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Benchmarks and results of the two-band Hubbard model from the Gutzwiller conjugate
gradient minimization theory
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Ground-state properties, such as energies and double occupancies, of a one-dimensional two-band Hubbard
model are calculated using a first-principles Gutzwiller conjugate gradient minimization theory. The favorable
agreement with the results from the density matrix renormalization group theory demonstrates the accuracy
of our method. A rotationally invariant approach is further incorporated into the method to greatly reduce
the computational complexity with a speedup of approximately 50 times. Moreover, we investigate the Mott
transition between a metal and a Mott insulator by evaluating the charge gap. With greatly reduced computational
effort, our method reproduces the phase diagram in reasonable agreement with the density matrix renormalization
group theory.
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I. INTRODUCTION

Accurate description of a large number of interacting elec-
trons remains one of the grand scientific challenges of the
present day even with the computer industry’s explosive tech-
nology growth. The main source of difficulties lies in the
fact that the dimension of the Hilbert space required to de-
scribe a correlated-electron system grows exponentially in the
system size and that the minus sign problem arising from
strongly interacting fermions leads to very slow convergence
of straightforward Monte Carlo approaches. Numerical stud-
ies of most large, realistic systems are affordable only via the
Kohn-Sham density function theory (DFT) [1,2]. However,
DFT often fails in describing strongly correlated-electron ma-
terials, where the behavior of electrons cannot be described
effectively in terms of noninteracting entities, because com-
paratively simple density functional approximations are not
sufficiently accurate to describe the strong correlation effect.
On the other hand, quantum chemistry approaches that are
capable of accurately describing smaller systems are often
too expensive for many large, realistic systems. Hybrid ap-
proaches that merge DFT with many-body techniques [3–5]
have been demonstrated to be powerful and efficient in de-
scribing the properties of real correlated-electron materials.
However, the use of adjustable screened Coulomb parameters
restricts the predictive power of these methods. In order to
study realistic condensed matter systems and predict unusual
properties that emerge from the correlated behavior of elec-
trons, it is highly desirable to develop ab initio methods that
are both affordable and reasonably accurate.

We have been developing such a many-body approach,
namely, the Gutzwiller conjugate gradient minimization
(GCGM) method [6–12]. The GCGM method is based on
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the Gutzwiller wave function (GWF) that was proposed by
Gutzwiller in the 1960s [13–15]. The GWF is a simple vari-
ational wave function that can be defined as a correlation
projector acting on a one-particle product state. In GWF-based
theories, the Gutzwiller approximation (GA; also proposed by
Gutzwiller) is commonly adopted to evaluate the expectation
value of an observable with respect to the GWF. However,
this approximation “decouples” the two correlated sites by
using a site-site factorization and overlooks the correlation
between electrons of parallel spins (the exchange hole) [16].
It recovers the exact GWF results only in infinite dimen-
sions [17]. In finite dimensions it could be a major source
of the inaccuracy although the use of the approximation
greatly improves the computational efficiency [18]. As the
strong-coupling counterpart of the GWF, the Baeriswyl wave
function (BWF) [19,20] was proposed to describe the insu-
lating states in the limit of large interactions. In the BWF,
a projector solely dependent on the kinetic energy term is
applied onto the wave function in the large Hubbard U limit:
|�BW F 〉 = �

PK |�∞〉. |�∞〉 can be chosen as the ground state
of the Heisenberg Hamiltonian or as |�GW F 〉 obtained in the
large U limit [20,21]. Approximate combinatorial solutions
similar to the GA were also developed for the BWF and
the hybrid Baeriswyl-Gutzwiller wave function [21]. A com-
parative study demonstrated that the BWF performs better
qualitatively than the GWF in describing the insulating states
at large U [22]. In the GCGM theory, we use the GWF
without using the GA and evaluate the expectation value of
an observable in a more rigorous way. GCGM also overcomes
certain limitations of the GWF itself, which introduces corre-
lations into |�0〉, the trial wave function, only via an on-site
correlation factor. In the case that some intersite correlation
is absent in |�0〉, it will also be missing in the GWF. The
GCGM method reinforces a site-site constraint in such situa-
tions and has been demonstrated to be successful in the case
of Hubbard models [10]. Our previous work has demonstrated
the improved accuracy of the GCGM method with benchmark
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tests of molecules, such as energy calculations of both the
ground and the excited states of dimers [7–9]. The benchmark
tests on periodic bulk systems have focused mainly on the
Hubbard model, both one- and two-dimensional, but with
only one band [10]. Since our ultimate goal is to develop a
numerical tool to access realistic condensed matter systems,
the next benchmark test is naturally the multiband Hubbard
model. In this work, we focus on a general two-band Hubbard
model and compare our results with those given by density
matrix renormalization group theory (DMRG) [23,24], a well-
established and powerful many-body approach, especially for
one-dimensional (1D) systems. We examine the ground-state
properties, including the energy and the double occupancy.

When dealing with multiband/multiorbital systems, a
grand challenge is that the computational complexity grows
exponentially with the number of orbitals. In the second part,
we introduce a rotationally invariant (RI) scheme to greatly
reduce the computational cost. In the RI scheme, orbitals that
satisfy certain symmetries can be grouped together and the
Gutzwiller projector is parametrized based on the number
of electrons occupying the group of orbitals instead of the
on-site configurations. For example, for a cubic system of
which the valence orbitals contain p orbitals, we may group
the px, py, pz orbitals (if they overlap with each other after
rotation by 90◦ about one of the x, y, z axes) and use the
number of electrons that occupy any of the p orbitals to
parametrize the system. As demonstrated with benchmark
tests of dimers [7,12], the scheme efficiently groups the on-
site orbitals according to their symmetry and greatly reduces
the computational complexity without sacrificing accuracy. In
the second part of this work, we apply the RI scheme to the
same two-band Hubbard model and repeat the calculations
of the first part. A speedup of approximately 300 times as-
sociated with a favorable agreement with the results given
by the original GCGM without applying RI demonstrates the
efficiency and the accuracy of the RI scheme. We summarize
this work by investigating a Mott transition in this system with
GCGM, GCGM+RI, and comparing our results with DMRG.

