point quickly
increases with L, such that for L � 12 a crossing is found
for 10 < N < 12. In particular, N = 10 has a nonmonotonic
behavior, increasing in L for L � 10, and decreasing for L �
12. This observation supports the presence of a significant,
but still short-ranged, VBS order, which is responsible for
important finite-size corrections. The nematic correlation ratio
Rψ shows a crossing between N = 8 and N = 10. Also, here
we observe a clear drift in the crossing of Rψ , although the
situation for N = 10 is rather clear and indicates long-range
order in ψ . In view of these observations, and referring to
Table I, we conclude that a nematic ground state is realized for
N = 10, while for N � 12 the ground state is VBS ordered.
These conclusions are nicely confirmed by the real-space plots
of the bond strength obtained with the pinning-field method
and shown in Fig. 14. For N = 10, we clearly observe the for-
mation of a twofold degenerate stripelike structure, signaling
the presence of the nematic order. For N = 12, instead a VBS
order is found. Interestingly, while for S = 1/2 the VBS order
found at N = 6 (Fig. 11) resembles the ladder order illustrated
in Fig. 8, for S = 1 and N = 12 the VBS pattern shown in
Fig. 14 rather suggests the plaquette order of Fig. 8.

D. S = 3/2

In Fig. 15, we show the order parameters in momentum
space, and N = 12 − 18. Analogous to the cases analyzed in
the previous sections, for N = 12 we find a signal of Néel

FIG. 14. Same as Fig. 11 for S = 1.

order. In the region 14 � N � 16, QMC data do not allow
us to unambiguously single out the ground state. Upon in-
creasing N , the peak at (π, π ) in S(k) slowly decreases in
magnitude. At the same time, we observe the appearance of
a maximum in the nematic order parameter at zero momen-
tum, and in the VBS order parameter for (π, 0) and (0, π )
momenta. Eventually, for N = 18 the momentum structure
of the order parameters more clearly favors the realization of
VBS order. The observed behavior suggests a comparatively
broad critical region around 14 � N � 18. In an attempt to

FIG. 15. Same as Fig. 9 for S = 3/2.
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FIG. 16. Same as Fig. 10 for S = 3/2.

better understand the ground-state diagram for S = 3/2, as for
the other values of S we have analyzed the correlation ratios,
shown in Fig. 16. Due to the increased computational costs,
we restricted the simulations for the larger lattice sizes L � 12
to the more involved cases 12 � N � 16. For smaller lattice
sizes L � 10, the curves for Rm appear to cross at a value of
N very close, but smaller than N < 12. We observe, however,
some drift toward larger values of N in the crossings. Further-
more, as shown in the inset of Fig. 16, Rm at N = 12 exhibits
an upward trend for L > 10. Together with the observed slow
decrease of Rφ and Rψ in L for N = 12, this implies Néel order
for N = 12.

For N � 14, the L dependence of Rm clearly rules out Néel
order. On the other hand, Rφ slowly decreases with L for
N = 14, and for N = 16 it grows slightly up to L = 8. In
both cases, QMC data for L � 8 are indistinguishable within
error bars. A similar flattening of QMC data is found in Rψ

for N = 14, 16. This behavior does not allow us to draw firm
conclusions on the nature of the ground state for N = 14, 16.
Since a Néel state can be ruled out, a reasonable hypothesis
is the realization of a VBS state, however, with a weak order
parameter.

For N > 16, both Rφ and Rψ show a crossing close to
N = 18. Furthermore, we observe a monotonic growth of Rφ

in L for N = 18. This leads us to conclude a VBS order for
N = 18. Finally, we have studied the pattern of bond strength
in real space with the pinning-field method. The results for
N = 14, 16, 18 are reported in Fig. 17. For N = 14, 16, de-
spite some signs of dimerization, we do not observe a clear
VBS pattern. In line with the previous analysis, for N = 18 we
find a bond dimerization which confirms a VBS ground state.

