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Symmetry-protected topological (SPT) phases exhibit nontrivial short-ranged entanglement protected by
symmetry and cannot be adiabatically connected to trivial product states while preserving the symmetry. In
contrast, intrinsic topological phases do not need ordinary symmetry to stabilize them and their ground states
exhibit long-range entanglement. It is known that for a given symmetry group G, the 2D SPT phase protected
by G is dual to the 2D topological phase exemplified by the twisted quantum double model Dω(G) via gauging
the global symmetry G. Recently it was realized that such a general gauging map can be implemented by some
local unitaries and local measurements when G is a finite, solvable group. Here, we review the general approach
to gauging a G-SPT starting from a fixed-point ground-state wave function and applying a N-step gauging
procedure. We provide an in-depth analysis of the intermediate states emerging during the N-step gauging and
provide tools to measure and identify the emerging symmetry-enriched topological order (SET) of these states.
We construct the generic lattice parent Hamiltonians for these intermediate states and show that they form an
entangled superposition of a twisted quantum double (TQD) with an SPT-ordered state. Notably, we show that
they can be connected to the TQD through a finite-depth, local quantum circuit which does not respect the global
symmetry of the SET order. We introduce the so-called symmetry branch line operators and show that they can be
used to extract the symmetry fractionalization classes (SFC) and symmetry defectification classes (SDC) of the
SET phases with the input data G and [ω] ∈ H3(G,U (1)) of the pregauged SPT-ordered state. We illustrate the
procedure of preparing and characterizing the emerging SET-ordered states for some Abelian and non-Abelian
examples such as dihedral groups Dn and the quaternion group Q8.
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I. INTRODUCTION

Topological order first originated from the study of the
fractional quantum Hall effect [1,2]. It cannot be described by
local order parameters and is beyond Landau’s classification
of matter. It exhibits ground-state degeneracy dependent on
the topology of the underlying manifold and the excitations,
displaying anyonic statistics [3,4]. More recently, it was rec-
ognized as possessing some kind of long-range quantum en-
tanglement [5] and having nonzero topological entanglement
[6–8]. In addition to fractional quantum Hall systems and cer-
tain spin liquids [9], there are models that manifest topological
order, such as Kitaev’s toric code and quantum double (QD)
models [10], their twisted versions [11], Levin-Wen string-
nets [12], and more recently fractons [13,14]. Topological
features that characterize such a phase of matter are robust
to local perturbations, which is a property highly desirable
in quantum memories [15]. Some of the topological models
also offer the capability of topological quantum computation
(TQC) by exploiting the braiding of anyons [10,16–18],
which has emerged as one of the schemes for fault-tolerant
quantum computation due to its inherent robustness.

Interestingly, from the perspective of adiabatic connec-
tion and quantum circuits, ground states of different phases
at zero temperature cannot be connected by either adiabatic

evolution or a finite-depth quantum circuits [19]. Intrinsic
topologically ordered states therefore cannot be created from
a trivial ground state, such as product states, with a quantum
circuit of finite depth. When all the local gates in the cir-
cuits are required to respect a certain global symmetry, trivial
gapped phases can be further fine-grained into distinct classes:
those that can be created from product states with symmetric,
finite-depth circuits and those that cannot. The latter classes
are referred to as nontrivial symmetry-protected topological
(SPT) phases [20–22], and most of them can be classified by
cohomology [5,23].

Quantum technology has been constantly improving and
evolving. Several medium-scale quantum computers are avail-
able. Recently, certain topologically ordered states, such as
those of the toric model, were created by quantum circuits
[24], and furthermore, some braiding statistics has also been
observed in experiments [25–28], Yet, preparation of high-
fidelity ground states and precise manipulation of excitations
in topological systems still remain challenging in the current
era of noisy intermediate-scale quantum (NISQ) devices [29].

For the family of the QD models and their twisted ver-
sions, i.e., twisted quantum double (TQD) models [11], there
is a well-known correspondence to models of SPT phases
[5,30–32] via a procedure called gauging [33–36]. When two
quantum states are topologically distinct with respect to a
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symmetry G, then they cannot be transformed to each other
with a finite-depth, piecewise local unitary transformation that
preserves the symmetry. The classification and characteriza-
tion of SPT phases with global symmetry G in two dimensions
is facilitated by a function of gi ∈ G, namely a 3-cocycle
ω3(g1, g2, g3), which is a representative element of the third
cohomology group of G, denoted by H3(G,U (1)) [5]. At
the same time, the TQD model is also characterized by the
3-cocycle: inequivalent choices of the 3-cocycle give rise to
distinct intrinsic topological phases [11]. Indeed, the wave
function of the TQD model with the gauge group G is ob-
tained by gauging the global symmetry G in the corresponding
SPT wave function. An interesting question is whether such a
gauging map is physically possible.

It has been known that the ground state of the toric code
can be efficiently prepared by measuring half of qubits in
a 2D cluster state [37]. The use of measurements thus can
provide a route to creating long-range entangled states with
finite-depth operations [38–40]. Reference [41] demonstrated
that ground states of QD models with S3 and D4 groups
can be prepared through finite-depth local unitary operations
supplemented with onsite measurements. It was also argued in
Ref. [38] that a similar procedure should work for QD models
with any solvable group G, which was later elaborated in
Ref. [42] through repeated rounds of finite-depth operations,
where each round incorporates unitaries, measurements, feed-
forward, and corrections. This scheme was further generalized
to the general TQD models with solvable groups in Ref. [43],
where the number of measurement rounds was classified for
various topological orders, leading to a conjecture of a new
hierarchy of topological orders when one includes measure-
ments as an ingredient. It is worth mentioning that further
improvement is possible for the QD models with D4 and
Q8 groups, which can be prepared with a single round of
measurements, feedforward, and corrections [44]. Experimen-
tally, measurement-based gauging is a promising method for
realizing nontrivial topological orders in small-scale systems
requiring only local unitary operations, midcircuit measure-
ments, and feedforward corrections [45–47].

The present work re-examines the measurement-based
gauging from the perspective of group representation theory
and provides a characterization of the transformation and
emergence of SPT, SET, and intrinsic topological order during
gauging. In general, for a solvable group G, the correspond-
ing TQD model can be prepared from a G-SPT through a
multistep gauging procedure. In this work, we provide two
approaches that realize such an N-step gauging which reduces
to a one-step gauging when G is Abelian or to a two-step gaug-
ing when G is dihedral. For nonsolvable groups, it is argued
that the measurement-assisted gauging procedure cannot be
implemented by a finite-depth circuit [43].

Interestingly, we find that the intermediate states, that
emerge during the multistep gauging, can be naturally
described as symmetry-enriched topological (SET) orders
[48–51]. We also show that, without respecting global sym-
metry, there is a finite-depth quantum circuit that takes the
SET ground state to a ground state of a corresponding twisted
quantum double model (TQD).

The essential data of an SET order, besides the intrin-
sic anyon theory C, include the symmetry action as an

automorphism on C, the symmetry fractionalization class, and
the defectification class [51]. A key result of our work is
to characterize the resulting SET order given the 3-cocycle
that describes the initial SPT wave function. If the emer-
gent SET order has a global symmetry that does not change
the anyon type, then we develop a general formalism based
on symmetry branch line operators for the braiding phases
between any Abelian anyon in the theory and the anyons
obtained from fusing point defects, exactly characterizing the
symmetry fractionalization patterns. If the SET order we enter
has a global symmetry that does change anyon types, then
we conjecture the form and algebra of non-Abelian symmetry
branch line operators that can create the corresponding sym-
metry defects. Then, by calculating the tensor product of such
operators, one can derive the fusion rules of these symmetry
defects, which we believe is sufficient to characterize the
symmetry fractionalization patterns. We consider the dihedral
SPT states as an example to illustrate this case.

The remainder of this paper is organized as follows. In
Sec. II, we review the duality between SPT states with global
symmetry group G and ground states of a twisted quantum
double model with a gauge group G in two dimensions. This
duality is given by a formal gauging map, which turns the
global symmetry G into a gauge symmetry. In Sec. III, we
describe the general procedure of N-step gauging G-SPT-
ordered states when G is a solvable group in terms of an
algorithm (see Algorithm 1 below). In Secs. IV and V, we
discuss one-step and two-step gauging, respectively, and con-
sider Abelian and dihedral groups as illustrative examples.
For the latter, we find that after the first gauging step, the
system remains in a SET state where the remaining quotient
group describes the global symmetry. Section VI contains
the discussion on symmetry properties of the emergent SET
phases from the perspective of symmetry defects. Using the
framework of symmetry branch lines, we relate the transfor-
mation of symmetry defects under gauging to properties of
the SET phase. We give several examples to illustrate our for-
malism. In Sec. VII we make some concluding remarks. The
Appendixes provide materials that support the results in the
main text. For example, we provide a constant-depth unitary
circuit to map an SET state to a TQD state in Appendix E. In
Appendix J, We also give an alternative gauging prescription
based on a different presentation of solvable groups which is
alternative but equivalent to the standard one, as proven in
Appendix K.

II. FIXED-POINT SPTS, TWISTED QUANTUM
DOUBLES, AND GAUGING

On an oriented triangulated lattice �, given a finite group
G, we assign a Hilbert space Hv = {∑g∈G cg|g〉v|cg ∈ C} to
each vertex v. Then we can write a fixed-point G-SPT wave
function. To do this, we first assign a group cocycle to each
simplex, where ω is a representative in H3(G,U (1)) respect-
ing the cocycle condition,

ω(h, k, l )ω(g, hk, l )ω(g, h, k)

ω(gh, k, l )ω(g, h, kl )
= 1, (1)

for any g, h, k, l ∈ G.
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FIG. 1. On an oriented triangulated plane, two typical simplexes
with opposite orientations are shown. Their corresponding cocycles
are ω(g3g−1

2 , g2g−1
1 , g1) and ω(g3′ g−1

2′ , g2′ g−1
1′ , g1′ )−1.

The fixed-point SPT wave function is given by taking a
product over all such cocycles,

|�SPT〉 =
∑
{gv}

∏
simplex �123

ω
(
g3g−1

2 , g2g−1
1 , g1

)s(�123 ) ⊗
v

|gv〉v,

(2)
where s(�) = ±1 indicates the orientation of a simplex �123

(with a given branching structure, and {1, 2, 3} labels the
vertices on the simplex; see Fig. 1), the tensor product runs
over all vertices v on the lattice, and all the configurations
{gv} are summed over. Note that we use a convention from
Ref. [32], which is slightly different from Ref. [5], for the sake
of convenience in later discussions. This state can be obtained
by the action of a unitary operator Uω on the product state⊗

v

∑
g |g〉v ,

Uω =
∑
{gv}

∏
�123

ω
(
g3g−1

2 , g2g−1
1 , g1

)s(�123 ) ⊗
v

|gv〉v〈gv|. (3)

We define the left/right action of x on Hv as

Lx
+v|g〉v = |xg〉v, Lx

−v|g〉v = |gx−1〉v. (4)

Then the global symmetry action (in our convention) U x ≡∏
v Lx

−v on SPT state yields

U x|�SPT〉 =
∑
{gv}

∏
�

ωs(�)({gv})
⊗

v

|gvx−1〉v

=
∑
{gv}

∏
�

ωs(�)({gvx})
⊗

v

|gv〉v

≡
∑
{gv}

∏
�

Amp({gv}, x)ωs(�)({gv})
⊗

v

|gv〉v, (5)

where in the second line we used a change of variables and we
have defined a phase factor Amp in the fourth line.

Suppose M is the two-dimensional spatial manifold on
which the Hilbert space is defined, and I = {x3|0 � x3 � 1}
is an interval in the (Euclidean) time direction. The man-
ifold M × I is now three-dimensional. We triangulate the
M × I by 3-simplexes (tetrahedrons) with the constraint that
each time slice at x3 = 0 and x3 = 1 matches the original
two-dimensional lattice; see Fig. 2. The amplitude Amp is
computed once the triangulation of M × I is specified. We
now give more details.

We assign a 3-cocycle to each tetrahedron as in Fig. 3. The
phase factor can be seen to be [5]

Amp({gv}, x) =
∏

tetrahedron

ω(tetra)s(tetra). (6)

When the spatial manifold is closed, using cocycle condi-
tions, one can show that Amp ≡ 1. Therefore, the SPT state is

FIG. 2. The phase factor Amp({gv}, x) can be given by the trian-
gulation of such prisms, where gv′ = gvx.

invariant under the global symmetry transformation,

U x|�SPT〉 = |�SPT〉. (7)

Due to this symmetry, this state can be written schematically
as (where we have suppressed the indices in � for simplicity),

|�SPT〉 =
∑
{gv}

∏
simplex�

ω
(
g3g−1

2 , g2g−1
1 , g1

)s(�) ⊗
v

|gv〉v

=
∑
{gv}

�
({

gvg−1
v′
})⊗

v

|gv〉v, (8)

where � denotes the product of cocycles, and v and v′ are
vertices connected by an edge, 〈v, v′〉 ∈ E .

A. Gauging global symmetry G

Under a gauging map as shown in Fig. 4, the vertex degrees
of freedom (DOFs) are mapped to the edge DOFs,

� : |{gi}〉v → ∣∣{gig
−1
j

}〉
e. (9)

This in turn maps the SPT state to an intrinsic topologically
ordered state [52]

|�TQD〉 =
∑
{ge}

�({ge})
⊗

e

|ge〉, (10)

which is a ground state of the twisted quantum double (i.e.,
described by the Dijkgraaf-Witten theory) Dω(G) [53]. The
twisted quantum double can be formulated on a triangulated
lattice with a Kitaev’s Quantum Double-like Hamiltonian

FIG. 3. A positively oriented tetrahedron. The 3-cocycle as-
signed to it is ω(g4g−1

3 , g3g−1
2 , g2g−1

1 ).
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FIG. 4. The gauging map � maps from vertex DOFs to edge
DOFs.

[11],

H = −
∑

v

Av −
∑

p

Bp, (11)

where v and p stand for the vertices and plaquettes, respec-
tively, on the lattice. The vertex operator

Av = 1

|G|
∑
g∈G

(∏
e⊃v

Lg
±e

)
W̃ g

v , (12)

is Hermitian and is a projector (see Appendix A), where Lg
+e

and Lg
−e are left and right action of the group element g on the

edge e. When e emanates from the vertex v to another vertex,
we apply Lg

−e in Eq. (12), When e flows to the vertex v, we
apply Lg

+e.
The phase W̃ g

v is a product of the cocycles corresponding to
the tetrahedrons with appropriate orientations in the prism in
Fig. 5, where the correspondence between a tetrahedron and
a 3-cocycle is established in Fig. 6. Furthermore, this phase
factor is the commutator between the right action of g on
vertex v and the unitary operator introduced in Eq. (3),

W̃ g
v =

(∏
e⊃v

Lg
±e

)†

Uω

(∏
e⊃v

Lg
±e

)
U †

ω, (13)

where we use Lg
+e (Lg

−e) when the edge e ends at (emanates
from) vertex v.

The plaquette operator is

Bp = δ

⎛⎝∏
e∈p

ge, 1

⎞⎠, (14)

where δ(x, y) is the Kronecker δ function. The resultant state
from the gauging map is the ground state of this Hamiltonian,

H �(|�SPT〉) = E0 �(|�SPT〉). (15)

The local excitations of TQD model are fractional charges
called anyons, which can be classified by a unitary modular
tensor category (UMTC); see, e.g., Ref. [54]. One thing to

FIG. 5. The phase W̃ g
v is defined as the multiplication of the

phases corresponding to the tetrahedrons. Here, gv′v = g.

FIG. 6. A negatively oriented tetrahedron. The 3-cocycle as-
signed to it is ω−1(g43, g32, g21).

remark is that the convention here is slightly different from
the one used in Refs. [11,52] for the sake of convenience in
later discussions.

B. Gauging a subgroup of G

One can introduce a gauging map �N that corresponds to
gauging only a normal subgroup N of G. We have the quotient
group Q = G/N with an embedding

s : Q → G. (16)

Any element g ∈ G has a unique decomposition g = qn,
where q ∈ s(Q) and n ∈ N . Under the map, the normal part
of vertex DOFs are mapped to edge DOFs, as illustrated in
Fig. 7,

�N : |{gi}〉v → |{qi}〉v ⊗ ∣∣{nin
−1
j

}〉
e. (17)

This maps the SPT state to

|�SET〉 =
∑
{qv}

∑
{ne},fluxless

�
({

qineq−1
j

})⊗
v

|qv〉
⊗

e

|ne〉.

(18)

One point to notice is that the above state has a global
symmetry Q under action U x

Q = U xφx, where U x ≡ ∏
v Lx

−v

is the right action of x ∈ s(Q) on all vertices (e.g., g → gx−1)
and φx ≡ ∏

e φx
e is the conjugation by x on all edges defined

as

φx
e |n〉e = |xnx−1〉e. (19)

The second point is that the state |�SET〉 is a ground state of a
Kitaev’s quantum double-like Hamiltonian,

H = −
∑

v

Av −
∑

p

Bp −
∑

v

Kv, (20)

where v and p stand for the vertices and plaquettes on the
lattice.

FIG. 7. The gauging map �N maps the normal part from vertex
DOFs to edge DOFs.
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FIG. 8. The phase W g
v is defined as the multiplication of the

phases corresponding to the tetrahedrons. hv′v = x, qv′ = qv .

The vertex operator is

Av = 1

|N |
∑
n∈N

∑
q∈s(Q)

(∏
e⊃v

Ln
±e

)
W qnq−1

v |q〉v〈q|. (21)

The phase W g
v is the product of the cocycles corresponding

to the tetrahedrons with appropriate orientations of the prism
in Fig. 8, where the correspondence between tetrahedron and
3-cocycle is established in Fig. 9. The plaquette operator is
simply the following:

Bp = δ

⎛⎝∏
e∈p

ne, 1

⎞⎠. (22)

The additional vertex operator Kv is

Kv = 1

|Q|
∑

q,q′∈s(Q)

W qq′−1

v |q〉v〈q′|. (23)

We can always apply a finite-depth local unitary to bring
all the vertex DOFs to the identity element (see Appendix E)
such that the state becomes

|�TQD〉 =
∑
{ne}

�({ne})|{ne}〉e ⊗v |1〉v. (24)

This is a TQD state with the 3-cocycle ν(n1, n2, n3) being the
restriction of ω(g1, g2, g3) on subgroup N . Thus, we obtain
the anyons and their braiding, which is the same as in Dν (N ).
Therefore, the state |�SET〉 is essentially an SET phase with
the global Q symmetry, and it is in the same phase of a TQD
Dν (N ) if ignoring the Q symmetry.

C. Classification of SETs

Here we briefly review some terminology relevant to SET
phases for the convenience of later discussions. This sec-
tion will be based on Refs. [51,55]. In general, an intrinsic
topological phase in 2+1d is an anyon theory characterized by
an UMTC, which is denoted by C. Assuming the symmetry

FIG. 9. A negatively oriented tetrahedron. The 3-cocycle as-
signed to it is ω−1(g4h43g−1

3 , g3h32g−1
2 , g2h21g−1

1 ).

G preserves locality, an SET phase, which is described by
a G-crossed braided fusion category C×

G , is enriched from
an anyon theory C, by a G-symmetry action as an auto-
morphism on C, symmetry fractionalization class (SFC) and
symmetry defectification class (SDC) [51]. We first assume
the symmetry actions are unitary and always give the trivial
automorphism on C, i.e., the symmetry does not change anyon
types. Consider a state |�a,b,c,...〉 with anyons {a, b, c, . . .}
present sufficiently far away from each other on a sphere.
Therefore, the anyons {a, b, c, . . .} should be able to fuse
into the vacuum charge. The symmetry operators respect the
multiplication rules U (g)U (h) = U (gh). Under our assump-
tions, the symmetry operator can be decomposed as some
local unitaries Ua(g),Ub(g), . . ., near the anyons,

U (g)|�a,b,c,...〉 = Ua(g)Ub(g) · · · |�a,b,c,...〉. (25)

Each local symmetry action can be projective,

Ua(g)Ua(h) = ηa(g, h)Ua(gh), (26)

where the phase ηa(g, h) only depends on anyon type a and
satisfy

ηa(g, h)ηb(g, h) = ηc(g, h), (27)

whenever the multiplicity is Nc
ab 
= 0. We notice that the braid-

ing phases B between an Abelian anyon e and any other
anyons a, b, c satisfy the relation B(e, a)B(e, b) = B(e, c)
whenever the multiplicity is Nc

ab 
= 0. The similarity of this to
Eq. (27) suggests that the latter may also arise from braiding
anyons. It is indeed proved in Ref. [51] that a phase ηa(g, h)
with the above property is related to the braiding phase be-
tween anyon a and some other Abelian anyon w(g, h) in the
theory,

ηa(g, h) = B(w(g, h), a). (28)

We note that the braiding phase B(w, a) between anyons w
and a is defined in Ref. [51], and is related to the square of
the R symbol. Therefore, applying two consecutive localized
symmetry actions U (g) and U (h) in a region R will result in
a symmetry action U (gh) in R and an extra phase obtained
by braiding anyon w(g, h) around R. This braiding phase
indicates the symmetry fractionalization pattern of the SET.

