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We propose a general theoretical framework for both constructing and diagnosing inversion-protected higher-
order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaev’s
one-dimensional Majorana model. For a given crystalline symmetry, the Kitaev building blocks serve as
a complete basis to construct all possible Kitaev superconductors that satisfy the symmetry requirements.
We derive a simple yet powerful Majorana counting rule that can unambiguously diagnose the existence of
higher-order topology for all Kitaev superconductors. We expect this real-space diagnosis to work for general
two-dimensional higher-order topological superconductors within this symmetry class. As proof of concept, we
have identified two inequivalent stacking strategies using the Kitaev building blocks, based on which we have
constructed minimal tight-binding models with symmetry-protected Majorana corner modes. Moreover, we have
successfully applied our diagnosis to comprehend the Majorana corner physics in a superconductor model with
a fragile Wannier obstruction, confirming the validity of our theory beyond the Kitaev limit. Our work paves the
way for interpreting higher-order topological superconductivity from the real-space perspective.
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I. INTRODUCTION

The concept of topology has revolutionized our under-
standing of condensed matter systems in the past decades. The
revolution started with the quantum Hall effect [1–3] and con-
tinued through the seminal works on the 10-fold way [4,5] and
topological insulators (TI) [6], becoming a dominant theme
in condensed matter physics over the last 10 years, leading
to the exciting concept of topological quantum computation
using non-Abelian anyons [7,8]. Even within the same sym-
metry class, there could exist several types of topologically
distinct phases that cannot be connected through an adiabatic
evolution path and thus behave differently in various aspects.
In particular, the topological properties for a large class of sys-
tems are only well defined when certain types of symmetries
are present. This class of topological systems is known as the
symmetry-protected topological (SPT) state [9–11], and most,
if not all, currently known free-fermion topological states are
technically SPT phases even if this is not always explicitly
mentioned. When placed on an open geometry, the bulk topol-
ogy of a D-dimensional SPT system enforces the existence of
anomalous in-gap modes on its (D − 1)-dimensional bound-
ary, which cannot be removed without either closing the bulk
energy gap or breaking the protection symmetry. Such in-gap
boundary modes are “anomalous” in the sense that they can
never be realized in any (D − 1)-dimensional bulk system:
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they are strictly the boundary modes corresponding to the bulk
topology, an example of a bulk-boundary correspondence.

For free-fermion SPT systems such as topological insu-
lators, topological band theories are extremely successful in
classifying and predicting new topological materials [12,13].
To capture various band topology, one direct approach is to
mathematically define the corresponding topological invari-
ants for band insulators with different internal or crystalline
symmetries [11,14–22]. On the other hand, all known topo-
logical band insulators present obstruction to a symmetric and
localized Wannier function description [23,24]. Therefore,
Wannierizability can be treated as a diagnosis for distinguish-
ing topological and trivial band insulators. Notably, the recent
breakthrough in the band representation theory provides us
with a complete list of all possible trivial atomic insulators
for all space groups [25]. Consequently, topological systems
can be systematically sorted by simply excluding the known
atomic limits for band insulators. This is, in principle, a
conceptually revolutionary new way of classifying insulators,
connecting quantum chemistry (i.e. the atomic limit) with
solid-state band theories.

It was recently realized that some topological insulators
protected by lattice symmetries admit a higher-order version
of the bulk-boundary correspondence [26], which are dubbed
higher-order topological insulators [27–36]. Specifically, the
D-dimensional bulk topology in these systems is indicated
by anomalous in-gap modes on their (D − n)-dimensional
boundary with n ∈ {2, . . . , D − 1}. Some three-dimensional
(3D) axion insulator candidates [37,38], including EuIn2As2

[39], Bi2−xSmxSe3 [40], and MnBi2nTe3n+1 [41], have
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been theoretically proposed to host one-dimensional (1D)
inversion-protected chiral fermion channels that live on the
“hinges” connecting two neighboring gapped surfaces. Mean-
while, experimental signatures of 1D inversion-protected
helical hinge modes have been observed in bismuth using
scanning tunneling microscopy [42]. Similar to a conven-
tional TI, a higher-order TI is necessarily Wannier obstructed.
As a result, by filtering out Wannierizable atomic insula-
tors, researchers have designed or derived simple functions of
crystalline symmetry eigenvalues at high-symmetry momenta,
which can correctly diagnose the higher-order topology.
These symmetry-eigenvalue-based functions are known as
“symmetry indicators” [43–46].

In this work, our main focus is the higher-order version of
topological superconductors (TSC), which has been recently
under active research in the community [47–59]. In particular,
a two-dimensional (2D) higher-order TSC is featured by
zero-dimensional (0D) corner-localized Majorana zero
modes, which potentially offer new promising platforms for
Majorana-based topological quantum computation [60,61].
Analogous to the theoretical developments of crystalline
TIs, theories of symmetry indicators in TSCs have been
developed by multiple groups, which have been proved quite
successful in characterizing the topological nature of various
crystalline superconducting phases [62–68]. Despite many
similarities, however, we note that topological descriptions
for insulators and superconductors also feature several
conceptual distinctions.

First of all, the physical meaning of being “atomic” for
a superconductor is unclear. As is known, the most impor-
tant length scale for superconductors is the superconducting
coherence length ξ , which is about 101 ∼ 103 atomic lat-
tice constants. This directly implies that the atomic-scale
microscopic physics should not be crucial for describing su-
perconductivity and its related topological phenomena. In
other words, any topology-enforced Majorana physics for
a TSC should just arise from the low-energy physics near
the Fermi surface, where the energy cutoff is around ξ−1

and not a microscopic atomic lattice length scale. This fea-
ture clearly distinguishes between the physical meanings of
“atomic limit” for superconductors and insulators.

Second, while the triviality of atomic band insulators can
be diagnosed from its Wannierizability, the conventional wis-
dom indicates that a Wannierizable superconductor can also
be topological. As perhaps the simplest example, the 1D Ki-
taev Majorana chain [7] is not only Wannierizable but also
hosting 0D Majorana end modes. Clearly, the 0D Majorana
modes are anomalous boundary modes and cannot be real-
ized in any 0D electron systems. Therefore, it is natural to
speculate that a 2D higher-order topological superconductor
with 0D Majorana corner modes could also be Wannierizable,
similar to a Kitaev chain [7].

Motivated by the above considerations, we propose
in this work the concept of Kitaev limit as a direct
higher-dimensional generalization for Kitaev’s 1D Majorana
chain, which offers a natural language for describing
higher-order TSCs. A Bogoliubov–de Gennes (BdG)
system satisfying the Kitaev limit is termed a “Kitaev
superconductor” which is always gapped and Wannier
representable. In particular, each ground-state Wannier orbital

of a Kitaev superconductor is always formed by binding
only a pair of Majorana fermions. Therefore, the notion of
Kitaev limit should be viewed as a “minimalism” description
of Wannierizability, which greatly benefits both topology
characterizations and model constructions.

Focusing on 2D class-D systems with a spatial inversion
symmetry, we identify four inequivalent minimal Kitaev su-
perconductors (the Kitaev building blocks) as a complete set
of basis for building general Kitaev superconductors. In par-
ticular, by stacking these Kitaev building blocks, we are able
to systematically construct various Kitaev superconductors
with intrinsic higher-order topology. The building-block pic-
ture motivates us to propose a simple but powerful Majorana
counting rule as a set of real-space topological indices to di-
agnose the existence of symmetry-protected Majorana corner
modes. To confirm our Majorana counting rule, we present
two different stacking strategies with the Kitaev building
blocks that have in principle exhausted all possible configura-
tions for Kitaev superconductors. For each stacking strategy,
we derive explicit “stacking recipes” based on our counting
rule, which efficiently predict possible stacking configurations
with higher-order topology. To demonstrate these ideas, we
provide several minimal models for distinct stacking strategies
and confirm their higher-order topological nature.

The great success of the Majorana counting rule further
suggests that its applicability could go beyond not only the 2D
Kitaev limit, but also the constraint of being Wannierizable.
As a proof of concept, we consider a higher-order TSC with a
fragile Wannier obstruction, which can be decomposed into
a linear superposition of Kitaev limits. By performing the
counting rule for each constituent block, we have success-
fully explained the corner-mode physics in this system. Note
that stably Wannier-obstructed systems are usually first-order
topological in 2D, which is beyond the scope of our work.

The introduction of the “Kitaev limit” as the fundamental
building blocks for higher-order topological superconductors
as well as the introduction of the new Majorana count-
ing rule are the two important concepts in our work. We
show that these concepts enable both the construction of
higher-dimensional topological superconductors as well as
the diagnosis for already-proposed higher-order topological
superconductors, thus establishing our ideas as the foundation
for the “quantum chemistry” of topological superconductors.

This paper is organized as follows. In Sec. II, we first
present the main results of our work providing our definitions
of higher-order topology, the Kitaev limit, and the Majorana
counting rule. In Sec. III, we define the Kitaev building blocks
and classify all Kitaev superconductors with the concept of 2D
polarization. We then explicitly derive the Majorana counting
rule as a necessary and sufficient condition for higher-order
topology in Kitaev superconductors. In Sec. IV, we provide
explicit constructions of Kitaev superconductors with higher-
order topology to demonstrate our Majorana counting rule
for different stacking strategies. In Sec. V, we propose a
real-space diagnosis for all 2D class-D higher-order TSCs
with an inversion symmetry. This conjecture is verified in
Sec. VI for a realistic example that hosts both higher-order
topology and fragile Wannier obstruction. The conclu-
sion and discussions about future directions are presented
in Sec. VII.
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II. MAIN RESULTS

This section summarizes our main results in this work. We
first provide a definition of symmetry-protected higher-order
topology for 2D class-D superconductors. We then define
the Kitaev limit, a key concept in this work and a natural
language for describing higher-order topological supercon-
ductors. Finally, we present a simple Majorana counting rule
as a higher-order topological diagnosis for general Kitaev
superconductors.