FIG. 17. Same as Fig. 11 for S = 3/2 and lattice size
L = 14 (N = 14, 16), L = 12 (N = 18).

E. S = 2

As for previous values of S, we begin our investigation for
S = 2 with momentum space plots of correlation functions
shown in Fig. 18. At N = 16, the spin structure factor shows
a sharp peak at (π, π ), indicating long-range AFM order. For
bigger values of N , the peak weakens and broadens, suggest-
ing short-range AFM order. The correlations for nematic and
VBS order show only very broad maxima for the range N ∈
[16, 22], implying the absence of both of these orders. The
correlation ratios plotted in Fig. 19 support these qualitative
observations. The inset in Fig. 19(a) shows that while Rm de-
creases at N = 16 from L = 4 to L = 12, the trend is reversed
on bigger lattices and Rm increases from L = 12 to L = 16.
This indicates that N = 16 has a Néel ground state which is
close to a competing order. Both Rφ and Rψ decrease with
increasing system size in the investigated range N ∈ [16, 24].
As per Table I, this leaves a two-dimensional AKLT order
as a ground-state candidate for N ∈ [18, 24]. With the AKLT
construction corresponding to the right-hand side of Fig. 8(e),
we understand that each boundary site hosts an su(N ) rep-
resentation corresponding to one column (S = 1/2) and N/2
rows. Hence the boundary defines a one-dimensional chain in
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FIG. 18. Same as Fig. 9 for S = 2.

the aforementioned representation. It is known that for N � 4
this chain dimerizes [46,47,49,50].

To further investigate this possibility, we simulate the
model on a lattice with periodic boundary conditions in the
x direction and open boundary conditions along y, corre-
sponding to a cylinder geometry. Figure 20 shows the results
for S = 2, N = 18 in a pinning-field approach with pinned
bonds at the edge and in the bulk, respectively. The induced

FIG. 19. Same as Fig. 10 for S = 2.

FIG. 20. Real-space value of bonds Bi(r) for S = 2, N = 18,
lattice size L ∈ {8, 10, 12}, and open boundary conditions in y di-
rection. Comparison between pinning a bond at the edge (a) and a
bond in the bulk (b). (c) Bx(r) on horizontal lines through the pinned
bonds.

dimerization pattern propagates on the edge much further than
in the bulk, supporting the presence of an AKLT phase with
boundary corresponding to an S = 1/2 SU(N ) chain in the
totally antisymmetric self-adjoint representation.

V. SUMMARY

We have studied the ground-state phase diagram of an
SU(N ) AFM model on the square lattice, with irreducible
representations of su(N ) illustrated in Fig. 2 and characterized
by a Young tableau consisting of 2S columns and N/2 rows.
For even values of N , we have presented negative sign free
QMC data that results in the rich phase diagram of Fig. 1. In
line with field-theoretical studies [22–24], for any value of the
generalized spin S, we found Néel order at small values of N ,
and a dimerized VBS state for large N . The disordered states
proximate to the melting of the Néel state can be naturally
understood in terms of condensation of monopoles. These
states turn out to be located along the line N = 8S + 2 in
the S versus N phase diagram. At S = 1, we observe ne-
matic AKLT [40] states where C4 symmetry is spontaneously
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reduced to C2, with the emergence of spin-1 chains along one
lattice direction. At S = 2, the AKLT construction provides
an understanding of the nondegenerate state. In fact, this
construction can be generalized to any spin S = Z/2 system
on a lattice with coordination number Z; an example for the
honeycomb lattice is given in Refs. [51,52]. In our specific
case, the edge state corresponds to an SU(N ) spin system in an
irreducible representation specified by a Young tableau with
one column (S = 1/2) and N/2 rows. At N � 4, such a state
is know to dimerize [47]. Our simulations with open bound-
ary conditions support this picture. For half-integer values
of S, a fourfold degenerate VBS state emerges. The detailed
nature of the dimerization was studied using a pinning-field
approach [44].