We comment that one can redefine the local unitary Ua(g)
by an arbitrary phase factor va(g),

U ′
a(g) = va(g)Ua(g), (29)

where va(g) satisfies

va(g)vb(g) = vc(g), (30)

whenever the multiplicity is Nc
ab 
= 0. Again, the phase factor

va(g) can be written as a braiding phase between anyon a and
an Abelian anyon v(g), i.e., va(g) = B(v(g), a). The Abelian
anyon after the redefinition will be

w′(g, h) = v(g) × v(h) × v(gh) × w(g, h), (31)

where v(gh) is the dual anyon for the Abelian anyon
v(gh). Further, according to the associativity condition
(Ua(g)Ua(h))Ua(k) = Ua(g)(Ua(h)Ua(k)), we have

w(h, k) × w(gh, k) × w(g, hk) × w(g, h) = 1. (32)
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To conclude, the distinctive patterns of symmetry frac-
tionalization are characterized by the class [w(g, h)] in
cohomology group H2(Q, A), where A is the group formed
by Abelian anyons via fusion algebra [55], and we have used
Q instead of G as the global symmetry for the SET phase.

Another way to see the symmetry fractionalization classes
is to construct a Q-crossed category C×

Q from the anyon theory
including the point defects

CQ =
⊕
q∈Q

Cq, (33)

where C1 = C and 1 denotes the identity element in Q. A
distinctive Q-crossed category C×

Q is a candidate for an SET
order. According to Ref. [51], when the symmetry does not
change anyon types, one can always choose an Abelian defect
from each sector Cq and label it as 0q. In particular, 01 is the
vacuum anyon. (When the symmetry action does not permute
anyon types, one can find a bijective map f from C1 to Cq that
preserves quantum dimensions. This allows us to identify the
inverse of the vacuum anyon, f −1(01), as 0q.) The fusion of
defects respects the group multiplication structure,

0g × 0h = w(g, h)1 × 0gh, (34)

for some Abelian anyon w. We denote the objects in C1 by
small letters a, b, c, etc. Their fusion is given by

a × b =
∑
c∈C

Nc
ab c, (35)

where Nc
ab is the multiplicity in the fusion. The objects in Cq

is obtained by fusing 0q with objects in C1, i.e., aq ≡ a × 0q.
Their fusion is given by

ag × bh =
∑
c∈C

Nc
ab c × w(g, h)1 × 0gh. (36)

This Abelian anyon w(g, h) is exactly what we have defined
above for projective phase ηa(g, h). The class [w(g, h)] is in
the cohomology group H2(Q, A), which classifies the SFC.

In generic cases, when the symmetry does change anyon
types as an automorphism of C,

ρ : Q → Aut (C), (37)

it turns out that not every sector Cq has an Abelian object.
Therefore, we cannot write the fusion rule as in Eq. (36).

The fusion rule of a Q-graded category C×
Q can be written

as

ag × bh =
∑
cgh

N
cgh

agbh
cgh. (38)

Consequently, each element [t] ∈ H2
ρ (Q, A) specifies a po-

tential way of modifying C×
Q (the SET order) via

ag × bh = t(g, h) ×
∑
cgh

N
cgh

agbh
cgh. (39)

Therefore, in generic cases, the potential symmetry frac-
tionalization classes are elements of an H2

ρ (Q, A) torsor. In
this work, we will not analyze the SDC in detail, and we
simply note that one can enter a different SDC by stacking
a Q-SPT state onto the SET state. In our framework, after
gauging the normal subgroup, a global x-transformation will

locally serve as an automorphism ρx of C, mapping an anyon
with flux n to an anyon with flux xnx−1. Later in this work, we
will analyze the phases of some SETs in which the automor-
phism ρx on C is either trivial or nontrivial.

III. N-STEP GAUGING OF 2D SPT VIA MEASUREMENT

In this section, we present the procedure to gauge a G-SPT
state of a group G that can be factorized into N Abelian
groups with N steps. (We note in this section, N refers to
the number of steps rather than a normal subgroup. But it
should be clear from the context.) A similar method was
proposed by Refs. [42,43]. In Ref. [43], the authors considered
the solvable group G and its derived series which consists
of normal subgroups which are commutator subgroups of
the previous group in the series. They proposed a gauging
procedure for a particular sequence of normal subgroups. In
Ref. [42], however, they proposed to implement the gauging
procedure for a solvable group inductively, i.e., implement the
gauging of a cyclic group, assuming the remaining quotient
group is already gauged. In our procedure, we do not restrict
ourselves to a particular derived series for the solvable group.
This in turn helps us to prepare different types of SETs. We
give the steps for gauging a G-SPT state explicitly.

Before presenting the gauging procedure in Algorithm 1,
let us go through the most relevant definitions first. A group
G is a solvable group if there are subgroups 1 = G0 <

G1 < · · · < GN = G such that Gk−1 is normal in Gk , and
Gk/Gk−1 ≡ Qk is Abelian for k = 1, · · · , N . Given the em-
bedding map sk from each Qk into Gk ⊂ G, every element
g ∈ G can be written as

g = qN qN−1 · · · q2q1, (40)

where qk ∈ sk (Qk ). Similarly, for another group element h, we
have the decomposition h = q̃N · · · q̃1. Under this convention,
we write down the multiplication between g and h−1 as

gh−1 = qN · · · q3q2
(
q1q̃−1

1

)
q̃−1

2 q̃−1
3 · · · q̃−1

N . (41)

Now, let us define the relevant unitaries and measured
observables that will be used in the gauging procedure. We
typically consider a state defined on a lattice (V, E ) with
vertices i, j ∈ V and edges 〈i, j〉 ∈ E where the local Hilbert
space |g〉 depends on the group G and is labeled by its group
elements g ∈ G. Given an embedding sk of Qk into Gk as
described above, we can define for all Qk the following unitary
controlled on vertices and targeting the shared edge:

U (i, j)
Qk

:=
∑

g1,g2,g3∈G

|g1, g2〉ci,c j 〈g1, g2|

⊗ |qk (g1)g3qk (g2)−1〉〈i, j〉〈g3|, (42)

where qk ∈ sk (Qk ), qk (g) is the kth component of the normal
decomposition of g and ci(c j ) denotes the control qudit on
vertex i( j). This unitary will be used to entangle vertex DOFs
with edge DOFs.

Measurements of Abelian subgroups will play an important
role in the gauging procedure which is why we will now
introduce the generalized Pauli-observables for an Abelian
group being product of cyclic groups Qk ≡ ∏lk

j=1 Zd j
k
, where

d j
k are some integers indecating the group order. (We note

that it should be clear from context whether the symbol Z

115144-6



SYMMETRY-ENRICHED TOPOLOGICAL ORDER FROM … PHYSICAL REVIEW B 108, 115144 (2023)

Algorithm 1. N-step gauging via measurements.

Require: (a) Solvable G with 1 = G0 < G1 < · · · < GN = G such that Qk ≡ Gk/Gk−1 is Abelian ∀k = 1, . . . , N .
(b) G-SPT fixed point state |�SPT〉 [defined in Eq. (8)] on a lattice (V, E ) with vertices i, j ∈ V and edges 〈i, j〉 ∈ E .
(c) U (i, j)

Qk
as defined in Eq. (42).

(d) Generalized Pauli operators as defined in Eqs. (43) and (44) acting on the Abelian subspace defined by an embedding sk of
Qk in Gk .
k ← 1
(1) Add ancillas: |�gauge〉 ← |�SPT〉 ⊗∏

〈i, j〉∈E |e〉〈i, j〉 where e ∈ G is the identity element.
while k � N do

(2) Entangle vertex and edge DOFs: |�gauge〉 ← ∏
〈i, j〉∈E U (i, j)

Qk
|�gauge〉

(3) Measureg vertex DOFs in the basis given by Eq. (45) with outcomes {ĩv1, . . . , ĩvlk }v∈V (neglecting normalization):
|�gauge〉 ← ∏

v∈V |ĩv1, . . . , ĩvlk 〉〈ĩv1, . . . , ĩvlk |�gauge〉
(4) Correct for random measurement outcomes by applying Z operators on a set of edges ECor:

|�gauge〉 ← ∏
e∈ECor

Ze|�gauge〉, where Ze = ∏lk
j=1 Z

−p j;e
j (specifically, ECor and pj;e) can be deduced from the measurement

outcomes, given the symmetries [e.g., Eq. (55)] and so-called transmutation rules (e.g., Figs. 10, 11, or 12).
k = k + 1 �|�gauge〉 is an SET state as analyzed in Sec. VI ∀k < N

end while

represents a group or a Pauli operator.) Any element q ∈ Qk

can be written as ai1
1 ai2

2 · · · a
ilk
lk

where a j are the generator of

the subgroup Zd j
k

⊂ Qk and therefore, a
d j

k
j = e ∀ j = 1, . . . , lk .

Given this representation, we write the local Hilbert space
basis as |i1, . . . , ilk 〉 ≡ |ai1

1 ai2
2 · · · a

ilk
lk

〉. This allows us to define
the following generalized local Pauli operators by their action
on this basis:

X t1
1 ⊗ · · · ⊗ X

tlk
lk

∣∣i1, . . . , ilk
〉 = ∣∣i1 ⊕ t1, . . . , ilk ⊕ tlk

〉
, (43)

Zt1
1 ⊗ · · · ⊗ Z

tlk
lk

∣∣i1, . . . , ilk
〉 = ω

i1t1
1 · · · ωilk tlk

lk

∣∣i1, . . . , ilk
〉
, (44)

where i j ⊕ x indicates addition modulo d j
k and ω j is the d j

k -
th root of unity ∀ j = 1, . . . , lk . Importantly, this allows us to
define a Fourier-transformed basis as follows,∣∣ĩ1, . . . , ĩlk

〉 = Zi1
1 ⊗ · · · Z

ilk
lk

|+〉, (45)

where |+〉 = ∑
a

i1
1 a

i2
2 ···ailk

lk
∈Qk

|i1, . . . , ilk 〉.
Note that in Algorithm 1, the local Hilbert space dimension

is given by the non-Abelian group G, so we understand all the
above unitaries and bases as defined on an embedded subspace
given by sk . See the discussion above Eq. (40).

We will now use the above equations to implement an N-
step gauging procedure. We will gauge the G-symmetry of
the state defined on the vertices of a lattice sequentially in N
steps. We present the procedure in Algorithm 1 and consider
the details below:

(1) Include ancillas. Add ancillas in the state |e〉, where
e ∈ G is the identity element, on the edges between the
vertices.

(2) Entangle gauge and matter DOFs. Apply the following
2-controlled-shift operators with controls c1, c2 on neighbor-
ing vertices (oriented as c2 → c1) and the target t on the
in-between ancilla:

UQ1 =
∑

g1,g2,g3∈G

|g1, g2〉c1,c2〈g1, g2|

⊗ |q1(g1)g3q1(g2)−1〉〈1,2〉〈g3|. (46)

Here we have used q1(g) to denote the part of the decom-
position g which lies in Q1; that is, for g = qN · · · q1 with
qk ∈ sk (Qk ), q1(g) = q1.

(3) Measure {X1, X2, . . . , Xl1} on matter DOFs. After mea-
surement of the quotient part on each vertex (i.e., in the bases
defined in {Xj}), with the outcome being {Xj = ω

−p j

j }l1
j=1 on

a vertex (ω j being d j th root of unity), there is a correspond-

ing (local) phase factor
∏l1

j=1 ω
−p j i j

j from the wave function
overlap in step (3) of Algorithm 1. These phase factors can be
seen as some Abelian chargeons on vertices. See an example
in Eq. (53).

(4) Correct phase factors. To obtain the ground state, the
local phase factors arising from step (3) can be corrected
as they can be expressed as a product of phase operators
acting on the edge DOFs (see, e.g., Fig. 10). Therefore, we
can apply counter Z operators on a set of edges ECor, i.e.,∏

e∈ECor
Ze, where the exact form of Ze = ∏lk

j=1 Z
−p j;e

j can be
deduced from the measurement outcomes. Physically, due to
our N-step gauging procedure, the local phase factors always
correspond to Abelian chargeons, therefore we can use rib-
bon operators to move them around. For example, we can
move the phase factors on a vertex by performing Z oper-
ators on its neighboring edge and by doing this repeatedly
we can move all the phase factors to one single vertex (via
the transmutation rule, see, e.g., Fig. 10), therefore annihi-
lating them altogether, due to the symmetry constraint [see
Eq. (55) and the discussion below it]. The set of such edges
is an example of ECor, but it is not necessarily optimized.
(See also the following two sections for concrete examples.)
After measurement and correction, the vertex DOF is mapped
from |g〉 to 1

|Q1|
∑

q′
1∈s1(Q1 ) |g(1)q′

1〉, where g = qN · · · q2q1 and

g(1) = qN · · · q2. The resultant state is a G1-SET ground state.

FIG. 10. The transmutation rule of z factor according to relation
z(gv′ )z(gvg−1

v′ ) = z(gv ).
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(5) Repeat the procedure of entangling gauge DOFs on
edges and matter DOFs on vertices. Apply the following
unitary similar to before:

UQ2 =
∑

g1,g2,g3∈G

|g1, g2〉c1,c2〈g1, g2|

⊗ |q2(g1)g3q2(g2)−1〉〈1,2〉〈g3|. (47)

(6) Measure {X1, . . . , Xl2} on the matter DOFs and correct
the corresponding phase factors from the measurement. This
results in a G2-SET ground state.

(7) Repeat this process for all except the last quotient group
QN .

(8) At the last step, apply the gauging and measurement
procedure for QN . Specifically, first apply

UQN =
∑

g1,g2,g3∈G

|g1, g2〉c1,c2〈g1, g2|

⊗ |qN (g1)g3qN (g2)−1〉〈1,2〉〈g3|, (48)

measure {X1, . . . , XlN }, and then correct the corresponding
phase factors. This gives us a G-TQD state.

It is worth remarking that in the expressions above, we
always use the multiplication rules of the entire group G. For
instance, if we take q2, q′

2 ∈ s2(Q2), then their product q2q′
2

is not necessarily in s2(Q2) (it is in s2(Q2) only when the
extension G2/G1 = Q2 is central). This seemingly makes the
remaining global symmetry algebra nonclosed, i.e., g(1)g′(1)

would produce components in the Q1 subgroup [recall that
g(1) = qN · · · q2 for some qk ∈ sk (Qk )]. Nonetheless, instead
of |g(1)〉 in the above step (4), we have 1

|Q1|
∑

q′
1∈s1(Q1 ) |g(1)q′

1〉,
which can absorb the potential Q1 components, making the
multiplication closed. We can therefore define the global sym-
metry group of G1 SET as such. Moreover, the state after
applying UQ2 is symmetric with Xq2 . It also follows that the
phase operators resulting from the measurement of Xq2 can
be corrected as the global symmetry gives a constraint on
measurement outcomes, which will be discussed later.

In the following, we will consider the one-step gauging for
Abelian groups in Sec. IV to illustrate correction processes.
Then we will consider the two-step gauging for dihedral
groups in Sec. V. The two-step and multistep gauging can be
also applied to Abelian groups as well, and in the intermediate
steps, SET states can emerge. We will discuss the phase of
such SET states in Sec. V. Then in Sec. VI, we introduce the
framework of the symmetry defect branch line and discuss the
SET phases for several more examples.

We give an alternative procedure for the N-step gauging
in Appendix J. This gauging procedure is implemented for
a group G which admits sequential normal subgroups (see
Appendix J for definition). This criterion is in fact equivalent
to the group G being solvable (see Appendix K for a proof).
The two procedures differ in the way in which the product
of group elements are written down [compare Eqs. (41) and
(J6)]. Apart from that, in the procedure given in this section,
we gauge the quotient groups in every step, while in the
procedure given in Appendix J we gauge normal subgroups in
each step. As mentioned earlier, in Ref. [43], the commutator
subgroups of the previous group in the series of a solvable
group G are gauged successively.

IV. ONE-STEP GAUGING: ABELIAN GROUPS

In this section, we review the gauging procedure for
Abelian groups [38,43]. We start with the SPT state given
in Eq. (8). The gauging map can be implemented by first
transferring the corresponding group elements to edges and
then by measuring the vertices, where our state is projected
to a quantum double state with (unwanted) charges whose
configuration is given by the measurement outcomes. The
excitation due to the randomness of measurement is then
corrected by a certain finite-depth procedure. The steps are
described in more detail as follows:

(0) Prepare the SPT state on vertices. We use local control-
phase gates to prepare the SPT state from a direct product
state.

(1) Include ancillas. Add ancillas in the state |e〉, where
e ∈ G is the identity element, on edges between adjacent
vertices. The ancillas become the gauge DOFs.

(2) Entangle gauge and matter DOFs. Apply the following
controlled-controlled-shift operators with controls c1 & c2 on
the neighboring vertices of an edge e (oriented as c2 → c1)
and the target t being the ancilla on the edge between the two
controls:

UG =
∑

g1,g2∈G

|g1, g2〉c1,c2〈g1, g2| ⊗ Lg1
+eLg2

−e. (49)

At this point, the (premeasurement) state is

|�pre〉 =
∑
{gv}

�({gv})
⊗
v∈V

|gv〉v
⊗

〈vv′〉∈E

∣∣gvg−1
v′
〉
vv′ . (50)

(3) Choose a measurement basis in the G algebra, then
project the matter DOFs onto the basis via measurement. A
natural basis can be chosen if we order elements in G as an
ordered list (g0, g1, · · · , gn−1), where g0 = 1, n = |G|. (Note
that the subscript j in g j here denotes the labeling of the
group elements of G, not the vertex.) Then we simply use
the Fourier basis |k〉 = ∑n−1

j=0 exp 2π i jk/n|g j〉/√n = Zk|+〉
to perform measurements on vertex DOFs, where we have
defined |+〉 ≡ ∑n−1

j=0 |g j〉/√n. When G = Zn, we project the
matter DOFs onto this basis via measuring the generalized
(qudit) X operator.

(4) Correct Abelian chargeons in the G twisted quantum
double. The correction can be done with a finite-depth circuit,
which consists of strings of Pauli-Z operators.

We give more explanation on the procedure for the case
with G = Zn below. For the Zn group, the wave function
can be written using the qudit system. The basis vector |a〉
(a ∈ {0, . . . , n − 1 mod n}) and the generalized Pauli opera-
tors satisfy

Z|a〉 = ωa|a〉, X |a〉 = |a + 1〉, ZX = ωXZ, (51)

with ω = exp(2π i/n), which is much simpler than the gen-
eral Abelianized basis in Eqs. (43) and (44). Starting from
a Zn SPT on a triangulated lattice, we first add ancillas to
all the edges in a product state with |0〉. Then we apply the
controlled gate in Eq. (49), which is a set of controlled-X
gates. Then the gauge DOFs are as given by the gauging map
in Fig. 4. The next step is to disentangle matter DOFs by
measuring the X operator on all vertices. After measurements,
the matter DOF at a vertex v is projected onto Zkv

v |+〉v , where
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kv = 0, 1, · · · , n − 1, and |+〉 = ∑
i |i〉/

√
n. Suppose the

measurement outcome on the vertex v is Xv = ω−kv . We write
the basis associated with measurement outcomes {kv}v∈V as

|M〉 :=
⊗

v

Zkv

v |+〉v. (52)

Then the total wave function after measurements (with the
gauge part being projected to 〈M|�〉pre) is written as

|�〉post =
⎛⎝∑

{gv}
�({gv})

∏
v

z−kv (gv )
⊗

e

∣∣gvg−1
v′
〉
e

⎞⎠
⊗

v

Zkv |+〉v, (53)

where za(gv ) := 〈gv|Za|gv〉 = (ωa)gv and � is the phase fac-
tor inherited from the SPT state (i.e., a product of 3-cocycles).
Note that vv′ is the edge e; many edges can share a vertex
v but the factor zkv only appears once. Due to measurement,
the vertex DOFs have been disentangled from the edge DOFs,
and the edge DOFs form a state that is a ground state of the Zn

twisted quantum double in the flux-free sector up to a factor
zkv (gv ), which can be interpreted as an ekv chargeon on the
vertex v.

In what follows, we describe how to remove the excitations
in |�〉post. First, the set of measurement outcomes is restricted
to [

∑
v kv]n = 0, with [x]n being x mod n, due to the global

symmetry of the SPT state. The global symmetry implies∏
v∈V

Xv|�pre〉 = |�pre〉, (54)

so it should be satisfied that

〈M|�pre〉 = 〈M|
∏
v∈V

Xv|�pre〉,

=
(∏

v

ω−kv

)
〈M|�pre〉, (55)

which gives the constraint
∏

v ω−kv = 1, meaning
[
∑

v kv]n = 0.
Next, the measurement with |M〉 gives us a phase∏

v ω−kvgv when contracted with the basis ⊗v|gv〉. Due to the
constraint [

∑
v kv]n = 0, one can always find a set of paths

such that we can rewrite the phase factor as
∏

v ω−kvgv , or
equivalently

∏
v z(gv )−kv , in terms of the phase operator Ze

supported on the paths. Concretely, we use a type of relations,
which we call the transmutation rules, illustrated in Fig. 10.
For G = Zn, the relation is

z(gv ) = z(gv′ )z
(
gvg−1

v′
)
. (56)

We apply the phase operator on the paths to remove the
chargeons. Given that these operators commute, they can be
applied all at once. Hence, our gauging procedure assisted by
measurement requires only finite time steps or a finite-depth
quantum circuit (with intermediate measurements).

