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Flux-induced midgap states between strain-engineered flat bands

Dung X. Nguyen®,! Jake Arkinstall ©,?> and Henning Schomerus

2

I Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
2Department of Physics, Lancaster University, Lancaster LAl 4YB, United Kingdom

M (Received 24 May 2023; accepted 14 September 2023; published 25 September 2023)

Half-integer quantized flux vortices appear in honeycomb lattices when the signs of an odd number of
couplings around a plaquette are inverted. We show that states trapped at these vortices can be isolated by
applying inhomogeneous strain to the system. A vortex then results in localized midgap states lying between the
strain-induced pseudo-Landau levels, with 2n + 1 midgap states appearing between the nth and the (n 4 1)th
level. These states are well-defined spectrally isolated and spatially localized excitations that could be realized in
electronic and photonic systems based on graphenelike honeycomb lattices. In the context of Kitaev’s honeycomb
model of interacting spins, the mechanism improves the localization of non-Abelian anyons in the spin-liquid
phase, and reduces their mutual interactions. The described states also serve as a testbed for fundamental physics
in the emerging low-energy theory, as the correct energies and degeneracies of the excitations are only replicated
if one accounts for the effective hyperbolic geometry induced by the strain. We further illuminate this by
considering the effects of an additional external magnetic field, resulting in a characteristic spatial dependence
that directly maps out the inhomogeneous metric of the emerging hyperbolic space.
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I. INTRODUCTION

Topological defects attract attention as they can give rise to
robust states that are both spatially and energetically well lo-
calized [1-3]. The spatial localization arises from the pinning
of the states to surfaces, edges, or points, while the energetic
localization often takes the form of exact zero-mode quantiza-
tion in the middle of a gap, as enforced, e.g., by a particle-hole
or chiral symmetry. In many contexts, the topologically in-
duced states carry unconventional spin, charge, and exchange
statistics [4—12].

A prominent example with possible applications in topo-
logical quantum computations are the anyons in Kitaev’s
honeycomb model, an interacting spin system that is exactly
integrable when the spin operators are expressed in terms
of Majorana fermions [13—15]. In this effective description,
the system is equivalent to a homogeneously strained ver-
sion of graphene that is functionalized by half-integer flux
vortices, corresponding to a sign change of an odd number
of coupling constants around a plaquette. The homogeneous
strain opens a gap with anyonic low-energy excitations that
can be used to realize the toric code, a paradigmatic platform
for topologically protected quantum computation [16]. The
anyons are bound to the flux plaquettes, and the configurations
are topologically protected by time-reversal symmetry, which
enforces the coupling constants to remain real. Furthermore,
when the gap is closed the system realizes a spin liquid with
non-Abelian low-energy excitations that again depend on the
flux-vortex configuration [17].

Here, we combine the topological features of such vor-
tex states with a well-known time-reversal-invariant analog
of a magnetic field, which appears when the effective strain
in the system becomes inhomogeneous [18-22]. This pseu-
domagnetic field leads to the formation of pseudo-Landau
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levels (pLLs), which have been realized in experiments on var-
ious honeycomb systems [23—32]. Notably, the microscopic
model dictates an optimal geometry and maximal strain value
at which the system becomes exactly solvable in the absence
of a vortex [30,33,34]. The pLLs then become exactly degen-
erate, implying hidden topological and geometric features in a
finite, spatially inhomogeneous system. Identifying the nature
and consequences of these features is a central goal of this
work. In particular, we demonstrate that in the interplay with
such inhomogeneous strain, a vortex induces an additional
sequence of isolated states that appear in the gaps between
the pLLs—one state between the zeroth and first pLL, three
states between the first and the second pLL, and in general
2n + 1 states between the nth and the (n 4 1)th pLL (n > 0;
the sequence is repeated symmetrically for negative energies).

We develop these insights by placing the problem into
the broader context of the interplay of strain and magnetic
fields. This leads us to obtain three key results, which are
illustrated in Fig. 1. First, we will establish the consistency of
the microscopic model with the appropriate continuum theory,
which takes the form of a Dirac equation in a curved hy-
perbolic space [35-38], even though the system is physically
flat. The emerging curvature explains the exact position of the
pLLs in the optimal strain configuration [see Fig. 1(a)], which
differs from the conventional estimate obtained by simply
reinterpreting the pseudomagnetic field as a valley-dependent
magnetic field (marked in red). Furthermore, we show that
the exact expression for the degeneracy of these levels is
consistent with the relativistic Wen-Zee shift [36—38], which
is a topological characteristic of relativistic Landau levels.
Second, we show that the emerging geometry induces a spatial
dependence on the effects of an additional external magnetic
field, resulting in a broadening of the levels as observed in
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FIG. 1. Strain dependence of the energy levels of (a) a triangular honeycomb flake, (b) in the presence of an additional background magnetic
field B = 0.05Bm.x, and (c) with a half-integer flux vortex instead placed into the center of the flake. The flake measures 90 hexagons across
and is terminated by zigzag edges, conforming to the geometry in Fig. 2. The strain is given in terms of the strength 8 of the dimensionless
pseudomagnetic field [see Eq. (2)], while the eigenvalues are given in units of the coupling strength ¢ of the pristine system. As we show in
Sec. 11, the precise energies and degeneracies of the levels in (a), marked by the horizontal and vertical lines, reveal the effects of an emergent
curvature in the continuum description of the model, including the Wen-Zee shift (vertical tick marks show the results without these shifts).
The underlying hyperbolic geometry leads to the broadening of levels in (b), which is in striking contrast to the splitting of the levels expected
in conventional low-energy theory, as we describe in Sec. IV. Flux vortices induce a characteristic sequence of midgap states (c), which we
describe in Sec. V, while Sec. VI contains the application to the Kitaev honeycomb model of interacting spins.

Fig. 1(b). As we will see, this effect directly reflects the inho-
mogeneous metric of the emerging geometry, which naturally
becomes singular at the boundaries of the system. Third, we
show that a flux vortex induces the characteristic sequence of
midgap states already indicated above, which in Fig. 1(c) is
illustrated for the case of a half-integer flux vortex placed into
the center of the system. For this, we generalize the insights
of Refs. [30,33,34] to obtain an exact construction of pseudo-
Landau levels in the microscopic model including a flux
vortex, and present detailed derivations of the midgap states in
the continuum theory, where both aspects again complement
each other consistently. As mentioned, such half-integer flux
vortices are of particular interest because they naturally appear
in the Kitaev honeycomb model of interacting spins. Supple-
menting our findings for such vortices by numerical results
for the many-body case, we further establish that the strain
also improves the spatial localization of the corresponding

many-body excitations, and reduces the range of their mutual
interactions.

The paper is organized according to the underlying physi-
cal field configurations, which are introduced into the model
as described in Sec. II. In Sec. I1I, we establish the consistency
between exact results in the optimally strained tight-binding
model and the continuum theory with an emergent hyper-
bolic geometry. In Sec. IV we describe how this geometry
modifies the interplay with an additional external magnetic
field. In Sec. V we describe the formation mechanism of
the flux-pinned midgap states in the single-particle picture,
while Sec. VI considers the effective interactions of the states
and contains the application to the Kitaev honeycomb model
of interacting spins. In the concluding Sec. VII, we discuss
the general implications of these findings for the interplay of
topology and geometry in finite inhomogeneous systems, and
identify further applications.
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FIG. 2. (a) Zigzag terminated triangle of a honeycomb lattice in the coupling configuration (2), which is indicated by the thickness of the
lines. This system supports precisely flat pseudo-Landau levels, which serve as the reference for the additional effects from magnetic fields.
We include these magnetic fields via a Peierls substitution either as (b) a uniform background contribution, corresponding to fixed plaquette
factors m,, or as (c) localized vortices, including half-integer vortices that naturally appear in the theory of the Kitaev honeycomb model of

interacting spins.

Appendix A provides background on the continuum theory,
Appendixes B and C apply this to derive results for systems
with uniform pseudomagnetic and magnetic fields, and Ap-
pendix D contains additional numerical results.

II. MODEL AND CONFIGURATIONS

The general theme of this paper is the interplay of magnetic
fields and emergent geometry in lattice systems with inhomo-
geneous coupling configurations. The microscopic description
is provided by a tight-binding Hamiltonian

H=Y t;yv;, (1
(i)

where indices i and j enumerate points on a honeycomb
lattice, which we define with bond length a = 1 (see Fig. 2).
As indicated there, the lattice is bipartite, allowing to assign
sites to two sublattices A and B. The field operators v; obey
an algebra that depends on whether the underlying system is
fermionic, bosonic, or anyonic. As the system is quadratic,
the corresponding single-particle picture only depends on
the nearest-neighbor couplings #;; = 7;, which we specify to
combine the contributions of effective pseudomagnetic and
magnetic fields, including flux vortices at designated posi-
tions.