While the resulting phase diagram reproduced in Fig. 1 will
serve as a benchmark for future studies, our findings points
to future avenues of research. It would be very interesting to
study in detail the quantum phase transitions between the var-
ious states. Although the present setup allows us to consider
integer values of N only, it may be possible to investigate the
phase transitions with a suitably defined designer Hamiltonian
containing, e.g., some interactions that favor a specific phase,
so as to be able to interpolate between them. The topological
arguments that lead to the observed phase diagram carry over
to other representation of su(N ) such that further calculations
with alternative methods such as stochastic series expansion
[53] are certainly desirable.
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APPENDIX A: THE QUADRATIC CASIMIR EIGENVALUE
IN TERMS OF THE YOUNG TABLEAU

In this Appendix, we discuss the relation between the
Young tableau of an irreducible representation and the

corresponding eigenvalue of the quadratic Casimir operator.
For an irreducible representation, whose Young tableau has
nl rows of length {li} and nc columns of length {ci}, the
eigenvalue of the quadratic Casimir operator is [38]

C = 1

2

[
r
(

N − r

N

)
+

nl∑
i

l2
i −

nc∑
i

c2
i

]
, (A1)

where r = ∑
i li = ∑

i ci is the total number of boxes.
In this Appendix, we also derive Eq. (A1), which is stated

in the Appendix of Ref. [38] without an explicit proof. First,
we notice that in Eq. (A1) there is an implicit choice of
normalization. As we show below, such a normalization is
consistent with Eq. (10).

For an irreducible representation, the value of C can be
easily computed with Weyl’s formula [31,56],

C = 〈�|� + 2δ〉, (A2)

where � is the maximum weight of the representation and
δ the Weyl vector. In the Dynkin representation, the metric
tensor of the scalar product is, up to a normalization N , the
inverse of the transpose of the Cartan matrix A [31],

Gi j = N [(AT )−1]i j, [(AT )−1]i j = min(i, j) − i j

N
, (A3)

and the Weyl vector is δ = (1, 1, . . . , 1). To fix the normal-
ization N , we compute C for the defining representation, and
match it with Eq. (10). For the defining representation, the
maximum Dynkin weight is �αi = δi,1, hence

C = N
N−1∑
i, j=1

δi,1

[
min(i, j) − i j

N

]
(δ j,1 + 2)

= N N2 − 1

N
. (A4)

On the other hand, by taking the trace on both hand sides
of Eq. (10), C is readily computed as C = (N2 − 1)/(2N ).
Therefore the normalization constant is N = 1/2.

Employing Eq. (A2), we first compute 〈�|�〉. Using
Eqs. (2),

〈�|�〉 =
N−1∑
i, j=1

(li − li+1)Gi j (l j − l j+1), (A5)

where the metric tensor Gi j is given in Eq. (A3). By devel-
oping the products and employing change of variables i →
i − 1, j → j − 1, Eq. (A5) can be written as

〈�|�〉 = l1G11l1 + l1

N−1∑
j=2

(G1, j − G1, j−1)l j

+
N−1∑
i=2

li(G
i,1 − Gi−1,1)l1

+
N−1∑
i, j=2

li(G
i, j − Gi−1, j − Gi, j−1 + Gi−1, j−1)l j,

(A6)
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where we have used that lN = 0 for Young tableaux of su(N )
representations. Using Eq. (A3), we have

G1, j − G1, j−1 = Gi,1 − Gi−1,1 = − 1

2N
, (A7)

where we have employed the normalization N = 1/2 ob-
tained after Eq. (A4). Further, using Eq. (A3), the difference
in the parenthesis in the last term of Eq. (A6) is computed as

Gi, j − Gi−1, j − Gi, j−1 + Gi−1, j−1

= 1

2

[
min(i, j) − min(i − 1, j) − min(i, j − 1)