Let us give two remarks here. The reason that we can
correct the state by moving all factors to one vertex is be-
cause of the fact that all chargeons in Dω(Zn) are Abelian
anyons. This procedure can be straightforwardly generalized

to Zn × Zm × · · · group, where we measure X × 1 × · · · ,
1 × X × · · · , . . . , etc., on all vertices after we entangle gauge
and matter DOFs. This occurred previously in the general
N-step gauging in Sec. III. However, to explain the detailed
correction there would incur cumbersome notations. The ex-
ample of Zn in this section should now make the procedure
clearer. Different measurement outcomes will give rise to dif-
ferent chargeons in the flux-free sector, which are all Abelian
anyons. (Note that we do not have fluxons, as we began with
a flat-flux configuration followed by the controlled-controlled
operation that does not create fluxons.) Therefore, the state
after measurement is still correctable within finite steps.

V. TWO-STEP GAUGING: DIHEDRAL GROUP
AND INTERMEDIATE SET STATES

When we attempt to gauge non-Abelian SPT states using
measurement, although one can always choose a suitable basis
such that the factors are correctable, one crucial problem is
that the phase factors that arise from measurement do not
necessarily correspond to Abelian anyons as in the Dω(Zn)
case above; this makes correction with a finite depth circuit a
nontrivial problem. In Refs. [41,42], there were two different
ways proposed to prepare the ground state of the S3 quantum
double model. In Ref. [42], a Z3 toric code ground state
is prepared first, and it is coupled to the Z2 product state
using controlled gates. Then the Z2 part is gauged via the
measurement-assisted one-step gauging in Ref. [38].

We will show in this section that, for the symmetry group G
being the extension of two Abelian groups, by choosing some
Abelianized basis, we can still perform a two-step gauging
procedure on G-SPT states via measurement. In the case with
G = S3, our procedure would be equivalent to first preparing
the Z3-TQD ground state, and then coupling to the Z2-SPT
state using entangling gates and controlled gates. The correc-
tion process for the two-step gauging is still fairly simple, i.e.,
via finite-depth quantum circuits. The complete procedure to
gauge the Abelian N symmetry (i.e., the normal subgroup) of
a G-SPT state and then to gauge the quotient Q symmetry of
an SET is as follows:

(1) Include ancillas. Add ancillas in the state |e〉, where
e ∈ G is the identity element, on edges between adjacent
vertices. The ancillas will become the gauge DOFs.

(2) Entangle gauge and matter DOFs. Apply the following
controlled-controlled-shift operators with controls c1 & c2 on
neighboring vertices (oriented as c2 → c1) and the target t on
the ancilla on the in-between edge e:

UN =
∑

g1,g2∈G

|g1, g2〉c1,c2〈g1, g2| ⊗ Ln(g1 )
+e Ln(g2 )

−e . (57)

The purpose of this step is to mimic the gauging map in
Eq. (17).

(3&4) Measure X(n) on matter DOFs and correct the zn fac-
tors. After measurement, with the outcome being X(n) = ω−k ,
there is a corresponding phase factor zk

n. Using the transmu-
tation rule for zn, one can correct all those factors by moving
them to one single vertex, resulting in an SET ground state.

(5) Further entangling the quotient part of the gauge and
matter DOFs. We apply a controlled-conjugate operator with
the target e being the ancilla (oriented as c2 → c1), and the
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control being c2:

UQ =
∑

g1,g2∈G

|q(g1), q(g2)〉c1,c2〈q(g1), q(g2)| ⊗ Lq(g1 )
+e Lq(g2 )

−e ,

(58)
where q(g) denotes the quotient part of g via an embed-
ding in Eq. (16). Notice that the normal part of the matter
DOF has been wiped out by measuring X(n), while the quo-
tient part Q = G/N still remains, which makes the above
controlled-gates possible to implement. The edge DOFs are
now {q(g1)n(g1)n(g2)−1q(g2)−1} = {g1g−1

2 }.
(6&7) Measure X(q) on matter DOFs, and correct zq

factors. Their correction is straightforward; we apply Z(q)

operators on edges to move all zq’s to one vertex.
In the following, we will apply the above procedure to

several cases.

A. Gauging S3 SPT

The S3 group is G = 〈a, x|a3 = e, x2 = e, xax = a−1〉.
Any element g ∈ G can be written as g = xia j , where i = 0, 1,
j = 0, 1, 2. We define the decomposition of a group element,
respectively, as

n(xia j ) = a j, (59)

q(xia j ) = xi, (60)

with the former being the normal part (N = Z3), and the latter
being the quotient part [s(Q) = s(Z2)] of S3. We then define
the shift operator in each part as

X(n) =
∑
i, j

|xia j+1〉〈xia j |,

X(q) =
∑
i, j

|xi+1a j〉〈xia j |. (61)

The phase operators, which are known as the clock opera-
tors, in each respective part, are

Z(n) =
∑

g

zn(g)|g〉〈g|, zn(xia j ) = ω j,

Z(q) =
∑

g

zq(g)|g〉〈g|, zq(xia j ) = (−1)i, (62)

where ω = ei 2π
3 . The gauging step (2) transforms the ancilla

DOF on edge e = 〈v, v′〉 from identity to n(gv )n(gv′ )−1.
Then in step (3) we measure X(n) on all the vertex DOFs.

Suppose the measurement outcome is X(n) = e−i 2πkv
3 on vertex

v (where kv = 0, 1, 2). The state after the measurement is
projected into

|�3〉 =
∑
{gv}

(∏
v

z−kv

n (gv )

)
�
({

gvg−1
v′
})|{n(gv )n(gv′ )−1}〉e

⊗
v

(
Zkv

(n)

(∑
r∈N

|q(gv )r〉v
))

. (63)

The phase factor
∏

v z−kv
n (gv ) depends on the measurement

outcomes {kv}. To correct them, we employ the transmutation

FIG. 11. The transmutation rule for zn factors on step (4).

rule for the z factors (see Fig. 11)

zn(h)zn(n(g)n(h)−1) = zn(g). (64)

As in the case with Zn in the previous section, we have
[
∑

v kv]3 = 0 due to the N symmetry. By inserting corre-
sponding numbers of Zn operators on the edges, we can move
the factors zn on vertices around and cancel them altogether.
Equivalently, one can simultaneously apply Zn operators sup-
ported on strings whose endpoints correspond to nontrivial
measurement outcomes. This gives us the state

|�4〉 =
∑
{gv}

�
({

gvg−1
v′
})|{n(gv )n(gv′ )−1}〉e

⊗
v

(
Zkv

(n)

(∑
r∈N

|q(gv )r〉v
))

. (65)

After the gauging step (5), the edge DOFs are conjugated
and shifted by UQ, giving rise to

|�5〉 =
∑
{gv}

�
({

gvg−1
v′
})∣∣{gvg−1

v′
}〉

e

⊗
v

(
Zkv

(n)

∑
r∈N

|q(gv )r〉v
)

. (66)

Step (6) is similar to step (3). By measurements, the state
is projected to

|�6〉 =
∑
{gv}

(∏
v

z−mv

q (gv )

)
�
({

gvg−1
v′
})∣∣{gvg−1

v′
}〉

e

⊗
v

⎛⎝Zmv

(q)Z
kv

(n)

⎛⎝∑
g∈G

|g〉v
⎞⎠⎞⎠, (67)

where we have assumed that X(q) = e−i 2πmv
2 from the mea-

surement on vertex v (where mv = 0, 1). To correct the phase
factor

∏
v z−mv

q (gv ), we employ the transmutation rules for zq

factors:

zq(h)zq(gh−1) = zq(g), (68)

which is illustrated in Fig. 12. This rule, just as the rule for
zn in step (4), allows us to move all the zq factors to a single
vertex and annihilate them. This is guaranteed by the Q-global
symmetry in |�5〉 (see Appendix C),(∏

v

X(q)

)
|�5〉 = |�5〉1, (69)

which implies that the measurement outcomes satisfy
[
∑

v mv]2 = 0 in this case, as the global symmetry is Z2. After

FIG. 12. The transmutation rule for zq factors on step (7).

115144-10



SYMMETRY-ENRICHED TOPOLOGICAL ORDER FROM … PHYSICAL REVIEW B 108, 115144 (2023)

we apply the corresponding correcting phase factors to edges,
we thus obtain a G-TQD ground state.

B. Z3 SET with Z2 Symmetry

Let us begin by recalling that the gauging map �N in
Eq. (17) gauges the normal subgroup N of G. In our pro-
cedure, after we correct the zn factors in step (3), the state
is essentially a ground state of the Z3 SET phase. In what
follows, we first look into the entanglement structure of the
wave function after gauging the normal subgroup Z3. Then
we identify the class of this SET phase, namely, the unitary
modular tensor category (UMTC) C that contains all anyonic
excitations, the Z2 symmetry action as an automorphism of
C, the symmetry fractionalization class and defectification
class [51].

We write the element in S3 as g̃ = (G, g) ≡ xGag with some
slight abuse of the notation, where G = 0, 1 and g = 0, 1, 2.
It should be clear from the context when G is a number or a
group. A representative of the cocycle in H3(S3,U (1)) is

ω(g̃, h̃, l̃ )

= exp
2π ip1

9
g(−1)H+L(h(−1)L + l − [h(−1)L + l]3)

× exp π ip2GHL, (70)

where p1 = 0, 1, 2, and p2 = 0, 1. As pointed out in Sec. II,
the anyon theory (UMTC) C is determined by the restriction
of ω on subgroup Z3 (i.e., setting G = H = L = 0),

ν(g, h, l ) = exp
2π ip1

9
g(h + l − [h + l]3). (71)

Different values of p1 are in one-to-one correspondence with
different Z3 twisted quantum double phases Dν (Z3). An anyon
in these phases is characterized by its flux a ∈ Z3, and a
projective representation of Z3, satisfying

μa(g)μa(h) = exp
2π ip1a

9
(g + h − [g + h]3)μa(gh), (72)

which means μa(g) = e
2π iap1g

9 v(g), where v(g) is an ordinary
representation of Z3.

Using Lyndon-Hochschild-Serre spectral sequence
[22,56,57], we can decompose the cohomology class of
the S3 group as

H3(S3,U (1)) = H3(Z3,U (1)) ⊕ H3(Z2,U (1)). (73)

This suggests that this SET state is composed of a TQD
Dν (Z3) and a Z2-SPT state. A natural question is whether
the wave function of the whole system is decomposed into
a product of the two corresponding parts.

It turns out that we can write the 3-cocycle in Eq. (70) as

ω(g̃, h̃, l̃ ) = ωn · ωq · ω′(g̃, h̃, l̃ ), (74)

where the phase ωn is defined from the 3-cocycle of Z3,

ωn
(
g3g−1

2 , g2g−1
1 , g1

)
≡ ν(n(g3)n(g2)−1, n(g2)n(g1)−1, n(g1))

= ν
(
φq(g2 )−1(

n
(
g3g−1

2

))
, φq(g1 )−1(

n
(
g2g−1

1

))
, n(g1)

)
, (75)

FIG. 13. One plaquette on a triangulated lattice.

and ν is a representative in H3(N,U (1)). Every plaquette
on the spatial manifold is associated with such a phase. The
product of them over all plaquettes gives

�ν ({n(gv )n(gv′ )−1}) =
∏
�

ν({n(gv )})s(�). (76)

The sum of the above phase over all possible {gv} configura-
tions gives the wave function of a ground state of Dν (Z3).

The phase ωq is defined from the 3-cocycle of Z2, α ∈
H3(Z2,U (1)),

ωq(g̃, h̃, l̃ ) = exp π ip2GHL =: α(G, H, L). (77)

The product of this type of phases gives

�q({q(gv )q(gv′ )−1}) =
∏
�

α({q(gv )})s(�). (78)

The sum of the above phases over all possible {gv} configu-
rations results in the wave function of a Z2-SPT state. The ω′
part in Eq. (74) is

ω′(g̃, h̃, l̃ ) = exp

{
2π ip1

3
(−1)H g(1 − δh,0)δL,1

}
, (79)

which is nontrivial when p1 
= 0. Similarly, we define the
product of this type of phases over the spatial manifold as �′,

�′({q(gv )}, {n(gv )}) =
∏
�

ω′({q(gv )}, {n(qv )})s(�). (80)

Thus, the resulting state after gauging Z3 from an S3-SPT
state is (see Fig. 13 for an illustration of a plaquette)

|�SET〉 =
∑
{gv}

�′({q(gv )}, {n(gv )n(gv′ )−1})(�n|{n(gv )

× n(gv′ )−1}〉e)
⊗

(�q|{q(gv )}〉v ), (81)

which is an entangled state between a Z3-TQD ground state
and a Z2-SPT state. When p1 = 0, we have ω′ = �n = 1,
hence the wave function of the system becomes

|�〉 =
∑
{gv}

�q|{n(gv )n(gv′ )−1}〉e

⊗
|{q(gv )}〉v

=
∑
{gv}

(|{n(gv )n(gv′ )−1}〉e)
⊗

(�q|{q(gv )}〉v )

= |Z3TC〉 ⊗ |Z2SPT〉, (82)
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which is a product state of a Z3 Toric code ground state and a
Z2-SPT state.

Having obtained the SET wave functions, we now discuss
the effect of the global symmetry action. The Z2 symmetry
action U x = ∏

v Lx
−v in the S3-SPT state is mapped to U x

Q =
U xφx, under which an anyon with flux ai will be mapped to
one with flux φx(a) = a[−i]3 . And a chargeon will be mapped
to its antiparticle under the symmetry. According to Sec. II C,
the possible SFC will be given by elements in a H2

ρ (Z2, A)
torsor. With different values of p1, the Abelian group A could
be either Z3 × Z3 or Z9. In either cases, the cohomology group
H2

ρ (Z2, A) turns out to be trivial, and so is its torsor. There-
fore, the TQD Dν (Z3) has only one possible Z2 symmetry
fractionalization pattern. Moreover, different values of p2 in
the 3-cocycle of S3 result in different Z2 symmetry defectifica-
tion classes (SDC) in the SETs, which are obtained by gauging
the normal Z3 group. This is expected because as seen from
Eq. (81), different p2 values represent different Z2-SPT states
entangled with some Z3-TQD state.

Let us remark that this construction for S3 has a natural
generalization on D2n+1 groups, where one first gauge Z2n+1,
resulting in an Z2n+1 SET on which the Z2 symmetry acts
to conjugate the gauge DOFs. Different parent SPT phases
will result in different anyon theories and different SDCs,
but always some unique symmetry fractionalization pattern.
One can further gauge the quotient Z2 symmetry to obtain
D2n+1 TQD.

C. Gauging D2n SPT

Now we discuss the process of two-step gauging a generic
D2n SPT state via measurement under a similar type of
Abelianized basis. As in S3, an element in group D2n can be
written as

g = xia j, i = 0, 1, j = 0, 1, · · · , 2n − 1, (83)

where x2 = 1 and a2n = 1. We will thus use a generalized
definition of operators as for S3 in Eqs. (59), (60), (61),
and (62).

After applying the control gate to set the DOFs on edges,
e.g., 〈i j〉, to n(gi )n(g j )−1, measuring X(n) on vertices, and
correcting all chargeon excitations, the resultant state is a
ground state in a Z2n-SET phase with a global Z2 symmetry at
this intermediate stage. According to the multiplication rule of
D2n, just as in S3, the symmetry transformation U x conjugates
all the gauge DOFs.

As an illustration, we will consider the D4 group. Using the
Lyndon-Hochschild-Serre sequence, the cohomology group
can be decomposed as

H3(D4,U (1)) = H3(Z4,U (1)) ⊕ H3(Z2,U (1))

⊕ H2(Z2, H1(Z4,U (1))). (84)

Again, the cocycle factorizes as

ω = ωn · ωq · ω′ · ωnq, (85)

where ωn and ωq are defined similarly as for the S3 group in
the last section, while ω′ and ωnq depend on both quotient and
normal parts of the vertex DOFs. From this decomposition, it
is clear that after gauging the normal Z2n, we have an entan-
gled state between the Z2n-TQD state and the Z2-SPT state.

FIG. 14. (a) Symmetry action inside of region R “lifts” R such
that all the simplex in the region correspond to ω̃. (b) This symmetry
action can be equivalently regarded as the insertion of symmetry
branch line on ∂R.

Because of the additional entanglement via ωnq, we expect
to have a nontrivial SFC from gauging the Z4 symmetry of a
D4-SPT state.

Indeed, in the next section, we will show that the current
two-step gauging setup could result in different SFCs. To do
so, we first introduce symmetry branch line operators and
other necessary tools to determine the SFC. We will also
discuss several examples, including the above Z4-SET phase.

VI. SYMMETRY DEFECT IN SPT AND SET

In this section, we will apply the notion of symmetry
branch lines introduced in Ref. [51] and formulate corre-
sponding symmetry branch line operators in SPT phases, as
well as their relation to ribbon operators in TQD. We then
show the gauging procedure transforms such operators in SPT
phases into symmetry branch lines in SET phases and discuss
how their fusions relate to the symmetry fractionalization
classes (SFC) in a few examples.

A. Symmetry branch lines

To introduce symmetry branch lines, we start with the
symmetry action in an SPT wave function. We recall in Eq. (2)
the SPT wave function on a triangulated spatial manifold,

|�SPT〉 =
∑
{gv}

∏
�

ω
(
g3g−1

2 , g2g−1
1 , g1

)s(�) ⊗
v

|gv〉. (86)

When the manifold is closed, the global symmetry action
U x ≡ ∏

v Lx
−v leaves the entire SPT state invariant. We can

also consider the symmetry action on a submanifold R [23],
such as the one shown in Fig. 14(a),

U x
R

∏
�

ωs(�)|{gv}〉 =
∏
�

AmpR ({gv}, x)ωs(�)|{gv}〉. (87)

Triangulating the frustum created by lifting vertices in R,
we have multiple tetrahedrons. We associate each tetrahe-
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FIG. 15. |hi j〉e is located on edge e = 〈i, j〉, |gi〉v and |gj〉v are
located on the two endpoints i and j.

dron in the frustum as in Fig. 14(a) to a 3-cocycle, such
as the one in Fig. 3, to which we assign a phase factor
ω(g4g−1

3 , g3g−1
2 , g2g−1

1 ). The product of all such cocycles
composes the factor AmpR , namely,

AmpR =
∏

tetra∈R

ω(tetra)s. (88)

Using the cocycle conditions, it turns out that AmpR only
depends the DOFs around ∂R and does not depend on those
DOFs deep inside R, see Fig. 14(b), and its expression is

AmpR = �̃
gvxg−1

v

∂R

∏
tetra∈∂R

ω(tetra)s, (89)

where the extra factor to the product on the right-hand side
(r.h.s.) is

�̃
gnxg−1

n
∂R = θgnxg−1

n

(
gng−1

n−1, gn−1g−1
1

) · · · θg3xg−1
3

(
g3g−1

2 , g2g−1
1

)
,

(90)
when ∂R contains vertices equipped with the branching struc-
ture, 1 → 2 → 3 → · · · → n ← 1; see Appendix D. In fact,
one can introduce an operator Bx

∂R that is supported only on
∂R such that [23]

“Bx
∂R”|�SPT〉 = U x

R |�SPT〉. (91)

To do this carefully, we need to first introduce a pregauge
structure [58]. Namely, we introduce a G-DOF hi j on every
edge 〈i, j〉 (which we will be set to the identity group element
|1〉e to begin with); see Fig. 15. One can think of the edge
DOFs as the discrete gauge field. After introducing such a
gauge field, one may write the local symmetry action on both
vertex v and the surrounding edges e ⊃ v. This is also called
the “gauge transformation” operator on a vertex v as

Gx
v ≡ Lx

−v

∏
e⊃v

Lx
±e, (92)

where e ⊃ v denotes those edges with one end being v and
where Lxe±e is the left (right) actions of xe on |h〉e, when the
edge e flows to (emanates from) v. Furthermore, the “in-
teractions” should also be written in a gauge invariant way.
Namely, instead of the original SPT Hamiltonian, one can
write the gauge invariant version as follows:

HSPT-pre = −
∑

v

∑
g∈G

1

|G|Lg
+vW

g
v , (93)

where the W phase was previously introduced in Sec. II.
Taking any ground state of this Hamiltonian, we can

impose the gauging map in the presence of the pregauge
structure,

� : |{gi}〉v|hi j〉e → ∣∣{gihi jg
−1
j

}〉
e, (94)

under which, the state would be mapped to a ground state of
the TQD model. One special ground state of this Hamiltonian

would be

|�SPT-pre〉 = |�SPT〉
⊗

e

|1〉e, (95)

where we have taken the original SPT state, which has |h〉e ≡
|1〉e on all edges. One can easily verify that Gx

v |�SPT-pre〉 is still
a ground state, for any vertex v on lattice and x ∈ G. We define
the gauge transformation over a region R as Gx

R ≡ ∏
v∈R Gx

v .
If the spatial lattice � is closed, then we write Gx ≡ ∏

v∈� Gx
v

and one can check that

Gx|�SPT-pre〉 = |�SPT-pre〉. (96)

Therefore, the operator Gx mimics the behavior of global sym-
metry operator U x after introducing the pregauge structure.