In the pristine system all couplings are equal, #;; =t with
real 7, resulting in the conventional dispersion relation E (k) =
+1|1 4 2¢%/2 cos(+/3k, /2)| of graphene [39]. In the low-
energy theory, this dispersion can then be approximated by
Dirac cones |E| = vr|k F Kg| around the K and K’ points in
the Brillouin zone, with vy = 3/2 and Ko = (+47/3+/3, 0).
A precisely uniform pseudomagnetic field of dimension-
less strength B is obtained by modifying these couplings to
[18-20,40-43]

t,'j=t|:l—§pij-r,~j:| =1, )
where p;; is the bond vector from site i to site j and r;; is the
bond center, both taken in the pristine (unstrained) system.
Notably, in this coupling configuration, commensurate values
B =4/N with integer N enforce a system of finite size, as
the couplings drop to zero around the edges of a triangle
with zigzag edges [33], leading to the geometry illustrated in
Fig. 2(a). The microscopic model is then exactly solvable [34],

displaying a sequence of precisely flat pLLs that serves as the
reference point for all results in this paper. We discuss this
reference configuration in detail in Sec. III, where we establish
its connection to an emerging hyperbolic geometry.

Our subsequent focus is on the interplay of these strain-
induced features with additional magnetic fields, which either
act uniformly across the system, as illustrated in Fig. 2(b)
and discussed in Sec. IV, or are localized into flux vortices,
as illustrated in Fig. 2(c) and discussed in Sec. V. In the
microscopic model, these effects are included by a standard
Peierls substitution #; = tioj exp(ii;) with ¢;; = —¢;;i [44].
The physical effects are then captured by the flux factors
T, = ]_[p exp(i¢;;), defined by traversing the bonds around
the plaquette in a loop with mathematically positive direction
as shown in the inset of Fig. 2(b). From all configurations of
phases ¢;;, only these plaquette fluxes are physically signif-
icant when the local U (1) gauge freedom of the fields v; is
taken into account. A uniform background magnetic field is
obtained by setting the fluxes to a common value throughout
the system [see Fig. 2(b)], while localized vortices of arbitrary
flux are obtained by modifying the couplings along a line
from a plaquette to the edge [see Fig. 2(c)]. In particular,
half-integer vortices are modeled by inverting the sign of some
of the couplings, 1;; = ai_,«t,-oj, o0ij = 0j; = 1. The plaquette
operators 77, = [ | ,»0ij then take the values +1 in the absence
of a vortex, and —1 in the presence of a vortex. By adding the
phases ¢;; of such configurations, they can be combined to
obtain general vortex patterns above a background magnetic
field, while the pseudomagnetic field continues to determine
the coupling strengths |7;;| = tl-oj according to Eq. (2).

III. PSEUDO-LANDAU LEVELS AND HYPERBOLIC
GEOMETRY

We first describe the correspondence of the description of
pseudo-Landau levels in the microscopic model and in the
appropriate continuum theory. This theory takes the form of
a Dirac equation in a curved hyperbolic space [35-38], which
we review in Appendix A. The emerging curvature character-
istically affects the energies and degeneracies of the levels,
allowing us to recover results from the microscopic model
exactly, as we discuss now.

We establish the consistency of both descriptions in the op-
timally strained reference configuration, forming a triangular
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flake terminated by zigzag edges as illustrated in Fig. 2(a).
As mentioned in the definition of the model, this geometry
maximizes the range of the pseudomagnetic field 8 so that
the couplings tl-oj /t > 0 remain positive throughout the sam-
ple. Figure 1(a) shows how pLLs form as a function of the
pseudomagnetic field strength in a triangle with N = 90 sites
along each edge. Within conventional low-energy theory that
ignores the curvature effects, the pseudomagnetic length is
given by £ = 1/4/]PB], and the energies are predicted to cluster
into pLLs at

E, = v sgn (n)+/28|n|, 3)

enumerated by an integer index n with |n| < N. However,
we can improve beyond this simple estimate. At the maximal
value 8 = Bmax = 4/N, the microscopic model can be solved
exactly, and the pseudo-Landau levels become precisely flat
[30,33,34] (we recapitulate the construction in Sec. VA 1).
The energies then take the exact values

E,gmaX) = (2ug/N)sgn (n)+/|n|2N — |n|), @

which systematically deviate from E, as the level index in-
creases. Furthermore, the nth pLL contains exactly

D, =N — |n| (5)

degenerate levels, displaying a systematic depletion that is
absent from conventional Landau levels.

These exact energies and degeneracies match perfectly
with the continuum theory. Applied to the coupling config-
uration (2), this induces not only a uniform pseudomagnetic
field of strength B = §, but also a constant negative curvature
K = —pB?/4 (see Appendix B). The exact energy levels (4)
then correspond precisely to the Landau levels [35,43,45]

E, = vpsgn(n)y/2|nB| + n2K (6)

of Dirac fermions on a hyperbolic surface with a constant
negative curvature

2
4
’C — _ max _ 7
4 N? M
and a pseudomagnetic field
4
B = ,Bmax = ]va (8)

which are both induced by the space-dependent coupling pro-
file (2). The difference between the exact levels including
the curvature and the approximation ignoring the curvature
is illustrated in Fig. 3.

Furthermore, the degeneracy depletion of the Landau levels
exactly matches the relativistic Wen-Zee shift [35-38],

Dn=D0<1+|n|%>=N<l—|;\l,—|>. ©)

Here, the degeneracy Dy = N of the zeroth pLL can be in-
ferred from the sum rule Zn D, = N2, accounting for all
states in Hilbert space [46].

We note that in the tight-binding model, this degeneracy
arises because the specified geometry contains exactly N more
sites on the A sublattice than on the B sublattice. Based on
the chiral symmetry of the model, this difference fixes the

E/t

0 10 20 30 40 50

FIG. 3. System-size dependence of the pLL energies (6) at max-
imal strain B, in the continuum theory with curvature (thick blue
curves), which exactly recovers the result (4) of the microscopic
model in the optimally strained geometry. The red lines show the
conventional estimate (3) of these levels when the curvature is ig-
nored. For clarity, we only show the levels with indexn =1, ..., 5.

number of zero modes independent of the coupling configura-
tion. Indeed, the curvature does not break the chiral symmetry
of the continuum theory, and therefore also preserves the
consistency of other symmetry-enforced features, such as the
symmetry of the level spectrum itself. Furthermore, the theory
recovers that the zeroth pLL is sublattice polarized on the
A sublattice while all other pLLs have equal weight on both
sublattices [30,33,42], which again conforms to the sum rules
for these subspaces.

These observations are remarkable because we derived the
continuum theory by expanding around the center of the sys-
tem, where we can treat both low-energy valleys separately.
The theory then approximates the system as a hyperbolic disk
of radius » = 4/|B|, defined by the distance where the metric
becomes singular, which happens to coincide with the finite
system size of the optimally strained microscopic system.
Choosing a different expansion point, we can extend these
considerations qualitatively to capture additional features,
such as the opening of a local gap in the regions around the
corner of the triangle. This then explains the spatial support of
the low-lying pLLs, which fill out an approximately triangular
region in the center of the system [30,33] (see Fig. 11 in
Appendix D).

Overall, the continuum theory therefore captures global
and local features of the pLL spectrum and states, and reveals
their connection to geometric curvature effects. In turn, the
underlying microscopic model realizes these often elusive
effects precisely. This provides the platform on which we can
now include the effects of additional magnetic fields, extended
across the system or localized in vortices.

IV. INTERPLAY WITH A UNIFORM EXTERNAL
MAGNETIC FIELD

As we establish next, the strain-induced hyperbolic geom-
etry affects the interplay of the pseudomagnetic field with an
additional external magnetic field B, even when the latter is
physically uniform across the system. In general, both types
of fields can be distinguished by their symmetry properties.
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FIG. 4. Effect on the pLLs from an additional external magnetic field, demonstrating the curvature-enforced broadening described in the
text. (a) The upper half of the numerical level sequence in an optimally strained triangle of size N = 90, subject to an additional magnetic field
of strength B = 0.01Bax. (b) Comparison of the numerically obtained energies (data points) to the predicted broadening intervals (shaded
regions) for pLLs 1-5, at B/Bmax = 0.01, 0.05, 0.1 (left to right). (c) Detailed broadening of the third pLL, for B/Bmn.x = 0.05, 0.01, 0.05
(gray, orange, and blue). The solid black line shows the exact position (6) of the pLL at B = 0, while the dashed line is the conventional

approximation (3) ignoring the curvature.