II. MODELS AND METHODS

A. The two-band Hubbard model

The Hubbard model is defined by the Hamiltonian that
contains a kinetic energy term and a Coulomb interaction
term,

Ĥ = ĤK + ĤCoul, (1)

where the kinetic term ĤK is defined as

ĤK = −t
∑

〈IJ〉ασ

c†
Iασ cJασ −

(
t ′ ∑

Iσ

c†
I1σ cI2σ + H.c.

)
, (2)

and the Coulomb interaction term ĤCoul is defined as

ĤCoul =U
∑
Iα

nIα↑nIα↓ + U ′ ∑
Iσ

nI1σ nI2σ̄

+ (U ′ − J )
∑
Iσ

nI1σ nI2σ + J
∑

I

(c†
I1↑c†

I2↓cI1↓cI2↑

+ c†
I1↑c†

I1↓cI2↓cI2↑ + H.c.). (3)

The operator c†
Iασ (cIασ ) creates (annihilates) an electron

with spin σ (=↑,↓) and orbital index α(= 1, 2) at the Ith
site (or unit cell) and nIασ = c†

Iασ cIασ . t represents the
orbital-independent nearest-neighbor hopping and t ′ the hy-
bridization between the two orbitals. U (U ′) represents the
intraband (interband) Coulomb interaction and J the Hund
coupling. σ̄ denotes the opposite spin of σ , and 〈IJ〉 a pair
of nearest neighbors. The standard constraint U ′ = U−2J
is used given by the cubic symmetry. We only consider the
regime 0 � J � U

3 throughout this study to ensure that all the
Coulomb interaction coefficients in Eq. (3) are non-negative.

Under the linear transformation c̃I1σ = 1√
2
(cI1σ + cI2σ )

and c̃I2σ = 1√
2
(cI1σ − cI2σ ), where c̃I1σ /c̃I2σ annihilates an

electron from the bonding/antibonding band, respectively, the
kinetic Hamiltonian term can be written in a more familiar
form,

ĤK =
∑
Iασ

�α c̃†
Iασ c̃Iασ − t

∑
〈IJ〉ασ

c̃†
Iασ c̃Jασ , (4)

where �α is the orbital-dependent crystal-field splitting and
�1 = −t ′, �2 = t ′, and the Coulomb interaction term

ĤCoul =U
∑
Iα

ñIα↑ñIα↓ + U ′ ∑
Iσ

ñI1σ ñI2σ̄

+ (U ′ − J )
∑
Iσ

ñI1σ ñI2σ + J
∑

I

(c̃†
I1↑c̃†

I2↓c̃I1↓c̃I2↑

+ c̃†
I1↑c̃†

I1↓c̃I2↓c̃I2↑ + H.c.), (5)

where ñIασ = c̃†
Iασ c̃Iασ . It can be seen that the Kanamori

Coulomb interaction term ĤCoul keeps the same form as in
Eq. (3) under the linear transformation, i.e., ĤCoul is rotation-
ally invariant.

B. The GCGM method

In a recent review work on the GCGM approach [7], we
outlined the complete formalism of GCGM starting from a
two-atom system. The formalism is easier to follow for this
simplest system, and its extension to periodic bulk systems
is straightforward. The formalism of the GCGM method for
periodic systems has been presented elsewhere [6,7,10]. How-
ever, to facilitate a better understanding of the method, we still
outline the essential formalism here. The formalism presented
here has a general form and can be applied to any periodic
system other than the Hubbard model. We start from a general
nonrelativistic and periodic Hamiltonian,

Ĥ =
∑

Iiα,J jβ,σ

tIiαJ jβc†
Iiασ cJ jβσ

+ 1

2

∑
Iiα,J jβ

Kkγ ,Llδ,σσ ′

u(Iiα, J jβ; Kkγ , Llδ)

× c†
Iiασ c†

J jβσ ′cLlδσ ′cKkγ σ , (6)

where I, J, K, L are the unit cell indices, i, j, k, l the atomic
site indices, α, β, γ , δ the orbital indices, and σ, σ ′ the spin
indices. Here, t and u are the one-electron hopping integral
and the two-electron Coulomb integral, respectively. We note
that in the Hubbard model described in Eqs. (1)–(5), there is
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only one atom per unit cell, and that the atomic site indices are
therefore removed from these equations. We start from a trial
wave function |�0〉 that is often noninteracting, i.e., a single
Slater determinant, which can be written as the projection onto
on-site configurations,

|�0〉 =
∑
{
Ii}

|{
Ii}〉〈{
Ii}|�0〉 =
∑
{
Ii}

λ{
Ii}|{
Ii}〉, (7)

where the summation runs through all possible single-atom
configurations. The coefficient λ{
Ii} is defined as λ{
Ii} =
〈{
Ii}|�0〉 and 
Ii is the on-site configuration at atomic site Ii,
which is defined as a Fock state |
Ii〉 ≡ ∏

ασ∈
Ii
c†
ασ |∅〉. Here

the creation operator c†
ασ creates an electron at the orbital α

with spin σ in the vacuum state |∅〉. The GWF is constructed
from |�0〉 and can be written as

|�GW F 〉 =
∏

Ii

(∑



g(
Ii)|
Ii〉〈
Ii|
)

|�0〉

=
∑
{
Ii}

(∏
Ii

g(
Ii)