A. What is a higher-order topological superconductor?

A 2D class-D superconductor is defined to have symmetry-
protected higher-order topology if

(i) its bulk BdG spectrum is gapped;
(ii) it has no 1D anomalous Majorana boundary modes;
(iii) it has 0D Majorana zero modes exponentially local-

ized on its symmetric boundary;
(iv) while preserving the symmetry, the Majorana zero

modes cannot be eliminated without closing the bulk gap.
This definition is inspired by the phenomenological fact

that a 2D higher-order TSC generally features gapped
edge states and 0D boundary Majorana modes that are
most likely localized around the corners. Notably, the pres-
ence of 0D boundary Majorana modes does not guarantee
a bulk higher-order topology by itself. It is the neces-
sary crystalline-symmetry protection that promotes such 0D
boundary Majorana modes to a hallmark of nontrivial bulk
topology.

The crucial role of symmetry protection can be under-
stood as follows. Consider a 2D higher-order TSC with a
(crystalline) symmetry G on a symmetry-preserving open ge-
ometry. We then define NG as the number of 0D Majorana
modes on the 1D edge “modulo” the symmetry G. Namely,
if two distinct boundary Majorana modes are related by G,
they will be counted as the same Majorana mode in defin-
ing NG. If NG is odd, it is obvious that the 0D Majorana
modes cannot be eliminated by any G-preserving edge per-
turbation (e.g., attaching 1D Kitaev chains in a G-symmetric
way). This robustness of 0D Majorana modes is exactly
a manifestation of G-protected higher-order bulk-boundary
correspondence. This analysis also provides an alternative
yet equivalent definition that a 2D class-D superconductor
is G-protected higher-order topological if and only if NG

is odd.
In this work, we focus on the BdG systems with 2D spatial

inversion symmetry I to demonstrate our general theory of
higher-order TSCs. Practically, NI , the number of Majorana
zero modes modulo I, can be simply counted on one x edge
and one y edge, as well as the corner shared by the edges. Then
by definition, an inversion-protected higher-order TSC is typ-
ically featured by two Majorana modes that are spatially sep-
arated at the opposite corners [32]. As a schematic example in
Fig. 1, symmetrically coupling Kitaev chains to the boundary
of an inversion-symmetric higher-order TSC can only shift the
position of corner Majorana modes, but can never eliminate
them. Therefore, this boundary configuration is stable
against any boundary perturbations that preserve inversion
symmetry, a hallmark of inversion-protected higher-order
topology.

FIG. 1. A schematic of 2D inversion-protected higher-order TSC
with a pair of corner-localized Majorana modes. To preserve the
inversion symmetry, the Kitaev chains attached to the edge must
come in pairs. Since a pair of Kitaev chains will necessarily add
four Majorana zero modes to the edge, the corner Majorana physics
cannot be essentially eliminated.

The higher-order TSCs that will be discussed in this work
are Wannierizable, similar to recently proposed electronic
insulators with fractional corner charges [28,69–71]. Notice
that the Wannierizability of corner-charged electron systems
prevent them from having stable gapless bound states at the
edges since such bound state can always be removed by an
applied smooth potential at the edge. In contrast, in-gap 0D
Majorana modes on the boundary of a higher-order topologi-
cal superconductor are robustly pinned at zero energy by the
particle-hole symmetry. This crucial difference thus allows
the existence of Wannierizable topological superconductors,
which turn out to be most likely higher-order topological. This
is one important motivation for us to consider Wannierizable
higher-order topological BdG systems in this work.

B. Kitaev limit for superconductors

Higher-order topological superconductors are defined by
the existence of anomalous unpaired Majorana modes at
the boundaries. Following Kitaev [7], representing a BdG
Hamiltonian in terms of Majorana fermions provides a natural
representation to include the particle-hole symmetry. How-
ever, such Majorana representation introduces an additional

Atomic Site

Majorana Fermion 

Majorana Fermion 

Majorana Bond

BdG Wannier Orbital

FIG. 2. An example of Kitaev limit with two pairs of Majorana
fermions within each unit cell. Each Majorana fermion has exactly
one Majorana bond attached. The maximally localized Wannier or-
bital sits at each bond center.

115146-3



ZHANG, SAU, AND DAS SARMA PHYSICAL REVIEW B 108, 115146 (2023)

constraint, which has no analog in the case of insulators,
that Majorana fermions must appear in pairs on any
so-called atomic site. For the purpose of superconductors,
an “atomic site” R is any position that we place a pair
of Majorana fermions (or equivalently an electron and
a hole) in the discretized BdG Hamiltonian. The onsite
transformation between an electron operator c†

R and the
corresponding pair of Majorana fermions αR and βR is given
by c†

R = (αR − iβR )/
√

2.
A big advantage of the Majorana representation is that the

electron-electron, hole-hole, and electron-hole couplings now
become couplings or bondings among the Majorana operators.
As shown in Fig. 2, when two Majorana fermions (the red
and blue dots) are coupled with each other, we can pictorially
connect them with a line to demonstrate the existence of a
Majorana bond. In this work, we only consider the Majorana
bonds that are local in space. Based on the Majorana repre-
sentation, we define a special class of BdG systems:

In the Majorana representation, a BdG system with pe-
riodic boundary conditions is in the Kitaev limit, if every
Majorana fermion is attached to exactly one Majorana bond.
Such BdG system is termed as a Kitaev superconductor.

The Kitaev limit is one of the key concepts in our work.
It is physically motivated by the pioneering work of Kitaev
[7], in which he found a special limit of a 1D spinless p-
wave superconductor model (often known as a Kitaev chain)
that is exactly solvable. While Kitaev’s original idea aims at
understanding the boundary physics in 1D class-D TSCs, we
generalize this concept to two and higher dimensions for any
symmetry class [72]. We will see that the concept of Kitaev
limit provides a natural framework to describe higher-order
topological superconductors with 0D Majorana zero modes.

We emphasize that all Kitaev superconductors are featured
by both a bulk energy gap and a description with maximally
localized BdG Wannier functions. The bulk gap arises from the
fact that every Majorana fermion is uniquely paired with an-
other nearby Majorana fermion. The Majorana bond also leads
to an exponentially localized Wannier function sitting at the
bond center. For a Kitaev superconductor with bonds connect-
ing only onsite or nearest-neighboring Majorana fermions, the
range of the Wannier function is restricted within one unit
cell. Adding any additional Majorana bonds to this Kitaev
superconductor will only further delocalize the spatial profile
of the Wannier function. This is why the Wannier functions of
a Kitaev superconductor are maximally localized. Since the
Majorana representation and the Wannier representation with
maximally localized Wannier orbitals are essentially the two
sides of the same coin, they will be used interchangeably in
this work.

A schematic example of a 2D Kitaev superconductor is
shown in Fig. 2. Within one unit cell, we have considered
two atomic sites (the gray disks) that coincide with each other
[73]. Each atomic site hosts a pair of Majorana fermions
αR (the red dot) and βR (the blue dot). In particular, every
Majorana fermion is only connected to one distinct Majo-
rana fermion through an intersite Majorana bond (the green
line), which clearly satisfies the definition of Kitaev limit.
For demonstration, we also plot the maximally localized BdG

Wannier orbitals (the purple triangles) sitting at the bond
center.

Our definition of the Kitaev limit relies on physical Ma-
jorana degrees of freedom and thus distinguishes a supercon-
ducting BdG system from a particle-hole symmetric electron
system with no superconductivity. This fact is crucial for
discussing a topological classification for superconductors.

C. Condition of higher-order topology
for Kitaev superconductors

If an inversion-symmetric Kitaev superconductor has n(A)
i

atomic sites and n(W )
i Wannier orbitals at maximal Wyck-

off position q1i for i ∈ {a, b, c, d}, it has inversion-protected
higher-order topology if and only if

�b,c,d ≡ 1 (mod 2), (1)

where we have defined a set of Majorana counting numbers as

�i = n(W )
i − n(A)

i . (2)

This simple counting of bulk atomic sites and Wannier orbitals
provides a necessary and sufficient condition for a general
Kitaev superconductor to be higher-order topological, which
is thus dubbed the “Majorana counting rule.”

For 2D inversion-symmetric systems, we have defined the
maximal Wyckoff positions as the real-space positions invari-
ant under I operation, up to lattice translations. Within one
unit cell, we label the maximal Wyckoff positions as

q1a = (0, 0), q1b = (
1
2 , 0

)
,

q1c = (
0, 1

2

)
, q1d = (

1
2 , 1

2

)
, (3)

where the lattice constants are set to be ax = ay = 1 for
simplicity.

Physically, the position information of atomic sites de-
termines how crystalline symmetries are implemented in a
BdG system, which provides necessary symmetry constraint
for choosing a symmetric open boundary. Therefore, it is
the countings of both atomic sites and Wannier orbitals that
together determine the boundary Majorana information on a
symmetric Kitaev superconductor.

We will explicitly derive the Majorana counting rule in
the coming Sec. III D. The concept of Kitaev limit and the
Majorana counting rule are the most important results in this
work.

III. CLASSIFICATION OF KITAEV SUPERCONDUCTORS
AND MAJORANA COUNTING

In this section, we will elaborate on our main results sum-
marized in the previous section by systematically classifying
2D Kitaev superconductors and explicitly deriving the Majo-
rana counting rule as a powerful diagnosis for higher-order
topology.

A. Kitaev building blocks

The key to classify all these Kitaev superconductors for
a specific symmetry class is to identify a set of minimal
and simplest symmetry-allowed Kitaev superconductors as

115146-4



KITAEV BUILDING-BLOCK CONSTRUCTION FOR … PHYSICAL REVIEW B 108, 115146 (2023)

FIG. 3. The Wannier representations and the Majorana representations for each Kitaev building block are shown in (a)–(d) and (e)–(h),
respectively. The dangling Wannier orbitals and Majorana zero modes are shown in colored circles. (Nx, Ny ) shows the numbers of dangling
Majorana zero modes for one x edge and one y edge, respectively.

a complete basis, based on which one can construct more
complicated situations. This set of minimal Kitaev supercon-
ductors are termed “Kitaev building blocks.” For a symmetry
group G, the d-dimensional Kitaev building blocks are defined
as all d-dimensional Kitaev superconductors that (i) preserve
all symmetries in G; (ii) can NOT be decomposed into a
superposition of any other G-preserving d-dimensional Kitaev
superconductors.