A real magnetic field breaks time-reversal and parity symme-
try, and enters with the same sign in the two sectors of the
continuum theory, which are associated with the low-energy
valleys near the K and K’ points. Furthermore, as in these
sectors the role of the sublattices is interchanged, the zeroth
Landau level from a magnetic field is not sublattice polarized.
In contrast, the pseudomagnetic field preserves both symme-
tries, but switches its sign between both valleys, and therefore
supports the sublattice-polarized zeroth level, as discussed
above. The conventional low-energy theory would therefore
predict that an additional magnetic field splits each pLL into
two distinct levels. However, as we will discuss now, the
geometric curvature changes this picture drastically, so that
one instead obtains continuously broadened pLLs that remain
centered at the value without a magnetic field, as already
illustrated in Fig. 1(b).

As derived in Appendix C, this additional feature becomes
visible when one combines the two fields in the continuum
theory. We find that the curvature remains intact at =
—B? /4. However, the combined effective field

BX=p+B, BX=-p+B8, (10)
seen by Dirac fermions near K and K’ points, features an
effectively space-dependent magnetic field

~ B
B=— =B|l - (> +)")/16].

NG

As indicated, this spatial dependence directly tracks back
to the inhomogeneous metric of the system, which is encoded
in the quantity g. We note that this expression directly encodes
the distance » = 4/|8| at which the metric in the continuum
theory becomes singular. The effective magnetic field B then
varies from B near the center to zero near the boundary of the
system.

At the center of the sample, the combined effective
field therefore takes the valley-dependent magnitude |B| =
| &£ B + B|, but at the boundaries it reduces to the valley-
independent magnitude |B| = || from the pseudomagnetic
field. As the effective magnetic field varies slowly over the
sample and the underlying flat-band states can be defined
with a local support, we obtain the prediction that, instead of

Y

becoming split, the energies become spread out between two
values

2
EX = vpsgn (”)\/2|"(,3 +B)| - ”2%» (12)
2
Ef' = vpsgn (n)\/2|n(—,3+B)| —nzﬂZ, (13)

where we again included the contributions from the curva-
ture. This prediction is expected to be valid as long as the
perturbed Landau levels remain well separated, which implies
that |n| < |B/B|, and hence also that the magnetic field is
not too strong. Higher up in the spectrum, we encounter a
continuous spectrum, which can be physically attributed to
magnetic edge states filling out all gaps (see Fig. 10 for further
illustration).

This picture is confirmed in Fig. 4, where we compare
the predicted broadening to numerical results for optimally
strained triangles with an additional magnetic field of vari-
ous strengths. This broadens the levels as expected, with an
inflection point at the energy (6) of the system without the
additional field. As already mentioned, this behavior is in
striking contrast to the conventional low-energy prediction
without curvature, which would result in the splitting of each
pLL into two distinct levels. A well-defined splitting can only
be observed when the system is studied locally, as done exper-
imentally, e.g., in Ref. [26], and this observation also prepares
our study of flux vortices in Secs. V and VI.

V. FLUX VORTICES

As already mentioned in the Introduction, the interplay of
strain and magnetic fields takes a particularly striking form
when the latter are localized in flux vortices. As illustrated in
Fig. 1(c) for a half-integer flux vortex placed into the center of
the system, this induces a characteristic sequence of midgap
states, where we find one state between the zeroth and first
pLL, three states between the first and the second pLL, and
in general 2n + 1 states between the nth and the (n 4 1)th
pLL. This goes along with a reduction of the degeneracy in
the pLLs by 2|n| (therefore, the nth pLL contains N — 3|n|
states). This indicates that from each pLL, |n| states each are
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FIG. 5. Division of an optimally strained triangle into zigzag
chains labeled by /, as used for the construction of exact pLL states
in Sec. V A. The amplitudes specify a state in the first pLL for system
size N = 5. This state is supported by the blue trapezoidal region, and
hence is unaffected by the indicated flux vortex, which is generated
by a phase shift of the deep red coupling.

donated to the gap above and below. For example, the seven
midgap states between pLLs 3 and 4 then correspond to the
combination of three states missing from the third pLL and
four states missing from the fourth pLL. In the following, we
will confirm this picture in detail. For this, we first explain
the modified degeneracy pattern of the pLLs microscopically
in the optimal strain configuration. Then, we utilize the con-
tinuum theory to describe the formation of the midgap states
themselves.

A. Flux-modified pLL degeneracy

To explain the modified degeneracy pattern of the pLLs
in the presence of a flux vortex, we adapt the construction
principle of these states in the case without a flux [34]. As
further shown in Ref. [30], the original construction can be
used first to determine a zero mode localized on the A sites
along one of the edges of the triangle, and then construct
the remaining zero modes recursively by including A sites
on successive parallel lines. With Ref. [34], the states in the
finite-energy pLLs are then obtained by combining such solu-
tions recursively from triangles of different sizes, where one
level is lost in the passage from one pLL to the next.

To adapt this formalism to the system with a vortex, we
proceed in two steps, each presented in a separate section.
We first generalize this procedure to generate exact pLL states
with compact trapezoidal support. Then, we apply these in-
sights to combine states from several trapezoidal regions that
suitably cover the system while avoiding the position of the
flux vortex, and obtain from this the degeneracy of the exact
pLL states.

1. Exact pseudo-Landau level states with trapezoidal support

To obtain exact pLL states with a trapezoidal support, we
bring the results from Ref. [34] into an explicit form, where
we are guided by Refs. [30,33]. This is achieved by dividing
the triangular system into N zigzag chains of alternating A and
B sites, running parallel to one of the edges, as illustrated in
Fig. 5. Along the /th chain, we denote the amplitudes on the
Assitesas A;, (m=1,...,1) and on the B sites as By ,, (m =

1,...,1 —1). As indicated, each chain contains one more A
site than B sites. Furthermore, along this chain the couplings
alternate as

3t
ﬁ(l_1’1’1_2’2"“’2’1_2’1’1_1)’ (14)

while the coupling between chains / and / + 1 is given
by 3t(N —[)/N. This suggests to set + = N/3 so that all
couplings are integers, which we adopt from here on. The
eigenvalue equation can then explicitly be written as

EAl,m =(- m)Bl,m + (m — 1)Bl,m—l + N - l)BZ-&-l,m’
(15)

EBijm = (I = m)Ajm +mAp i1 + (N =1+ DAy . (16)

We next construct the exact zero-energy states of the sys-
tem. Because of the chiral symmetry and the imbalance of
sites on both sublattices, these are all localized on the A sites.
Throughout the system, we then have to fulfill the condition

0=U—-—m)Ap+mA; 1 +(N—=1+ DA, (A7)

which provides a solution of Egs. (15) and (16) with vanishing
amplitude B, ,,. We find the explicit solutions

N—k\[(k—1
AVOK = (1)t : 18
=1 m—1)\n_1 (18)
where (;) denotes binomial coefficients, N denotes the system
size,and k = 1, ..., N labels the different states.

Importantly, each of these states has finite amplitudes on
only k chains adjacent to the edge, covering a trapezoidal
region with N — k + 1 < [ < N. Such a state remains an exact
solution even when we remove or modify parts of the system
away from its support.

Starting from these states, the finite-energy pLLs can be
constructed recursively by setting [34]

Nont1k N—1l,nk N—lnk
Al,r: = - m)Azq,n’: + (m — I)Alfl,n:lfl

+ (N = DAY, (19)

N.n+1,k __ N—1,nk
Bl,m —EN,;H-IA[,l’m . (20)

This automatically fulfills Eq. (15), while consistency
with Eq. (16) enforces the quantization condition Ey, =
sgn (n) /|n|(2N — |n|). Furthermore, each level contains one
fewer state, giving the degeneracy D, = N — |n|, with —N <
n<N.As Y. D,=N? equals the number of sites on the
triangle, this exhausts all states in the Hilbert space of the
system.