)
λ{
Ii}|{
Ii}〉, (8)

where g(
Ii) are Gutzwiller variational parameters introduced
to control the weight of the atomic configurations 
Ii in

|�GW F 〉. Since all unit cells are identical, g(
Ii) is independent
of a specific unit cell and so g(
Ii) = g(
i ). The total energy
of the system can be expressed as

EGW F =
∑

Iiα,J jβ,σ

tIiα,J jβ〈c†
Iiασ cJ jβσ 〉GW F

+ 1

2

∑
Iiα,J jβ
Kkγ ,Llδ,σσ ′

u(Iiα, J jβ; Kkγ , Llδ)

× 〈c†
Iiασ c†

J jβσ ′cLlδσ ′cKkγ σ 〉
GW F

, (9)

where 〈Ô〉GW F is a shorthand notation for 〈�GW F |Ô|�GW F 〉
〈�GW F |�GW F 〉 . Then

we evaluate rigorously the on-site two-particle correlation
matrix (2PCM) where Ii = J j = Kk = Ll and use Wick’s
theorem [25] to evaluate the intersite 2PCM approximately,

〈c†
Iiασ c†

J jβσ ′cLlδσ ′cKkγ σ 〉
GW F

≈ 〈c†
Iiασ cKkγ σ 〉GW F 〈c†

J jβσ ′cLlδσ ′ 〉
GW F

− δσσ ′ 〈c†
Iiασ cLlδσ 〉GW F 〈c†

J jβσ cKkγ σ 〉
GW F

. (10)

The total energy can be expressed as

EGW F ≈
∑

Iiα,J jβ,σ

tIiα,J jβ〈c†
Iiασ cJ jβσ 〉GW F + 1

2

∑
Ii,αβγ δ
σσ ′

u(Iiα, Iiβ; Iiγ , Iiδ)〈c†
Iiασ c†

Iiβσ ′cIiδσ ′cIiγ σ 〉
GW F

+ 1

2

′∑
Iiα,J jβ
Kkγ ,Llδ,σσ ′

[u(Iiα, J jβ; Kkγ , Llδ) − δσσ ′u(Iiα, J jβ; Llδ, Kkγ )]〈c†
Iiασ cKkγ σ 〉GW F 〈c†

J jβσ ′cLlδσ ′ 〉
GW F

, (11)

where �′ indicates that the pure on-site terms are excluded from the summation. To reduce the Hartree-Fock (HF)-type
factorization error resulting from the use of Wick’s theorem, the sum-rule correction [26] that we developed earlier will be
added to the original Hamiltonian. In this work, we focus on the Hubbard model only, where the intersite Coulomb terms are
excluded in the Hamiltonian. In this specific case, the HF-type factorized approximation is not needed. So, we do not present the
expression of the sum-rule term for conciseness.

Since all operators in Eq. (11) for the observables of interest act on at most two atomic sites, we can define a prefactor
ξ
Ii,
J j ,
′

Ii,
′
J j that depends only on the atomic configurations on two sites Ii and J j by summing over all the other sites:

ξ
Ii,
J j ,
′
Ii,
′

J j =
∑

{
Kk ,Kk �=Ii,J j}

(∏
Kk

g(
k )2

)
〈�0|
Ii, 
J j, {
Kk}〉〈
′

Ii, 

′
J j, {
Kk}|�0〉

=
∑

{
Kk ,Kk �=Ii,J j}

(∏
Kk

g(
k )2

)
λ
Ii,
J j ,{
Kk}λ
′

Ii,
′
J j ,{
Kk}. (12)

Here, |
Ii, 
J j, {
Kk}〉 denotes a basis configuration in the many-body Hilbert space with 
Ii and 
′
Ii being the atomic

configurations at site Ii, 
J j and 
′
J j the configurations at site J j, and {
Kk} the set of configurations on sites other than Ii, J j.

Then, each component of the total energy can be straightforwardly expressed in terms of ξ
Ii,
J j ,
′
Ii,
′

J j and the expectation
values of the corresponding operator in the subspace spanned by sites Ii and J j. However, as ξ
Ii,
J j ,
′

Ii,
′
J j is determined from

both |�0〉 and the Gutzwiller variational parameters of all the rest of the sites other than (Ii, J j), it is a grand challenge to
rigorously evaluate the coefficient ξ
Ii,
J j ,
′

Ii,
′
J j because the computational complexity grows exponentially with respect to the

number of atomic sites. On the other hand, the noncorrelated ξ 0

Ii,
J j ,
′

Ii,
′
J j

obtained by setting g(
k ) = 1 in Eq. (12) can be
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expressed as

ξ 0

Ii,
J j ,
′

Ii,
′
J j

=
∑

{
Kk ,Kk �=Ii,J j}
〈�0|
Ii, 
J j, {
Kk}〉〈
′

Ii, 

′
J j, {
Kk}|�0〉

=
∑

{
Kk ,Kk �=Ii,J j}
λ
Ii,
J j ,{
Kk}λ
′

Ii,
′
J j ,{
Kk}, (13)

and can be efficiently evaluated using the Wick’s theorem. Then, ξ
Ii,
J j ,
′
Ii,
′

J j can be estimated using the following expression:

ξ
Ii,
J j ,
′
Ii,
′

J j ≈ ξ 0

Ii,
J j ,
′

Ii,
′
J j

F↑(nIi↑, nJ j↑)F↓(nIi↓, nJ j↓), (14)

where

Fσ (nIiσ , nJ jσ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∑

k

p(
k ) g(
σ+
k )2

g(
k )2

)−(nIiσ +nJ jσ −n0σ )

, nIiσ + nJ jσ < n0σ

1, nIiσ + nJ jσ = n0σ(∑

k

p(
k ) g(
σ−
k )2

g(
k )2

)nIiσ +nJ jσ −n0σ

, nIiσ + nJ jσ > n0σ .