For 2D class-D Kitaev superconductors with inversion
symmetry, there exist four distinct Kitaev building blocks κi

with i ∈ {a, b, c, d}, which are constructed by placing one
atomic site at q1a and one maximally localized BdG Wannier
orbital at a maximal Wyckoff position q1i in the Wannier
representation.

While a Wannier orbital could be even (s like) or odd (p
like) under inversion operation, the specific orbital type is
irrelevant for our most discussions. In Figs. 3(a)–3(d), we
schematically plot those four Kitaev building blocks κa,b,c,d .
As before, we use the gray disk at q1a to denote the atomic
sites and the colored dots to denote the maximally localized
Wannier orbitals. Mapping the Wannier representation back
to the Majorana representation, we arrive at Figs. 3(e)–3(h),
which demonstrate the Majorana bonding configurations for
the Kitaev building blocks.

In principle, one can always place a Wannier orbital on
some nonmaximal Wyckoff position qα that is not invariant
under inversion operation I. Then we are required to place
another Wannier orbital at a different but inversion-related
Wyckoff position Iqα just to preserve the inversion symme-
try. On the other hand, we can always simultaneously move
the Wannier orbital at qα and the other one at Iqα to any
maximal Wyckoff position in an adiabatic and symmetric way.
Therefore, putting Wannier orbitals on nonmaximal Wyckoff
positions is always equivalent to a double stacking of some
Kitaev building blocks κi. This is why the four Kitaev building
blocks in Fig. 3 form a complete basis set for general Kitaev
superconductors.

B. Polarization and topological classification
for Kitaev superconductors

To further characterize the topological properties of Kitaev
building blocks, we define a 2D polarizaton P = (Px, Py) for
Kitaev superconductors as the net relative displacement vector
between the atomic sites and the Wannier orbitals, where Px,y

are defined modulo the lattice constants. By definition, the
polarization Pκi for a Kitaev building block κi is exactly the
Wyckoff position of its Wannier orbital,

Pκi = q1i. (4)

It should be emphasized that our definition for the polarization
P of Kitaev superconductors is purely geometric. In partic-
ular, P should NOT be confused with the physical charge
polarization for insulators [74], which is only well defined in
the presence of charge U(1) symmetry. Here we use the term
“polarization” for P just to follow the convention in electron
systems.

It is straightforward to see that inversion symmetry requires
both components of polarization vector Px,y to be quantized to
either 0 or 1

2 modulo 1. In addition, we find the quantized
value of P is directly linked with weak topological phe-
nomena. When Px(y) = 1

2 , the Kitaev superconductor displays
weak topology [75], with its edge normal to the x (y) direction
hosting a nondegenerate edge Majorana flat band.

A pictorial understanding of the weak topology for the
Kitaev building blocks is clearly explained in Figs. 3(e)–
3(h). Take the building block κd with P = ( 1

2 , 1
2 ) as an

example. As shown in Fig. 3(h), κd on an open geometry
clearly hosts unpaired Majorana zero modes [colored circles
in Fig. 3(h)] in both x and y edges. If we calculate the edge
spectrum for κd , the unpaired Majorana modes will form
a single flat band at exactly zero energy for both x and y
edges, a hallmark for 2D weak TSCs. Similarly shown in
Figs. 3(b) and 3(c), κb and κc also host nondegenerate edge
Majorana flat bands on their x and y edges, respectively.
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FIG. 4. A schematic for a dispersing edge Majorana band in a
weak TSC. This edge band is anomalous and is enforced to cross
zero energy at high-symmetry momenta (colored dots) in the edge
Brillouin zone.

Their P values agree with the existence of weak topology.
Since all Kitaev superconductors can be constructed with the
Kitaev building blocks, it is clear that this bulk-boundary
correspondence between P and edge Majorana bands should
generally hold.

For each building block with open boundary conditions,
it is straightforward to count the dangling Majorana zero
modes on the boundary. In Figs. 3(e)–3(h), we use Nx and
Ny to, respectively, denote the numbers of dangling Majo-
rana modes on each x and y edge. We explicitly show how
Nx,y scale with Lx,y, which are the numbers of unit cells
along x and y directions. Notably, (Nx, Ny) will provide an
important input for deriving the Majorana counting rule in
Sec. III D.

In principle, one can go beyond the Kitaev limit and deform
a completely flat edge Majorana band into a dispersing one,
as shown in Fig. 4. Such dispersing Majorana edge band is
also anomalous and cannot be realized in any 1D bulk BdG
system. This is because particle-hole symmetry will require
the edge Majorana band to cross zero energy at kedge = 0, π ,
manifesting its Majorana nature.

With the bulk-boundary correspondence of P , we now
classify all 2D Kitaev superconductors into three topologi-
cally inequivalent classes: (i) trivial Kitaev superconductors
with no weak or higher-order topology; (ii) weak TSCs with
P �= 0; (iii) higher-order TSCs with P = 0.

Even beyond the Kitaev limit, we still expect that this
topological classification should generally hold for any 2D
Wannierizable superconductors.

C. Atomic site, stacking, boundary conditions,
and symmetry representation

Now let us elaborate on another key ingredient for under-
standing the higher-order topology in Kitaev superconductors,
which is the role of atomic sites in defining an inversion-
symmetric open boundary. With the Kitaev building blocks
as a complete set of basis, we will show that the choice of
symmetric open boundary is closely related to how we “stack”
the Kitaev building blocks.

In principle, there are two distinct stacking strategies with
the Kitaev building blocks to generate all possible Kitaev
superconductors:

FIG. 5. The solid dots form inversion-symmetric open lattice ge-
ometries for atomic site configurations in (a)–(d). Boundary atomic
sites that need to be eliminated to preserve inversion symmetry are
shown in colored circles. In (e), we list the number of atomic sites
that need to be removed for an open geometry with Lx × Ly unit cells
if we assign an atomic site to a specific Wyckoff position.

(i) Face-to-face stacking. The atomic sites of all stacked
building blocks coincide with each other in real space at q1a.

(ii) Displaced stacking. The atomic sites of some stacked
building blocks are different from q1a.

As a reference point, we always assume the existence of
at least one building block, whose atomic site coincides with
the origin q1a. For the displaced stacking, when we place the
atomic site of a Kitaev building block κi at some general or
maximal Wyckoff position q, we also put its corresponding
Wannier orbital at q + q1 j in order to make the building block
well defined.

After the face-to-face stacking, the composite system has
no sublattice degree of freedom. Since the inversion center
is always set at the origin q1a in our convention, any rect-
angular open geometry with an odd-integer number of unit
cells along x and y directions would preserve the inversion
symmetry.

For the displaced stacking, however, the collection of
atomic sites within one single unit cell is not invariant under
its inversion center as a whole. Therefore, in an open geometry
with an integer number of unit cells, we will inevitably elim-
inate a fraction of atomic sites on the boundary to preserve
the global inversion. For illustration, we plot in Fig. 5 four
inequivalent displaced stacking configurations. For an open
geometry with Lx × Ly unit cells (Lx,y ∈ odd), if we place
one atomic site at q1a and another at q1b (q1c), the number of
atomic sites being disregarded (shown in red circle) is exactly
Ly (Lx), as shown in Figs. 5(a) and 5(b). If we place one
atomic site at q1a and another at q1d , the number of sites being
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ignored is actually Lx + Ly − 1, with this extra −1 coming
from the corner atomic site shared by the x and y edges, as
shown in Fig. 5(c). On the other hand, if an atomic site (red
dot) is placed at a nonmaximal Wyckoff position q, there must
be another atomic site (purple dot) at the inversion-related
position Iq to preserve the inversion symmetry, as shown in
Fig. 5(d). In this case, the number of removed atomic sites on
the boundary is 2(Lx + Ly − 1). To summarize, we have listed
the results in Fig. 5(e).

The necessity of removing residue atomic sites for the
displaced-stacking models originates from their inversion-
breaking unit cells. While the choice of unit cell is practically
flexible, we notice that when no atomic site sits on a maxi-
mal Wyckoff position q1i �= q1a [as shown in Fig. 5(d)], it is
always possible to find an inversion-invariant choice of unit
cell. However, when at least one atomic site sits on a maximal
Wyckoff position q1i �= q1a [as shown in Figs. 5(a)–5(c)], all
choices of the unit cell necessarily break inversion symmetry.
The latter case exactly corresponds to our displaced stacking
strategy.

Crucially, an inversion-breaking unit cell guarantees that
the following two conditions in momentum space cannot be
fulfilled simultaneously:

(i) the matrix representation of inversion symmetry is in-
dependent of crystal momentum k;

(ii) the Hamiltonian is 2π periodic in k.
In principle, whether a Hamiltonian is 2π periodic in k de-

pends on the explicit definition of Fourier transformation that
switches between a real-space basis to a momentum-space
one. Therefore, if we require a 2π -periodic momentum-space
Hamiltonian, then the corresponding inversion representation
should generally be k dependent when its unit cell does not
respect inversion symmetry. In the Appendix, we provide
several examples to explicitly show this deep connection be-
tween the inversion-breaking unit cell and the k dependence
of inversion representation.

D. Majorana counting rule: A derivation

Now we are ready to derive the bulk Majorana counting
rule for Kitaev superconductors.