Starting the recursion with states from Eq. (18), we see that
each index k delivers a sequence of pLL states with |n| < k.
Just as the initializing zero-energy state, these states further-
more have a finite support in a trapezoidal region of width k, as
we illustrate by an example in Fig. 5. These states, therefore,
remain exact solutions when the system is truncated to these
regions, and can be directly transferred to a triangular system
with an additional flux vortex placed outside the trapezoid, as
again illustrated in the figure. This is our main technical result
from this construction.
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FIG. 6. Construction principle of exact pLL states in an opti-
mally strained triangle with a flux vortex, marked in red, which is
obtained by a Peierls substitution along the line of the shaded plaque-
ttes. The desired states are obtained by adopting their construction
principle in absence of the vortex, which can be used to produce a
basis of zero modes with trapezoidal support. We use this to construct
three trapezoidal systems whose pLLs are exact solutions of the
triangle with the vortex, but are not affected by its existence (the
remaining shaded plaquettes do not carry any flux, so this also holds
true for subsystem 1). The combined Wen-Zee shift from the three
systems exactly accounts for the observed number of midgap states
produced by the vortex.

2. Combined degeneracy from a trapezoidal covering

The trapezoidal support of the states constructed above
implies that their construction carries over to a system with a
flux vortex, as long as one avoids crossing the corresponding
plaquette. We therefore proceed as illustrated in Fig. 6, and
approach the vortex from three sides. This produces three
separate sets of N; zero modes that sum to ) ;N; = N. As
indicated in the figure, each set corresponds to the zeroth pLL
of a system of reduced size, with the shape modified into a
trapezoid. The string of modified couplings connecting the
flux plaquette to the boundary only affects one subsystem, and
crosses it completely, so that it can be gauged away, subject to
a gauge transformation ¥; — exp~ ; for all sites below the
string.

For each of these subsystems, we can then construct N; —
|n| states in the higher pLLs recursively as in the original
approach, where again one level is lost in the passage from
one pLL to the next. These particular states then provide
solutions of the triangular system including the vortex, for
arbitrary flux (the subsystems also contain additional states,
as their combined Hilbert space dimension is larger than in
the original system). The three sets of states all feature sites
in their support not covered by other states, so that they are
linearly independent. Therefore, the degeneracy of each pLL
in the triangular system with the vortex obtained in this way is
>".N; —|n| = N — 3|n|. This recovers the observed reduced
degeneracy, with the deficit of states given by the midgap
states.

As we will show next, these midgap states can be exactly
accounted for in the continuum theory. Specifically, from each
pLL in the vortex-free system, |n| such states are donated to
the upper gap, while an equal number of || states are donated
to the lower gap. Therefore, in the continuum theory, the same
modified degeneracy of pLLs is obtained by a remarkable
combination of the Wen-Zee shift with the number of vortex-
induced midgap states.

B. Vortex states

We now turn our attention to the midgap states in the
strained system. For this, derive analytical exact solutions in
the continuum theory, for a flux of arbitrary value ¢ that is
placed into the center of the system. Over the first sections, we
obtain the energy spectrum and wavefunctions of the vortex
states in a system with a uniform effective magnetic field
and uniform curvature. In the last section we combine these
insights to obtain the energies of the states in the optimally
strained system, and compare this with numerical results.

1. Vortex states near the K point

We initially ignore curvature effects, and derive solutions
for vortex states in the pseudomagnetic field only (B = 0),
where we assume > 0. We define the complex coordinates
7= \/»2;153()6 + iy), with £ = l/\/E, while B is the strained
induced magnetic field near the K point given by Eq. (10).
The effective Hamiltonian for a fermion near the K point can
then be written as

2 ot
Hv:_UF\/_<9 a>’ @1
¢g \a 0
where we define the creation and annihilation operators
a=iD;, a'=iD,, (22)

and the covariant derivatives

Y] £
D, = _Z(Dl —iDy), D:= —B(Dl +iDy), (23)

V2 V2
with D; = 9; — iA;. If we insert a vortex with arbitrary flux
© =38 x ¢o (|6] < 1/2) at the center of the system, where
¢o = 2m is the quantum flux, then the modified gauge field
has the form

B

_y_(sry_f Ay =

B +8x
_x QE—
2

Ax:_ s
2 r2

(24)
with r = \/m the distance from the center. We have the
commutation relation
[D.,D;] =[a,a"] = 1. (25)
Using the identity
ata(z"17%e?)

(=8 4+ 2a1 — 222)(—6 — 2a12)
= — z
477

“zee 2 (26)

where we defined 7 as the complex conjugate of z, we find that
Hamiltonian (21) admits vortex states with energy

E) s = Avp+y/(2n +26)B,

The corresponding states are of the form

A=+l 7)

m + 8 m
wn+8 = (_)\||:_ 1 >+8>m) (n 2 1)’ (28)

where the states in the components satisfy

a'aln+8) = (n+8n+8),  (1=0). (29
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The explicit coordinate form of the normalizable wavefunc-
tion is given by
m
s .8 . -
n4 8= Y e IS (0 < <), (30)
J=0

where the coefficients c; satisfy the recursion relation
JI=6—(m—m+ jlc;=m+1—j)c;—. (G

There are n + 1 normalizable states that satisfy Eq. (29),
which translate into n eigenstates with wavefunction (28).
Each of these has the same energy, given by Eq. (27).

In addition to these states, we still have the usual Landau
levels at energy E = Avp+/2Bn. These are described by the
family of wavefunctions

where the wavefunction
0); = f(2)(z2) e/ o3

of the zeroth Landau level satisfies a|0)y =0 and f(z) is a
holomorphic function of z, while the higher Landau levels are
obtained from the definition

1
)y = ﬁ

2. Vortex state near the K’ point

@h"0);. (34)

Near the K’ point, the pseudomagnetic field switches sign
in the Dirac Hamiltonian, but the external magnetic field is
preserved [41]. Meanwhile the gauge potential

B y B X
AXZ—Ey—(Sr—Z, Ay:Ex+8r_2’ (35)
reads the same as Eq. (24), and B is the strained induced
magnetic field near the K’ point given by Eq. (10). As 8 > 0
now implies B < 0, the roles of creation and annihilation
operators become interchanged. We can repeat the calculation
to obtain the eigenenergies

E’ s = Avpy/(2n — 28)|B),

and states

A==l (36)

mo __ 1 |l’l e 8);;
1//;1_5 - E(_km _ 6);[ (I’l = 1)a (37)
with the explicit form of the normalizable wavefunctions now

given by

m
I+ 8), =Y ez T TER (0 < m < ),
j=0
(38)

where the coefficients c; now satisfy the recursion relation
—j(=8+(m—m+ ) =m+1-j)_,. (39)

There are again n eigenstates with wavefunction (37), each
having the energy given in Eq. (36).

Again, we still have the usual Landau levels at energies
E/* = )\vr+/2n|B]|, whose wavefunctions

: 1 (In—1)
= M), A=+l 40
v \/E ( _Mn)} ) “0)
now follow from the definitions

, 1

Iny = =@ 10y 41)

and

10); = f(2)(22)"?e /2, (42)

while f(Z) now is an antiholomorphic function of Z.

In the case § = :i:% of a half-integer vortex, the spectra
of the vortex states near the K and K’ points are identical.
However, for general values of § this degeneracy is lifted.
Therefore, between Landau levels n and n + 1 there are n + 1
vortex states with energy E,;;_s that come from the K’
valley, and n such states with energy E,  ; that come from
the K valley. From the explicit forms of their wavefunction,
Egs. (30) and (38), we also see that with increasing n they
contain higher powers of z and Z, so that the expectation value
(r) = £5(\/zZ) of their radius increases. At small n, the vortex
states are tightly bound to the vortex.

3. Curvature effects

Next, we consider the additional effects of a constant
curvature X and an additional uniform magnetic field in 5.
Following Ref. [35], one can show that

(H,(B, K))*

_(H(A " K)-B+ & 0
‘( 0 Hs(A+,IC)+B+§>’ (“43)

where H(A, ) is the Schrodinger Hamiltonian of a non-
relativistic particle on a Riemann surface with a constant
curvature, which couples to a background vector potential
A as defined in Ref. [35]. The gauge potential A" gives a
vortex flux 8¢ at the origin and a constant magnetic field
B+ % Similarly A~ gives a vortex flux §¢y at the origin and
a constant magnetic field B — % The eigenvalue of Eq. (43)
that is consistent with the energy of vortex states (27) at C = 0
is given by

(E,LS(IC))2 =20z (|n| + O)IB| + vi(In| + 8K, (44)

which implies

A==l
(45)

E () = Avpy/2(Inl + 8)IB| + (In] + 8)2K,

These expressions are consistent with Egs. (27) and (36) in
the limit /C = 0, and with Eq. (6) in the limit § = 0.