(15)

Here, nIiσ and nJ jσ are the number of electrons with spin σ occupying site Ii and J j, respectively, and n0 is the expected
total number of electrons with spin σ occupying sites Ii and J j. p(
k ) is the probability of finding the configuration 
k at site k,
and 
σ+

k (
σ−
k ) is the new configuration when one electron with spin σ is added to (removed from) the configuration 
k . For a

half-filling system, p(
k ) can be given by1

p(
i ) =
∑


J j
ξ 0

Ii,
J j ,
Ii,
J j

g(
i )2g(
 j )2∑

Ii,
J j

ξ 0

Ii,
J j ,
Ii,
J j

g(
i )2g(
 j )2

∣∣∣∣∣ nIi↑+nJ j↑=n0↑,
nIi↓+nJ j↓=n0↓

(16)

where site J j is defined as the nearest-neighbor of site Ii. The physical meaning underlying Eqs. (14) and (15) is discussed in
Ref. [10] and is not presented here for conciseness. Equation (14) is the key approximation to efficiently evaluate the energy. It
has been demonstrated to be more accurate than the commonly used GA for the single-band Hubbard model, in both one and two
dimensions [10]. In this work, we use a two-band Hubbard model with an extensive parameter space as a testbed to demonstrate
the accuracy of Eq. (14) for multiband/multiorbital systems.

Finally, we present the expressions for the quantities necessary to evaluate the total energy as defined in Eq. (11). The
one-particle density matrix (1PDM) can be expressed as

〈c†
Iiασ cIiβσ 〉GW F = 1

〈�GW F |�GW F 〉Ii,J j

∑

Ii,
′

Ii,
J j

〈
Ii|c†
Iiασ cIiβσ |
′

Ii〉g(
i )g(
′
i )g(
 j )

2ξ
Ii,
J j ,
′
Ii,
J j , (17)

〈c†
Iiασ cJ jβσ 〉GW F = 1

〈�GW F |�GW F 〉Ii,J j

∑

Ii,
J j ,
′

Ii,
′
J j

〈
Ii|c†
Iiασ |
′

Ii〉〈
J j |cJ jβσ |
′
J j〉

× g(
i )g(
 j )g(
′
i )g(
′

j )ξ
Ii,
J j ,
′
Ii,
′

J j , for (I, i) �= (J, j), (18)

where the atomic site J j is chosen to be the nearest neighbor of site Ii in Eq. (17) and

〈�GW F |�GW F 〉Ii,J j =
∑


Ii,
J j

ξ
Ii,
J j ,
Ii,
J j g(
i )
2g(
 j )

2, (19)

where, the subscript (Ii, J j) on 〈�GW F |�GW F 〉 serves as a reminder that it is an approximate expression based on the approximate
values of ξ
Ii,
J j ,
Ii,
J j defined on sites (Ii, J j). The on-site 2PCM can be expressed as

〈c†
Iiασ c†

Iiβσ ′cIiδσ ′cIiγ σ 〉
GW F

= 1

〈�GW F |�GW F 〉Ii,J j

∑

Ii,
′

Ii,
J j

〈
Ii|c†
Iiασ c†

Iiβσ ′cIiδσ ′cIiγ σ |
′
Ii〉g(
i )g(
′

i )g(
 j )
2ξ
Ii,
J j ,
′

Ii,
J j . (20)

Again, the atomic site J j is chosen to be the nearest neighbor of site Ii. For the Hubbard model discussed in this work, only
the on-site 2PCM 〈c†

Iiασ c†
Iiβσ ′cIiδσ ′cIiγ σ 〉

GW F
are included, which can be evaluated using Eq. (20).

1For systems with other electron densities, the expression of p(
i ) can be found in Ref. [10].
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C. The RI scheme

In the original GWF, the Gutzwiller projector in GCGM
is parametrized based on the on-site configurations 
. As a
result, the computational cost scales exponentially with the
increasing number of electrons and orbitals, which can be
a major bottleneck in the GCGM method. To reduce the
computational complexity, a RI scheme is incorporated into
the GCGM method to group certain orbitals and describe the
system with the number of electrons occupying the orbitals
instead of the configuration 
i. The Gutzwiller projector Ĝ =∏

Ii (
∑


Ii
g(
i )|
Ii〉〈
Ii|) in Eq. (7) has a diagonal form. If we

use another orthonormal set of basis {|
̃Ii〉} instead of {|
Ii〉},
the Gutzwiller projector becomes

Ĝ =
∏

Ii

⎛
⎝∑


Ii

g(
i )|
Ii〉〈
Ii|
⎞
⎠

=
∏

Ii

⎛
⎝∑


i

g(
i )
∑

̃Ii
̃

′
Ii

|
̃Ii〉〈
̃Ii|
Ii〉〈
Ii|
̃′
Ii〉〈
̃′

Ii|
⎞
⎠

=
∏

Ii

∑

̃Ii
̃

′
Ii

⎛
⎝∑


Ii

〈
̃Ii|
Ii〉g(
i )〈
Ii|
̃′
Ii〉

⎞
⎠|
̃Ii〉〈
̃′

Ii|. (21)

If we want to enforce the diagonal form of Ĝ during
the rotational transformation of the basis, we need the term

∑

Ii

〈
̃Ii|
Ii〉g(
i)〈
Ii|
̃′
Ii〉 to be g(
̃i )δ
̃Ii,
̃

′
Ii
. It is apparent

that 〈
̃Ii|
Ii〉 and 〈
Ii|
̃′
Ii〉 can be nonzero only when the

electron number is conserved, i.e., n(
̃Ii, σ ) = n(
Ii, σ ) and
n(
Ii, σ ) = n(
̃′