Now we introduce the definition of symmetry branch line
operators B̃x

∂R on states with trivial edges |h〉e ≡ |1〉e,

B̃x
∂R |�SPT-pre〉 = Gx

R |�SPT-pre〉, (97)

but unlike Gx
R , the operator B̃x

∂R only takes effect on ∂R. We
find that the following expression of B̃x

∂R ,

B̃x
∂R =

∑
gv

Lx
∂RW̃ gvxg−1

v

∂R �̃
gvxg−1

v

∂R |gv〉v〈gv|, (98)

where v is a reference vertex on ∂R as shown in Fig. 14(b) and

�̃
gvxg−1

v

∂R is defined in Eq. (90). The phase W̃ gvxg−1
v

∂R is the product
of cocycles associated to the tetrahedrons in Fig. 14(b), with
gv′g−1

v = gvxg−1
v ,

W̃ gvxg−1
v

∂R =
∏

tetra∈∂R

ω(tetra)s. (99)

The operator Lx
∂R is a product of shift operators on the edges

crossed by ∂R. In general, Lx
l with x ∈ G on a ribbon l is

defined as follows:

(100)
We note that the branch line operator B̃x

∂R cannot be written
as a product of local terms on ∂R. This operation B̃x

∂R can be
regarded as the nononsite symmetry action on the boundary
∂R, and its definition can be extended to the case whenever
there is no flux in the state (i.e., for every plaquette,

∏
e he =

1). From direct calculation using Eq. (97) and the fact that
Gx

RG
y
R = G

xy
R , one can easily show that the multiplication rule

of B̃x
∂R ,

B̃x
∂RB̃

y
∂R = B̃

xy
∂R, (101)
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is exactly the multiplication rule of the group G, as expected
for the symmetry branch lines. One can also show the multi-
plication rule of B̃x

∂R directly using the form in Eq. (98); see
Appendix D. Indeed, if we use the operator

∏
v

(
1

|G|
∑
x∈G

Gx
v

)
(102)

to project any ground state onto the gauge invariant sector,
then we would also have a TQD ground state. The operator
above in Eq. (102) can be seen as a superposition of different
meshes of symmetry branch lines.

There are two important remarks here. The first is that
inserting a symmetry branch line on an SPT state is to create
a point symmetry defect 0x, move it along ∂R and annihilate
it with 0x−1 . The multiplication rule above indicates that the
fusion between point defects is 0x · 0y = 0xy. Second, we can
consider the global symmetry action Gy on the state with a
branch line on ∂R, i.e., B̃x

∂R |�SPT-pre〉. It turns out that

GyB̃x
∂R |�SPT-pre〉 = GyGx

R |�SPT-pre〉
= GyGx

RGy−1 |�SPT-pre〉
= G

yxy−1

R |�SPT-pre〉
= B̃

yxy−1

∂R |�SPT-pre〉, (103)

where G
y
R ≡ ∏

v∈R G
y
v . In other words, the global symmetry

transformation ρy on 0x is ρy(0x ) = 0yxy−1 .

B. More on symmetry branch lines

To discuss further the symmetry branch lines, we first re-
mind the readers of some definitions in group cohomology.
Given a 3-cocycle ω(g, h, l ) as a representative of element in
H3(G,U (1)), the slant product is defined as [59]

θx(g, h) ≡ ω(x, g, h)ω(g, h, (gh)−1xgh)

ω(g, g−1xg, h)
, (104)

which is naturally a conjugated 2-cocycle, i.e., a represen-
tative in H2(G,U (1)[G]). Namely, it satisfies the following
condition:

δ̃θx(g, h, l ) ≡ θg−1xg(h, l )θx(g, hl )

θx(gh, l )θx(g, h)
= 1. (105)

When θ is a representative of the trivial element in
H2(G,U (1)[G]), there exists a conjugated 1-cochain ε, such
that

θx(g, h) = δ̃εx(g, h) ≡ εg−1xg(h)εx(g)

εx(gh)
. (106)

There is another product that will also become useful later:

γg(x, y) ≡ ω(x, y, g)ω(g, g−1xg, g−1yg)

ω(x, g, g−1yg)
, (107)

which, however, is not a 2-cocycle nor a conjugated one.
For a general state with a nontrivial pregauge structure, we

give a conjecture for the expression of symmetry branch lines.

We can follow the similar idea as in the previous section to
introduce the branch line operator Bx

∂R from the symmetry
action in the region R, when all the plaquettes on ∂R are flux-
less (i.e.,

∏
e∈∂ p he = 1), and the flux on each plaquette p ∈ R

(
∏

e∈∂ p he) is in the centralizer group Zx; see Appendix D for
details. If we start from vertex v and go along ∂R, then the
holonomy, i.e., the product of group elements on all the edges
along the path, is gv

∏
e heg−1

v , and the resulting symmetry
branch line is

Bx
∂R =

∑
g

B
x,g
∂Rεgvxg−1

v
(g), (108)

with the operator on the r.h.s. being

B
x,g
∂R ≡

∑
gv

Lx
∂RW gvxg−1

v

∂R �
gvxg−1

v

∂R δg,gv (
∏

e he )g−1
v

|gv〉v〈gv|, (109)

where εx(g) is a 1-cochain defined in Eq. (106), and v is a

reference vertex. The phase W gvxg−1
v

∂R is the product of cocycles
associated to the tetrahedrons in Fig. 14(b), with hv′v = x and
gv′ = gv , namely,

W gvxg−1
v

∂R =
∏

tetra∈∂R

ω(tetra)s. (110)

The operator �
gvxg−1

v

∂R is defined in Eq. (D15), and Lx
∂R is

defined as follows:

(111)

To make Lx
∂R well-defined, we require that x and

∏
e he

commute. For an SPT state, we have that
∏

e he = 1, and this
is trivially satisfied. With the above discussions, we can derive
the multiplication of branch line operators (see Appendix D
for the proof),

B
x,g
∂R B

y,g′
∂R = B

xy,g
∂R γg

(
gvxg−1

v , gvyg−1
v

)
δg,g′ . (112)

We also note that given a 3-cocycle ω, the phase factor ε

is not unique. One can always replace εx by εxvx, where vx

satisfies δ̃vx(g, h) ≡ 1. This corresponds to a different choice
of 0x in Cx, and we will illustrate this with concrete examples
below.

We recall the gauging map in the presence of the pregauge
structure,

� : |{gi}〉v|hi j〉e → ∣∣{gihi jg
−1
j

}〉
e. (113)
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Under this, the operator Bx
∂R is mapped to

�
(
Bx

∂R

) = 1

|G|
∑
k∈G

Lkxk−1

∂R W kxk−1

∂R �kxk−1

∂R εkxk−1 (kgk−1). (114)

Notice that after gauging, the gv dependence of the operator
is summed over as in the sum of k ∈ G above. Therefore, the
resultant operator under the gauging map does not depend on
any reference vertex.

In the case when ω ≡ 1, we can choose ε ≡ 1, then the
operator �(Bx

∂R ) is reduced to the trace of the ribbon operator
that creates an x-fluxed anyon in the quantum double (see,
e.g., Ref. [60]),

FCx,1
∂R = 1

|Zx|
∑
a∈Zx

F
ci,biab−1

j

∂R , (115)

where on the left-hand side, Cx is the conjugacy class of x,
and 1 is the trivial representation of the centralizer group Zx.
To construct the operators FCx,1

∂R , one enumerates the elements
of the conjugacy class as Cx = {ci}, together with a suitable
subset {bi}|Cx |

i=1 ⊂ G such that ci = bixb−1
i . The operator FCx,1

∂R

on the left-hand side is a ribbon operator labeled by topolog-

ical charges, and F
ci,binb−1

j

∂R on the right-hand side is a ribbon
operator in a basis labeled by group elements.

For a generic 3-cocycle ω, when x is in the center of G,
the x-fluxed anyon is Abelian. Then we have the following
relation via the map �,

�
(
B

x,g
∂R

) = F x,g
∂R , (116)

where F x,g
∂R is a ribbon operator defined in TQD for Abelian

groups in Ref. [49].
The algebra of ribbon operators can be inferred from the

quasi-Hopf algebra [59,61]. To be more concrete, suppose we
insert an x-flux on ribbon l . Operator F x,g

l thus satisfies the
multiplication rule

F x,g
l F y,g′

l = F xy,g
l δg,g′γg(x, y), (117)

which is consistent with our result of the branch line mul-
tiplication in Eq. (112), since we expect the gauging map
to preserve the operator algebra, which is quasi-Hopf in this
case.

One thing to notice is that, to write down Bx
∂R , we have

assumed the existence of ε. This is not always possible. When
such ε does not exist, even when x is in the center of G, the
x-fluxed anyon can still be non-Abelian [59]. For example,
if ω is a type-3 cocycle of Z2 × Z2 × Z2, then the anyons in
the TQD are generally non-Abelian. Therefore, one could not
expect to write down ribbon operators as we have defined
above. However, when we gauge one of the Z2 groups from
the SPT, we would enter an SET order with global symmetry
Z2 × Z2. It turns out that we can try to write the branch line
operators in the SET order, and from the algebra of which,
one can infer the symmetry fractionalization patterns. We will
leave this for further discussion later in this paper.

Throughout this paper, we have mostly used branch lines
on closed curves. As we have seen earlier, for closed branch
line operators, we need to specify a reference vertex v. Imag-
ine if we could define branch line operators on an open ribbon
(see Fig. 16) that starts from vertex v1 and ends at vertex

FIG. 16. An open defect on a triangulated lattice.

vn, we have two natural reference vertices. In the case when
G is Abelian, the gauging map will take such operators to
ribbon operators defined in Ref. [62]. If we assume that the
multiplication rule stays the same, then we have

Bx
l Bx−1

l =
∑
g1,gn

βgnxg−1
n

(
gng−1

1

)|g1, gn〉v1,vn〈g1, gn|, (118)

where the factor

βx(g) ≡ εx(g)εx−1 (g)γg(x, x−1) (119)

is the only object that is “pumped” out when we apply the
anomalous nononsite transformation and its inverse accord-
ingly. One can check from the cocycle condition (see also
Ref. [61]) that

βg−1xg(h)βx(g)

βx(gh)
= 1, (120)

showing that βx(g) satisfies the “twisted” cocycle condition.
One can thus use this to write

βgnxg−1
n

(
gng−1

1

) = βgnxg−1
n

(gn)βg1xg−1
1

(g1)−1. (121)

If v is one of the endpoints of the defect operators, then
we essentially pump a factor βgvxg−1

v
(gv ) to the state. The

phase factor βx(g) is a conjugated 1-cocycle, i.e., βx(g) ∈
H1(G,U (1)[G]) � ⊕iH1(Zi,U (1)), where i labels conju-
gacy classes of G, and Zi is the corresponding centralizer
group. We will call this factor the SPT pumping factor, since,
by fusing defect operators, we pump a lower dimensional SPT
state (in this case a 0d SPT state) on the boundary of the
line l after the application of Bx

l Bx−1

l . This is a generalization
of a previous Abelian case analyzed in Ref. [63]. If G is
Abelian, then for every element x ∈ G, the factor βx(g) is a
1D representation of group G, i.e., one pumps a 0d G-SPT
state on the endpoints of an open ribbon.

C. Symmetry branch lines in SET phase

As discussed in previous sections, we can gauge a normal
subgroup N of G. Then we enter an N SET phase with global
symmetry Q = G/N . Any group element g in G can be de-
composed as g = q(g)n(g). The SET wave function is

|�SET〉 =
∑

{qv},{ne}
�
({

qineq−1
j

})⊗
v

|qv〉
⊗

e

|ne〉. (122)

When the group element x ∈ G commutes with all the
elements n ∈ N in the normal subgroup, a branch line operator
Bx

∂R we introduced for the G-SPT state will be mapped to
another operator Hx

∂R under the gauging map �N . Further, the
operators defined as such respect the same multiplication rules
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as Bx
∂R do. Denoting qv = q(gv ), the operator Hx

∂R is written
as

Hx
∂R =

∑
g

Hx,g
∂Rεqvxq−1

v
(g)δg,qv (

∏
e ne )q−1

v
, (123)

with Hx,g
∂R = Lx

∂RW qvxq−1
v

∂R �
qvxq−1

v

∂R |qv〉〈qv|. (124)

When x ∈ N , the operator is a ribbon operator creating a
gauge flux in the SET. When n(x) = 1, i.e., x = s(q) for some
element q ∈ Q, the operator creates a flux that corresponds to
an element in the global symmetry group and thus is a branch
line operator. The multiplication rule of such operators is

Hx,g
∂R Hy,g′

∂R = Hxy,g
∂R γg

(
qvxq−1

v , qvyq−1
v

)
δg,g′ , (125)

which, in turn, leads to

Hx
∂R Hy

∂R =
∑

g

Hxy,g
∂R βqvxq−1

v ,qvyq−1
v

(g)δg,qv (
∏

e ne )q−1
v

, (126)

where the phase factor β on the r.h.s. is

βx,y(g) = εx(g)εy(g)γg(x, y). (127)

When we take two branch line operators Hx,g
l and Hy,g

l ,
i.e., both n(x) = n(y) = 1, and multiply them together, then
the resulting Hxy,g

l is not necessarily a branch line operator,
because n(xy) is not always trivial. As we will see in more
details later, this indicates a nontrivial symmetry fractional-
ization class (SFC) of the SET order.

We can always apply a finite-depth local unitary to take
all the vertex DOFs to the identity element (see Appendix E),
such that the state becomes

|�〉 =
∑
{ne}

�({ne})|{ne}〉e ⊗v |1〉v. (128)

This is a TQD with the 3-cocycle ν(n1, n2, n3) being the
restriction of ω(g1, g2, g3) on subgroup N . An Abelian anyon
in this model is determined by its flux (i.e., conjugacy class
Ca) and charge (i.e., a conjugated 1-cochain μa such that
δ̃μa = θa|N , i.e., μa = εa|N ). The symmetry action on the
anyons are given by

ρx : a-flux → x−1ax-flux, (129)

ρx : μa → μ′
x−1ax. (130)

From our previous analysis, we know that the automor-
phism ρx maps a-fluxed anyon to x−1ax-fluxed anyon, thus
we have Eq. (129). Furthermore, the automorphism will map
a chargeon [i.e., a representation μ ∈ Rep(N )] to μ′, where
μ′(x−1ax) = μ(a). Therefore, we can infer the general map
of the anyon charge as

μ′
x−1ax(x−1nx) = θa(x, x−1nx)

θa(n, x)
μa(n). (131)

However, the symmetry branch line operators we intro-
duced above for the SET states assumed that x commutes
with all the elements in normal subgroup N . Therefore, the
results obtained from analyzing such operators are limited to
the case when the symmetry does not change the anyon type.
To determine the SFC in this case, without loss of generality,
we will suppose that the global symmetry is Z2 in most of the
cases from now on. (Examples beyond Z2 will be discussed

FIG. 17. The operator (Hx
∂R )2 applying on curve ∂R is equivalent

to the braiding phase between the g-flux of an anyon b (g is the
holonomy along ∂R), and the charge of the anyon w.

later.) We first pick one Abelian anyon in Cx, i.e., we pick one
εx cochain such that the corresponding branch line operator
creates 0x. Then the SFC should be determined by the fusion
rule 0x · 0x = w1.

As shown in Fig. 17, the operator (Hx
∂R )2, when applied

on the DOFs on curve ∂R, is to create two point defects 0x,
move them along ∂R, and finally make them cancel with each
other. This process will introduce a phase factor that corre-
sponds exactly to the braiding phase between the g-flux of an
anyon b (g is the holonomy along ∂R), and the charge of the
anyon w. According to Eq. (126), this phase factor is βx,x(g).
Notice that, when the symmetry group is Q = G/N = Z2, the
qv dependence in Eq. (126) disappears. In general, such as
in more than two-step gauging, this factor still depends on
qv . Since the flux of w is x2 (which is not necessarily the
identity element, as x is an embedding of the generator of
Q = Z2 into G), suppose the charge of anyon b is given by
a 1-conjugated-cochain μg (such that δ̃μg = θg|N ), then the
braiding phase between the x2-flux and μg charge is μg(x2).
To determine w, we write down the braiding phase between
anyon w and b, which is the product of the above two factors,

B(w, b) = βx,x(g)μg(x2), (132)

and we illustrate this relation in Fig. 18.
From this result, one can determine the SFC of the SET

state after gauging some normal subgroup. Since we can al-
ways attach a 1-conjugated-cocycle vx to εx such that ε′

x =
εxvx, the phase B(w, b) we derived above also has this am-
biguity. But it just corresponds to the freedom to choose any
Abelian anyon in Cx that is labeled as 0x. Furthermore, we
can always attach a coboundary to the 3-cocycle ω such that
ω′ = ω δα, where α is a 2-cochain. One can check that the

FIG. 18. The braiding phase between a g-fluxed μg-charged
anyon b and the anyon w(= 0x × 0x ) is written as a product of two
braiding phases, as presented in Eq. (132). The second factor in blue
is a consequence of Eq. (126). From the phase B(w, b), we infer the
unknown charge of the anyon w (written as “?”), which determines
the SFC.
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phase B(w, b) is always the same as long as we choose ω in
the same cohomology class.

In the next few subsections, we will use the above result
to determine the SFC in different SET phases, resulting from
gauging a normal subgroup N of an SPT phase. In the later
subsections, we will deal with the case when symmetry does
change the anyon type and conjecture the form of branch line
operators to use them to discuss the SFC of the SET orders
that we obtain from gauging Dihedral SPT states.

D. SETs from partially gauging Z2 × Z2 SPT

The third cohomology of Z2 × Z2 has three generators, two
of which are of type-1, and the other one is of type-2 [59].
Assume the two generators of the Z2 × Z2 group are t and x,
then we can denote any group elements as g = (g(1), g(2) ) ≡
t g(1)

xg(2)
, where g(1), g(2) ∈ {0, 1}. The representative of the 3-

cocycle is then

ωg,h,l = eπ i(k1g(1)h(1)l (1)+k2g(2)h(2)l (2)+k3g(1)h(2)l (2) ), (133)

where k1, k2, k3 = 0, 1.
In the SET phase obtained from gauging the first Z2 group,

the anyon theory is the same as that of a TQD Dν (Z2), where

ν(g, h, l ) = eπ ik1g(1)h(1)l (1)
(134)

is a representative in H3(Z2,U (1)) obtained by the restriction
of ω in the first Z2 group (namely, one restricts the cocycles to
those with g(2) = h(2) = l (2) = 0) and is used as the “twisting”
of Kitaev’s Z2 QD model.

Therefore, when k1 = 0 it is a toric code model, and when
k1 = 1 it is a double-semion model. Since Z2 × Z2 is the trivial
central extension of Z2 by Z2, the symmetry action on anyons
is trivial.

The second Z2 group {1, x} represents the global symmetry
and therefore we can consider the multiplication of two branch
line operators Hx

∂R , which according to Eq. (126), gives

Hx
∂RHx

∂R =
∑

g

βx,x(g)δg,
∏

e te . (135)

From Eqs. (127) and (132), we find the braiding phase be-
tween w and a t-fluxed anyon b,

B(w, b) = εx(g)2γg(x, x) = θx(g, g)γg(x, x) = (−1)k3g(1)
.

(136)

For the conjugated 1-cochain we have used μg(x2) =
μg(1) = 1. Notice that since g2 = 1 for g ∈ G, we have
θx(g, g) = εx(g)2/εx(g2) by definition but εx(g2) = εx(1) = 1
so the second equality above follows. Therefore, different
choices of t-fluxed b anyon and different choices of εx cochain
(i.e., different choices of 0x) give rise to the same braiding
phase.

Now we discuss the consequence of the resultant braiding
B(w, b) in different cases. As mentioned above, when k1 = 0,
we have a toric code model. From our previous general anal-
ysis in Sec. VI C, we can infer that the anyon w braiding with
b (m or em) gives rise to a phase (−1)k3 . Therefore,

0x × 0x = 0 or e, k3 = 0 or 1. (137)

As mentioned earlier, when k1 = 1, we have a double-
semion model. The fluxless anyon w braiding with b (s or s̄)
results in a phase (−1)k3 . Therefore,

0x × 0x = 0 or ss̄, k3 = 0 or 1. (138)

The discussion of k1 and k3 above completely specifies the
SFC of the SET in this case. We have not discussed the conse-
quence of k2, but if we further gauge the second Z2, different
values of ki will give rise to different topological orders, due to
the 1-to-1 correspondence between the SPT and TQD phases
[33,52]. Therefore, we know that the intermediate SETs with
different values of k2 must belong to different phases. Since
all the topological order parameters of SET, except the SDC,
are already fixed by k1 and k3, we can safely conclude that
k2 = 0, 1 corresponds to two defectification classes, respec-
tively. Different defectifications intuitively can be regarded
as stacking or gluing different SPT phases [51] to the SET.
This particular case of SET phase was previously discussed in
Ref. [49].

If we further gauge the global symmetry Z2 in the SET, then
it becomes a twisted quantum double Dω(Z2 × Z2). As we
discussed earlier in Sec. VI B, for Abelian groups, the symme-
try branch line operators will be mapped to ribbon operators
creating certain Abelian anyons after gauging. Indeed, from
the Slant product, the 1-conjugated cochain could be chosen
as εt2 (g) = ik2g(2)

. The operator Hx
∂R is mapped to a ribbon

operator creating a t2-flux anyon η,

F η

l = Ft2,1
l + ik2 Ft2,t2

l + Ft2,t1
l + ik2 Ft2,t1t2

l . (139)

Since the gauge group is Z2 × Z2, the fusing of two such rib-
bon operators becomes a ribbon operator exciting a flux-less
anyon (chargeon) a, (F η

l )2 = F a
l , similar to Eq. (135),

F a
l = F 1,1

l + F 1,t2
l + (−1)k3 F 1,t1

l + (−1)k3 F 1,t1t2
l . (140)

For example, when k1 = k2 = k3 = 0, the anyon η is just a
boson m in toric-code model, and the anyon a is the vacuum
anyon. For any values of the parameters, we will see that
the multiplication rules of branch line operators become the
fusion rules of anyons under the gauging map.