Similarly, the energy of vortex states near the K’ point
including the constant curvature is

A==l
(46)

EP 5(K) = 2vpy/2(n] — 8)IB] + (In] — 82K,
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FIG. 7. Formation of flux-induced midgap states in an optimally
strained triangle (N = 90), as a function of the flux ¢ in a vortex
placed at its center. (a) The analytically predicted midgap energies
from Egs. (47) (orange) and (48) (green) along with the pLL energies
in Eq. (6) (blue) and (b) the numerical result from the microscopic
model.

These are our main general results for the vortex states in the
continuum theory. We next apply these to the system in the
optimal strain configuration.

4. Application to the optimal strain configuration

Finally, we apply the obtained analytical results for the
vortex states to the optimally strained system, for a flux of
arbitrary value ¢ = § x ¢y. Given the strain-induced mag-
netic field B = B and curvature K = —%2, for each valley, we
obtain a sequence of midgap states with energies following
from Eqgs. (45) and (46), giving

2 p2
® ©\ B
Eg’ip,n = vpsgn (n)\/2|<lnl + _271)'3| - (Inl + —2ﬂ> T

(47)

: ¢ o\’ B2
EE , = vrsgn (n)\/2|(|n| - E)f" - (|n| - g) -

(48)

These expressions reflect that the flux seen in the two valleys
is the same, while the pseudomagnetic field strength takes op-
posite values. For ¢ — 0, the energies reduce to the positions
of the pLLs [Eq. (6)], so that the index n traces the origin of
these states. The flux then shifts the quantization condition for
the midgap states, consistent with the extra phase picked up on
a cyclotronlike orbit around the vortex, which is fully borne
out by the analytical form of the derived wavefunctions. Fur-
thermore, each of these energies describes |n| midgap states,
which in the continuum theory are exactly degenerate. Within
each gap, we therefore find |n| midgap states arising from one
valley, and |n| + 1 states arising from the other valley, which
accounts for all the expected states.

These predictions are confirmed in Fig. 7, where we com-
pare Egs. (47) and (48) with numerical results for an optimally
strained triangle for size N = 90, as a function of the flux ¢
in a vortex placed at the center of the system. We note that

each valley produces a symmetric spectrum, in keeping with
the chiral symmetry of the system. We also see that the midgap
states from different valleys become degenerate at half-integer
flux, ¢ = . According to Egs. (47) and (48), within each gap
the energies of states donated from both valleys then indeed

. . K _ K/ o e
coincide, Egap’n = Egap,n 41> glving

ES®) = (2up /N)sgn (n)/(In| + 1/2)2N — |n| — 1/2)
(49)

at maximal strain. These levels are indicated by the lines in
the bottom panel of Fig. 1(c).

As we mentioned in the Introduction, such vortices appear
naturally in the Kitaev honeycomb model of interaction spins,
leading to localized excitations with unconventional particle
statistics. We therefore now turn our attention to the effects of
the strain on these interactions.

VI. VORTEX SPECTROSCOPY AND THE KITAEV
HONEYCOMB MODEL

We now combine the insights from the previous sec-
tions and investigate the position-dependent interplay of flux
vortices, first in the single-particle picture, and then in the
application to the Kitaev honeycomb of interacting spin [47].
Guided by our discussions in Secs. III, IV, and V, we expect
that the flux vortices allow us to probe the local physical
features of the system, such as the opening of a local gap in the
triangle corners, and the inhomogeneous emerging metric that
reduces the effects of a magnetic field near the boundaries.
Our particular attention is on the localization of the vortex
states themselves, as this is directly influenced by the inhomo-
geneous strain, and induces the most characteristic energetic
signatures.

A. Single-particle picture

We first establish these effects in the single-particle pic-
ture. The explicit form of the wavefunctions in the continuum
theory demonstrates that the pseudomagnetic field localizes
the midgap states at the flux vortex, where the localization
length is given by the pseudomagnetic length £ = 1/./[B].
Each cluster contains a maximally localized state, while ad-
ditional states are reminiscent of excited states within an
effective potential well. This general picture is confirmed by
our supplementary numerical results, depicted in Fig. 12.

This observation suggests to probe the spatial localization
of these states spectroscopically by placing the vortices at
different positions. Figure 8(a) depicts the energetics when
a vortex is placed along a line from the edge to the origin.
The midgap states appear in well-defined transitions, denoting
the positions where they move fully into the system. In turn,
we can interpret this effect as a lifting of their degeneracy
as the states are moved toward the edge of the system. This
degeneracy lifting, therefore, reveals the differing finite extent
of the states, which is consistent with the described sequence
of states within each cluster.

In Fig. 8(b) we show the energetics for two vortices, one
placed into the center and another moved in from the side.
This reveals that each of them pins states separately as long
as their extent does not significantly overlap. Such multivor-
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FIG. 8. Single-particle energy levels in an optimally strained tri-
angle of size N = 90, as a function of vortex positions. (a) A single
half-integer vortex is placed at a position along a line from the edge to
the center. (b) The system contains an additional half-integer vortex
fixed at the center.

tex configurations appear naturally in the Kitaev honeycomb
model [48-50], to which we turn next.

B. Kitaev honeycomb

In the Kitaev honeycomb model, the tight-binding Hamil-
tonian (1) arises after a transformation to Majorana fermions
[13,51]. For each fixed configuration of vortices (sector), the
single-particle energies occur in pairs *¢,, and the many-
body energies Ej,,; = Y, 0,&, Of the original spin states are
obtained by summing up these energies for all combinations
of signs o, = £1. The overall ground state is obtained from
the vortex-free sector. For homogeneous uniaxial strain with
a coupling strength 3 > #; 4 #, along one bond direction that
exceeds the combined couplings along the other two direc-
tions, a gap opens in the vortex-free sector, which can be
populated by zero modes in the sectors with vortices; these
excitations are then found to obey anyonic statistics. In the
inhomogeneously strained setting considered here, the vortex-
free sector is not gapped, since the zeroth pLL contributes a
highly degenerate set of states around ¢, = 0, corresponding
to a spin liquid [17]. Thus, the system possesses a large num-
ber of low-energy excitations, which are part of a quantized
excitation spectrum. This quantized excitation spectrum is
then modified by the vortex-induced states residing between
the pLLs.

These energetic features are illustrated in Fig. 9. As shown
in Fig. 9(a) the overall ground-state energy Eg(g)(ﬂ) from
the vortex-free sector systematically depends on the pseudo-
magnetic field strength 8, displaying a maximum at 8 = 0.
Furthermore, a very similar dependence is shown by the
lowest-energy state Eg(g)(,B) in the sector with a single vor-
tex, placed into the center (“c”) of the system. The energy
difference

AEC(B) = EL(B) — EQ (B, (50)

(a) (b)
- - 0.2
L — . 4
/" nofluxh
I \ | I 1
270001 \\ 1. /\
= | 13 o1} ]
S v\ |3
L \
L \§ [ i
-80001— \
L L 0 | |
-0.5 0 0.5 1 -0.5 0 0.5 1
BB, B/Ban
© [om—
0.1
edge,
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edgel 10 20
position
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FIG. 9. Vortex energetics in the Kitaev honeycomb model.
(a) Strain dependence of the ground-state energies in the flux-free
sector and in the sector with a flux vortex at the center of the system.
(b) Excess energy from the centered vortex. (c) Position dependence
of excess energies due to a single vortex or a vortex pair in the opti-
mally strained system (solid symbols) and in the unstrained system
(open symbols). The results for the vortex pair represent an effective
interaction energy, as defined in Eq. (51).

shown in Fig. 9(b), is much smaller than the overall scales for
these energies and their strain dependence. Furthermore, as
required, it is always positive.

In Fig. 9(c) we further analyze the excess energies
AE"™(Bnax) at maximal strain for a single vortex that is
placed at different positions n, along the line indicated in the
illustration. We observe that the excess energy becomes small
when the vortex is moved from the center to the edge. The
vortex then resides in a region where the system is locally
gapped. This behavior is in contrast with the unstrained sys-
tem, for which the excess energy drops off only very close to
the edge (faint open symbols).

Figure 9(c) also examines the energetics for a system with
two vortices, where one is placed into the center and the other
moved along the specified line. When the two vortices are well
separated, we find that the excess energy is well approximated
by the sum of the individual excess energies (see the supple-
mentary numerical results in Fig. 13). We therefore define the
residual energy

AE@M = Eem — O — EW 4+ O, (51)

which can be interpreted as an effective interaction energy. As
shown in the figure, this residual energy is very small, and
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short ranged, in particular when compared to the unstrained
system (again indicated by faint open symbols).