Ii, σ ), where n(
Ii, σ ) denotes the number
of spin-σ electrons of the configuration 
Ii. So, if g is
dependent only on n(
i, σ ) instead of the configuration 
i

on site i, i.e., g(
i ) = g[n(
i, σ )] = g[n(
i,↑), n(
i,↓)],
the term in Eq. (21) becomes

∑

Ii

〈
̃Ii|
Ii〉g(
i )〈
Ii|
̃′
Ii〉 =

g(n(
i), σ )
∑


Ii
〈
̃Ii|
Ii〉〈
Ii|
̃′

Ii〉 = g(n(
i), σ )δ
̃Ii,
̃
′
Ii
. So,

Eq. (21) becomes

Ĝ =
∏

Ii

∑

̃Ii

g[n(
̃i, σ )]|
̃Ii〉〈
̃Ii|, (22)

which satisfies the diagonal form. Equation (22) indicates that
the system should be parametrized based on n(
i, σ ) instead
of 
i if we want to keep the off-diagonal term of Ĝ to be
zero during the rotational transformation of the basis. So, we
can group the orbitals if they satisfy certain symmetry and
use the number of electrons occupying the grouped orbitals to
describe the system. The advantage of doing this is that the
number of possible configurations grows exponentially with
orbitals while the possible number of electrons occupying the
grouped orbitals grows only linearly.

In the RI scheme, the 1PDM in Eq. (17) can be rewritten as

〈c†
Iiασ cIiβσ 〉GW F = 1

〈�GW F |�GW F 〉Ii,J j

∑
{nIi↑},{nIi↓}
{nJ j↑},{nJ j↓}

g({. . . , ni(A, σ ), ni(B, σ ), . . .}, {ni(−σ )})

× g({. . . , ni(A, σ ) − 1, ni(B, σ ) + 1, . . .}, {ni(−σ )})g({n j (↑)}, {n j (↓)})2

× F↑(nIi↑, nJ j↑)F↓(nIi↓, nJ j↓)
∑


Ii,
′
Ii,
J j

〈
Ii|c†
Iiασ cIiβσ |
′

Ii〉ξ 0

Ii,
J j ,
′

Ii,
J j
, (23)

when orbital α and β cannot be grouped together, i.e., α belongs to group A of orbitals and β belongs to a different group
B. −σ denotes the opposite spin of σ . Here, g(
 j ) in Eq. (14) is now rewritten as g({n j (↑)}, {n j (↓)}), g(
i) is rewritten as
g({. . . , ni(A, σ ), ni(B, σ ), . . .}, {ni(−σ )}), and g(
′

i ) is rewritten as g({. . . , ni(A, σ ) − 1, ni(B, σ ) + 1, . . .}, {ni(−σ )}). Here,

Ii and 
′

Ii are correlated by the selection rule: 〈
Ii|c†
Iiασ cIiβσ |
′

Ii〉 in Eq. (20) is nonzero only if 
Ii and 
′
Ii differ by one spin

orbital (one electron hops from orbital α to β). For 
Ii, if the number of electrons occupying orbital groups (A, σ ) and (B, σ )
are ni(A, σ ) and ni(B, σ ), then for 
′

Ii the number of electrons occupying orbital groups (A, σ ) and (B, σ ) are ni(A, σ ) − 1
and ni(B, σ ) + 1, respectively. After orbitals are grouped under the RI principle, the g factors can also be grouped, and those
common g factors can be factored out from the summation in Eq. (14), which then becomes Eq. (23). When orbitals α and β can
be grouped in the same group A, Eq. (17) can be rewritten as

〈c†
Iiασ cIiβσ 〉GW F = 1

〈�GW F |�GW F 〉Ii,J j

∑
{nIi↑},{nIi↓}
{nJ j↑},{nJ j↓}

g({ni(↑)}, {ni(↓)})
2
g({n j (↑)}, {n j (↓)})2

× F↑(nIi↑, nJ j↑)F↓(nIi↓, nJ j↓)
∑


Ii,
′
Ii,
J j

〈
Ii|c†
Iiασ cIiβσ |
′

Ii〉ξ 0

Ii,
J j ,
′

Ii,
J j
, (24)

where both g(
i ) and g(
′
i ) in Eq. (17) can be now rewritten as g({. . . , ni(A, σ ), . . .}, {ni(−σ )}), i.e., g({ni(↑)}, {ni(↓)}), since

the number of electrons occupying the orbitals of group A are the same for 
i and 
′
i. Equation (18) can be rewritten as

〈c†
Iiασ cJ jβσ 〉GW F = 1

〈�GW F |�GW F 〉Ii,J j

∑
{nIi↑},{nIi↓}
{nJ j↑},{nJ j↓}

g({. . . , ni(A, σ ), . . .}, {ni(−σ )})

× g({. . . , n j (B, σ ), . . .}, {n j (−σ )})g({. . . , ni(A, σ ) − 1, . . .}, {ni(−σ )})
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× g({. . . , n j (B, σ ) + 1, . . .}, {nj (−σ )})F↑(nIi↑, nJ j↑)F↓(nIi↓, nJ j↓)

×
∑


Ii,
′
Ii,
J j ,
′

J j

〈
Ii|c†
Iiασ |
′

Ii〉〈
J j |cJ jβσ |
′
J j〉 ξ 0


Ii,
J j ,
′
Ii,
′

J j
, for (I, i) �= (J, j). (25)

The expression of the on-site 2PCM 〈c†
Iiασ c†

Iiβσ ′cIiδσ ′cIiγ σ 〉
GW F

has a similar form with Eqs. (24) and (25) and is not presented
here for conciseness. Equation (19) becomes