− min(i − 1, j − 1) − 1

N

]
. (A8)

By enumerating the various cases, it is easy to see that

min(i, j) − min(i − 1, j) − min(i, j − 1)

− min(i − 1, j − 1) = δi j . (A9)

Using Eqs. (A7)–(A9) in Eq. (A6), we obtain the first term in
Weyl’s formula,

〈�|�〉 = l2
1

2

(
1 − 1

N

)
− 1

N
l1(r − l1)

+ 1

2

N−1∑
i=1

l2
i − 1

2
l2
1 + 1

2N
(r − l1)2

= 1

2

(
nl∑

i=1

l2
i − r2

N

)
, (A10)

where r = ∑
i li is the total number of boxes and the sum over

l2
i can be restricted to the nl nonzero row lengths.

To compute the second term 〈�|2δ〉 in Weyl’s formula,
we use a different parametrization of �. Since in the Dynkin
representation the components of �αi are positive integers
[see Eqs. (2)], we can parametrize �αi as

�αi =
nc∑

a=1

δi,ca . (A11)

The set {ca} represents the position of the rows in the corre-
sponding Young tableau where the number of boxes decreases
on the following row. Such a decrease corresponds to the
end of the column, hence {ca} are the column lengths. Using
Eqs. (A11) and (A3) we have

〈�|2δ〉 = 1

2

N−1∑
i, j=1

nc∑
a,b=1

(
δi,ca min(i, j)2 − δi,ca

i j

N
2

)

=
nc∑

a=1

N−1∑
j=1

min(ca, j) −
nc∑

a=1

N−1∑
j=1

ca j

N
. (A12)

The first sum in Eq. (A12) can be written as

nc∑
a=1

N−1∑
j=1

min(ca, j) =
nc∑

a=1

⎛
⎝ ca∑

j=1

j +
N−1∑

j=ca+1

ca

⎞
⎠

=
(

N − 1

2

)
r − 1

2

nc∑
a=1

c2
a, (A13)

where we have used
∑

a ca = r. The second sum in Eq. (A12)
can be computed as

nc∑
a=1

N−1∑
j=1

ca j

N
= 1

2
r(N − 1). (A14)

Inserting Eqs. (A13) and (A14) in Eq. (A12), we obtain the
second term of Weyl’s formula:

〈�|2δ〉 = 1

2

(
rN −

nc∑
a=1

c2
a

)
. (A15)

Finally, employing Eqs. (A10) and (A15) in Eq. (A2), one
obtains Eq. (A1).

As is known from the rules of Young tableaux of su(N )
representations, columns of length N can be deleted since they
correspond to an invariant under SU(N ). This is consistent
with the formula of Eq. (A1). Indeed, by adding to a Young
tableau, a column of length N , we have

r → r + N,

li → li + 1,

nc∑
i=1

c2
i → N2 +

nc∑
i=1

c2
i . (A16)

Inserting the substitutions of Eq. (A16) in Eq. (A1), one can
check that the Casimir eigenvalue is left unchanged.

Finally, it is easy to check that in the case of the defining
representation, whose Young tableau is a single box, Eq. (A1)
gives the expected result, with the normalization consistent
with Eq. (10).

APPENDIX B: BOUND ON THE EIGENVALUE
OF THE QUADRATIC CASIMIR OPERATOR

The tensor product of 2S self-adjoint antisymmetric rep-
resentations given in Eq. (16) decomposes into different
irreducible representations. In this Appendix, we prove that
among those representations, the maximally symmetric one
of Fig. 2 has the maximum Casimir eigenvalue, which we
compute.