As shown in Fig. 3, we first notice that the number of
dangling Majorana modes for each Kitaev building block is
exactly half the number of dangling Wannier orbitals in its
Wannier representation. This is simply because the Wannier
orbitals in Fig. 3 are only shown for the occupied states,
while their particle-hole partners for the unoccupied states
exactly sit at the same location. Similar to a Kitaev chain, such
particle-hole pair of Wannier orbitals on the boundary essen-
tially originates from a nonlocal superposition of one α-type
Majorana fermion and one β-type Majorana fermion. This
completes the mapping between the Majorana representation
and the Wannier representation for a general Kitaev limit with
open boundary conditions.

Recall that in Fig. 3, we also list (Nx, Ny) for each building
block with Lx by Ly unit cells. So one might naively expect
that NI (κi ), the number of boundary Majorana modes modulo
I for a building block κi, is simply Nx + Ny. However, we will
then have missed a crucial fact that some boundary atomic
sites must be removed along with their Wannier orbitals to

preserve the inversion symmetry, as we have discussed in
Sec. III C.

To implement a correct counting of boundary Majorana
modes, we consider a general Kitaev limit with n(A)

i atomic
sites and n(W )

i Wannier orbitals at maximal Wyckoff position
q1i. On an open geometry with complete Lx × Ly unit cells, we
have NI

(0) = Lyn(W )
b + Lxn(W )

c + (Lx + Ly − 1)n(W )
d Majorana

modes dangling on the boundary. On the other hand, following
Fig. 5(e), we also need to remove NI

(1) = Lyn(A)
b + Lxn(A)

c +
(Lx + Ly − 1)n(A)

d numbers of atomic sites along with their
Wannier orbitals (or equivalently boundary Majorana modes).
All these countings together lead to

NI = Lx(�c + �d ) + Ly(�b + �d ) − �d , (5)

where we have defined the Majorana counting number �i =
n(W )

b − n(A)
b . Since we only care about the oddness of NI , we

will not count any contributions from both atomic sites and
Wannier orbitals at a nonmaximal Wyckoff position, which
only contribute evenly to NI .

On the other hand, we hope to rule out the possibility of
weak TSCs by imposing a polarization constraint P = 0. It is
then straightforward to show that a vanishing P is equivalent
to

�b + �d ≡ �c + �d ≡ 0 (mod 2). (6)

Together with Eq. (5), we find that the condition for hosting
higher-order topology with an odd NBI is only possible when
�b,c,d are all odd. This is exactly the Majorana counting
rule that we have stated in Sec. II C. Remarkably, this simple
counting rule only relies on the position information of atomic
sites and Wannier orbitals.

In the following section, we will construct explicit
examples to demonstrate both the stacking-based construction
of Kitaev superconductors with higher-order topology and
how they can be correctly diagnosed via the Majorana
counting rule.

IV. BUILDING-BLOCK CONSTRUCTION
OF HIGHER-ORDER TSCs

In this section, we propose three stacking recipes to
constructed higher-order TSC phases based on the Kitaev
building blocks, all of which are exemplified by minimal
model constructions. The recipes are directly motivated by the
Majorana counting rule.

A. Face-to-face stacking

Let us first focus on the face-to-face stacking strategy.
Starting from the Majorana counting rule, we first derive a
simple stacking recipe that necessarily leads to higher-order
topology. We will then construct a minimal face-to-face stack-
ing model with higher-order topology that demonstrates both
the stacking recipe and the counting rule.

1. Recipe of face-to-face stacking

For face-to-face stacking of the Kitaev building blocks,
by definition, all the atomic sites sit at the unit-cell origin
q1a. Therefore, if we stack ni copies of building block κi with
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FIG. 6. Our minimal model for a nontrivial face-to-face stacking in the Majorana representation is shown (a). The red and blue dots denote
α and β Majorana fermions, while the colored circles in (a) denote unpaired boundary Majorana fermions for hsb. In particular, the colored
solid (black dashed) lines denote the strong Majorana bonds in hsb (weak Majorana bonds in hwb). The parity data for each high-symmetry
momentum is shown in (b). We plot in (c) the distribution of BdG Wannier orbitals, with the large gray dots for the atomic sites and the small
colored dots (or circles) for the Wannier orbitals. (d) Shows the energy spectrum of H1(k) in an open geometry. There exist a pair of Majorana
zero-energy modes (highlighted in red) that are localized on the top left and bottom right corners, as shown in the inset of (d).

i = a, b, c, d , the counting numbers are given by

�a = −(nb + nc + nd ), �b = nb,

�c = nc, �d = nd . (7)

According to the Majorana counting rule, we immediately
arrive at the following stacking recipe for higher-order TSC:

Stacking recipe No. 1. Face-to-face stacking ni copies of
building block κi (i = a, b, c, d) will lead to higher-order
topology if and only if nb,c,d ∈ odd.

According to this recipe, the minimal face-to-face stacking
model that hosts higher-order topology is to choose nb = nc =
nd = 1. In the following, we will construct such minimal
tight-binding model and explicitly demonstrate the existence
of corner-localized Majorana zero modes.

2. A minimal face-to-face stacking model
with higher-order topology

We consider three electron orbitals labeled by an orbital
index l = b, c, d at Wyckoff position q1a, as well as the corre-
sponding hole partners. The electron annihilation and creation
operators can be written as a linear superposition of Majorana
operators αR,l and βR,l as

cR,l = αR,l + iβR,l√
2

, c†
R,l = αR,l − iβR,l√

2
. (8)

A schematic plot of the lattice configuration in the Majorana
representation is shown in Fig. 6(a), where the red dots and
the blue dots denote α-type and β-type Majorana degrees of
freedom, respectively.

To realize the face-to-face stacking, we introduce the fol-
lowing inter-unit-cell Majorana bonds shown in Fig. 6(a):

(i) the red bond t1 connects αR,b and βR+ax,b, which real-
izes a copy of κb with P = ( 1

2 , 0);
(ii) the purple bond t2 connects αR,c and βR+ay,c, which

realizes a copy of κc with P = (0, 1
2 );

(iii) the green bond t3 connects αR,d and βR+ax+ay,d , which
realizes a copy of κd with P = ( 1

2 , 1
2 ).

As a demonstration, the configuration of BdG Wannier
orbitals is schematically plotted in Fig. 6(c), where the color
of each Wannier orbital matches with that of its corresponding
Majorana bond.

While the colored Majorana bonds necessarily gap out the
bulk states, there are still some unwanted dangling Majorana
modes (or equivalently dangling Wannier orbitals) on the
edge, as shown by the open circles in Figs. 6(a) and 6(c).
To further remove these in-gap edge degrees of freedom, we
introduce additional weak Majorana bonds among different
species of Majorana modes within one unit cell, as shown
by the black dashed lines. Therefore, in terms of Majorana
operators, the Hamiltonian consists of hsb describing the col-
ored strong bonds and hwb for the dashed weak bonds. In the
Majorana representation, we have

hsb = i
∑

R

[
t1αR,bβR+ax,b + t2αR,cβR+ay,c + t3αR,dβR+ax+ay,d

]
,

hwb =
∑

R

[
iu12

(
αR,bαR,c + βR,bβR,c

) + iu23
(
αR,cαR,d + βR,cβR,d

) + iv12
(
αR,bβR,c + αR,cβR,b

)
+ iv23

(
αR,cβR,d + αR,dβR,c

)]
. (9)

In the momentum space, we consider the BdG basis

�(k) = (ck,b, ck,c, ck,d , c†
−k,b, c†

−k,c, c†
−k,d )T , (10)
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and the above Hamiltonians become

H1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 cos kx iu12 + v12 0 it1 sin kx 0 0

−iu12 + v12 t2 cos ky iu23 + v23 0 it2 sin ky 0

0 −iu23 + v23 t3 cos(kx + ky) 0 0 it3 sin(kx + ky)

−it1 sin kx 0 0 −t1 cos kx iu12 − v12 0

0 −it2 sin ky 0 −iu12 − v12 −t2 cos ky iu23 + v23

0 0 −it3 sin(kx + ky) 0 −iu23 + v23 −t3 cos(kx + ky)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The inversion operator for the bulk Hamiltonian H1(k)
is given by I = τz ⊗ 13. Here τz is a Pauli matrix for
the particle-hole index and 13 is a 3 × 3 identity ma-
trix characterizing the orbital index l . For our choice of
parameters, it is easy to check that the parity data for
the occupied bands at each high-symmetry momenta are
given by Fig. 6(b). Notably, such parity data directly im-
ply a “double-band inversion” at 
 point [57] and agree
with a prediction of higher-order TSC from symmetry
indicators [63,65–67].

To confirm H1(k) as a higher-order TSC, we calculate
its energy spectrum on a square lattice with open boundary
conditions in both x and y directions. As shown in Fig. 6(d)
and its inset, we indeed find a pair of corner-localized Ma-
jorana zero modes, which unambiguously demonstrate the
inversion-protected higher-order topology in our system. We
note that the corner Majorana modes in Hf have vanishing
localization length, which is similar to the Kitaev limit of
a 1D Majorana chain. This numerical result agrees with our
Majorana counting rule and the stacking recipe No. 1.

B. Displaced stacking with the same building blocks

To go beyond the face-to-face stacking, we now turn
to a more general situation where the building blocks are
stacked in a displaced way. Specifically, the atomic sites of
the building blocks do NOT have to coincide at q1a. This
stacking strategy inspires us to define a displacement vec-
tor d = (dx, dy) to characterize the displacement between the
atomic site and the origin q1a. Since only the atomic sites
and Wannier orbitals sitting at maximal Wyckoff positions
can contribute to the higher-order topology, the components
of d must be half-integer valued with respect to the lattice
constant with dx,y ∈ {0, 1

2 }. From now on, we will denote that
a building block is sitting at a Wyckoff position q if its atomic
site coincides with q.