〈�GW F |�GW F 〉Ii,J j =
∑

{nIi↑},{nIi↓}
{nJ j↑},{nJ j↓}

g({ni(↑)}, {ni(↓)})2g({n j (↑)}, {n j (↓)})2F↑(nIi↑, nJ j↑)F↓(nIi↓, nJ j↓)
∑


Ii,
J j

ξ 0

Ii,
J j ,
Ii,
J j

. (26)

By using the RI approach, the computational cost will be
significantly reduced. If we compare, for example, Eqs. (17)
and (24), we can find that the summation in Eq. (17) goes
over all the possible configurations {
Ii, 
J j} (
′

Ii are deter-
mined by 
Ii with the selection rule) while the summation in
Eq. (24) breaks down into two parts: the first summation goes
over all the possible electron numbers occupying the grouped
orbitals {nIi(↑), nIi(↓), nJ j (↑), nJ j (↓)} and the second sum-
mation goes over all the possible configurations {
Ii, 
J j},
of which the electron numbers occupying the grouped or-
bitals satisfy {nIi(↑), nIi(↓), nJ j (↑), nJ j (↓)}. Since all that is
included in the second summation is the selection rule and
the predetermined HF coefficients ξ 0


Ii,
J j ,
Ii,
J j
, the summa-

tions can be evaluated only once and can be stored in the
memory as invariants that are not dependent on g factors.
During the minimization of energy, we only need to evaluate
the first summation over {nIi(↑), nIi(↓), nJ j (↑), nJ j (↓)}, the
possible choices of which scale only linearly with the num-
ber of orbitals. Therefore, the computational cost is greatly
reduced compared to the cost of evaluating the summation
over {
Ii, 
J j} in Eq. (17), the possible choices of which scale
exponentially with the number of orbitals.

III. RESULTS

In this section we test our GCGM approach with the 1D
two-band Hubbard model described by Eqs. (1)–(5) and com-
pare our numerical results with those given by the DMRG
method as implemented in the ITensor library [27]. In DMRG
calculations, the system contains 100 sites with open bound-
aries to ensure that the bulk properties are approached at
the center. For the two-band model at half-filling, each site
contains two electrons with opposite spins in the initial matrix
product state. Observables such as the double occupancy are
averaged over the central 20 sites.

Firstly, we focus on the original GCGM method without
the RI add-on to validate the GCGM method itself. We sys-
tematically compute the ground-state energy per site and the
double occupancy. We then continue to test the accuracy of
the RI approach, which is integrated into the GCGM method
to largely improve its efficiency. The electron density is two
electrons per site, i.e., half-filling throughout this work. All
the calculations are at zero temperature. To conclude our
benchmark test, we study a Mott transition between a metal
and a Mott insulator by evaluating the charge gap. The phase
diagram given by GCGM with RI agrees reasonably well with
that given by DMRG.

Figure 1 plots the ground-state energy as a function of U/t
given by the original GCGM method and the DMRG method.
In the GCGM calculation 32 atomic sites, or equivalently,
32 k points are used; while in the DMRG calculation 100
atomic sites are used. The periodic boundary condition is
not enforced in the DMRG calculation. Thus, more atomic
sites are needed to imitate a periodic system. We perform
the test over a wide range of J , the Hund coupling, and
�(= �2 = −�1 = t ′), the crystal-field splitting. We present
the results with selected values of J = 0, 0.1U, 0.2U, 0.3U
and � = 0.4t, t, 2t . For smaller J of 0 or 0.1U , the GCGM
gives results in satisfying agreement with the DMRG method.
For larger J of 0.2U or 0.3U , the GCGM gives energies that
are slightly higher than the DMRG energies at intermediate
to strong interaction strengths. Other than that, the GCGM
method in general estimates the energy accurately. The
two methods give an energy difference εEnergy � 0.21. Fig-
ure 2 plots the double occupancy (defined as 〈nI↑nI↓〉GW F =
〈c†

I↑cI↑c†
I↓cI↓〉

GW F
) of the ground state as a function of U/t

given by the original GCGM method and the DMRG method.
The GCGM method, in general, gives a qualitatively correct
estimate of the double occupancy. It sometimes moderately
overestimates the double occupancy compared to the DMRG

FIG. 1. The ground-state energy of the 1D two-band Hubbard
model given by the GCGM and the DMRG method as a function of
U/t with (a) J = 0, (b) J = 0.1U , (c) J = 0.2U , and (d) J = 0.3U ;
and with the crystal-field splitting � = 0.4t, t, 2t . The constraint
U = U ′ + 2J is imposed.
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FIG. 2. The double occupancy of the 1D two-band Hubbard
model given by the GCGM and the DMRG method as a function of
U/t with (a) J = 0, (b) J = 0.1U , (c) J = 0.2U , and (d) J = 0.3U ;
and with the crystal-field splitting � = 0.4t, t, 2t .

results. The most obvious discrepancy happens at the interme-
diate to strong correlation strength (4 � U/t � 6). The two
methods give a difference of double occupancy εD � 0.038.
We note that the evaluation of the double occupancy is not as
accurate as that in the single-band case [10].

Figures 3 and 4 plot the ground-state energy and the
double occupancy, respectively, as a function of U/t given
by the original GCGM method and the GCGM within the
RI scheme. The RI approximation is accurate in the limit of
J = 0, as verified in the calculations of the energy [Fig. 3(a)]
and of the double occupancy [Fig. 4(a)]. When J �= 0, using
the RI approach still nearly perfectly reproduces the energy.

FIG. 3. The ground-state energy of the 1D two-band Hubbard
model given by the original GCGM method and the GCGM with
the RI approach as a function of U/t with (a) J = 0, (b) J = 0.1U ,
(c) J = 0.2U , and (d) J = 0.3U ; and with the crystal-field splitting
� = 0.4t, t, 2t .