E. SETs from partially gauging Z4 SPT

We will use both multiplicative and additive representa-
tions of Abelian groups interchangeably, e.g., g = 2 means
g = x2 in multiplicative representation (for x being the genera-
tor of Z4). We take representative cocycles in H3(Z4,U (1)) =
Z4 as

ωg,h,l = exp

{
2π ip

16
g(h + l − [h + l]4)

}
, (141)

where p = 0, 1, 2, 3. The slant product θxk (g, h) =
exp{ 2π ip

16 k(g + h − [g + h]4)} corresponds to a projective
representation given by εxk (g) = ξ kg, where ξ ≡ exp{ 2π ip

16 }.
An SET phase can be obtained by gauging the normal Z2 =

{1, t} group, where t ≡ x2. By restricting ω in H3(Z2,U (1)),
we have ν(g, h, l ) = eπ ipghl , where now g, h, l = 0, 1 are Z2-
valued. Therefore, when p = 0 or 2, it is a toric code, and
when p = 1 or 3, it is a double-semion model. Since Z4 is a
central extension of Z2 by Z2, the symmetry action on anyons
is trivial.
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Let us recall that the branch line operators in the SET
ground state are

Hx
∂R ≡

∑
g

εx(g)Hx,g
∂R =

∑
g

ξ gHx,g
∂R . (142)

The product of two such branch line operators Hx
∂R gives

rise to a factor [see Eq. (127)]

βx,x(g) = εx(g)2γg(x, x) = e
2π ipg

8 , (143)

for g = 0, 2. The charge of g-fluxed anyon b is given by

μg(h) = e
2π ipgh

16 + 2π irgh
4 , (144)

for g, h ∈ {0, 2} = s(Q). Furthermore, rg = 0, 1 corresponds
to different choices of charges of anyon b. Thus, the braiding
phase between anyon w and b should be given as

B(w, b) = βx,x(g)μg(t ) = e
2π ipg

4 (−1)rg. (145)

When p = 0, we have a toric code model. When g =
0, B(w, b) = (−1)r0 where charge of anyon b is given by
μ0(t ) = (−1)r0 . There are two chargeons 0 and e, corre-
sponding to r0 = 0 or 1, respectively. Therefore, the braiding
phase between w and 0 (e) is 1 (−1), according to Eq. (145).
Moreover, when g = 2, the braiding B(w, b) = (−1)r2 where
the charge of b is given by μ2(h = t ) = (−1)r2 according to
Eq. (144). Therefore, we could say that the braiding phase
between w and m (em) is 1 (−1), which corresponds to r2 =
0, 1, respectively. Therefore, we have a toric code with the
following SFC:

0x × 0x = m. (146)

When p = 1, this is a double-semion model. The braid-
ing phase is B(w, b) = (−1)g/2+rg where the charge of the
g-fluxed anyon b is given by μg(h = t ) = e

π i
2 · g

2 +π irg according
to Eq. (144). When g = 0, two chargeons 0 and ss̄ correspond
to r0 = 0 and 1, respectively. Anyon w braiding with ss̄ gives
−1. When g = 2, the braiding phase between w and s (s̄) is −1
(1), which corresponds to r2 = 0, 1, respectively. Therefore,
we have a double-semion model with SFC:

0x × 0x = s. (147)

When p = 2, this is a toric code model. The braiding phase
is B(w, b) = (−1)rg where the charge of the g-fluxed anyon
b is given by μg(h = t ) = eπ i( g

2 +rg) according to Eq. (144).
When g = 0, two chargeons 0 and e correspond to r0 = 0 and
1, respectively. Anyon w braiding with 0 (e) gives 1 (−1).
When g = 2, the braiding phase between w and em (m) is 1
(−1), which corresponds to r2 = 0, 1, respectively. Therefore,
we have a toric code with SFC:

0x × 0x = em. (148)

When p = 3, this is a double-semion model. The braid-
ing phase is B(w, b) = (−1)g/2+rg , where the charge of the
g-fluxed anyon b is given by μg(h = t ) = e

3π i
2 · g

2 +π irg according
to Eq. (144). When g = 0, two chargeons 0 and ss̄ correspond
to r0 = 0 and 1, respectively. Anyon w braiding with ss̄ gives
−1. When g = 2, the braiding phase between w and s̄ (s) is −1
(1), which corresponds to r2 = 0, 1, respectively. Therefore,
we have a double-semion code with SFC:

0x × 0x = s̄. (149)

One could check that, if we choose other εx instead of what
we used above, then we would derive exactly the same fusion
rule as above.

F. SETs from partially gauging Z3
2 SPT

The third cohomology group of Z (1)
2 × Z (2)

2 × Z (3)
2 has

seven generators, three of which are of type-1, three of which
are of type-2, and one of type-3 [59]. Assume the three gener-
ators of the Z3

2 group are t , x1, and x2, then we can denote any

group elements as g = (g(1), g(2), g(3) ) ≡ t g(1)
xg(2)

1 xg(3)

2 , where
g(1), g(2), g(3) ∈ {0, 1}. For simplicity, in this section, we will
demonstrate the analysis for representatives of some of the
3-cocycles and then derive the general result without further
explanation. The representatives that we take are

ωg,h,l = eπ i(k1g(1)h(1)l (1)+k2g(1)h(2)l (3) ), (150)

where k1, k2 = 0, 1.
In the SET phase obtained from gauging the group Z (1)

2 , the
anyon theory is the same as that of a TQD Dν (Z2), where

ν(g, h, l ) = eπ ik1g(1)h(1)l (1)
(151)

is a representative in H3(Z2,U (1)) obtained by the restriction
of ω in the first Z2 group. Therefore, when k1 = 0 it is a
toric code model, and when k1 = 1 it is a double-semion
model. Since Z (1)

2 × Z (2)
2 × Z (3)

2 is the trivial central extension
of Z (2)

2 × Z (3)
2 by Z (1)

2 , the symmetry actions on anyons are
trivial.

Since the slant product of the cocycle given above be-
longs to a class [θ ] that is not the trivial element in
H2(Z3

2 ,U (1)[Z3
2 ]), it is impossible to find εh(g), such that

θh(k, g) = δ̃εh(k, g) ≡ εh(g)εh(k)

εh(kg)
, (152)

for any g, h, k ∈ Z3
2 . However, in defining the symmetry

branch line operators, we only need phase factors εh(g) where
the group element h ∈ Z (2)

2 × Z (3)
2 and g ∈ N = Z (1)

2 . Indeed,
in this case there exists such a phase factor that satisfies
Eq. (152) when restricting the group elements h, g in their
corresponding subgroups.

The slant product of the cocycle is trivial,

θh(k, g) = (−1)h(2)k(1)g(3)+h(3)k(1)g(2) = 1, (153)

when h ∈ Z (2)
2 × Z (3)

2 and k, g ∈ Z (1)
2 . Therefore, we can

choose εh(g) ≡ 1.
In general, when the symmetry group is Q = Z2 × Z2, we

take two elements h1, h2 ∈ s(Q) ⊂ G that are the embedding
of elements h̃1, h̃2 ∈ Q. The consistency condition of embed-
ding is

q(h1h2) = s(h̃1h̃2). (154)

The fusion rule of C×
Q is of the form

0h̃1
× 0h̃2

= w(h̃1, h̃2) × 0h̃1h̃2
. (155)

From our previous analysis, the braiding phase between
0h̃1

× 0h̃2
and anyon b = (g, μg) is B1 = βh1,h2 (g)μg(n(h1h2)).

According to Eq. (154), the braiding phase between 0h̃1h̃2

and anyon b is B2 = εq(h1h2 )(g). As a result, the braiding
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phase between Abelian anyon w(h̃1, h̃2) and b should be the
ratio

B(w(h̃1, h̃2), b) = εh1 (g)εh2 (g)

εq(h1h2 )(g)
γg(h1, h2)μg(n(h1h2)). (156)

Later on for simplicity, we will use w(h1, h2) to de-
note w(h̃1, h̃2). Since we choose εh(g) ≡ 1 in this case and
n(h1h2) ≡ 1, we have

B(w(h1, h2), b) = γg(h1, h2) = eπ ik2gh(2)
1 h(3)

2 , (157)

for g ∈ Z (1)
2 . Since the group extension of Z (2)

2 × Z (3)
2 by Z (1)

2

corresponds to the trivial element in H2(Z (2)
2 × Z (3)

2 , Z (1)
2 ), we

know that the Abelian anyon w(h1, h2) is always a chargeon
for any h1, h2 ∈ Z (2)

2 × Z (3)
2 . When k1 = 0, we have a Z2 toric

code model. From the above braiding phase we can conclude
that when k2 = 0,

w(h1, h2) ≡ 1; (158)

when k2 = 1,

w(h1, h2) =
{

e, h(2)
1 = h(3)

2 = 1,

1, others.
(159)

However, when k1 = 1, we have a Z2 double-semion
model. From the above braiding phase we can conclude that
when k2 = 0,

w(h1, h2) ≡ 1; (160)

when k2 = 1,

w(h1, h2) =
{

ss̄, h(2)
1 = h(3)

2 = 1,

1, others.
(161)

One can check that all the Abelian anyons w(h1, h2)’s
above satisfy the cocycle condition,

w(h2, h3)w(h1, h2h3)

w(h1h2, h3)w(h1, h2)
= 1. (162)

If one chooses different εh(g) other than what we used
above, then the derived anyon w(h1, h2) will be differed
by a coboundary. Therefore, we conclude, different values
of k2 will give different symmetry fractionalization patterns
that correspond to different elements in H2(Z (2)

2 × Z (3)
2 , A),

where A = Z2 × Z2 is the group of Abelian anyons.
One can generalize the above result to an arbitrary 3-

cocycle. The cohomology group of Z3
2 can be decomposed as

such:

(163)

In this example, we have illustrated two of the seven gener-
ators in H3(Z3

2 ,U (1)) as in Eq. (150) and showed that k1 gives
the anyon theory and k2 (which is associated with the type-3
cocycle) gives a symmetry fractionalization pattern named
SFC2 in the above diagram. To understand the rest of SET
properties, we note that the two SFC1’s are the symmetry
fractionalization pattern associated with type-2 cocycles of
Z (1)

2 × Z (2)
2 and Z (1)

2 × Z (3)
2 , respectively, which were already

discussed in Sec. VI D. The SDC part is the symmetry defecti-
fication class associated with cocycles of Z (2)

2 × Z (3)
2 , both of

type-1 and type-2. In the cases when the Z3
2 -SPT phase cor-

responds to the cohomology class which is trivial in the first
Z2 subgroup in Eq. (163), one can choose a representative that
is of some specific form. Then after gauging Z (1)

2 subgroup,
according to Ref. [62], one can determine the symmetry frac-
tionalization patterns of the SET order, which agrees with our
general results above.

G. SETs from partially gauging D4 SPT

Now we consider the noncentral extension of Z2 by Z4. We
write the element in D4 as g̃ = (G, g) ≡ xGag. We construct a

representative of 3-cocycle in H3(D4,U (1)) as follows:

ω(g̃, h̃, l̃ )

= exp

{
2π ip1

16
g(−1)H+L(h(−1)L + l − [h(−1)L + l]4)

}
× exp π ip2GHL + π ip3gHL, (164)

where p1 = 0, 1, 2, 3, and p2, p3 = 0 or 1. There are four
nontrivial Abelian normal subgroups in D4, which leads to
four options in the first step when gauging this group. We will
consider three of them here.

1. Gauging Z2

The first option is to gauge the normal subgroup Z2 =
{1, a2}, resulting in a state in an SET that has the same anyon
theory as Dν (Z2), where

ν(g, h, l ) = exp

{
2π ip1

16
ghl

}
(165)

is the restriction of ω on Z2, i.e., g, h, l ∈ {1, a2}. When
[p1]2 = 0 it is a toric code model, and when [p1]2 = 1 it is a
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double-semion model. Since the group extension of Z2 × Z2

by Z2 is central, the symmetry actions on the anyons are
trivial. Therefore, according to Eq. (156), the braiding phase
B(w(h1, h2), b) is given by

B(w(h1, h2), b) = εh1 (g)εh2 (g)

εq(h1h2 )(g)
γg(h1, h2)μg(n(h1h2)). (166)

We write the embedding of quotient group elements

g = (g(1), g(2) ) ∈ Z2 × Z2 ≡ {1, t1} × {1, t2} (167)

in D4 as

s(g) = xg(1)
ag(2)

. (168)

From the group multiplication rule, one can infer that the
Abelian anyons w(t2, t1), w(t2, t2), w(t1t2, t1) and w(t1t2, t2)
have nontrivial flux, while w(h1, h2) for other h1, h2 are char-
geons. We list the detailed symmetry fractionalization patterns
below.

When [p1]2 = 0, we have a Z2 toric code model. From
the above braiding phase we can conclude that the SFC is
characterized by [w(h1, h2)] ∈ H3(Z2 × Z2, Z2 × Z2), where

w(h1, h2) =
{

m, (h1, h2) = (t2, t1), (t2, t2), (t1t2, t1), (t1t2, t2),
1, others. (169)

When [p1]2 = 1, we have a Z2 double-semion model. From
the above braiding phase we can conclude that, the SFC is
characterized by [w(h1, h2)] ∈ H3(Z2 × Z2, Z2 × Z2), where

w(h1, h2) =

⎧⎪⎪⎨⎪⎪⎩
s, (h1, h2) = (t2, t1), (t1t2, t2), (t2, t2),
s̄, (h1, h2) = (t1t2, t1),
ss̄, (h1, h2) = (t1, t1), (t1, t1t2), (t1t2, t1t2),
1, others.

(170)

Other parameters of the cohomology group H3(D4,U (1)),
including p1−[p1]2

2 , p2 and p3, will give rise to different SDCs
that form an H3(Z2 × Z2,U (1)) = Z3

2 torsor.

2. Gauging Z4

The second option is to gauge the normal subgroup Z4,
resulting in a state in an SET that has the same anyon theory
as Dν (Z4), where

ν(g, h, l ) = exp

{
2π ip1

16
g(h + l − [h + l]4)

}
(171)

is the restriction of ω on Z4. Different values of p1 exactly
correspond to different Z4 TQD models. The symmetry action
takes e to e3, and takes m to m3e2p1 according to Eq. (131),
which is not a trivial automorphism on C. One can still man-
age to write a phase factor B(w, b) = βx,x(g) for g ∈ N = Z4.
(We remind readers that x is one of the generators of the
group D4 such that x2 = 1.) However, two obvious problems
will emerge from this factor. The first one is that unlike in
the case when symmetry does not change the anyon type,
when we change the representative 3-cocycle for the D4-SPT
state by a coboundary, ω′ = ω · δα, the “braiding phase” is
not invariant anymore, B(w, b)′ = B(w, b) α(g−1xg,g−1xg)

α(x,x) . The
second problem seems to be even worse. In a generic case,
it might be impossible to find an Abelian object in sector Cx

such as the 0x from before. Therefore, there may not exist an
Abelian anyon w as the fusion between 0x and itself. Indeed,
in sector Cx, there are 4 objects of quantum dimension 2. If we
nonetheless pick one of them and still name it 0x, by counting
the dimension, then we can write a fusion rule of the form

0x × 0x = a + b + c + d, (172)

where a, b, c, d ∈ C are Abelian anyons.

Motivated by the ribbon operator in the quantum double
model as in Eq. (115), we choose b1 = 1 and b2 = a and we
write a matrix-valued operator on an open ribbon as(

Hx
l

)
ii′ =

∑
n∈{1,a2}

H
bixb−1

i ,binb−1
i′

l εbixb−1
i

(
binb−1

i′
)
, (173)

where the matrix indices i, i′ = 1, 2, and the operator Hx,g
l

satisfies the same multiplication rule as in Eq. (125),

Hx,g
l Hy,g′

l = Hxy,g
l γg(x, y)δg,g′ . (174)

We conjecture that the operator as in Eq. (173) creates
an object in sector Cx on the endpoint of l . We call this
object 0x even though it is of dimension 2. Then the object
0x × 0x should be created on the endpoint of l by operator
(Hx

l )⊗2. It can be shown that, when we change the repre-
sentative 3-cocycle for the D4-SPT state by a coboundary,
ω′ = ω · δα, the matrix (Hx

l )⊗2 differs by a similar transfor-
mation. Therefore, the fusion rule remains invariant under
different representative choices. According to the detailed
analysis in Appendix F, we see that different values of p3 give
different SFCs where the fusion rules are shifted by anyon
[e2] ∈ H2

ρ (Z2, A).

3. Gauging Z2 × Z2

One could also gauge the Z2 × Z2 = {1, x, t, xt} in D4,
resulting a state in the phase of Dν ′

(Z2 × Z2). We write t ≡ a2

and g = xg(1)
t g(2) = xg(1)

a2g(2)
. The 3-cocycle ω restricted in this

group is obtained from Eq. (164) and is given as

ν ′(g, h, l ) = exp

{
2π ip1

4
g(2)(−1)h(1)+l (1)(

h(2)(−1)l (1) + l (2)

− [h(2)(−1)l (1) + l (2)]2
)+ π ip2g(1)h(1)l (1)

}
,

= (−1)p1(g(2)h(2)l (2)+g(2)h(2)l (1) )+p2g(1)h(1)l (1)
. (175)

Notice that there is no contribution from the third part in
Eq. (164) as eπ ip3(2g(2) )h(1)l (1) ≡ 1. In Appendix H, we analyze
the fluxes and charges of all the anyons in the theory from
3-cocycle [ν ′]. Let b1 = 1 and b2 = x, one can write the
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matrix-valued operator on an open ribbon l as(
Ha

l

)
ii′ =

∑
n∈{1,t}

H
biab−1

i ,binb−1
i′

l εbiab−1
i

(
binb−1

i′
)
, (176)

where the matrix indices have the range i, i′ = 1, 2. As we
conjectured, the object 0a × 0a should be created on the end-
point of l by operator (Ha

l )⊗2. According to the detailed
analysis in Appendix G, we see that different values of p3 give
different SFCs where the fusion rules are shifted by anyon
[e(1)] ∈ H2

ρ (Z2, A).

H. SETs from partially gauging S3 SPT

Now with the conjecture made in Sec. VI G, we can revisit
our first example in Sec. V B. Recall that we write the element
in S3 as g̃ = (G, g) ≡ xGag. We construct a representative of
3-cocycle in H3(S3,U (1)) as in Eq. (70). Gauging the normal
subgroup Z3 of a S3-SPT state, results in a state in an SET
phase that has the same anyon theory as Dν (Z3), where

ν(g, h, l ) = exp

{
2π ip1

9
g(h + l − [h + l]3)

}
(177)

is the restriction of ω on Z3. Different values of p1 exactly
correspond to different Z3 TQD models. The symmetry action
takes e to e2, and takes m to m2e2p1 according to Eq. (131),
which is also not a trivial automorphism on C, as we have
seen something similar in the previous D4 case.

In sector Cx, there is only one object of quantum dimension
3. We name it 0x. By the dimension counting, we can write a
fusion rule of the form

0x × 0x =
9∑

i=1

ai, (178)

where ai ∈ C are Abelian anyons. Let b1 = 1, b2 = a, and
b3 = a2, one can write a matrix-valued operator on an open
ribbon as (

Hx
l

)
ii′ = H

bixb−1
i ,bib

−1
i′

l εbixb−1
i

(
bib

−1
i′
)
, (179)

where the matrix indices are in the range i, i′ = 1, 2, 3. As we
conjectured in the last example, the object 0x × 0x should be
created on the endpoint of l by operator (Hx

l )⊗2. According to
the detailed analysis in Appendix I, we can obtain the fusion
rule of the Z3 SET from the conjectured branch line operator,

0x × 0x = 1 + e + e2 + m + em + e2m + m2 + em2 + e2m2.

(180)
From the analysis in Sec. VI G, we know that there is only one
symmetry fractionalization pattern for every value of p1. This
unique SFC result is consistent with the fact that the fusion
in the above equation is the same for all values of p2 (with a
fixed p1, i.e., fixing a distinct anyon theory), and thus p2 gives
different SDCs, unrelated to the SFC.

I. SETs from Dn SPT

Here we comment on the SET phase obtained from gaug-
ing the N = Zn subgroup in the Dn SPT state. When n = 2m +
1 is odd, from the similar argument we used for the S3-SPT
state, there is only one symmetry fractionalization pattern of

such SET. The cohomology group can be decomposed as

H3(D2m+1,U (1)) = H3(Z2m+1,U (1)) ⊕ H3(Z2,U (1))

= Z2m+1 ⊕ Z2. (181)

Therefore, just as in S3 = D3 case, a representative 3-
cocycle [ω] ∈ H3(D2m+1,U (1)) will have two parameters
p1 = 0, . . . , 2m and p2 = 0, 1. Different values of p1 give
different anyon theory of the SET order, while different values
of p2 give different SDCs. Furthermore, there is only one
object 0x in sector Cx of dimension 2m + 1, and from a similar
calculation, one expects the fusion rule to be

0x × 0x =
∑
a∈C

a. (182)

When n = 2m is even, the cohomology group can be de-
composed as

H3(D2m,U (1)) = H3(Z2m,U (1)) ⊕ H3(Z2,U (1))

⊕ H2(Z2, H1(Z2m,U (1)))

= Z2m ⊕ Z2 ⊕ Z2. (183)

Therefore, just as in D4 case, a representative 3-cocycle [ω] ∈
H3(D2m,U (1)) will have three parameters p1 = 0, . . . , 2m −
1, p2 = 0, 1, and p3 = 0, 1. Different values of p1 give differ-
ent anyon theory of the SET order and different values of p2

give different SDCs. Furthermore, different values of p3 will
differ in the fusion of 0x × 0x by anyon em, and, therefore,
correspond to different symmetry fractionalization patterns.