Due to the rules for the composition of Young tableaux,
each of the irreducible representations arising from the tensor
product has a Young tableau whose total number of boxes is
r � (2S)(N/2) = NS and whose row lengths cannot exceed
2S, li � 2S. Thus an upper bound for

∑
i l2

i appearing in
Eq. (A1) is

nl∑
i

l2
i �

nl∑
i

2Sli = 2Sr. (B1)

This bound is saturated by

li = 2S, nl = r/(2S). (B2)

On the other hand, an upper bound for the second sum in
Eq. (A1) is found using the Cauchy-Schwartz inequality on
the nc − component vectors (c1, . . . , cn) and (1, . . . , 1):(

c2
1 + . . . + c2

n

)
(1 + . . . + 1) � (c1 + . . . + cn)2. (B3)
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The number of columns in the Young tableau nc is bounded
by nc = max({li}) � 2S, and their sum is

∑
ci = r. Hence,

Eq. (B3) gives
nc∑
i

c2
i � r2

nc
� r2

2S
. (B4)

This bound is saturated by

ci = r/(2S), nc = 2S. (B5)

Inserting Eqs. (B1) and (B4) in Eq. (A1), we get

C � N + 2S

2

(
− r2

2SN
+ r

)
� NS(2S + N )

4
, (B6)

where the upper bound is obtained for r = NS. Together
with Eqs. (B2) and (B5), this precisely corresponds to the
Young tableau of Fig. 2. Its Casimir eigenvalue is most easily
computed using Weyl’s formula [Eq. (A2)] and Eq. (3), ob-
taining Eq. (22), which saturates the upper bound of Eq. (B6).
Alternatively, the Casimir eigenvalue can be obtained from
Eq. (A1), and r = NS, l1 = l2 = . . . = lN/2 = 2S and c1 =
c2 = . . . = c2S = N/2.

Finally, we observe that, since the variables {li} and {ci} in
Eq. (A1) are positive integers, as soon as we deviate from the
solution maximizing C, we decrease the Casimir eigenvalue
by a finite integer amount. In other words, there is a finite gap
O(1) in the eigenvalues of the quadratic Casimir operators
between the subspace of the representation of Fig. 2 and
the other irreducible representations arising from the tensor
product of 2S self-adjoint antisymmetric representations.

APPENDIX C: SYSTEMATIC ERRORS

In this Appendix, we show that there is no explicit depen-
dence on the magnitude of the Trotter error as a function of
N . To keep the notation simple, we will show this on the basis
of the S = 1/2 Hamiltonian, where ĤCasimir [see Eq. (19)], as
well as the orbital index can be omitted:

ĤQMC = ĤJ + ĤU

= − J

2N

∑
〈i, j〉

{D̂i, j, D̂†
i, j} + U

N

∑
i

(
n̂i − N

2

)2

. (C1)

In this Appendix, we have normalized the Hamiltonian by
the factor 1

N , such that total energy differences defining, e.g.,
the spin gap [E0(S = 1) − E0] remains constant in the large-N
limit. In particular, with the mean-field ansatz χi, j = 1

N 〈D̂i, j〉
corresponding to the Affleck and Marston saddle point [57],
the Hamiltonian reads

ĤMF = −J

2

∑
〈i, j〉

χi, j D̂
†
i, j + χi, j D̂i, j . (C2)

In this large-N limit, one will check explicitly that the spin
gap on a finite lattice is N independent, and that the energy is
extensive in the volume, V , and in N . Since gaps are N inde-
pendent, at least in the large-N limit, it makes sense comparing
results at different N but at constant temperature or projection
parameter.

In the formulation of the AF QMC method, one introduces
a checkerboard decomposition, where the interaction terms

are grouped into disjoint families of commuting operators.
This factorization introduces a Trotter discretization error,
whose N dependence we estimate as follows. To render the
calculation as simple as possible, we will consider as an illus-
tration a one-dimensional chain. In this case, the checkerboard
decomposition in even and odd bonds, b, allows us to write the
Hamiltonian as

Ĥ =
∑
b∈A

ĥb︸ ︷︷ ︸
≡ĤA

+
∑
b∈B

ĥb︸ ︷︷ ︸
≡ĤB

. (C3)

Both ĤA and ĤB are sums of commuting terms. ĥb corresponds
to a local Hamiltonian, such that it is extensive in N but
intensive in volume.