FIG. 4. The double occupancy of the 1D two-band Hubbard
model given by the original GCGM method and the GCGM with
the RI approach as a function of U/t with (a) J = 0, (b) J = 0.1U ,
(c) J = 0.2U , and (d) J = 0.3U ; and with the crystal-field splitting
� = 0.4t, t, 2t .

The discrepancy in the energies given by the two methods is
small with εEnergy � 0.08, demonstrating that the RI approach
is a good approximation in describing the energy. However,
the RI approach introduces some inaccuracy when it is used to
estimate the double occupancy, as shown in Figs. 4(b)–4(d). It
often overestimates the double occupancy, particularly at the
weak to intermediate correlation strength. The most obvious
discrepancy (εD ∼ 0.049) happens when J = 0.1U, � = 2t ,
as shown in Fig. 4(b). The minimized energy favors a pair of
electrons of opposite spin occupying both orbitals (e.g., the
spin-up electron occupies orbital No. 1 and the spin-down
electron occupies orbital No. 2) instead of only one orbital
(e.g., both electrons occupy orbital No. 1). So, the g factor of
the first case is larger than that of the second case. However,
in the rotationally invariant approximation, the two scenarios
are treated equally and the g factors are enforced to be the
same for the two scenarios, resulting in the discrepancy as
seen in Fig. 4(b). Nevertheless, although the estimation of the
double occupancy is not very accurate with the rotationally
invariant approach, the energy is well reproduced, as shown
in Fig. 3(b).

An original motivation for the Hubbard model is to use it
as a prototype to achieve fundamental understanding of the
Mott transition between a metal and a Mott insulator induced
by the repulsive interactions among electrons [28–32]. For the
single-band 1D Hubbard model, Lieb and Wu established that
Mott transition does not exist and the system is insulating at
any finite U [33]. In contrast, the two-band Hubbard model
displays a rich behavior of Mott transitions, thus providing
another testbed to benchmark the GCGM method [34,35].

We use the charge gap �c to identify a Mott transition. �c

can be defined as

�c = 1
2 [E (N/2 + 1, N/2 + 1)

+ E (N/2 − 1, N/2 − 1) − 2E (N/2, N/2)], (27)
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FIG. 5. �c as a function of U calculated by DMRG and GCGM
with or without rotational invariance. Inset gives the band structure
of the noninteracting Hamiltonian. The dashed black line gives a
critical Uc = 3.6t for both DMRG and GCGM+RI methods, and the
dashed blue line gives a similar Uc = 3.4t for the GCGM method
without RI.

where E (x, y) is the ground-state energy of the system with
x spin-up electrons and y spin-down electrons. �c should be
zero in a metallic state and takes finite values when the system
becomes insulating. However, it is numerically challenging to
capture a vanishing �c according to Eq. (27) since it involves
obtaining a small number by subtraction of large numbers.
To see this, we show in Fig. 5 �c as a function of U for
the crystal-field splitting � = 0.6t and the Hund coupling
J = 0.2U , calculated by DMRG and GCGM with or without
RI. The inset in Fig. 5 gives the band structure of the non-
interacting Hamiltonian (U = 0), in which the two bands are
separated by δ = 2�. As long as δ < 4t (the bandwidth), or
� < 2t , the noninteracting system is metallic. However, as
shown in Fig. 5, both DMRG and GCGM give small (less
than 1% of the total energy) �c when U is close to zero,
due to numerical inaccuracy of the methods. Nevertheless,
one can clearly identify a “kink” at U ≈ 3.6t for DMRG and
GCGM+RI, and at U ≈ 3.4t for GCGM without RI, which
shows a sudden change from a weak to a strong response of
�c with respect to U , signaling a metal-to-insulator transition.

Similar calculations are repeated for a range of � values to
map out the critical U at the transition state (Uc) as a function
of �, which is plotted in Fig. 6. When J = 0.1U , the GCGM
method gives Uc that compares favorably with DMRG, while
GCGM+RI overestimates Uc for relatively small � and un-
derestimates Uc for large �. For a larger Hund’s coupling of
J = 0.2U , the agreement between GCGM+RI and DMRG
improves, and the results from both GCGM and GCGM+RI
fluctuate around those from DMRG. Overall, both GCGM
and GCGM+RI agree reasonably well with DMRG, with
the agreement for GCGM being slightly better, possibly be-
cause of the extra approximations involved in the GCGM+RI
formalism. We use the charge gap �c to identify a Mott
transition, which relies on how accurately we could calculate
the energy. As shown in Figs. 1 and 3, GCGM in general gives
a relatively accurate energy. So, although the estimation of the

FIG. 6. The critical U for metal-to-Mott insulator transitions as
a function of the crystal-field splitting �/t for (a) J = 0.1U and (b)
J = 0.2U .

double occupancy is not very accurate as shown in Figs. 2
and 4, GCGM is still able to identify a Mott transition with
reasonable accuracy.