VII. CONCLUSIONS AND OUTLOOK

In summary, we have studied the interplay of inhomoge-
neous strain and magnetic fields in honeycomb models. This
reveals a number of striking effects. In the appropriate con-
tinuum theory, the strain induces not only a valley-dependent
pseudomagnetic field, but also an effective negative curva-
ture. As we established in Sec. III, this curvature directly
affects the energies and degeneracies of the strain-induced
pseudo-Landau levels. The emerging hyperbolic geometry
also renormalizes the effects from an additional magnetic
field, which becomes weakened at the natural boundaries of
the system, as we demonstrated in Sec. IV. The interplay of
effects takes a particularly striking form when the magnetic
field is localized into flux vortices. As shown in Sec. V, this
generates a characteristic sequence of midgap states, which
reflects further topological and geometric features of the sys-
tem. As an application, we investigated in Sec. VI how these
states can be used spectroscopically to probe the local features
of the system. In the Kitaev honeycomb system of interacting
spins, the energetics of the vortex states map out the phase
diagram in space, and the pseudomagnetic field leads them
to exhibit an enhanced spatial localization and short-ranged
pairwise interactions in the spin-liquid phase.

Honeycomb lattice models can also be physically real-
ized for fermions in graphene, where large pseudomagnetic
fields can be achieved by in-plane strain [23-26], and a range
of analogous bosonic systems including photons in optical
waveguide lattices and resonator arrays, where strain-induced
pLLs were realized in Refs. [28,30,31], while half-integer flux
vortices were engineered in Ref. [52]. Our results therefore
directly apply to the strain engineering in these settings. For
instance, we predict that the splitting of Landau levels from
strain and magnetic fields varies spatially, which explains why
this effect remained elusive until systems were probed locally
as in Ref. [26]. To create effective half-integer flux vortices in
graphene, we propose to consider chemical functionalization
via adatoms that bridge over bonds, which replicates the pho-
tonic mechanism in Ref. [52]. For further investigations, we
therefore suggest seeking the physical signatures of the strain-
localized flux-induced midgap states in these three settings. In
photonic systems, these states could be used for waveguiding.
In electronic systems, they can trap charges and serve as
scattering centers, which can be investigated in transport. In
the context of the Kitaev honeycomb model, it would further-
more be particularly interesting to establish their implications
for the dynamics in time-dependent systems, including for
braiding.

On the methodological side, we established quantitative
and qualitative consistency between the discrete microscopic
description and the effective continuum description of the sys-
tem. Remarkably, this consistency extends to discrete features
that are intimately tied to its manifestly inhomogeneous and
finite geometry, such as the exact degeneracy of the pseudo-
Landau levels, including in the presence of a flux vortex.
Further methodological progress could target the modification
of the continuum theory to include the interplay of the valleys,

and ultimately also the collision of the Dirac points and the
opening of a gap. Our microscopic considerations furthermore
suggest significant scope to generalize exactly solvable micro-
scopic models, both in terms of their geometric shape as well
as in terms of their physical properties.
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APPENDIX A: EMERGENCE OF CURVED GEOMETRY
IN THE CONTINUUM THEORY

In this Appendix we provide background information
on the continuum theory employed throughout this work,
detailing in particular how the strain not only induces
a pseudomagnetic field, but also leads to an effectively
curved geometry. For this background material, we follow
Refs. [20,43].

1. Notation

We first fix the notation. We define the spatial metric as

ds’> = gijdxidxj (AD)

and fix the flat-space metric as

nij = 8ij- (A2)
We will use a, b, c, ... for local frame indices and i, j, k, ...
for space coordinate indices. The vielbein is given by the
definition

gij = efeﬁﬁab, (A3)
which corresponds to a transformation to a locally flat frame.
We lower and raise the local frame indices by 7,, and 7,
and lower and raise the space coordinate indices by g;; and
g". Furthermore, we introduce the inverse vielbein via the
definition ee;, = ;.

With these data, the spin connection is defined as

1

Leae Ve, (A4)

w; =
where the action
k
V,-e_’; = Bie_’]l- — FijeZ (A5)

of the covariant derivative on a 1-form vielbein involves the
Christoffel symbol

oL (08w | 08m 08k dey
r, =-g" — — —— | = —=é. A6
W= 38 <axl Tk T ) T e (A9

We also use the explicit notation

yl=03 yi=0c%" (=12 (A7)
of gamma matrices in 2 + 1 dimensions, where o' denotes the

standard Pauli matrices.
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FIG. 10. Magnetic field dependence of the energies in a triangu-
lar system of size N = 30, without any vortices (left), and with a
half-integer vortex placed into the center (right). In the top panels,
the system is pristine; in the bottom panels it is optimally strained.

2. Strain-induced pseudomagnetic field and curvature

We now bring the tight-binding model (1) into a form
where it can be interpreted as a Dirac equation with an induced
pseudomagnetic field in curved space. As a first step, we write
the general coupling profile in the form

tij %l‘eiAi"[l —B(uj _ui)‘pij]’ (A8)

which allows us to interpret its spatial modulation physically
in terms of a displacement field u; with effective coupling
strength B, and connects the phases A;; = A - p;; to an exter-

n=0 n=1 n=2

FIG. 11. Support of the lowest pLLs in the optimally strained
triangle without a flux vortex (N = 90). The bottom panels zoom
into the central region.

n=0 n=1 n=2

pLLs

midgap states

FIG. 12. Support of the lowest pLLLs and midgap states in the op-
timally strained configuration with a central half-integer flux vortex
(N =90).

nal vector potential with components A;. In these expressions,
pij continues to refer to the pristine configuration. To first
order in the strain, the effective low-energy Hamiltonian near
the K point is then given by [43]

Hrp = vr [ivij(l')Gi(aj —iAj) +iol; + UiA,s'], (A9)

where v;; is the space-dependent modulation of the Fermi
velocity vy = 3—;,

T = 19wk, (A10)

and Aj is the pseudo-gauge field. The explicit forms of A} and
v;; for general displacement fields u can be found in Ref. [43],
and the specific expressions for the strain profile (2) are given
below. The spectrum of this system is obtained from Hrgyy =
Evr, where the scalar product (¥ |,) = f d 2xw1T Y, is inher-
ited from the original microscopic model.

The appearance of the spatial dependence in v;;, and the
associated term I';, invalidates the common assumption that
the effects of the strain can all be captured by an additional
contribution to the vector potential. On the other hand, such
terms appear naturally for a Dirac fermion in a curved space
of metric g;;, coupled to a background U (1) vector potential
A;. This situation is described by the Hamiltonian density [43]

H = ivpefly“(a,- — Qi — iAi), Qi = —%efajeé - %ai\/g,
(Al11)
which defines the total Hamiltonian

H= / d*x /gy " HY, (A12)

where g = det (g;;). The important point is to realize is that H
is Hermitian with respect to the scalar product | d%@tﬁf Y,
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so that ‘H cannot be directly compared to H7g. The simplest
way to allow the comparison is to redefine the curved space
field as ¥ = yg~'/4, so that we have a regular eigenvalue
problem

H = ivpely(d; — Q — idi — 10, /2) 0 = EV¥  (A13)
with the standard scalar product. This matches with Hamilto-
nian (A9) when we set

¢ =via, A=A+ A%, (Al14)
where we define the inverse velocity matrix ;;vjx = 8. The
corresponding induced magnetic field and Gaussian curvature

are
_ €9 A; _ €9w;

= = AlS
7 (AL5)

N
APPENDIX B: APPLICATION TO OPTIMAL STRAIN

In this Appendix, we present the derivation of the analyt-
ical results for a uniform pseudomagnetic field, which forms
the basis of the discussion in Sec. III. For this, we utilize the
general results from the continuum theory of Appendix A.

In the continuum theory, the coupling configuration (2)
used in the main text corresponds to the standard triaxial strain
field [18,43]

(B

coupled with a strength B = B/(4up). Using the general
expressions of Ref. [43], the vielbein €/ and pseudovector
potential A] are then given by [53]

o (15 SR\ A B
a —Ex 145y 2\ %

Notably, this corresponds to constant values of the induced
pseudomagnetic field and curvature,

(B2)

‘32
B=8 K=-——.
p 4
In general, a Dirac fermion in a constant magnetic field
B and a constant Gaussian curvature X has the spectrum

[35,43,45]

(B3)

E, = vpsgn(n)y/2|nB| + n2K.