An explicit form of ĥb on a bond with legs i, j
in the fermion representation would read 1

N {D̂(i, j), D̂†
(i, j)}.

Note that to keep calculations as simple as possi-
ble, we implicitly consider a one-dimensional lattice in
which ĤA is a sum of commuting terms. For the two-
dimensional case, the checkerboard bond decomposition
necessitates four terms. We will use the symmetric Trotter
decomposition,

e−�τ Ĥ+�τ 3R̂3 = e− �τ
2 ĤA e−�τ ĤB e− �τ

2 ĤA + O(�τ 5), (C4)

with R̂3 = ([ĤA, [ĤA, ĤB]] + 2[ĤB, [ĤB, ĤA]])/24. Since ĤA

and ĤB are sums of local operators, R̂3 is also a sum of local
operators. Hence, R̂3 is extensive in the volume. By explicitly
computing the commutators, one will also show that R̂3 is

FIG. 21. Scaling of systematic �τ error for L = 4, � = 2, and
S = 1/2. For each point, we simulated with a range of different
values for �τ and fitted the energy to E (�τ ) = E0 + α�τ

2.
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extensive in N. Hence R̂3 scales as Ĥ . Note that for the nonlo-
cal Hamiltonians considered in Ref. [58], this does not apply.
We can now compute the corrections to the free energy:

FQMC = F − �τ 2 Tre−βĤ R̂3

Tre−βĤ
+ O(�τ 4). (C5)

Hence the quantity plotted in Fig. 21 corresponds to

〈R̂3〉/〈Ĥ〉. (C6)

It is intensive in N and V, such that it has a well-defined value
in the large-N limit.

APPENDIX D: BOUNDS ON THE BOND OBSERVABLE

In this Appendix, we discuss a lower and upper bound for
a bond observable

∑
a Ŝ(a)

i Ŝ(a)
j , where i and j are two distinct

lattice sites, not necessarily nearest neighbor. The bond ob-
servable can be expressed as∑

a

Ŝ(a)
i Ŝ(a)

j = 1

2

∑
a

(
Ŝ(a)

i + Ŝ(a)
j

)(
Ŝ(a)

i + Ŝ(a)
j

)
− 1

2

∑
a

Ŝ(a)
i Ŝ(a)

i − 1

2

∑
a

Ŝ(a)
j Ŝ(a)

j . (D1)

With the choice of Eq. (9), the first term on the right-hand side
of Eq. (D1) is the quadratic Casimir element Ĉ2,�i⊗� j of the
tensor product of the two su(N ) representations �i and � j , at
lattice sites i and j [compare with Eq. (10)]. The spectrum of
Ĉ2,�i⊗� j consists of the eigenvalues of the quadratic Casimir
operator of all irreducible representations to which �i ⊗ � j

reduces. An upper bound is readily found by the maximally
symmetric composition of �i and � j , which corresponds to
a Young tableau with N/2 rows and 4S columns; the proof
is identical to that of Appendix B. Being a square of a Her-
mitian operator, Ĉ2,�i⊗� j � 0. Such lower bound is saturated
by the totally antisymmetric composition of �i and � j , which
corresponds to the trivial S = 0 representation. The second
and third term on the right-hand side of Eq. (D1) are the
quadratic Casimir operators of the su(N ) representation con-
sidered here, and take the value given in Eq. (22). Inserting the
bounds on Ĉ2,�i⊗� j discussed above in Eq. (D1), we obtain

−C(N, S) �
〈∑

a

Ŝ(a)
i Ŝ(a)

j

〉

� C(N, 2S)/2 − C(N, S) = NS2

2
. (D2)
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