J. SETs from partially gauging Q8 SPT

Another group extension of Z2 by Z4 is the Q8 group. We
write the element in Q8 as g̃ = (G, g) ≡ xGag just as for D4.
The only difference is that x2 = a2 instead of identity now. A
representative of 3-cocycle in H3(Q8,U (1)) is [59]

ω(g̃, h̃, l̃ ) = exp

[
2π ip

8
(−2GHL + g(−1)H+L

× {h(−1)L + l − [h(−1)L + l + 2HL]4})

]
,

(184)

where p = 0, 1, 2, 3. We note that despite the fact that
H3(Q8,U (1)) = Z8, we only present half of the cocycles here,
as we are not aware of the other half. After gauging the normal
subgroup Z2 = {1, a2}, we obtain an SET states in which the
anyon theory is the same as in Dν (Z2) where ν(g, h, l ) =
exp{ 2π ip

8 ghl}, with g, h, l = 0, 2 representing elements from
the set {1, a2}. Therefore, p = 0, 1, 2, 3 all correspond to the
Z2 toric code model after gauging. The symmetry action on
anyons are trivial since the group extension is central. Accord-
ing to Eq. (156), the braiding phase B(w(h1, h2), b) is given by

B(w(h1, h2), b) = εh1 (g)εh2 (g)

εq(h1h2 )(g)
γg(h1, h2)μg(n(h1h2)). (185)

Let us write the quotient group elements as Z2 × Z2 ≡
{1, t1} × {1, t2}, where the embedding of t1(t2) is x(a). After
carrying out the detailed calculations from the cocycles above,
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the SFC corresponds to [w(h1, h2)] ∈ H2(Z2 × Z2, Z2 × Z2), where

w(h1, h2) =
{

m, (h1, h2) = (t1, t1), (t2, t1), (t2, t2), (t1, t1t2), (t1t2, t2),
1, others. (186)

Therefore, the parameter p characterizes different SDCs
of the SET order. One expects that for the other 4 classes
of cocycles in H3(Q8,U (1)), the anyon theory after gauging
the normal Z2 subgroup would be Z2 double-semion model,
and from similar calculations, one can determine the SFC
accordingly.

VII. CONCLUSION

Recently, it has been realized that a wide class of topo-
logically ordered states described by the (twisted) quantum
double models with solvable gauge groups can be prepared
with finite depth local operations as long as local measure-
ments are included [41–44,46,47]. We have re-examined such
a measurement-based gauging approach which transforms a
nontrivial SPT state into a corresponding TQD state. We
provided two alternative gauging procedures: one using a par-
ticular decomposition in terms of successive quotient groups
and another one exploiting a new and equivalent definition of
solvable groups. This flexibility in our method may allow us
different options in preparing midgauging SET states.

In the case of non-Abelian groups, the gauging procedure
involves multiple steps where intermediate steps only partially
gauge the system so that some symmetry remains. Starting
from an initial G-SPT state, we have presented an in-depth
analysis of the intermediate states and have found them to
be topologically ordered states enriched by the remaining
ungauged symmetry. We have constructed the generic lattice
(parent) Hamiltonian for these states, and showed that they
are connected to twisted quantum double (TQD) ground states
via a finite-depth local unitary circuit (without measurements)
which does not respect the global symmetry.

Furthermore, we have shown that the algebra of the
symmetry branch line operators can be used to extract the
symmetry fractionalization classes and infer symmetry defec-
tification classes of the SET phases given the input data G and
[ω] ∈ H3(G,U (1)). When the SET order in the intermediate
step of the N-step gauging has a global symmetry that does not
change the anyon type, using the algebra of symmetry branch
line operators, we have developed a general formula for the
braiding phases between any Abelian anyon in the theory and
the anyons obtained from fusing point defects, which exactly
characterize the symmetry fractionalization patterns. We have
given various examples for this case. When the SET order we
enter has a global symmetry that does change anyon types,
we conjectured the form and algebra of non-Abelian sym-
metry branch line operators that can create the corresponding
symmetry defects. Then by calculating the tensor product of
such operators, we showed that fusion rules of these symmetry
defects can be derived, which is sufficient to characterize the
symmetry fractionalization patterns. We have used the dihe-
dral SPT states and the associated SET states as examples to
illustrate this latter case.

In this work, we mainly focused on the SFC, and a frame-
work to characterize the SDC is left for future study. We note
that, according to Ref. [51], the SDC forms a H3(Q,U (1)) tor-
sor, and two defectification classes are differed by an element
in H3(Q,U (1)). One can always enter another SDC by apply-
ing a unitary Uω′ to vertex DOFs (where [ω′] ∈ H3(Q,U (1))).
This is equivalent to stacking a Q-SPT state onto the current
SET state.

Our method to probe SET phases using fusion was inspired
by Ref. [43] and it turns out to be specifically useful when the
gauge group (or the normal subgroup in the case of multistep
gauging) is Abelian. We expect our formalism holds for non-
Abelian TQD models with some global symmetry. We leave
as open questions how to consistently define ribbon opera-
tors for probing more complex SET phases with non-Abelian
gauge groups. For this purpose, it may be useful to re-examine
some literature regarding the quasi-Hopf algebra [59,61,64].

As a technical issue, in writing down the branch line oper-
ators, we have assumed the existence of εx(g) [see Eq. (106)]
for the 3-cocycle [ω] ∈ H3(G,U (1)). However, this factor
may not exist in general. We did encounter this situation in
the example of gauging the Z (1)

2 symmetry in the Z (1)
2 × Z (2)

2 ×
Z (3)

2 -SPT phase when the cocycle is of type-3. Nonetheless,
when restricting x and g to some specific subgroups, we can
still define εx(g), and we used them for the branch line oper-
ators to characterize the symmetry fractionalization patterns.
It is not clear how to overcome the nonexistence of εx(g) in
general, and this is also left for future exploration.

As conjectured by the hierarchy of topological orders con-
ceptualized in Ref. [43], topologically ordered states with
nonsolvable groups or even more general anyon models with-
out any group structure cannot be prepared using finite-depth
measurement-assisted circuits. Nonetheless, it was recently
shown in Ref. [65] that the Fibonacci anyon state can be
prepared using log L-depth circuits with midcircuit measure-
ments (where L is the linear size of the system). It would
be worth exploring midgauging topological phases beyond
solvable groups and group-based anyon theories.
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APPENDIX A: SOME PROPERTIES OF TWISTED
QUANTUM DOUBLE (TQD) HAMILTONIAN

In this Appendix, we check some properties of twisted
quantum double (TQD) Hamiltonian. Although some proofs
of the claims here are given in the original paper [11], we
demonstrate those in our notation. The TQD Hamiltonian is
given by

H = −
∑

v

Av −
∑

p

Bp, (A1)

where Av is the vertex operator and Bp is the plaquette opera-
tor explicitly given by

Av = 1

|G|
∑
g∈G

(∏
e⊃v

Lg
±e

)
W̃ g

v = 1

|G|
∑
g∈G

Av,g, (A2a)

Bp = δ

⎛⎝∏
e∈p

ge, 1

⎞⎠. (A2b)

The operator (
∏

e⊃v Lg
±e) denotes the operator which im-

plements left action (Lg
+e) or right action (Lg

−e) on the edges
adjacent to the vertex v when the edge flows to vertex v or
emanates from vertex v, respectively. W̃ g

v is the phase operator
defined as follows:

W̃ g
v =

(∏
e⊃v

Lg
±e

)†

Uω

(∏
e⊃v

Lg
±e

)
U †

ω, (A3)

where Uω is the phase operator which assigns a phase to a
given configuration of edges in the TQD ground state [see
Eq. (10)]. The purpose of W̃ g

v is to change the phase factor in

FIG. 19. Tetrahedron with orientation.

TQD wave-function after the operation
∏

e⊃v Lg
±e is applied

on the vertex v.
Claim A.1. The action of W̃ g

v on vertex v can be interpreted
geometrically as a product of cocylces of tetrahedrons in
Fig. 5 with appropriate signs in the exponent.

Proof. To prove this equivalence, we mention the fol-
lowing fact: given a tetrahedron with a branching structure,
equating one with the product of (a) cocycles (with appropri-
ate signs in the exponent) on the faces and (b) the cocylce on
the tetrahedron (also with appropriate sign in the exponent)
gives the cocycle condition. The signs in the exponent can be
found using the following rule:

(1) First we define the orientation of a face of a tetrahe-
dron. Consider the branching structure of a face. Curl your
fingers on the right hand along the direction of two arrows
which point one after the other. The direction your thumb
points at gives you the orientation of the face.

(2) For the tetrahedron, consider the vertex where all the
arrows end and the face opposite to it. If the orientation of
the face points inward to the tetrahedron, then the sign is +1;
otherwise, it is −1.

(3) For a face, simply consider its orientation. If the orien-
tation points inward to the tetrahedron, then assign the sign to
be +1; otherwise, assign −1.

As an example, consider the following tetrahedron given in
Fig. 19.

The product of cocycles with appropriate signs in the ex-
ponent gives the cocycle condition,

ω
(
g4g−1

2 , g2g−1
1 , g1

)
ω
(
g4g−1

3 , g3g−1
2 , g2

)
ω
(
g4g−1

3 , g3g−1
2 , g2g−1

1

)
ω
(
g3g−1

2 , g2g−1
1 , g1

)
ω
(
g4g−1

3 , g3g−1
1 , g1

) = 1. (A4)

Now, multiplying all the cocycle conditions coming from all the tetrahedron adjacent to vertex v as in Fig. 5, one can clearly see
that the cocycles coming from the faces shared by two tetrahedron cancel in pairs since the signs in the exponent coming from
the two adjacent tetrahedrons of a face are opposite. Finally, the remaining product of cocycles can be rewritten as∏

tetra

ω(tetra)s(tetra) =
∏
�

1

ω(�′)s(�′ )ω(�)s(�)
=
∏
�

(
ω(�′)
ω(�)

)s(�)

, (A5)

where � and �′ denote the triangles in the original and
the lifted plane (after action by Av), s(�) and s(�′) de-
note the signs in the exponent for the cocycle coming
from � and �′. The last equality in Eq. (A5) fol-
lows from the fact that s(�′) = −s(�). The expression
which follows the last equality is exactly what Eq. (A3)
achieves.

Claim A.2. Av is Hermitian, i.e., A†
v = Av . �

Proof. By definition, we have

A†
v,g =

((∏
e⊃v

Lg
±e

)
W̃ g

v

)†

= (
W̃ g

v

)∗(∏
e⊃v

Lg
±e

)†

, (A6)

where (W̃ g
v )∗ denotes the complex conjugate of W̃ g

v . We
note that (

∏
e⊃v Lg

±e)† = (
∏

e⊃v Lg−1

±e ). From the definition
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Eq. (A3), we have

(
W̃ g

v

)∗ = Uω

(∏
e⊃v

Lg
±e

)†

U †
ω

(∏
e⊃v

Lg
±e

)
. (A7)

Now we compute A†
v,g:(

W̃ g
v

)∗(∏
e⊃v

Lg
±e

)†

= Uω

(∏
e⊃v

Lg
±e

)†

U †
ω (A8a)

=
(∏

e⊃v

Lg
±e

)†(∏
e⊃v

Lg
±e

)
Uω

(∏
e⊃v

Lg
±e

)†

U †
ω

(A8b)

=
(∏

e⊃v

Lg−1

±e

)(∏
e⊃v

Lg−1

±e

)†

Uω

(∏
e⊃v

Lg−1

±e

)
U †

ω

(A8c)

=
(∏

e⊃v

Lg−1

±e

)
W̃ g−1

v = Av,g−1 . (A8d)

Hence, it holds that

A†
v = 1

|G|
∑
g∈G

A†
v,g = 1

|G|
∑
g∈G

Av,g−1 = Av. (A9)

�
Claim A.3. Av is a projector. A2

v = Av .
Proof. Note the following observation:

Av,gAv,h = Uω

(∏
e⊃v

Lg
±e

)
U †

ωUω

(∏
e⊃v

Lh
±e

)
U †

ω (A10a)

= Uω

(∏
e⊃v

Lgh
±e

)
U †

ω = Av,gh. (A10b)

Hence, we can square Av and arrive at

A2
v = 1

|G|2
∑

g,h∈G

Av,gAv,h = 1

|G|2
∑

g,h∈G

Av,gh

= 1

|G|
∑
g∈G

Av,g = Av. (A11)

�
Claim A.4. Bp is Hermitian as well as a projector.
Proof. This follows trivially from the definition

Eq. (14). �
Claim A.5. [Av, Av′ ] = 0 for any vertices v and v′.
Proof. First we prove [Av,g, Av′,h] = 0 when v 
= v′:

[Av,g, Av′,h] =
[

Uω

(∏
e⊃v

Lg
±e

)
U †

ω,Uω

(∏
e⊃v′

Lh
±e

)
U †

ω

]

= Uω

[∏
e⊃v

Lg
±e,

∏
e⊃v′

Lh
±e

]
U †

ω = 0. (A12)

The last line is trivial when v and v′ are not adjacent. When
they are adjacent, the two vertices have opposite (right/left)
action on the edge DOF. So their commutator is again zero.

Hence, [Av,g, Av′,h] = 0 when v 
= v′. This imply [Av, Av′ ] =
0 when v 
= v′. When v = v′, the commutator is trivially zero.
So [Av, Av′ ] = 0, ∀ v and v′. �

Claim A.6. [Av, Bp] = 0 ∀ v and p.
Proof. When the vertex v is not on the boundary of the

plaquette p, the two terms commute trivially. When the vertex
is on the boundary of p, we consider the two edges which are
adjacent to the vertex v as well as lie on the boundary of p.
Now consider three cases.

Case 1: Both edges point toward the vertex v. Action of
Av,g on this configuration is given by left multiplying g on
the corresponding edges. This preserves the fluxless condition
imposed by the Bp operator.

Case 2: Both edges point away from the vertex v. Action of
Av,g on this configuration is given by right multiplying g−1 on
the corresponding edges. This preserves the fluxless condition
imposed by the Bp operator.

Case 3: One edge point toward the vertex v and the other
edges point away from it. Action of Av,g on this configuration
is given by left multiplying by g and right multiplying by g−1,
respectively. This also preserves the fluxless condition.

From this observation it follows that [Av, Bp] = 0 ∀ v

and p. �
Claim A.7. [Bp, Bp′ ] = 0 ∀ plaquettes p and p′.
Proof. The proof follows straightforwardly from the fact

Bp = 1 on the configurations for which there is no flux around
plaquette p, and zero otherwise. �

Now we consider the quantum double like Hamiltonian in
the presence of a global symmetry given in Eq. (20)

H = −
∑

v

Av −
∑

p

Bp −
∑

v

Kv, (A13)

where Av , Bp, and Kv are defined in Eqs. (21), (22), and (23),
respectively. Again Av is Hermitian as well as a projector.
Similarly Bp is also Hermitian as well as a projector. Av and Bp

commute among themselves and with each other. The proofs
follow by repeating the steps in the twisted quantum-double
case. Now we consider the last term Kv .

Claim A.8. Kv is Hermitian as well as a projector.
Proof. Let us write

Kv = 1

|Q|
|Q|−1∑
k,l=0

Kv,kl , (A14)

where Kv,kl = W
qkq−1

l
v |qk〉v〈ql |. We can write the phase opera-

tor W
qkq−1

l
v as

W
qkq−1

l
v |qk〉v〈ql | = Uω|qk〉v〈ql |U †

ω. (A15)

Using the Hermitian conjugation of the above equation, we
have

K†
v,kl = Uω|ql〉〈qk|U †

ω = Kv,lk . (A16)

Hence, we have K†
v = Kv . Next, we prove K2

v = Kv using
the following steps,

K2
v = 1

|Q|2
|Q|−1∑

k,l,m,n=0

Uω|qk〉v〈ql |U †
ωUω|qm〉v〈qn|U †

ω

(A17a)

115144-24



SYMMETRY-ENRICHED TOPOLOGICAL ORDER FROM … PHYSICAL REVIEW B 108, 115144 (2023)

= 1

|Q|2
|Q|−1∑

k,l,m,n=0

Uω|qk〉v〈qn|U †
ωδl,m (A17b)

= 1

|Q|
|Q|−1∑
k,l=0

Kv,kn = Kv. (A17c)

�
Claim A.9. Kv commute with Av′ , Bp, and Kv′ ∀ v and v′.
Proof. First we prove [Kv, Kv′ ] = 0. For this, we show

[Kv,kl , Kv′,mn] = 0 when v 
= v′, as follows:

[Kv,kl , Kv′,mn] = [Uω|qk〉v〈ql |U †
ω,Uω|qm〉v′ 〈qn|U †

ω] (A18a)

= Uω[|qk〉v〈ql |, |qm〉v′ 〈qn|]U †
ω = 0. (A18b)

Hence, [Kv, Kv′ ] = 0 ∀ v and v′. Note that Kv operator only
changes the vertex DOF on the lattice, so Kv does not change
the fluxless condition around any of the plaquettes. Hence,
[Kv, Bp] = 0.

Now let us prove [Kv, Av′ ] = 0 by the following steps:

[Kv, Av′ ]=
⎡⎣ 1

|Q|
|Q|−1∑
k,l=0

Uω|qk〉v〈ql |U †
ω,

1

|G|
∑
g∈G

Uω

∏
e⊃v′

Lg
±eU

†
ω

⎤⎦
(A19a)

= 1

|Q|
|Q|−1∑
k,l=0

1

|G|
∑
g∈G

[
Uω|qk〉v〈ql |U †

ω,Uω

∏
e⊃v′

Lg
±eU

†
ω

]
(A19b)

= 1

|Q|
|Q|−1∑
k,l=0

1

|G|
∑
g∈G

Uω

[
|qk〉v〈ql |,

∏
e⊃v′

Lg
±e

]
U †

ω = 0.

(A19c)

From the above equations, we thus conclude that Kv com-
mutes with Av′ , Bp, and Kv′ . �

APPENDIX B: GROUP EXTENSION

Suppose we are given two groups Q and N , then one can
construct an extension of Q by N which we denote by G if one
has the following short exact sequence:

1 → N
i−→ G

π−→ Q → 1, (B1)

where i denotes the inclusion map and π denotes the projec-
tion map. Given this short exact sequence, one can define a
choice of embedding of Q in G,

Q
s−→ G, (B2)

such that π ◦ s = idQ. Although the inclusion i and projection
π are homomorphisms, the section s is not a homomor-
phism (however, we have s(1Q) = 1G). The failure to become
a homomorphism is captured by a cocycle in the group
cohomology H2(Q, N ). The failure of the section to be a
homomorphism is given by

s(q1q2)−1s(q1)s(q2) = i(ω(q1, q2)), (B3)

where ω ∈ H2(Q, N ). We consider conjugation operation φ :
Q → Aut (N ) which satisfies

i
(
φq−1

2 (n1)
) = s(q2)−1i(n1)s(q2). (B4)

Note that the conjugation operation is dependent on the choice
of s. We denote an element g ∈ G as g = (q, n), where q ∈ Q
and n ∈ N . With the given choice of section s, one can equiv-
alently write

g = s(q)i(n). (B5)

Suppose g1 = (q1, n1) and g2 = (q2, n2), then

g1.g2 = (q1, n1).(q2, n2) = (
q1q2, ω(q1, q2)φq−1

2 (n1)n2
)
.

(B6)

The associativity condition on the group multiplication gives
the cocycle condition for ω,

ω(q1, q2q3)ω(q2, q3) = ω(q1q2, q3)φq−1
3 [ω(q1, q2)], (B7)

when N is Abelian. Note that this cocycle condition is dif-
ferent from the one where the conjugation acts on ω(q2, q3)
considered in Ref. [43].

As an example, consider the central extension of Z2 by Z2.
Since H2(Z2,Z2) = Z2, there are two possible extensions.

Case 1: ω is trivial. In this case, we have G = Z2 × Z2

since Aut (Z2) consists only of the identity map.
Case 2: ω is the nontrivial class. Then the group G is
Z4. Suppose we denote N = Z2 = {1, t1} and Q = Z2 =
{1, t2}, then G = Z4 is generated by (t2, 1).