Let us first start with the displaced stacking construction
with only one kind of building block, i.e., ni copies of build-
ing block κi (i = b, c, d). To avoid Majorana edge band, we
first require ni ∈ even to trivialize bulk polarization P . In
addition, we will ignore the case where an even number of
building blocks of the same kind share the same atomic site
because such stacked system is always topologically trivial.
As a result, it is sufficient to consider a simple double-stacking
model with ni = 2, where one building block κi sits at q1 j1 and
another building block κi sits at q1 j2 for j1 �= j2 ∈ {a, b, c, d}.
Such double-stacking model is uniquely characterized by a
relative displacement vector δd(i) = q1 j2 − q1 j1 , where the
superscript i labels the type of building block.

For the double-stacking models, we have identified a
necessary and sufficient condition for the presence of higher-
order topology, which can be easily tested:

Stacking recipe No. 2. A double-stacking system with
building block κi is higher-order topological if and only if the
relative displacement vector δd(i) �∈ {q1a, q1i} for i ∈ {b, c, d}.

For example, a topologically trivial example can be con-
structed by placing one κb at q1a and another κb at q1b such
that δd(b) = q1b. This can be understood from the Majorana
counting rule since we now have an equal number of atomic
sites and Wannier orbitals for all maximal Wyckoff positions
and, consequently, all Majorana counting numbers are zero.

However, if we move the κb at q1b to q1c, the system is
then expected to be higher-order topological following the
recipe since δd(b) = q1c. From the counting perspective, we
have one atomic site (Wannier orbital) at q1a and q1c (q1b and
q1d ), respectively, which directly indicates nontrivial counting
numbers

�a = −�b = �c = −�d = −1. (12)

In the remaining part of this subsection, we will check this
prediction by constructing a corresponding minimal double-
stacking model and explicitly demonstrating the existence of
corner-localized Majorana zero modes.

1. A minimal double-stacking model with higher-order topology

The minimal double-stacking model with a relative dis-
placement vector δd(b) = q1c is schematically shown in
Fig. 7(a), where red and blue dots denote α-type and β-type
Majorana operators. The lattice constants ax and ay are also
shown in Fig. 7(a). For our purpose, we include two pairs of
Majorana modes within one unit cell, with one pair at rA =
q1a = (0, 0) with a sublattice index A and another pair at rB =
q1c = (0, 1

2 ) with an index B. The Majorana operators are
related to the electron creation and annihilation operators as

cR,l = αR,l + iβR,l√
2

, c†
R,l = αR,l − iβR,l√

2
, (13)

where l = A, B is the sublattice index and R is the lattice
vector that defines the unit cell.

Three types of Majorana bonds are considered in this min-
imal model. As shown in Fig. 7(a),

(i) the green bond t connects βR,l and αR+ax,l , which re-
alizes a copy of κb for individual sublattice if they are the
strongest bonds;
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FIG. 7. The Majorana representation of the minimal double-stacking model H2(k) is shown in (a). The topological phase diagram of H2 as
a function of |m/t | is shown in (b). We plot the energy spectrum for the higher-order TSC phase on an open geometry in (c) and list its parity
data in (d). The energy spectrum and the parity data for the weak TSC phase with P = (0, 1

2 ) are shown in (e) and (f), respectively.

(ii) the dashed orange bond mα connects αR,B and αR+ay,A;
(iii) the solid orange bond mβ connects βR,A and βR,B.
Then the model Hamiltonian in the Majorana representa-

tion is given by

H2(k) = itβR,lαR+ax,l + imααR,BαR+ay,A

+ imββR+ay,BβR,A. (14)

The inversion operation will switch between α and β as

I
(

αR,l

βR,l

)
=

(
0 −1
1 0

)(
αR′,l

βR′,l

)
, (15)

where R and R′ are related by inversion symmetry. It is easy
to check that inversion symmetry will enforce mα = mβ = m.

Back to the fermion basis, we consider the Fourier trans-
formation

cR,l =
∑

k

eik·(R+rl )ck,l , (16)

and the momentum-space Hamiltonian is

H2(k)

=

⎛
⎜⎜⎜⎜⎜⎝

−t cos kx −im cos ky

2 it sin kx m sin ky

2

im cos ky

2 −t cos kx m sin ky

2 it sin kx

−it sin kx m sin ky

2 t cos kx −im cos ky

2

m sin ky

2 −it sin kx im cos ky

2 t cos kx

⎞
⎟⎟⎟⎟⎟⎠

(17)

in the Nambu basis

�(k) = (ck,A, ck,B, c†
−k,A, c†

−k,B)T . (18)

We note that H (d )
x (k) can be diagonalized analytically with

eigenenergy as

E = ±
√

m2 + t2 ± 2mt cos
ky

2
. (19)

Therefore, there exists a topological phase transition (bulk gap
closing) at |t | = |m| that separates two distinct phases.

2. H2(k) with |t| > |m|: A higher-order TSC

When |t | > |m|, we consider the Kitaev limit by setting
|m| → 0. Then the BdG Wannier orbitals of the double-
stacking model are exactly localized at the center of the green
Majorana bonds. Therefore, the system is equivalent to a
stacking of one κb at q1a and another κb at q1c, which is fea-
tured by a relative displacement vector δd(b) = q1c. According
to our stacking recipe No. 2, this phase is diagnosed to be a
higher-order TSC.

To confirm its higher-order nature, we numerically calcu-
late the energy spectrum of this double-stacking model with
t = 1.2 and m = 1 on an open geometry. To preserve the
inversion symmetry, it is crucial to choose only the atomic
sites with a sublattice index l = A as the edge termination
for both the upper and the lower y edges, similar to the
lattice geometry in Fig. 7(a). Just as we expect, the energy
spectrum in Fig. 7(c) hosts a pair of Majorana modes ex-
actly at zero energy. In the inset of Fig. 7(c), we further
plot the wave-function distribution in the real space for both
Majorana modes. Sitting in the opposite corners of the lat-
tice, these Majorana modes are indeed corner localized and
unambiguously signal the inversion-protected higher-order
topology.

In Fig. 7(d), we further list the parity data of this higher-
order TSC phase at each high-symmetry momentum. To
correctly calculate the parity data, we need to modify the
Fourier transformation in Eq. (16) to cR,l = ∑

k eik·Rck,l .
Then the inversion operator is found to be k dependent
with

I =

⎛
⎜⎜⎝

1
eiky

−1
−eiky

⎞
⎟⎟⎠. (20)

As we have discussed in Sec. III C, the k dependence of I
originates from the displaced stacking.

To understand the parity data intuitively, we first note that
the system is essentially an array of x-directed Kitaev chain
in the Kitaev limit m → 0. Thus, the system has only one
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occupied band and the parity data are simply

[(+)
, (−)X , (+)Y , (−)M]. (21)

Here (+)
 denotes one positive parity for the occupied band
at 
 point. By turning on m, the system becomes dimerized
along the y direction and leads to Brillouin zone (BZ) folding
in the momentum space. As a result, the parity data at Y
and M will be folded to 
 and M, respectively. We thus
have (+,+)
 and (−,−)X . Meanwhile, Ỹ = (0, π

2 ) trans-
forms into Ỹ ′ = (0,−π

2 ) under inversion, which is thus not an
inversion-invariant momentum before the BZ folding. When
the BZ folding happens, the BdG states at Ỹ ′ and Ỹ are
folded together as the new Y point and the inversion operation
switches between them as a σx operation. Therefore, the inver-
sion eigenstates at Y after the BZ folding are necessarily the
bonding and antibonding combinations of the states that are
originally from Ỹ and Ỹ ′. As a result, the occupied bands at Y
must host an equal number of “+” and “−” parity eigenvalues
after the BZ folding along the ky direction. A similar argument
can be applied to the parity data at M. Therefore, we arrive at
the following parity data for the higher-order TSC phase

[(+,+)
, (−,−)X , (+,−)Y , (+,−)M ], (22)

as shown in Fig. 7(c).

3. H2(k) with |t| < |m|: A weak TSC

When |t | < |m|, we take the Kitaev limit by setting |t | → 0
instead. Then the Wannier orbitals will sit at the center of the
orange bonds m. To be specific, the system has one Wannier
orbital at a nonmaximal Wyckoff position q = (0, 1

4 ) and an-
other at q = (0, 3

4 ). On the other hand, the two atomic sites
sit at q1a and q1c, respectively. According to the Majorana
counting rule, we have

�a = �c = −1, �b = �d = 0, (23)

and this phase is thus NOT higher-order topological.
In fact, the two Wannier orbitals inside one unit cell are

inversion symmetric around q1a. As a result, we can simulta-
neously move both Wannier orbitals to q1a in a symmetric and
adiabatic way. Then the system is equivalent to a stacking of
a κa at q1a and a κc at q1c, which does not satisfy higher-order
condition in our recipe No. 2.

By counting the relative distance between atomic sites and
the Wannier orbitals, we identify this phase as a weak TSC
with a nontrivial polarization P = (0, 1

2 ). To verify this, we
calculate the energy spectrum of the weak TSC phase with
open boundary conditions in both directions. As shown in
Fig. 7(d) and its inset, this weak TSC phase indeed hosts a
single Majorana flat band localized on its y edge, as predicted
by its polarization. We also show its parity data in Fig. 7(e).

C. Displaced stacking with different building blocks

We can also stack different Kitaev building blocks in a
displaced way to achieve higher-order topology. While it
is difficult to prove a necessary and sufficient higher-order
topological recipe for displaced stackings with inequivalent
building blocks, we do emphasize that our Majorana count-
ing rule still holds for diagnosing the higher-order topology.

Hence, in the following, we will only provide a minimal
example to demonstrate this stacking strategy and leave the
proposal of a general recipe for future works.

1. Model Hamiltonian and higher-order topology

We now consider a displaced stacking with all four in-
equivalent building blocks: (i) one κa at q1d , (ii) one κb at
q1c, (iii) one κc at q1b, and (iv) one κd at q1a. In this case, we
have four atomic sites distributed at all four maximal Wyckoff
positions and four Wannier orbitals coincide at q1d . Following
the counting rule, we have

�a = �b = �c = −1, �d = 3, (24)

and thus the system is predicted to host higher-order topology.
To confirm this prediction, we consider a topologi-

cally equivalent model H3 by symmetrically moving the
Wannier orbitals at q1d to four nonmaximal positions:
( 1

4 , 1
4 ), ( 3

4 , 1
4 ), ( 1

4 , 3
4 ), ( 3

4 , 3
4 ), following the procedure in

Fig. 8(a). We note that such deformation is adiabatic and
should not spoil the higher-order topology since it only modi-
fies the value of �d to −1.