For IC > 0 this is the spectrum of the sphere [45]. For C < 0,
which we encounter here, this expression gives the discrete
part of the spectrum only, which is constrained by |n| <
|B|/IK| [54]. For larger energies, there is a continuum of
states. Furthermore, the degeneracy of these Landau levels is
given by [35]

(B4)

1 S K
New=— [ dx(Bl+ Z=K)~ (14+8,=— ). (BS
oo [ o~ (1525, o
where S, = 2|n| is the relativistic Wen-Zee shift. As we ex-
plain in the main text, these expressions coincide precisely
with the exact results of the microscopic model in the opti-
mally strained triangle configuration.

() (b)

vortex pair vortex pair
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-8091.2 offcenter) -8091.2 - offcenter)
-8091.3 -8091.3
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edge 10 20 center edge 10 20 center

position position

FIG. 13. (a) Determination of the effective vortex interaction en-
ergy in Fig. 9(c) from the ground states of sectors in different vortex
configurations, amounting to the difference between the shaded and
green curves in accordance with Eq. (51). This interaction energy is
consistent with that obtained by displacing both vortices symmetri-
cally from the center, giving the ground-state energies of (b). These
data are for optimally strained triangles of size N = 90.

APPENDIX C: ADDITIONAL EXTERNAL MAGNETIC
FIELD

In this Appendix, we provide the derivations for the ana-
lytical results in Sec. IV, where we consider the signatures of
the hyperbolic geometry for an additionally applied external
magnetic field.

In the continuum theory, this magnetic field is obtained
from a vector potential with €'/9;A; = B. Mapped to the Dirac
equation in curved space, the combined effective field takes
the form

B=pB+B, (C1)

where

- B
B= " =B|l - (> +)))/16|

NG

acquires an induced spatial dependence. At the center of the
sample, this effective magnetic field takes the combined value
B = B + B, but at larger distances it reduces to the contribu-
tion from the pseudomagnetic field only, approaching B = g
at a distance r = 4/, which happens to coincide with the
finite system size obtained from the exact solution of the
microscopic model.

When one considers the effective theory for the fermion
near the K’ point, the pseudomagnetic field induced by the
strain switches sign [18,41,43],

(623

B=-p+B, (C3)
while the curvature remains the same. Consequently, when
one applies both strain and an external magnetic field, the
local Landau levels near the center of the sample take the
valley-dependent energies

2
Ef = stgn(n)\/2|n(:|:,B +B)| — n2'3—,

2 (o2))
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0 0.5 1
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FIG. 14. Excess energy in the many-body ground state as in the
triangular Kitaev honeycomb system, but generalized to a central
vortex of arbitrary flux. The system size is N = 90, and the result
in the pristine (unstrained) configuration is compared to that in the
optimally strained configuration.

while far from the center they take the valley-independent

form
p2
Ey = vrsgn(n)[2Inf| —n2 . (C5)

Taken altogether, these levels should therefore cover the inter-
val between the two values in Eq. (C4), which indeed agrees
well with the numerical observations as discussed in the main
text.

APPENDIX D: SUPPLEMENTARY NUMERICAL RESULTS

Here we provide additional numerical results that illustrate
further points in the main text.

Throughout, we focused on the system with pseudo-
Landau levels generated by strain. As shown in the top panels

of Fig. 10, a noticeably different picture emerges when we
completely replace the pseudomagnetic field by a real mag-
netic field. For the resulting magnetic Landau levels (LLs),
the degeneracy does not saturate but increases as the magnetic
field increases, until the familiar Hofstadter butterfly picture
emerges. The gaps are then always filled by (edge) states that
are in the process of crossing over from one LL to another LL.
A half-flux vortex gives rise to a weak modulation of this
pattern within the gaps, but not to the extent that individual
midgap states could be identified. The bottom panels de-
pict the magnetic field dependence in the optimally strained
system. The pLLs then quickly broaden, as described in de-
tail in Sec. IV. Noticeably, a large gap remains around the
zeroth pLL.

In Sec. III we remarked that the lowest pLLs in the op-
timally strained system fill out the central triangle in which
the system is locally not gapped. This feature is illustrated in
Fig. 11. As shown in Fig. 12, the pLLs in the system with a
central half-integer flux vortex are depleted around this vortex.
This weight is taken up the midgap states.

In Sec. VI we considered ground-state energies in different
vortex configurations of half-integer fluxes, as relevant for
the application to the Kitaev honeycomb system. As shown
in Fig. 13, spatially well-separated vortices provide inde-
pendent excess energies. The figure then further illustrates
how these can be combined to define the effective interaction
energy (51).

Finally, in Fig. 14 we show the ground state if the system
supported a central vortex of general flux ¢, making use that
this preserves the chiral symmetry so that many-body ener-
gies can still be formally obtained from the single-particle
energy pairs. Alternatively, this result could be interpreted as
a ground-state energy of noninteracting electrons in an analo-
gous graphenelike system, evaluated per spin at half filling.

[1] N. D. Mermin, The topological theory of defects in ordered
media, Rev. Mod. Phys. 51, 591 (1979).

[2] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[3] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[4] F. Wilczek, Quantum Mechanics of Fractional-Spin Particles,
Phys. Rev. Lett. 49, 957 (1982).

[5] A. Stern, Anyons and the quantum Hall effect—a pedagogical
review, Ann. Phys. (NY) 323, 204 (2008).

[6] D. P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Statistical
mechanics of anyons, Nucl. Phys. B 251, 117 (1985).

[7] E. Wilczek, Fractional Statistics and Anyon Superconductivity
(World Scientific, Singapore, 1990)

[8] X. G. Wen, Vacuum degeneracy of chiral spin states in com-
pactified space, Phys. Rev. B 40, 7387 (1989).

[9] X. G. Wen and Q. Niu, Ground-state degeneracy of the frac-
tional quantum Hall states in the presence of a random potential
and on high-genus Riemann surfaces, Phys. Rev. B 41, 9377
(1990).

[10] G. Chen, H.-Y. Kee, and Y. B. Kim, Fractionalized Charge Exci-
tations in a Spin Liquid on Partially Filled Pyrochlore Lattices,
Phys. Rev. Lett. 113, 197202 (2014).

[11] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices
in p-Wave Superconductors, Phys. Rev. Lett. 86, 268 (2001).

[12] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev,
Z. Wang, and M. H. Freedman, Interacting Anyons in Topolog-
ical Quantum Liquids: The Golden Chain, Phys. Rev. Lett. 98,
160409 (2007).

[13] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. (NY) 321, 2 (2006).

[14] S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome, Y. S.
Kwon, D. T. Adroja, D. J. Voneshen, K. Kim, T. H. Jang, J. H.
Park, K.-Y. Choi, and S. Ji, Majorana fermions in the Kitaev
quantum spin system «-RuCl;, Nat. Phys. 13, 1079 (2017).

[15] Y. Motome and J. Nasu, Hunting Majorana fermions in Kitaev
magnets, J. Phys. Soc. Jpn. 89, 012002 (2020).

[16] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[17] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E.
Nagler, Concept and realization of Kitaev quantum spin liquids,
Nat. Rev. Phys. 1, 264 (2019).

[18] F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and
a zero-field quantum Hall effect in graphene by strain engineer-
ing, Nat. Phys. 6, 30 (2010).

115148-14


https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.49.957
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1016/0550-3213(85)90252-4
https://doi.org/10.1103/PhysRevB.40.7387
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1103/PhysRevLett.113.197202
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1038/nphys4264
https://doi.org/10.7566/JPSJ.89.012002
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1038/nphys1420

FLUX-INDUCED MIDGAP STATES BETWEEN ...

PHYSICAL REVIEW B 108, 115148 (2023)

[19] F. de Juan, M. Sturla, and M. A. H. Vozmediano, Space Depen-
dent Fermi Velocity in Strained Graphene, Phys. Rev. Lett. 108,
227205 (2012).

[20] F. de Juan, J. L. Mafies, and M. A. H. Vozmediano, Gauge fields
from strain in graphene, Phys. Rev. B 87, 165131 (2013).

[21] M. Settnes, S. R. Power, and A.-P. Jauho, Pseudomagnetic
fields and triaxial strain in graphene, Phys. Rev. B 93, 035456
(2016).

[22] S.P. Milovanovi¢, M. Andelkovié, L. Covaci, and F. M. Peeters,
Band flattening in buckled monolayer graphene, Phys. Rev. B
102, 245427 (2020).

[23] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl,
F. Guinea, A. H. C. Neto, and M. F. Crommie, Strain-induced
pseudo magnetic fields greater than 300 Tesla in graphene
nanobubbles, Science 329, 544 (2010).