APPENDIX C: Q-GLOBAL SYMMETRY
IN TWO-STEP GAUGING

Here we show the Q-global symmetry of |�5〉 in Eq. (66):

U(q)|�5〉 = |�5〉, (C1)

with

|�5〉 :=
∑
{gv}

�
({

gvg−1
v′
})∣∣{gvg−1

v′
}〉

e

⊗
v

(
Zkv

(n)

∑
r∈N

|q(gv )r〉v
)

,

U(q) :=
∏
v

X(q). (C2)

We have that
∑

r∈N X(q1 )|q(gv )r〉 := ∑
r∈N |s(q1)q(gv )r〉 =∑

r∈N |q(s(q1)gv ))n(s(q1)q(gv ))r〉 = ∑
r′∈N |q(gvs(q1))r′〉,

where the first equality is by definition [see Eq. (61)], the
second equality is by the definitions of q(. . . ) and n(. . . )
in Eq. (59), and in the last equality we have relabeled
the group element r ∈ N by r′ = n(s(q1)q(gv ))r and used
q(s(q1)gv ) = q(gvs(q1)). (Note that in the second equality, for
G = S3 the element n(s(q1)q(gv )) is trivial, but for G = Q8,
for example, it is nontrivial, and thus we kept it present in the
equation.) We find that the change of variable gv = g̃vs(q1)−1

gives us

U(q1 )|�5〉 =
∑
{̃gv}

�
({̃

gv g̃−1
v′
})∣∣{̃gv g̃−1

v′
}〉

e

⊗
v

(
Zkv

(n)

∑
r′∈N

|q(̃gv )r′〉v,
)

, (C3)

and thus the state is invariant.
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FIG. 20. (a) Symmetry action inside of region R “lifts” R such that all the simplex in the region correspond to ω̃. (b) This symmetry action
can be equivalently regarded as the insertion of symmetry branch line on ∂R.

APPENDIX D: BRANCH LINE OPERATOR Bx
∂R

With a pregauge structure we have introduced the gauge
transformation as

Gx
v ≡ Lx

−v

∏
e⊃v

Lx
±e. (D1)

To write down the branch line operator on ∂R, we impose
some gauge transformation in region R, the effect of which

can be contained only on its boundary. In Sec. VI A, we claim
that when the edge configuration is trivial (i.e., he = 1 for all
edges), the operator Gx

R = ∏
v∈R Gx

v has this property. Now
we make some more detailed analysis. Recall that

|�SPT-pre〉 = |�SPT〉
⊗

e

|1〉e. (D2)

Now we insert a Gx
R on the state and have the following:

Gx
R |�SPT-pre〉 =

∏
v∈R

Lx
−v

(∏
e⊃v

Lx
±e

)
|�SPT〉

⊗
e

|1〉e

=
∑
{gv}

∏
�

ω({gv})s(�)
⊗
vi∈R

|gvi x
−1〉

⊗
vo /∈R

|gvo〉
⊗

e

( ∏
e′∩∂R

Lx
±e′

)
|1〉

=
∑
{gv}

∏
�

ω({gvi x}, {gvo})s(�)
⊗

v

|gv〉
⊗

e

( ∏
e′∩∂R

Lx
±e′

)
|1〉

=
∑
{gv}

AmpR ({gv}, x)
∏
�

ω({gv})s(�)
⊗

v

|gv〉
⊗

e

( ∏
e′∩∂R

Lx
±e′

)
|1〉. (D3)

As shown above in Fig. 20(a), given the configuration {gv},
the product of cocycles

∏
� ω({gvi x}, {gvo})s(�) corresponds to

the upper surface, while
∏

� ω({gvi}, {gvo})s(�) corresponds to
the lower surface. According to the cocycle conditions, their
ratio corresponds to the tetrahedrons that they enclose,

AmpR =
∏

tetra∈R

ω(tetra)s. (D4)

In Sec. VI A, we claim that according to cocycle condi-
tions, this phase factor only depends on the configurations on
∂R. Now we take the simplest case when R only encloses one
plaquette to illustrate. As shown in Fig. 21, when the plaquette
(123) is lifted, there are three tetrahedrons, where the vertices
on the upper surface are associated with gi′ = gix. According
to the rule introduced in Sec. II, the three tetrahedrons corre-
spond to the expression

ω
(
g3xg−1

3 , g3g−1
2 , g2g−1

1

)
ω
(
g3g−1

2 , g2g−1
1 , g1xg−1

1

)
ω
(
g3g−1

2 , g2xg−1
2 , g2g−1

1

)
= θg3xg−1

3

(
g3g−1

2 , g2g−1
1

)
, (D5)

where θx(g, h) is the slant product introduced in Eq. (104).
Therefore, in this simplest case, we have

AmpR = θg3xg−1
3

(
g3g−1

2 , g2g−1
1

) ∏
tetra∈∂R

ω(tetra)s. (D6)

For simplicity and without loss of generality, we assume
∂R with branching structure 1 → 2 → 3 → · · · → n ← 1,
then by using cocycle conditions, we can show that the tetra-
hedrons inside a union of prisms [see Fig. 20(b)], which is
formed by lifted plaquettes, will give rise to

�̃
gnxg−1

n
∂R = θgnxg−1

n

(
gng−1

n−1, gn−1g−1
1

) · · · θg3xg−1
3

(
g3g−1

2 , g2g−1
1

)
.

(D7)
Therefore,

AmpR = �̃
gnxg−1

n
∂R

∏
tetra∈∂R

ω(tetra)s. (D8)

The shift operator
∏

e′∩∂R Lx
±e′ in Eq. (D3) is exactly the

operator Lx
∂R defined in Eq. (100). Therefore, we arrive at

B̃x
∂R |�SPT-pre〉 = Gx

R |�SPT-pre〉, (D9)
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FIG. 21. There are three tetrahedrons when one plaquette is lifted.

when

B̃x
∂R =

∑
gv

Lx
∂RW̃ gvxg−1

v

∂R �̃
gvxg−1

v

∂R |gv〉v〈gv|. (D10)

For a state with nontrivial configuration {he}, there could
be fluxes on some plaquette, i.e., for some plaquette p,∏

e∈∂ p he 
= 1. For the purpose of illustration, we now focus on
states that have fluxes only on 1 plaquette, and only violates
terms that are on this plaquette in HSPT-pre in Eq. (93). To write
down the branch line operators for these states, we repeat a
similar procedure: we impose some gauge transformation on
region R, the effect of which would be only on its boundary.
It turns out that when all the plaquettes on ∂R are fluxless
(i.e.,

∏
e∈∂ p he = 1), and the flux on each plaquette p ∈ R

(
∏

e∈∂ p he) is in the centralizer group Zx (since the flux on
a plaquette is ambiguous up to a conjugation when choosing
a different starting point, we assume that the whole conjugacy
class of flux [

∏
e∈∂ p he] ⊂ Zx), we can indeed find such a

gauge transformation as we now explain. We first choose
a reference vertex v in R, then for any vertex v′, we can find a

FIG. 22. Geometric diagram illustrating the phase combination
in Eq. (D16). Here gv′ g−1

v = y and gv′′ g−1
v′ = x for v ∈ V (which are

enumerated by 1,2,3,4).

path l that flows from v to v′ and define hv′v = ∏
e∈l he. Given

that all the fluxes are assumed to be in Zx, i.e., they commute
with x, therefore, different choices of path l will give rise to
the same gauge transformation (taking hvv = 1),

Gx
v,R ≡

∏
v′∈R

G
hv′vxh−1

v′v
v′ , (D11)

which will leave all edge DOFs invariant except for the ones
on ∂R, and the shift on those edges is exactly the operator
Lx

∂R defined in Eq. (111). Now since there are plaquettes in R
that have nontrivial fluxes, we cannot write the phase part of
the gauge transformation as

AmpR =
∏

tetra∈R

ω(tetra)s. (D12)

However, since we assume the plaquettes on ∂R are all flux-
less, we still have a well-defined factor

∏
tetra∈∂R ω(tetra)s, the

holonomy along ∂R is h ≡ ∏
e∈∂R he 
= 1. We conjecture the

branch line operator to be

Bx
∂R =

∑
g

B
x,g
∂Rεgvxg−1

v
(g), (D13)

with

B
x,g
∂R ≡

∑
gv

Lx
∂RW gvxg−1

v

∂R �
gvxg−1

v

∂R δg,gv (
∏

e he )g−1
v

|gv〉v〈gv|. (D14)

Again we suppose that ∂R has the branching structure 1 →
2 → 3 → · · · → n ← 1. Then, we have

�
gnxg−1

n
∂R = θgnxg−1

n

(
gnhn,n−1g−1

n−1, gn−1h−1
n,n−1hg−1

1

) · · · θg3xg−1
3

(
g3h3,2g−1

2 , g2h2,1g−1
1

)
θ−1

gnxg−1
n

(
gnhg−1

n , gnhn,1g−1
1

)
, (D15)

where h ≡ hn,n−1 · · · h2,1h−1
n,1 is the holonomy along ∂R. We can calculate the multiplication rule for Bx

∂R . First off, notice that

operator Lx
∂RW gnxg−1

n
∂R and �

gnyg−1
n

∂R commute for any x, y ∈ G. Using the cocycle condition, one can show that

Lx
∂RW gnxg−1

n
∂R L

y
∂RW gnyg−1

n
∂R = Lx

∂RW gnxyg−1
n

∂R γgnhn,n−1g−1
n−1

(
gnxg−1

n , gnyg−1
n

) · phase, (D16)

where the “phase” in the above equation corresponds to Fig. 22. Using the correspondence between tetrahedrons and cocycles,
one can write

Lx
∂RW gnxg−1

n
∂R L

y
∂RW gnyg−1

n
∂R = L

xy
∂RW gnxyg−1

n
∂R γgnhn,n−1g−1

n−1

(
gnxg−1

n , gnyg−1
n

) · · · γg2h2,1g−1
1

(
g2xg−1

2 , g2yg−1
2

)
γ −1

gnhn,1g−1
1

(
gnxg−1

n , gnyg−1
n

)
.

(D17)
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By using the definition, we can compute the following product of the two phases,

�
gnxg−1

n
∂R �

gnyg−1
n

∂R = θgnxg−1
n

(
gnhn,n−1g−1

n−1, gn−1h−1
n,n−1hg−1

1

)
θgnyg−1

n

(
gnhn,n−1g−1

n−1, gn−1h−1
n,n−1hg−1

1

) · · ·
θg3xg−1

3

(
g3h3,2g−1

2 , g2h2,1g−1
1

)
θg3yg−1

3

(
g3h3,2g−1

2 , g2h2,1g−1
1

)
× θ−1

gnxg−1
n

(
gnhg−1

n , gnhn,1g−1
1

)
θ−1

gnyg−1
n

(
gnhg−1

n , gnhn,1g−1
1

)
. (D18)

Using the identity,

θg(x, y)θh(x, y)γx(g, h)γy(x−1gx, x−1hx) = θgh(x, y)γxy(g, h),
(D19)

one can derive that

Lx
∂RW gnxg−1

n
∂R �

gnxg−1
n

∂R L
y
∂RW gnyg−1

n
∂R �

gnyg−1
n

∂R

= L
xy
∂RW gnxyg−1

n
∂R �

gnxyg−1
n

∂R γgnhg−1
n

(
gnxg−1

n , gnyg−1
n

)
. (D20)

When the pregauge structure is trivial (i.e., he ≡ 1), the phases

W gnxg−1
n

∂R and �
gvxg−1

v

∂R are reduced to W̃ gnxg−1
n

∂R and �̃
gvxg−1

v

∂R , respec-
tively, and also the holonomy is trivial, h ≡ 1. Therefore, we
arrive at the multiplication rule,

B̃x
∂RB̃

y
∂R = B̃

xy
∂R . (D21)

For a more general pregauge structure, where the fluxes are in
Zx, one has

B
x,g
∂R B

y,g′
∂R = B

xy,g
∂R γg

(
gvxg−1

v , gvyg−1
v

)
δg,g′ . (D22)

APPENDIX E: FINITE-DEPTH LOCAL UNITARY
TO MAP AN SET STATE TO A TQD STATE

For an SPT state, we define an operator

Ô = Uω

(∏
v

Vq
v

)
U †

ω, (E1)

where Uω is the operator that brings a direct product state to a
G-SPT state,

Uω =
∑
{gv}

∏
�

ω
(
g3g−1

2 , g2g−1
1 , g1

)s(�) ⊗
v

|gv〉〈gv|, (E2)

and V
q
v is the Fourier transform of the quotient part. Namely,

suppose |Q| = m, we label the embedding of Q in G as s(Q) =
{q0, · · · , qm−1}, where q0 = 1. Then we write

Vq
v = 1√

m

m−1∑
k,l=0

e
2π ikl

m L
qkq−1

l+v δ(q(gv ), ql ), (E3)

whose Hermitian conjugate is calculated to be

(
Vq

v

)† = 1√
m

m−1∑
k,l=0

e− 2π ikl
m L

qkq−1
l+v δ(q(gv ), ql ). (E4)

We note that this Fourier transform is indeed unitary:
(Vq

v )†V
q
v = 1. Applying Ô on the G-SPT state brings a G-SPT

state to an N-SPT state:

Ô|�G-SPT〉 = Uω

(∏
v

Vq
v

)
U †

ω |�G-SPT〉

= Uω

(∏
v

Vq
v

)⊗
v

⎛⎝∑
g∈G

|g〉v
⎞⎠

= Uω

⊗
v

(∑
n∈N

|n〉v
)

=
∑
{nv}

∏
�

ω
(
n3n−1

2 , n2n−1
1 , n1

)s(�) ⊗
v

|nv〉

=
∑
{nv}

∏
�

ν
(
n3n−1

2 , n2n−1
1 , n1

)s(�) ⊗
v

|nv〉

= |�N-SPT〉, (E5)

where ν is the restriction of ω on N and naturally a cocycle in
H3(N,U (1)). The operator V

q
v on different vertices commute,

Vq
v V

q
v′ − V

q
v′V

q
v = 0. (E6)

Therefore, we can write an operator on vertex v,

Ôv ≡ UωVq
v U †

ω = 1√
m

m−1∑
k,l=0

e
2π ikl

m L
qkq−1

l+v W
qkq−1

l
v δ(q(gv ), ql ),

(E7)
such that Ôv on different vertices commute, and their product
over all the vertices is exactly Ô,

Ô ≡
∏
v

Ôv. (E8)

After gauging the normal subgroup N , the operator Ô is
mapped to

ÔSET =
∏
v

Ôv,SET, (E9)

where

Ôv,SET = 1√
m

m−1∑
k,l=0

e
2π ikl

m W
qkq−1

l
v |qk〉v〈ql |. (E10)

The operators Ôv,SET on different vertices commute. Also note
that since Ôv,SET is supported on v, adjacent vertices, and
edges, and thus it can be implemented locally in the state after
gauging.

Note that although all Ôv,SET commute, the operators

W
qkq−1

l
v generally depends on qv′ and ne configuration on ad-

jacent vertices and edges. To implement the transformation,
we specify an ordering of Ôv,SET in ÔSET which can be imple-
mented in finite depth as follows. We divide the spatial lattice
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into sublattices such that, the vertices in each sublattice are not

adjacent in the spatial lattice. Then the operators L
qkq−1

l+v and
W

qkq−1
l

v′ always commute when v and v′ are different vertices
in one sublattice. As a result, we can implement Ôv,SET within
one sublattice simultaneously, and implement one sublattice
in each step. As long as there is only a finite number of such
sublattices in the spatial lattice, the circuit we described above
is a finite-depth local unitary,

ÔSET =
∏

sublattices

∏
v∈sublattice

Ôv,SET. (E11)

Applying ÔSET on an SET ground state will take all the
vertex DOFs to |qv〉 = |1〉, i.e., disentangle all the vertex
DOFs. Therefore, under the action of this operator, we get a
TQD ground state with gauge group N . We emphasize that
here we aim to probe the underlying anyons, and the circuit
does not respect the global Q symmetry, which is why we can
take an SET state to a pure TQD state.

APPENDIX F: FUSION RULE IN SET VIA GAUGING
Z4 GROUP FROM D4 SPT

We write the element in D4 as g̃ = (G, g) ≡ xGag. We
construct a representative of 3-cocycle in H3(D4,U (1)) as
follows:

ω(g̃, h̃, l̃ )

= exp

{
2π ip1

16
g(−1)H+L(h(−1)L +l−[h(−1)L +l]4)

+π ip2GHL + π ip3gHL

}
, (F1)

where p1 = 0, 1, 2, 3, and p2, p3 = 0 or 1. Gauging the nor-
mal subgroup Z4 of a D4-SPT results in a state in an SET that
has the same anyon theory as Dν (Z4), where

ν(g, h, l ) = exp

{
2π ip1

16
g(h + l − [h + l]4)

}
(F2)

is the restriction of ω on Z4. Different values of p1 correspond
to different Z4-TQD models. The symmetry action is nontriv-
ial, and it takes an anyon to its inverse. In the sector Cx, there
are four objects of quantum dimension 2. If we pick one of
them and name it as 0x, by dimension counting, then we can
write a fusion rule of the form,

0x × 0x = a + b + c + d, (F3)

where a, b, c, d ∈ C are Abelian anyons. Let b1 = 1 and b2 =
a. Then one can write a matrix-valued operator on an open
ribbon as(

Hx
l

)
ii′ =

∑
n∈{1,a2}

H
bixb−1

i ,binb−1
i′

l εbixb−1
i

(
binb−1

i′
)
, (F4)

where the matrix indices i, i′ = 1, 2, and the operator Hx,g
l

satisfies the same multiplication rule as in Eq. (125),

Hx,g
l Hy,g′

l = Hxy,g
l γg(x, y)δg,g′ . (F5)

We conjecture that the operator Hx
l creates an object in the

sector Cx on the end point of l , and we name it 0x. Then the
object 0x × 0x should be created on the endpoint of l by opera-
tor (Hx

l )⊗2. Let ξ ≡ exp{ 2π i
16 }. We calculate the tensor product

of the two open ribbon operators, and by diagonalizing it, we
find an expression as follows:

(
Hx

l

)⊗2 =
(

Hx,1
l + εx(a2)Hx,a2

l εx(a)Hx,a
l + εx(a3)Hx,a3

l

εxa2 (a)Hxa2,a
l + εxa2 (a3)Hxa2,a3

l Hxa2,1
l + εxa2 (a2)Hxa2,a2

l

)⊗2

=
(

Hx,1
l + ξ−4p1 Hx,a2

l ξ p1 Hx,a
l + ξ−3p1 Hx,a3

l

ξ−p1 Hxa2,a
l + ξ−9p1 Hxa2,a3

l Hxa2,1
l + Hxa2,a2

l

)⊗2

=
(

H1,1
l + ξ−8p1 H1,a2

l ξ 2p1 (−1)p3 H1,a + ξ−6p1 (−1)p3 H1,a3

ξ 6p1 (−1)p3 H1,a + ξ−2p1 (−1)p3 H1,a3
H1,1

l + ξ−8p1 H1,a2

l

)

⊕
(

Ha2,1
l + ξ−4p1 Ha2,a2

l ξ−4p1 (−1)p3 Ha2,a
l + ξ 8p1 (−1)p3 Ha2,a3

l

(−1)p3 Ha2,a
l + ξ−4p1 (−1)p3 Ha2,a3

l Ha2,1
l + ξ−4p1 Ha2,a2

l

)

=
(

H1,1
l + ξ−8p1 H1,a2

l ξ 2p1 (−1)p3 H1,a + ξ−6p1 (−1)p3 H1,a3

ξ 6p1 (−1)p3 H1,a + ξ−2p1 (−1)p3 H1,a3
H1,1

l + ξ−8p1 H1,a2

l

)

⊕
(

Ha2,1
l + ξ−8p1εa2 (a2)Ha2,a2

l ξ−6p1 (−1)p3εa2 (a)Ha2,a
l + ξ 2p1 (−1)p3εa2 (a3)Ha2,a3

l

ξ−2p1 (−1)p3εa2 (a)Ha2,a
l + ξ 6p1 (−1)p3εa2 (a3)Ha2,a3

l Ha2,1
l + ξ−8p1εa2 (a2)Ha2,a2

l

)
� (

H1,1
l + ξ 4p1 (−1)p3 H1,a

l + ξ 8p1 H1,a2

l + ξ 12p1 (−1)p3 H1,a3

l

)
⊕(H1,1

l − ξ 4p1 (−1)p3 H1,a
l + ξ 8p1 H1,a2

l − ξ 12p1 (−1)p3 H1,a3

l

)
⊕(Ha2,1

l + ξ 4p1 (−1)p3εa2 (a)Ha2,a
l + ξ 8p1εa2 (a2)Ha2,a2

l + ξ 12p1 (−1)p3εa2 (a3)Ha2,a3

l

)
⊕(Ha2,1

l − ξ 4p1 (−1)p3εa2 (a)Ha2,a
l + ξ 8p1εa2 (a2)Ha2,a2

l − ξ 12p1 (−1)p3εa2 (a3)Ha2,a3

l

)
. (F6)
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In the third equality, we used the multiplication rule Eq. (F5),
and the p3 dependence arose from γg(x, y).

Let us first consider the case with p3 = 0. When p1 = 0, 2,
the four parts in the last line—each part is a sum of four H•,•

l
operators—are exactly the four ribbon operators in the TQD
Dν (Z4) that create anyons, 1, e2, m2, and e2m2, respectively.
Therefore, we obtain the fusion rule,

0x × 0x = 1 + e2 + m2 + e2m2. (F7)

When p1 = 1, 3, the four parts in the last line after the de-
composition are four ribbon operators in the TQD Dν (Z4) that
create anyons, e, e3, em2, and e3m2. Therefore, we obtain the
fusion rule,

0x × 0x = e + e3 + em2 + e3m2. (F8)

According to Eq. (F6), when p3 takes value 1 instead
of 0, the ribbon operators creating anyon e/e3/em2/e3m2

after the decomposition become ribbon operators creating,

respectively, e3/e/e3m2/em2 instead. According to Eq. (39),
we conclude that different values of p3 indeed give rise to
different SFCs such that the fusion rules are shifted by the
anyon [e2] ∈ H2

ρ (Z2, A). We note that after the shift by e2,
the fusion rules in Eqs. (F7) and (F8) are actually invariant.
However, it does not mean that we are in the same SET
order: further analysis, such as the F -symbol, the S-matrix
of the category C×

Z2
[51], is necessary. Indeed, in this case it is

ensured that SET orders corresponding to different p3 values
are distinct, since further gauging the Z2 symmetry it should
result in different TQD orders Dω(D4).