In the Majorana representation, we can realize both the
atomic and Wannier orbital configurations for H3 by con-
structing a Majorana model shown in Fig. 8(b). Notably, the
unit cell now consists of four pairs of Majorana fermions
(or, equivalently, electron and hole pairs) at four inequivalent
maximal Wyckoff positions. For convenience, we will use a
two-component sublattice index (ix jy) with i, j ∈ {A, B} to
label the four maximal Wyckoff positions. For example, we
refer q1a as (AxAy) and q1b as (BxAy), which will be denoted
as (AA) and (BA) for short. As shown in Fig. 8(b), there are
three inequivalent Majorana bonds for H3: (i) the strong green
bonds t that decide the positions of Wannier orbitals; (ii) the
weak (solid and dashed) purple dimer bonds my that remove
the trivial edge modes on the y edge; (iii) the weak (solid
and dashed) red bonds mx that remove the trivial edge modes
on the x edge. Just from the schematic plot in Fig. 8(a), we
already expect that there will be one single unpaired Majorana
mode (shown by the red and blue circles) on both the top right
and bottom left corners of an inversion-symmetric finite-size
geometry.

Following Fig. 8(b), the corresponding Majorana Hamilto-
nian H3 consists of three parts: h3,g for the green bonds, h3,p

for the purple bonds, and the h3,r for the red bonds. In the
Majorana representation, we have

h3,g = it
∑

R

[
βR,AAαR,BB + βR,ABαR+ay,BA

+ βR,BAαR+ax,AB + βR,BBαR+ad ,AA
]
,

h3,p = imx

∑
R

[
βR,AAβR,BA + αR,AAαR−ax,BA

+ βR,ABβR,BB + αR,ABαR−ax,BB
]
, (25)

h3,r = imy

∑
R

[
βR,AAβR,AB + αR,AAαR−ay,AB

+ βR,BAβR,BB + αR,BAαR−ay,BB
]
,

where we have defined ad = ax + ay for simplicity. When
transforming the Hamiltonian into momentum space, it is
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FIG. 8. Higher-order topology of displaced stacking model H3. In (a), we show the adiabatic process by symmetrically moving Wannier
orbitals at different general Wyckoff positions to a maximal Wyckoff position. The Majorana representation of H3 is shown in (b). The
higher-order topology of H3 is confirmed in (c) and its inset by plotting the energy spectrum on an open geometry. The parity data for H3 are
shown in (d).

convenient to consider the Fourier transformations for the
real-space Majorana operators. Take α-type Majorana oper-
ator as an example,

αR,i j =
∑

k

eik·(R+ri j )αk,i j, (26)

where ri j is the displacement of the sublattice (i j) away from
the unit-cell origin. The Hermiticity of a Majorana operator

requires

αk,i j = α
†
−k,i j . (27)

We consider the following momentum-space Majorana basis:

�M = (αk,AA, βk,AA, αk,BA, βk,BA,

× αk,AB, βk,AB, αk,BB, βk,BB)T , (28)

under which the Hamiltonian is given by

H3(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 imxei kx
2 0 imyei

ky
2 0 0 −itei

kx+ky
2

0 0 0 imxe−i kx
2 0 imye−i

ky
2 ite−i

kx+ky
2 0

−imxe−i kx
2 0 0 0 0 −itei

kx+ky
2 imyei

ky
2 0

0 −imxei kx
2 0 0 ite−i

kx+ky
2 0 0 imye−i

ky
2

−imye−i
ky
2 0 0 −itei

kx+ky
2 0 0 imxei kx

2 0

0 −imyei
ky
2 ite−i

kx+ky
2 0 0 0 0 imxe−i kx

2

0 −itei
kx+ky

2 −imye−i
ky
2 0 −imye−i kx

2 0 0 0

ite−i
kx+ky

2 0 0 −imyei
ky
2 0 −imxei kx

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

Interestingly, H3 can be diagonalized analytically and we
find that the energy eigenvalues are completely k independent:

E = ±
√

t2 + (mx ± my)2. (30)

To further clarify the higher-order nature of H3, we con-
sider an inversion-symmetric open geometry for H3 and
calculate the energy spectrum with t = 1 and mx = my = 0.5.
As shown in Fig. 8(c) and its inset, we confirm the existence of
a pair of corner-localized Majorana zero modes, which agrees
with the prediction from the counting rule.

2. Diagnosis from k-space symmetry indicators

We also calculate the parity data for the higher-order TSC
phase of H3(k), which is shown in Fig. 8(d). The inversion

operator is given by

I = τz ⊗

⎛
⎜⎜⎝

1
eikx

eiky

ei(kx+ky )

⎞
⎟⎟⎠ (31)

in the fermion basis


F = (ck,AA, ck,BA, ck,AB, ck,BB,

× c†
−k,AA, c†

−k,BA, c†
−k,AB, c†

−k,BB)T . (32)

Interestingly, H3 has an equal number of “+” and “−” parity
eigenvalues for every high-symmetry point. To understand
these parity data, we note that mx and my are essentially dimer
bonds that lead to unit-cell enlargement. Therefore, the BZ
with finite mx,y is actually folded in both kx and ky directions,
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in comparison to the original BZ without the dimers. Similar
to the double-stacking model H2(k), the inversion eigenstates
for the new high-symmetry momenta after the BZ folding
are essentially the bonding and antibonding combinations of
energy eigenstates at these momenta that transform from one
to another under inversion. As a result, we will always have an
equal number of energy eigenstates with “+” and “−” parity
eigenvalues at all high-symmetry momenta. While H3 appears
to be “featureless” in terms of its parity data, Ref. [76] has
demonstrated the applicability of symmetry indicator theory
to understand its topology, which we will briefly describe
below.

Since I is k dependent, it is crucial to introduce a flat-band
BdG Hamiltonian Href = τz ⊗ 14, which exhibits the follow-
ing parity data according to Eq. (31):

[(−,−,−,−)
, (−,+,−,+)X ,

(−,−,+,+)Y , (−,+,+,−)M ]. (33)

Define nKi as the number of positive-parity states at Ki. The
Z4 inversion indicator is defined by

κ =
∑

Ki

[nKi (H3) − nKi (Href )] = 2, (34)

which directly implies a second-order topology. This analysis
agrees with our real-space counting rule and the numerical
corner-geometry simulation.

V. PROPOSAL OF A REAL-SPACE
TOPOLOGICAL DIAGNOSIS

Although the Majorana counting rule is derived in the
Kitaev limit, the resulting counting procedure only involves
the position information of BdG Wannier orbitals. It is thus
natural to expect that the counting rule should also hold for
general Wannierizable superconductors, including those that
might not manifest a Kitaev-limit description. In this case,
we expect that a rigorous proof of the real-space counting
rules for all Wannierizable systems could be possible, but
challenging to achieve, while the Kitaev limit offers a special
shortcut to access these relations. With this conjectured appli-
cability of counting rule in mind, we propose in this section a
real-space diagnosis for higher-order topology for 2D class-D
systems with inversion symmetry, as schematically shown
in Fig. 9.

In the following, we briefly go through the proposed pro-
cedure for this conjectured universal diagnosis:

(i) Step 1. Given a 2D class-D superconductor with in-
version symmetry, first check if its Wannierizability. If the
Wannier obstruction is fragile, remove it. If not, characterize
the system as a stable topological superconductor, where the
term “stable” is defined to describe the robustness of Wannier
obstruction.

(ii) Step 2. If there is no stable Wannier obstruction, ex-
tract the numbers of Wannier orbitals and atomic sites at
each maximal Wyckoff positions. Calculate Majorana count-
ing numbers.

(iii) Step 3. If the counting numbers are nontrivial, the
system is a higher-order TSC. If not, the system could be

FIG. 9. The flow diagram of our proposed real-space diagnosis
for 2D class-D inversion-protected higher-order TSCs.

either a trivial superconductor or a weak TSC, depending on
the explicit value of polarization P .

To demonstrate our conjectured universal diagnosis, in
the next section, we will discuss a known higher-order TSC
model in the literature. We will first show that this model
actually hosts fragile Wannier obstruction and is definitely
beyond the Kitaev limit. Nevertheless, we will follow the
universal diagnosis to first remove the Wannier obstruction
and connect the new Wannierizable system to a well-
defined Kitaev superconductor. This allows us to understand
the origin of higher-order topology for the original model
through a very simple Majorana counting, which verifies our
diagnosis.

VI. APPLICATION TO A REALISTIC HIGHER-ORDER
TOPOLOGICAL SUPERCONDUCTOR

Let us now consider a realistic higher-order TSC that
has been discussed in the literatures [32,57]. This model
consists of one p + ip chiral TSC and another p − ip chi-
ral TSC [32], and is thus a superconducting version of the
“shift insulator” in Ref. [77]. We first present a minimal
tight-binding model of such system and explicitly show the
existence of Majorana corner modes by deriving an effec-
tive edge theory analytically. We then calculate its Wilson
loop spectrum to confirm the inversion-protected Wannier
obstruction, manifested in the nontrivial Wilson loop winding.
However, such Wilson loop winding can be trivialized if we
couple the system with additional Wannier orbitals, which
thus confirms the fragility of Wannier obstruction [78]. By
matching the stacked chiral TSC model with a superposi-
tion of Kitaev building blocks, we provide an understanding
of its higher-order topology with the help of our Majorana
counting rule.
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A. Model Hamiltonian for stacked chiral TSCs

The minimal tight-binding model for two decoupled chiral
TSC is given by

H (0)
4 = [m0 + m1(cos kx + cos ky)]
5

+ v(sin kx
1 + sin ky
2), (35)

where we have defined the generator of 4 × 4 
 matrices as


1 = τx ⊗ σ0, 
2 = τy ⊗ σ0, 
3 = τz ⊗ σx,


4 = τz ⊗ σy, 
5 = τz ⊗ σz, (36)

These 
 matrices satisfy an anticommutation relation
{
i, 
 j} = 2δi j for i, j ∈ {1, 2, 3, 4, 5}. The other 10 
 ma-
trices can be generated by 
 jk = 1

2i [
 j, 
k] for j �= k.
Note that H (0)

4 is block diagonal and can be written as a
direct sum of a p + ip chiral TSC h+ and another p − ip chiral
TSC h−. In particular,

h±(k) = ± [m0 + m1(cos kx + cos ky)]τz

+ v(sin kxτx + sin kyτy). (37)

We have defined the particle-hole symmetry as � = 
1K and
the inversion symmetry as I = 
5, where K is the complex
conjugation.