Now we discuss the speedup of the RI approach. Table I
lists the computation time of the three methods. The origi-
nal GCGM and GCGM with RI were run on a single core
since they are efficient enough, while a parallel version of
the DMRG code was executed on one computing node with
32 cores. In the GCGM calculation 32 atomic sites are used
with periodic boundary conditions; while in the DMRG cal-
culation 100 atomic sites are used without periodic boundary
conditions. The original GCGM takes ∼ 12 s with one core to
calculate and store the predetermined factors [ ξ 0


Ii,
J j ,
′
Ii,
′

J j
in

Eq. (13)] and ∼ 20 s per iteration during the minimization of
the energy. It usually takes up to 30 iterations for the energy to
converge. The GCGM in conjunction with the RI takes ∼ 11
s to compute and store the prefactors [the summations that
contain ξ 0


Ii,
J j ,
′
Ii,
′

J j
in Eqs. (23)–(26)] and the energy usu-

ally converges within 1–2 s, that is, roughly 0.04–0.06 s per
iteration. The predetermined factors need to be estimated only
once and do not change in the process of energy minimization.
The speedup is 300–500 times for each iteration, and the
overall speedup is ∼50 times if it takes ∼ 30 iterations to
converge. In addition, the GCGM with RI requires a reduced
memory to store all the predetermined coefficients from |�0〉.
For the original GCGM, there are ∼ 157 000 ξ 0


Ii,
J j ,
′
Ii,
′

J j

that need to be precalculated and stored. For the GCGM in
conjunction with RI, we only need to calculate and store ∼
13 000 prefactors since ξ 0


Ii,
J j ,
′
Ii,
′

J j
can be grouped accord-

ing to the electron occupancies of the configurations. That is
an approximately tenfold reduction from the original GCGM.
DMRG, on the other hand, is a much more expensive method.
It takes about 1 h core to complete an iteration in DMRG,
compared with 0.04-0.06 s core in GCGM+RI. Although
DMRG appears to converge faster (less iterations), the total
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TABLE I. The computation time of the three methods with a single core: the original GCGM, GCGM with RI, and DMRG.

Method Original GCGM GCGM+RI DMRG

Time (s core) to compute prefactors 12 11 NA
Time (s core) for each iteration/sweep 20 0.04–0.06 3600
Number of iterations/sweeps 30 30 10
Total computation time (s core) 612 13 36 000

computation cost for DMRG is still three orders of magnitude
larger than GCGM+RI.

We can roughly estimate the computational complexity
of the GCGM with/without the use of RI by considering a
general single atom per cell N orbital (i.e., 2N spin orbitals)
system, where the N orbitals can be grouped under the
RI scheme. To estimate nearest-neighbor hopping 〈c†

Iiασ

cJ jβσ 〉GW F or the two-particle term 〈c†
Iiασ c†

Iiβσ ′cIiδσ ′cIiγ σ 〉
GW F

,
we need to sum over all the possible configurations (
Ii, 
J j )
without the use of RI. There are 22N choices for each
of (
Ii, 
J j ), 22N × 22N = 24N possible combinations of
(
Ii, 
J j ). So, the complexity to compute the total energy
EGW F is proportional to 24N . The complexity to compute the
derivative for each ∂EGW F

∂g(
i )
is also proportional to 24N . Given

there are altogether 22N g factors, the complexity to compute
all the derivatives is proportional to 22N × 24N = 26N . With
the use of RI, the summation would be over the number of
spin-up and spin-down electrons occupying the grouped N
orbitals {nIi(↑), nIi(↓), nJ j (↑), nJ j (↓)}. For example, nIi(↑),
the number of spin-up electrons occupying the grouped N or-
bitals, could be 0, 1, 2, . . . , N , i.e., N + 1 choices. Therefore,
there are (N + 1)4 choices of {nIi(↑), nIi(↓), nJ j (↑), nJ j (↓)}.
The complexity to compute EGW F is thus proportional to
(N + 1)4. As there are (N + 1)2 g factors, the complexity
to compute all the derivatives ∂EGW F

∂g(
i )
is proportional to

(N + 1)4(N + 1)2 = (N + 1)6. The scaling is now reduced
from exponential to polynomial with the use of RI.

In the above rough estimate of complexity, we overlook
some factors. For example, the terms of the selection rule
[such as 〈
Ii|c†

Iiασ cIiβσ |
′
Ii〉 in Eq. (14)] are now packed into

the predetermined coefficients with the use of RI in Eq. (24)
and need to be evaluated only once, resulting in further re-
duced complexity. The electron density also plays a role in
the evaluation of the predetermined coefficients. For example,
half-filling often gives the largest number of nonzero coeffi-
cients. But since these coefficients are evaluated only once,
the electron density likely has little impact on the reduction of
complexity with the use of RI.

IV. SUMMARY

In our previous studies, we have developed the GCGM
method for correlated-electron systems and benchmarked it

with molecules [8,9,12] and bulk systems, in particular, the
Hubbard model [10,11]. As our previous study only focused
on the single-band Hubbard model, in this work we continue
our investigation and validate the GCGM method with a two-
band/orbital Hubbard model with demonstrated accuracy. One
fundamental challenge of solving the many-body Schrödinger
equation for multiorbital systems is that the computational
effort grows exponentially with the number of on-site orbitals.
To overcome this bottleneck, we introduce a RI approach
to efficiently group orbitals that satisfy certain symmetries
and parametrize the system based on the number of electrons
occupying the grouped orbitals. We validate the RI approach
with ground-state energy calculations and characterizations of
a Mott transition between a metal and a Mott insulator. An
approximately 50 times speedup makes GCGM in conjunction
with RI much faster than the original GCGM and DMRG. We
also note that the GCGM method, unlike DMRG, is not re-
stricted to dealing with 1D systems, although in this work we
focus on the 1D Hubbard model only. Reference [10] gives an
example where we applied GCGM to the 2D Hubbard model.

Reference [12] and this work provide a systematic val-
idation of the RI approach on smaller molecular and bulk
systems. With the promising speedup of the RI approach, we
will be able to study larger systems with GCGM. Multiorbital
molecules for which accurate data are available for compar-
ison (e.g., Cr2) are a good testbed where the performance
of GCGM on real materials can be evaluated to help the
development of the method towards treating real correlated
bulk materials. Another benchmark study would be the three-
band or four-band Hubbard models. After these benchmark
studies of more complex molecules and bulk systems are
accomplished, calculations of large, realistic bulk systems will
be readily carried out.
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