[24] N.-C. Yeh, M.-L. Teague, S. Yeom, B. Standley, R.-P. Wu, D.
Boyd, and M. Bockrath, Strain-induced pseudo-magnetic fields
and charging effects on CVD-grown graphene, Surf. Sci. 605,
1649 (2011).

[25] J. Lu, A. H. C. Neto, and K. P. Loh, Transforming moiré blisters
into geometric graphene nano-bubbles, Nat. Commun. 3, 823
(2012).

[26] S.-Y. Li, K.-K. Bai, L.-J. Yin, J.-B. Qiao, W.-X. Wang, and L.
He, Observation of unconventional splitting of Landau levels in
strained graphene, Phys. Rev. B 92, 245302 (2015).

[27] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan,
Designer Dirac fermions and topological phases in molecular
graphene, Nature (London) 483, 306 (2012).

[28] M. C. Rechtsman, J. M. Zeuner, A. Tiinnermann, S. Nolte,
M. Segev, and A. Szameit, Strain-induced pseudomagnetic
field and photonic Landau levels in dielectric structures, Nat.
Photonics 7, 153 (2013).

[29] X. Wen, C. Qiu, Y. Qi, L. Ye, M. Ke, F. Zhang, and Z.
Liu, Acoustic Landau quantization and quantum-Hall-like edge
states, Nat. Phys. 15, 352 (2019).

[30] M. Bellec, C. Poli, U. Kuhl, F. Mortessagne, and H.

Schomerus, Observation of supersymmetric pseudo-Landau

levels in strained microwave graphene, Light Sci. Appl. 9, 146

(2020).

O. Jamadi, E. Rozas, G. Salerno, M. Mili¢evi¢, T. Ozawa, 1.

Sagnes, A. Lemaitre, L. Le Gratiet, A. Harouri, I. Carusotto,

J. Bloch, and A. Amo, Direct observation of photonic Landau

levels and helical edge states in strained honeycomb lattices,

Light Sci. Appl. 9, 144 (2020).

J. Mao, S. P. Milovanovi¢, M. Andelkovié, X. Lai, Y. Cao, K.

Watanabe, T. Taniguchi, L. Covaci, F. M. Peeters, A. K. Geim,

Y. Jiang, and E. Y. Andrei, Evidence of flat bands and correlated

states in buckled graphene superlattices, Nature (London) 584,

215 (2020).

[33] C. Poli, J. Arkinstall, and H. Schomerus, Degeneracy doubling
and sublattice polarization in strain-induced pseudo-Landau
levels, Phys. Rev. B 90, 155418 (2014).

[34] S. Rachel, I. Gothel, D. P. Arovas, and M. Vojta, Strain-Induced
Landau Levels in Arbitrary Dimensions with an Exact Spec-
trum, Phys. Rev. Lett. 117, 266801 (2016).

[35] A. Pnueli, Spinors and scalars on Riemann surfaces, J. Phys. A
27, 1345 (1994).

[36] X. G. Wen and A. Zee, Shift and Spin Vector: New Topological
Quantum Numbers for the Hall Fluids, Phys. Rev. Lett. 69, 953
(1992).

(31

—

[32

—

[37] D. X. Nguyen, S. Golkar, M. M. Roberts, and D. T.
Son, Particle-hole symmetry and composite fermions in
fractional quantum Hall states, Phys. Rev. B 97, 195314
(2018).

[38] S. Golkar, M. M. Roberts, and D. T. Son, Effective field theory
of relativistic quantum hall systems, J. High Energy Phys. 138
(2014).

[39] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[40] A. Torio and P. Pais,
of strained graphene,
(2015).

[41] M. A. Zubkov and G. E. Volovik, Emergent gravity in graphene,
J. Phys.: Conf. Ser. 607, 012020 (2015).

[42] H. Schomerus and N. Y. Halpern, Parity Anomaly and Landau-
Level Lasing in Strained Photonic Honeycomb Lattices, Phys.
Rev. Lett. 110, 013903 (2013).

[43] G. Wagner, F. de Juan, and D. X. Nguyen, Landau levels in
curved space realized in strained graphene, SciPost Phys. Core
5,029 (2022).

[44] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[45] J. Gonzilez, F. Guinea, and M. A. H. Vozmediano, Continuum
Approximation to Fullerene Molecules, Phys. Rev. Lett. 69, 172
(1992).

[46] We can apply a valley dual transformation to show that the
energy spectrum of the effective theories near K and K’ points
are identical in the absence of the applied magnetic field. Equa-
tion (9) considers the total degeneracy of the pLLs from both
valleys, but formulates it relative to the degeneracy of the zeroth
pLL as a ratio. The result also correctly recovers that some
Landau levels have odd degeneracy, meaning that by including
the Wen-Zee shift, the effective theory correctly extrapolates
beyond the vicinity of the K and K’ points.

[47] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W.
Ku, S. Trebst, and P. Gegenwart, Relevance of the Heisenberg-
Kitaev Model for the Honeycomb Lattice Iridates A,IrOs, Phys.
Rev. Lett. 108, 127203 (2012).

[48] V. Lahtinen, A. W. W. Ludwig, J. K. Pachos, and S. Trebst,
Topological liquid nucleation induced by vortex-vortex interac-
tions in Kitaev’s honeycomb model, Phys. Rev. B 86, 075115
(2012).

[49] V. Lahtinen, G. Kells, A. Carollo, T. Stitt, J. Vala, and
J. K. Pachos, Spectrum of the non-Abelian phase in Ki-
taev’s honeycomb lattice model, Ann. Phys. (NY) 323, 2286
(2008).

[50] G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K.
Pachos, and J. Vala, Topological Degeneracy and Vortex Ma-
nipulation in Kitaev’s Honeycomb Model, Phys. Rev. Lett. 101,
240404 (2008).

[51] H.-D. Chen and Z. Nussinov, Exact results of the Kitaev
model on a hexagonal lattice: Spin states, string and brane
correlators, and anyonic excitations, J. Phys. A 41, 075001
(2008).

[52] R. Keil, C. Poli, M. Heinrich, J. Arkinstall, G. Weihs, H.
Schomerus, and A. Szameit, Universal Sign Control of Cou-
pling in Tight-Binding Lattices, Phys. Rev. Lett. 116, 213901
(2016).

fields
125005

Revisiting the
Phys. Rew.

gauge
D 92,

115148-15


https://doi.org/10.1103/PhysRevLett.108.227205
https://doi.org/10.1103/PhysRevB.87.165131
https://doi.org/10.1103/PhysRevB.93.035456
https://doi.org/10.1103/PhysRevB.102.245427
https://doi.org/10.1126/science.1191700
https://doi.org/10.1016/j.susc.2011.03.025
https://doi.org/10.1038/ncomms1818
https://doi.org/10.1103/PhysRevB.92.245302
https://doi.org/10.1038/nature10941
https://doi.org/10.1038/nphoton.2012.302
https://doi.org/10.1038/s41567-019-0446-3
https://doi.org/10.1038/s41377-020-00351-2
https://doi.org/10.1038/s41377-020-00377-6
https://doi.org/10.1038/s41586-020-2567-3
https://doi.org/10.1103/PhysRevB.90.155418
https://doi.org/10.1103/PhysRevLett.117.266801
https://doi.org/10.1088/0305-4470/27/4/028
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevB.97.195314
https://doi.org/10.1007/JHEP12(2014)138
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevD.92.125005
https://doi.org/10.1088/1742-6596/607/1/012020
https://doi.org/10.1103/PhysRevLett.110.013903
https://doi.org/10.21468/SciPostPhysCore.5.2.029
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevLett.69.172
https://doi.org/10.1103/PhysRevLett.108.127203
https://doi.org/10.1103/PhysRevB.86.075115
https://doi.org/10.1016/j.aop.2007.12.009
https://doi.org/10.1103/PhysRevLett.101.240404
https://doi.org/10.1088/1751-8113/41/7/075001
https://doi.org/10.1103/PhysRevLett.116.213901

NGUYEN, ARKINSTALL, AND SCHOMERUS PHYSICAL REVIEW B 108, 115148 (2023)

[53] Even though the calculation in Ref. [43] is an approximation up [54] E. Gorbar and V. Gusynin, Gap generation for Dirac fermions
to second order in derivatives of u, with the explicit form of u on Lobachevsky plane in a magnetic field, Ann. Phys. (NY)
given in Eq. (B1), there is no higher derivative of u. 323, 2132 (2008).

115148-16


https://doi.org/10.1016/j.aop.2007.11.005