We now consider adding symmetry-allowed perturbation
H (1)

4 to remove the accidental edge modes of H (0)
4 . To be

specific, we hope to find a constant matrix A to preserve
both inversion I and the particle-hole symmetry �. Namely,
A should satisfy (i) {A, �} = 0; (ii) [A, I] = 0. We find the
following choice of A:

A = {
5, 
12, 
14, 
24}, (38)

which inspires us to define

H (1)
4 = g1
14 + g2
24 + g3
12, (39)

where we have ignored 
5 in H (1)
4 since it is already contained

in H (1)
4 . The complete Hamiltonian for stacked chiral TSC is

thus H4 = H (0)
4 + H (1)

4 .

B. Higher-order topology from a boundary perspective

Before providing any numerical results for H4, we
first demonstrate the origin of its higher-order topology
from an analytical boundary perspective. We will derive
an effective analytical boundary theory for H4 in a disk
geometry and explicitly show the existence of corner-
localized Majorana zero modes, similar to the approaches
in Refs. [57,58].

We first treat H (1)
4 as a small perturbation and expand h±

around 
 point. This leads to an effective Hamiltonian around

 for both chiral TSC blocks,

h

±(k) = ±[

m̃0 − m̃1
(
k2

x + k2
y

)]
τz + v(kxτx + kyτy), (40)

where we have defined m̃0 = (m0 + 2m1) and m̃1 = m1
2 . In

the polar coordinate r =
√

x2 + y2 and θ = tan−1 y
x , we have

k± = e±iθ (kr ± ikθ ) with kr = −∂r and kθ = − i
r ∂θ . Up to

O(k), h

± can be written as

h

±(r, θ ) =

( ±m̃0 ve−iθ
(−i∂r − 1

r ∂θ

)
veiθ

(−i∂r + 1
r ∂θ

) ∓m̃0

)
. (41)

We consider a disk geometry with a radius R and solve for
the Majorana wave function that is exponentially localized at
r = R. In the large-R limit, we find a single Majorana solution
ψ± for h±:

ψ±(l, r, θ ) = Nψe± m
v

(r−R)eilθ

(
e− i

2 (θ± π
2 )

e
i
2 (θ± π

2 )

)
(42)

with l ∈ Z and a normalization factor Nψ . The energy disper-
sion for ψ±(l, r, θ ) is

E±,l = ±vl

r
. (43)

Therefore, ψ+ and ψ− represent a pair of chiral Majorana
edge modes propagating in the opposite directions. Now we
are ready to project the perturbation H (1)

4 onto the chiral Ma-
jorana basis and we arrive at an effective edge Hamiltonian

Hedge = vl

r
σz − (g1 sin θ − g2 cos θ )σy. (44)

Therefore, the edge spectrum is given by

Eedge = ±
√(

vl

r

)2

+ (
g2

1 + g2
2

)
sin(θ − θ0), (45)

where we have defined θ0 = tan−1 g2

g1
. Clearly, the boundary

gap closes for the chiral Majorana modes with l = 0 only
when θ = θ0 and θ = θ0 + π . Therefore, the system hosts a
pair of corner-localized Majorana zero modes at these two
inversion-related angles and is thus higher-order topological
by definition.

C. Fragile Wannier obstruction

We now consider placing H4 on a 15 × 15 lattice and
calculate its energy spectrum. As shown in Fig. 10(a) and
its inset, there exists a pair of corner-localized Majorana zero
modes, which establishes H4 as a higher-order TSC. In partic-
ular, the model parameters are chosen to be m0 = −m1 = 3
and g1 = g2 = 0.5. According to our boundary theory, the
corner Majorana modes are predicted to be localized on the
inversion-related boundary positions, which are characterized
by the polar angle θ = θ0 = tan−1 1 = π

4 and θ = 5π
4 . This

agrees well with our numerical findings shown in the inset of
Fig. 10(a).

The Wannier obstruction of H4 is clearly revealed by
calculating the bulk Wilson loop spectrum ωx

1(ky), which
is often known as the “Wannier band spectrum” [28]. As
shown in Fig. 10(b), the Wilson loop ωx

1(ky) exhibits a
nontrivial winding pattern which prohibits a symmetric and
localized Wannier representation for H4. Such winding pattern
is relatively robust by itself due to the inversion-symmetry
protection [79].

However, if we couple H4 with another Wannierizable sys-
tem Hw, we can unwind the Wilson loop (gap out the Wannier
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(a) (b)

(c) (d)

FIG. 10. We numerically verify in (a) and the inset that the
stacked chiral TSC model H4 is higher-order topological by cal-
culating its energy spectrum on an open geometry and confirm
its corner-localized Majorana zero modes. In (b), we calculate the
1D x-directed Wilson loop spectrum ω1(ky ). ω1 is found to host a
nontrivial winding pattern which directly implies the existence of
Wannier obstruction. In (c), we explicitly demonstrate the fragility
of Wannier obstruction by coupling H4 to a Wannierizable system
Hw and thus “unwind” the Wilson loop pattern. In (d), we calculate
the y-directed nested Wilson loop ω2(kx ) for the red Wannier band
sector in (c).

bands) to recover the Wannierizability [38,80]. To achieve
this, we consider a composite system H5, with

H5 =
(

H4 hc

h†
c Hw

)
. (46)

We have constructed Hw by placing one Wannier orbital at
q1 = ( 1

4 , 1
4 ) and another Wannier orbital at q2 = (− 1

4 ,− 1
4 ).

Note that one can symmetrically move both Wannier or-
bitals to q1a without spoiling the adiabacity. Therefore, Hw

is adiabatically equivalent to stacking two building blocks
κa at q1a, which is both Wannierizable and topologically
trivial.

Specifically, we consider the BdG basis 
w =
(c1,k, c†

1,−k, c2,k, c†
2,−k )T for Hw, where ci,k annihilates

an electron at qi for i = 1, 2. Then Hw and the coupling
matrix hc are given by

Hw = t

⎛
⎜⎜⎜⎝

ε0 0 f (k)2 0
0 −ε0 0 − f (k)2

[ f (k)∗]2 0 ε0 0
0 −[ f (k)∗]2 0 −ε0

⎞
⎟⎟⎟⎠,

hc = gc

⎛
⎜⎜⎜⎝

f (k)∗ 0 f (k) 0
0 − f (k)∗ 0 − f (k)
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (47)

where we have defined f (k) = e
i
4 (kx+ky ).

For our purpose, we choose a large ε0 = 30 such that
the BdG bands of Hw stay away from the Fermi level. We
also choose t = 0.5 and gc = 4 and calculate the x-directed
Wilson loop for the composite system H5. As shown in
Fig. 10(c), now the Wannier bands are gapped out and can
be separated into two disjoint segments, which are plotted
in red and blue, respectively. This unwinding pattern di-
rectly suggests that the previous Wannier obstruction for H4

is indeed removed, which is a hallmark for fragile Wannier
obstruction.

D. Nested Wilson loop, parity data, and Majorana counting

To perform our universal diagnosis, note that it is gen-
erally challenging to find an adiabatic path to connect the
Wannierizable composite system H5 and a corresponding
Kitaev superconductor. Consequently, we will try to estab-
lish such adiabatic connection in an indirect way. We will
explicitly show that both its (nested) Wilson loops [28]
and the parity data indicate a unique decomposition of H4

in terms of the Kitaev building blocks. This decomposi-
tion allows us to explain the higher-order topological origin
of the stacked chiral TSC model H4 with our Majorana
counting rule.

Physically, the value of Wilson loops ωx
1(ky) is the ex-

pectation value of x-position operator x̂ in the Wannier
representation. Therefore, a gapped Wannier band spectrum
in Fig. 10(c) directly implies the existence of two spatially
separated electron clouds along the x direction within the unit
cell. To be specific, the red (blue) Wannier bands correspond
to an electron cloud localized around x = 0 (x = 1

2 ). Please
note that the pseudoenergy unit of Wannier bands and that of
spatial coordinates differ by a factor of 2π .

To further extract the position information for the electron
clouds along the y direction, we calculate the nested Wilson
loop ω

y
2(kx ) for each colored group of Wannier bands. As

shown in Fig. 10(d), we find two nested Wannier bands lo-
calized around ω

y
2 = 0 and ω

y
2 = 1

2 , respectively. Physically,
this implies that the red electron cloud at x = 0 can be further
divided into two separated smaller electron clouds along the
y direction. In particular, one cloud sits around q1a = (0, 0)
and the other locates at q1c = (0, 1

2 ). A similar nested Wilson
loop calculation can be performed for the blue Wannier band
sector, which shows a similar spectrum to Fig. 10(d). This
suggests the existence of two electron clouds at q1b and q1d ,
respectively.

However, one should be careful about interpreting the
(nested) Wilson loop results as the actual positions of Wannier
orbitals in real space. Since the (nested) Wilson loops are
essentially projected position operators for a specific
(Wannier) band sector, the projected x̂ and ŷ operators do not
generally commute. For example, we could calculate the y-
directed Wilson loop ω

y
1 and the x-directed nested Wilson loop

ωx
2, instead of the ωx

1 and ω
y
2 that we have calculated. Then it is

possible that (ωx
1, ω

y
2) �= (ωy

1, ω
x
2). While this ambiguity does

not exist for our present model, an example with this issue
does exist and was addressed in Ref. [28].

To further rule out the ambiguity of the Wilson loop calcu-
lations, we further calculate the parity data for the composite
system H5, as shown in Table I. In particular, we can trust the
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TABLE I. This table shows the decomposition of the composite
system H5 with respect to Kitaev building blocks, from the perspec-
tive of parity data. For the parity data of H5, the data in red (blue)
color show the contribution from H4 (Hw). About the notation of
the decomposition, for example, we have used “p@q1a” to denote
a Kitaev building block with a p-like orbital sitting at q1a.

parity data for H5 simply because it does have momentum-
independent inversion representation. To demonstrate, we
have highlighted the parity contribution for H4 in red and that
for the Wannierizable system Hw in blue. We note that the
parity data for H5 is the same as that for a face-to-face stacking
of one p-like orbital at q1a and three s-like orbital at the
other three maximal Wyckoff positions, as shown in Table I.
It is easy to see that such parity data decomposition is indeed
unique. Then the parity data and the Wilson loop calculations
reach a consistent decomposition relation for H5 that

H5 ≡ κa(p) ⊕ κb(s) ⊕ κc(s) ⊕ κd (s), (48)

where we have denote a κi with an α-type orbital as κi(α).
Here “≡” denotes the adiabatic equivalence relation between
the two systems and “⊕” denotes the stacking operation of
Kitaev building blocks.

Recall that Hw ≡ κa(s) ⊕ κa(p). Then we have

H4 ≡ H5 
 Hw ≡ κb(s) ⊕ κc(s) ⊕ κd (s) 
 κa(s). (49)

Namely, H4 is equivalent to a stacking of κb,c,d with an ad-
ditional “subtraction 
” of κa. From the Majorana counting
rule, we have shown that the face-to-face stacking of κb,c,d

is higher-order topological but κa is not. As a result, the
stacked chiral TSC model H4 is then naturally higher-order
topological, which clearly verifies our diagnosis.

VII. CONCLUSIONS AND DISCUSSIONS

To conclude, we have proposed both Kitaev limit and
its building blocks as an approach for constructing and di-
agnosing 2D higher-order topological superconductors with
inversion symmetry. Different from the traditional k-space
classification schemes, our approach starts from a complete
set of real-space Kitaev building blocks, based on which we
derive a simple real-space counting rule for diagnosing corner
Majorana modes. The Majorana counting rule is expected to
work for general 2D higher-order TSCs within this symmetry
class, with which we arrive at simple recipes for constructing
various paradigmatic higher-order TSC models by stacking
the building blocks. We also demonstrate an application of
the real-space counting rule to a non-Kitaev-limit model that
carries a fragile Wannier obstruction.

Recently, there is an interesting proposal about using “pair-
ing obstruction” instead of Wannier obstruction to understand
the topological behavior of superconductors [81]. Following
the original definition in Ref. [82], the pairing obstruction
is characterized by a real-space two-point function grr′ that
describes the spatial profile of the Cooper pairs. In particular,
a BdG system is pairing obstructed and thus proposed to
be topological if grr′ falls off as a polynomial function of
|r − r′|. In other words, the pairing obstruction occurs if the
Fourier transform of grr′ is singular. We note that our Kitaev
building blocks κb,c,d do have similar pairing obstructions
because of the interatomic-site Majorana bonds. Therefore,
it is easy to check that all of the Kitaev superconductors
with higher-order topology in our work are indeed pairing
obstructed.

Generalizations of our building-block construction to
superconductors with other crystalline or internal group sym-
metries are possible. For example, in a followup work by
two of the authors, we extend our framework to 2D class-
DIII systems with a twofold rotation symmetry C2 [83]. The
specialty of this symmetry class lies in the universally equiv-
alent C2 symmetry data at every high-symmetry momentum,
which is independent of the underlying band topology. Sys-
tems in this class thus cannot be symmetry indicated [84],
while our real-space diagnosis has been proved powerful
to analyze the corner Majorana physics in this case. As a
future direction, it would be interesting to understand the
relationship between our counting rule and the symmetry
indicators.

Our approach is also ready to be extended for 3D higher-
order TSCs. Note that in 3D class-D systems, inversion
symmetry can support second- and third-order topologies.
The latter case features corner Majorana modes similar to the
second-order phase in 2D, which would be either Wannier-
izable or fragilely Wannier obstructed. To derive a similar
counting rule in 3D, the increase of spatial dimensions is
expected to lead to eight inequivalent Kitaev building blocks.
Besides, a nonzero polarization could now lead to either
surface or hinge-localized dangling BdG Wannier orbitals, de-
pending on its spatial orientation. All of the above details will
need to be handled carefully to arrive at the correct Majorana
counting rule, which is complicated but doable. Meanwhile,
3D second-order TSC phases are usually not Wannierizable,
which manifests in their dispersing hinge modes. However,
they generally yield a dimensional-reduction picture that, ei-
ther kz = 0 or π plane of the 3D system is topologically
equivalent to a 2D second-order TSC. In this case, we can
always apply our 2D real-space diagnosis to understand the
Majorana corner modes of the k-space 2D subsystem, further
offering an interpretation to the Majorana hinge modes. We
leave a detailed discussion on this subject to future works.
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APPENDIX: MOMENTUM DEPENDENCE
OF SYMMETRY REPRESENTATION

In Sec. III C, we have discussed that when the unit cell of a
lattice model is inversion breaking, its matrix representation
of inversion symmetry in momentum space is necessarily
momentum dependent. In this Appendix, we will discuss two
explicit examples to demonstrate the deep connection between
an inversion-breaking unit cell in real space and the symmetry
matrix representation in momentum space.

1. Staggered model in one dimension

Let us first consider a 1D inversion-symmetric lattice sys-
tem with two types of atoms A and B within one unit cell, as
shown in Fig. 11. We choose the unit-cell convention such
that atom A locates at the unit-cell origin with rA = 0 and
atom B locates at the center of the unit cell with rB = 1

2 .
In particular, we turn on an onsite potential μA for atom
A as well as an μB atom B, and further require the poten-
tial distribution to be staggered with μA �= μB. As shown
in Fig. 11, the inversion center will then coincide with ei-
ther atom A or atom B for an open boundary system, which
depends on the oddness of the number of unit cells. Since
A and B locate at two distinct maximal Wyckoff positions
for the 1D unit cell, the unit cell inevitably breaks inversion
symmetry. Therefore, we expect that the matrix representa-
tion of inversion symmetry will necessarily depend on crystal
momentum k.

To verify this, we construct a real-space tight-binding
Hamiltonian for this 1D staggered model as

Hstagger =
∑

R

∑
i=A,B

μi

2
c†

i,Rci,R

+ t
∑

R

[c†
A,RcB,R + c†

A,RcB,R−1] + H.c. (A1)

We perform Fourier transformation and arrive at the following
momentum-space Hamiltonian

Hstagger(k) =
(

μA t (1 + e−ik )
t (1 + eik ) μB

)
. (A2)

The basis function for this Hamiltonian is given by


 = (cA,k, cB,k )T . (A3)

Since the inversion operation I leaves both atoms A and B
invariant, the most general form for the matrix representation
of I is given by

I =
(

a1(k)
a2(k)

)
, (A4)

where a1,2(k) are general complex functions of k. By
imposing

IHstaggerI† = Hstagger(−k), (A5)

we arrive at the following constraints:

|a1,2(k)|2 = 1, a1(k)a2(k)∗ = eik . (A6)

Therefore, we find that

I = a1(k)

(
1

e−ik

)
, (A7)

where a1(k) can be treated as an unimportant U(1) phase
factor.

On the other hand, if we consider the following modified
basis,

�̃ = (cA,k, e−ik/2cB,k )T . (A8)

Then the inversion operator is simply I = 12 and k indepen-
dent. But the Hamiltonian now becomes

H̃stagger =
(

μA 2t cos k
2

2t cos k
2 μB

)
, (A9)

which is clearly 4π periodic. This agrees with our expec-
tation that if the unit cell breaks inversion and Hstagger(k)
is 2π periodic, the representation of I must explicitly
depend on k.

2. Inversion symmetry of double-stacking model H2(k)

Now let us construct the inversion operation for the min-
imal double-stacking model H2(k). If we follow the Fourier
transformation in Eq. (16) and the Hamiltonian in Eq. (17),
the inversion operation is simply I = τz ⊗ σ0. But we should
notice that the Hamiltonian in Eq. (17) is indeed 4π periodic
instead of 2π periodic.

Instead, we can follow the basis convention in Sec. IV B 2,
where the Fourier transform is defined with respect to lattice
unit cells. In this convention, the Hamiltonian is guaranteed to
be 2π periodic. Then the general form for inversion operation
is given by

I =

⎛
⎜⎜⎝

a1(k)
a2(k)

a3(k)
a4(k)

⎞
⎟⎟⎠, (A10)
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where ai(k) are assumed to be unitary complex functions of k
with |ai(k)|2 = 1. Since we require

IH2(k)I† = H2(k)(−k), (A11)

we arrive at the following constraints:

a1(k)a2(k)∗ = e−iky , a1(k)a3(k)∗ = −1,

a2(k)a3(k)∗ = −eiky , a1(k)a4(k)∗ = −e−iky ,

a3(k)a4(k)∗ = e−iky , a2(k)a4(k)∗ = −1. (A12)

Therefore, the inversion operator for H2(k) is

I = a1(k)

⎛
⎜⎜⎝

1
eiky

−1
−eiky

⎞
⎟⎟⎠, (A13)

which is exactly the one shown in Sec. IV B up to an unim-
portant U(1) phase factor a1(k).
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