APPENDIX G: FUSION RULE IN SET VIA GAUGING
Z2 × Z2 GROUP FROM D4 SPT

Again, we start from the representative 3-cocycle in
H3(D4,U (1)) as follows:

ω(g̃, h̃, l̃ ) = exp

{
2π ip1

16
g(−1)H+L(h(−1)L + l − [h(−1)L + l]4) + π ip2GHL + π ip3gHL

}
, (G1)

where p1 = 0, 1, 2, 3, and p2, p3 = 0 or 1. Gauging the subgroup Z2 × Z2 = {1, x, t, xt} in D4 results in a state within Dν ′
(Z2 ×

Z2). Let us write t ≡ a2 and g = xg(1)
t g(2) = xg(1)

a2g(2)
. The 3-cocycle for this group is

ν ′(g, h, l ) = exp

{
2π ip1

4
g(2)(−1)h(1)+l (1)(

h(2)(−1)l (1) + l (2)

− [h(2)(−1)l (1) + l (2)]2
)+ π ip2g(1)h(1)l (1)

}
,

= (−1)p1(g(2)h(2)l (2)+g(2)h(2)l (1) )+p2g(1)h(1)l (1)
. (G2)

We conjecture that the operator Ha
l creates an object in sector Ca on the end point of l and we name it 0a. Then the object

0a × 0a should be created on the endpoint of l by operator (Ha
l )⊗2. Let ξ ≡ exp{ 2π i

16 }, then a calculation similar to that in
Appendix F gives us

(
Ha

l

)⊗2 =
(

Ha,1
l + εa(a2)Ha,a2

l εa(x)Ha,x
l + εa(xa2)Ha,xa2

l

εa3 (x)Ha3,x
l + εa3 (xa2)Ha3,xa2

l Ha3,1
l + εa3 (a2)Ha3,a2

l

)⊗2

=
(

Ha,1
l + ξ 2p1 Ha,a2

l ξ 4p3 Ha,x
l + ξ 6p1+4p3 Ha,xa2

l

ξ 4p3 Ha3,x
l + ξ 2p1+4p3 Ha3,xa2

l Ha3,1
l + ξ 6p1 Ha3,a2

l

)⊗2

=
(

Ha2,1
l + ξ 4p1 Ha2,a2

l ξ 4p1+8p3 Ha2,x + ξ 8p1+8p3 Ha2,xa2

ξ−4p1+8p3 Ha2,x + ξ 8p3 Ha2,xa2
Ha2,1

l + ξ 4p1 Ha2,a2

l

)

⊕
(

H1,1
l + H1,a2

l ξ 4p1+8p3 H1,x
l + ξ 4p1+8p3 H1,xa2

l

ξ−4p1+8p3 H1,x
l + ξ−4p1+8p3 H1,xa2

l H1,1
l + H1,a2

l

)

=
(

Ha2,1
l + εa2 (a2)Ha2,a2

l ξ 4p1+8p3εa2 (x)Ha2,x + ξ 4p1+8p3εa2 (xa2)Ha2,xa2

ξ−4p1+8p3εa2 (x)Ha2,x + ξ−4p1+8p3εa2 (xa2)Ha2,xa2
Ha2,1

l + εa2 (a2)Ha2,a2

l

)

⊕
(

H1,1
l + H1,a2

l ξ 4p1+8p3 H1,x
l + ξ 4p1+8p3 H1,xa2

l

ξ−4p1+8p3 H1,x
l + ξ−4p1+8p3 H1,xa2

l H1,1
l + H1,a2

l

)
� (

Ha2,1
l + (−1)p3εa2 (x)Ha2,x

l + εa2 (a2)Ha2,a2

l + (−1)p3εa2 (xa2)Ha2,xa2

l

)
⊕(Ha2,1

l − (−1)p3εa2 (x)Ha2,x
l + εa2 (a2)Ha2,a2

l − (−1)p3εa2 (xa2)Ha2,xa2

l

)
⊕(H1,1

l + (−1)p3 H1,x
l + H1,a2

l + (−1)p3 H1,xa2

l

)⊕ (
H1,1

l − (−1)p3 H1,x
l + H1,a2

l − (−1)p3 H1,xa2

l

)
. (G3)
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For different values of p1 and p2, the anyon theory would
be different after gauging. In Appendix H, we give a complete
classification of the anyons in all cases. When p3 = 0 here,
one can then find the fusion rule from the above calculation as

0a × 0a = 1 + e(1) + m(2) + e(1)m(2). (G4)

When p3 takes value 1 instead of 0, the ribbon operators
that create anyon 1/e(1)/m(2)/e(1)m(2) after the decomposi-
tion become ribbon operators that create e(1)/1/e(1)m(2)/m(2),
respectively. According to Eq. (39), we can conclude that dif-
ferent values of p3 indeed give rise to different SFCs such that
the fusion rules are shifted by the anyon [e(1)] ∈ H2

ρ (Z2, A).

APPENDIX H: COMPUTATION OF BRAIDING
PHASES OF ANYONS IN TQD

In this Appendix, we compute the braiding phases of
anyons in Z2 × Z2 TQD obtained from gauging Z2 × Z2 ⊂ D4.
First we define the slant product

Hn(G,U (1))
in
g−→ Hn−1(G,U (1)) (H1)

as follows:

in
gω(g1, . . . , gn−1)

= ω(g, g1, . . . , gn−1)(−1)n−1

×
n−1∏
i=1

ω(g1, . . . , gi, g, gi+1, . . . , gn−1)(−1)n−1+i
. (H2)

Now let us consider the cocycle given in Eq. (175):

ν ′(g, h, l ) = (−1)p1(g(2)h(2)l (2)+g(2)h(2)l (1) )+p2g(1)h(1)l (1)
. (H3)

One can calculate the slant product with g = x, t , and xt :

ixν
′(h, l ) = (−1)p1h(2)l (2)+p2h(1)l (1)

, (H4)

itν
′(h, l ) = (−1)p1h(2)l (2)

, (H5)

ixtν
′(h, l ) = (−1)p2h(1)l (1)

. (H6)

These slant products give the projective phases in the projec-
tive representations μx, μt , and μxt , respectively, as follows:

μx(h)μx(l ) = ixν
′(h, l )μx(hl ), (H7a)

μt (h)μt (l ) = itν
′(h, l )μt (hl ), (H7b)

μxt (h)μxt (l ) = ixtν
′(h, l )μxt (hl ). (H7c)

From Eq. (H6), we see that the projective representations
are given, respectively, by

μx(h) = ip1h(2)+p2h(1)
, μt (h) = ip1h(2)

, μxt (h) = ip2h(1)
.

(H8)

In addition to these projective representations of Z2 × Z2,
we have the respective ordinary representations

μ1(h) = (−1)h(1)
, μ2(h) = (−1)h(2)

, μ12(h) = (−1)h(1)+h(2)
.

(H9)

If we label the anyons in Z2 × Z2 TQD by e(1), e(2), m(1), and
m(2), where e(i) denote the elementary charges (chargeons) and
m(i) denote the elementary fluxes, then charges are given by
the ordinary representation of Z2 × Z2 and the fluxes are given
by the projective representations of Z2 × Z2.

Then the general formula for calculating the braiding phase
between anyons a and b is

B(a, b) = μa(flux(b))μb(flux(a)). (H10)

We list the braiding phases between the various elementary
charges and fluxes as follows:

B(e(1), m(1) ) = μ1(x)μx(1) = −1, B(e(1), m(2) ) = μ1(t )μt (1) = 1,

B(e(2), m(1) ) = μ2(x)μx(1) = 1, B(e(2), m(2) ) = μ2(t )μt (1) = −1,

B(m(1), m(1) ) = μx(x)2 = i2p2 = (−1)p2 , B(m(1), m(2) ) = μx(t )μt (x) = ip1 ,

B(m(2), m(2) ) = μt (t )2 = i2p1 = (−1)p1 . (H11)

APPENDIX I: FUSION RULE IN SET
FROM GAUGING S3 SPT

We write the element in S3 as g̃ = (G, g) ≡ xGag. We
construct a representative of 3-cocycle in H3(S3,U (1)) as
follows:

ω(g̃, h̃, l̃ ) = exp

{
2π ip1

9
g(−1)H+L(h(−1)L + l

− [h(−1)L + l]3) + π ip2GHL

}
, (I1)

where p1 = 0, 1, 2, and p2,= 0, 1. Gauging the normal sub-
group Z3 of a S3-SPT state results in a state in an SET state

that has the same anyon theory as Dν (Z3), where

ν(g, h, l ) = exp

{
2π ip1

9
g(h + l − [h + l]3)

}
(I2)

is the restriction of ω on Z3. Different values of p1 correspond
to different Z3-TQD models. The symmetry action takes an
anyon to its inverse, which is nontrivial. In sector Cx, there is
only one object of quantum dimension 3. We name it 0x. By
dimension counting, we can write a fusion rule of the form

0x × 0x =
9∑

i=1

ai, (I3)

where ai ∈ C are Abelian anyons. Let b1 = 1, b2 = a, and
b3 = a2. One can write a matrix-valued operator on an open
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ribbon as (
Hx

l

)
ii′ = H

bixb−1
i ,bib

−1
i′

l εbixb−1
i

(
bib

−1
i′
)
, (I4)

where the matrix indices are i, i′ = 1, 2, 3. As we conjectured, the object 0x × 0x should be created by the operator (Hx
l )⊗2 on

the endpoint of l . Let χ ≡ exp{ 2π i
9 }, then a calculation similar to that in Appendix F gives us

(
Hx

l

)⊗2 =

⎛⎜⎝ Hx,1
l εx(a2)Hx,a2

l εx(a)Hx,a
l

εxa(a)Hxa,a
l Hxa,1

l εxa(a2)Hxa,a2

l

εxa2 (a2)Hxa2,a2

l εxa2 (a)Hxa2,a
l Hxa2,1

l

⎞⎟⎠
⊗2

=

⎛⎜⎝ Hx,1
l χ−2p1 Hx,a2

l χ p1 Hx,a
l

χ−p1 Hxa,a
l Hxa,1

l Hxa,a2

l

χ−4p1 Hxa2,a2

l Hxa2,a
l Hxa2,1

l

⎞⎟⎠
⊗2

=

⎛⎜⎝ H1,1
l χ−4p1 H1,a2

l χ2p1 H1,a
l

χ−5p1 H1,a
l H1,1

l χ−3p1 H1,a2

l

χ−2p1 H1,a2

l χ−6p1 H1,a
l H1,1

l

⎞⎟⎠⊕

⎛⎜⎝ Ha,1
l χ−2p1 Ha,a2

l χ−3p1 Ha,a
l

χ−4p1 Ha,a
l Ha,1

l χ2p1 Ha,a2

l

χ−3p1 Ha,a2

l χ p1 Ha,a
l Ha,1

l

⎞⎟⎠

⊕

⎛⎜⎝ Ha2,1
l χ−3p1 Ha2,a2

l χ−2p1 Ha2,a
l

Ha2,a
l Ha2,1

l χ−2p1 Ha2,a2

l

χ−p1 Ha2,a2

l χ−p1 Ha2,a
l Ha2,1

l

⎞⎟⎠

=

⎛⎜⎝ H1,1
l χ−4p1 H1,a2

l χ2p1 H1,a
l

χ−5p1 H1,a
l H1,1

l χ−3p1 H1,a2

l

χ−2p1 H1,a2

l χ−6p1 H1,a
l H1,1

l

⎞⎟⎠⊕

⎛⎜⎜⎝
Ha,1

l χ−4p1εa(a2)Ha,a2

l χ−4p1εa(a)Ha,a
l

χ−5p1εa(a)Ha,a
l Ha,1

l εa(a2)Ha,a2

l

χ−5p1εa(a2)Ha,a2

l εa(a)Ha,a
l Ha,1

l

⎞⎟⎟⎠

⊕

⎛⎜⎝ Ha2,1
l χ−7p1εa2 (a2)Ha2,a2

l χ−4p1εa2 (a)Ha2,a
l

χ−2p1εa2 (a)Ha2,a
l Ha2,1

l χ−6p1εa2 (a2)Ha2,a2

l

χ−5p1εa2 (a2)Ha2,a2

l χ−3p1εa2 (a)Ha2,a
l Ha2,1

l

⎞⎟⎠
� (

H1,1
l + H1,a

l + H1,a2

l

)⊕ (
H1,1

l + χ3H1,a
l + χ6H1,a2

l

)⊕ (
H1,1

l + χ−3H1,a
l + χ−6H1,a2

l

)
⊕(Ha,1

l + εa(a)Ha,a
l + εa(a2)Ha,a2

l

)⊕ (
Ha,1

l + χ3εa(a)Ha,a
l + χ6εa(a2)Ha,a2

l

)
⊕(Ha,1

l + χ−3εa(a)Ha,a
l + χ−6εa(a2)Ha,a2

l

)⊕ (
Ha2,1

l + εa2 (a)Ha2,a
l + εa2 (a2)Ha2,a2

l

)
⊕(Ha2,1

l + χ3εa2 (a)Ha2,a
l + χ6εa2 (a2)Ha2,a2

l

)⊕ (
Ha2,1

l + χ−3εa2 (a)Ha2,a
l + χ−6εa2 (a2)Ha2,a2

l

)
. (I5)

The nine parts in the last line after the decomposi-
tion are the nine ribbon operators in Dν (Z3) that create
the anyons 1, e, e2, m, em, e2m, m2, em2, and e2m2. There-
fore, one can conclude the fusion rule from the above
calculation:

0x × 0x = 1 + e + e2 + m + em + e2m + m2 + em2 + e2m2.

(I6)

APPENDIX J: AN ALTERNATIVE N-STEP
GAUGING VIA MEASUREMENT

In this Appendix, we give an alternative N-step gauging
procedure. Following the two-step gauging, we generalize the
procedure to N-step gauging (a similar method was proposed
by Refs. [42,43] for solvable groups) for a group G that
satisfies a criterion. The N-steps correspond to the N factors
of Abelian groups of G.

Let us consider a group G with the following property:
there exist a sequence of groups N0, N1, . . . Nn Abelian and

another sequence M0, M1, . . . Mn such that

N0 ≡ {e}, M0 = G,

N1�G, M1 = G

N1
,

N2�M1, M2 = M1

N2
,

...

Nn�Mn−1, Mn = Mn−1

Nn
= e. (J1)

If the group G satisfies this property, then we say it admits a
sequential normal subgroups. We will prove in Appendix K
that admitting sequential normal subgroups is equivalent
to the group being solvable. Given G admits a sequen-
tial normal subgroup, we get a sequence of short exact
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sequences

1 −→ N1
i1−→ G

π1−→ M1 −→ 1, (J2a)

1 −→ N2
i2−→ M1

π2−→ M2 −→ 1, (J2b)
... (J2c)

1 −→ Nn−1
in−1−−→ Mn−2

πn−→ Mn−1 −→ 1, (J2d)

1 −→ Nn
in−→ Mn−1 −→ 1, (J2e)

where ik is an inclusion map and πk is a projection map. Now
we choose a sequence of lifts

M1
s1−→ G, (J3a)

M2
s2−→ M1, (J3b)
... (J3c)

Mn−1
sn−2−−→ Mn, (J3d)

which will be fixed throughout this Appendix. With these lifts
we can embed each of the normal groups Nk as a set in G.
If n ∈ Nk , then s1(s2(...sk−1(ik (n)))) ∈ G is an embedding of
n ∈ Nk in G. To simplify notation, we denote s1 ◦ s2 ◦ ... ◦ sk

by s̃k . Then s̃k : Mk −→ G. Using this notation, a general g ∈
G can be written as

g = s̃n−1
(
in
(
ain

n

))
...s̃1

(
i2
(
ai2

2

))
i1
(
ai1

1

)
, (J4)

where a j ∈ Nj is a generator for each Abelian normal sub-

group. The notation a
i j

j is a shorthand for the product of
generators for each cyclic subgroup of the Abelian group, i.e.,
a

i j

j = ∏l
k=1(ak

j )
ik

j where ak
j for k = 1, . . . , l are the generators

for the l cyclic factors.
Claim J.1. The representation of g ∈ G given in Eq. (J4) is

unique. If g = s̃n−1(in(ain
n ))...i1(ai1

1 ) = s̃n−1(in(ai′n
n ))...i1(ai′1

1 ),
then in = i′n, . . . , i1 = i′1.

Proof. The proof follows by applying the projections
π̃k := π1 ◦ π2 ◦ ... ◦ πk for k = 1, . . . , n − 1. First apply π̃n−1

to g. This gives in = i′n. Then apply π̃n−2 which gives
in−1 = i′n−1. Proceeding similarly, at kth step apply π̃n−k

to get in−k+1 = i′n−k+1. At (n − 1)th step we get i2 =
i′2. This automatically fixes i1 = i′1 proving the unique
representation of g. �

To simplify the notation in the remaining part of this Ap-
pendix, we omit writing the lifts explicitly and write aik

k ≡
s̃k−1(ik (aik

k )). Hence,

g = ain
n ...ai1

1 . (J5)

Let h ∈ G. Similarly, we can write h = aīn
n ...aī1

1 . Using this
notation, we can write down the group multiplication as

gh−1 = ain
n ...ai1

1 a−ī1
1 ...a−īn

n . (J6)

We will use Eq. (J6) to implement the N-step gauging
procedure. We will gauge the G DOFs on the vertices of the
lattice sequentially in N-steps. The complete procedure for
N-step gauging is as follows:

(1) Include ancillas. Add ancillas in the state |e〉, where
e ∈ G is the identity element, on the edges between the
vertices.

(2) Entangle gauge and matter DOFs. Apply the following
two controlled-shift operators with controls c1, c2 on neigh-
boring vertices (oriented as c2 → c1) and target t on the
in-between ancilla,

UN1 =
∑

g1,g2∈G

∑
g3∈G

|g1, g2〉c1,c2〈g1, g2|

⊗ |N1(g1)g3N1(g2)−1〉e〈g3|. (J7)

Here N1(g) is the part of the decomposition g which lies in N1;
when g = ain

n ...ai1
1 with a j ∈ Nj , then N1(g) = ai1

1 .
(3) Measure XN1 on matter DOFs and correct the zN1 fac-

tors. Define: XN1 = {X1, . . . , Xnm1
} for N1 = ∏m1

k=1 Znk , where
Xj denote j × j Pauli X matrix. Following the same de-
fine: zN1 = ∏m1

k=1 znk , where znk is the phase factor coming
from measuring Xnk on the vertex. The value of znk is same
as acting Pauli Znk operator on the vertex before measure-
ment. After measurement, with the outcome being XN1 =
{ω−p1

1 , . . . , ω
−pm1
1 } (ωk being nkth root of unity), there is a cor-

responding phase factor
∏m1

k=1 z−pk
nk . Using the transmutation

rule for each of the phase terms in the product zN1 ,

Znk (N1(g2))Znk (N1(g1)N1(g2)−1) = Znk (N1(g1)). (J8)

One can correct all those factors by moving them to a single
vertex, resulting in an M1 SET ground state.

(4) Repeat the procedure of entangling gauge and matter
DOFs for M1 DOFs on the vertices. Apply the following
unitary as before,

UN2 =
∑

g1,g2∈M1

∑
g3∈G

|g1, g2〉c1,c2〈g1, g2|

⊗ |N2(g1)g3N2(g2)−1〉e〈g3|. (J9)

(5) Measure XN2 on matter DOFs and correct the zN2 fac-
tors. Define: XN2 = {X1, . . . , Xnm2

} for N2 = ∏m2
k=1 Znk , where

Xj denote j × j Pauli X matrix. Following the same de-
fine: zN2 = ∏m2

k=1 znk , where znk is the phase factor coming
from measuring Xnk on the vertex. The value of znk is same
as acting Pauli Znk operator on the vertex before measure-
ment. After measurement, with the outcome being XN2 =
{ω−p1

1 , . . . , ω
−pm2
1 } (ωk being nkth root of unity), there is a cor-

responding phase factor
∏m2

k=1 z−pk
nk . Using the transmutation

rule for each of the phase terms in the product zN2 ,

Znk (N2(g2))Znk (N2(g1)N2(g2)−1φN2(g2 )(ge)) = Znk (N2(g1)).
(J10)

One can correct all those factors by moving them to a sin-
gle vertex, resulting in an M2 SET ground state. (Note that
Znk (φN2(g2 )(g3)) = 1. This is because φN2(g2 )(g3) ∈ N1 for g3 ∈
N1 and hence has no component in N2.)

(6) At lth step of gauging process, again repeat the proce-
dure of entangling gauge and matter DOFs for Ml−1 DOFs on
the vertices. Apply the following unitary:

UNl =
∑

g1,g2∈Ml−1

∑
g3∈G

|g1, g2〉c1,c2〈g1, g2|

⊗ |Nl (g1)g3Nl (g2)−1〉e〈g3|. (J11)

(7) Measure XNl on matter DOFs and correct the zNl fac-
tors. Define: XNl = {X1, . . . , Xnml

} for Nl = ∏ml
k=1 Znk , where
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Xj denote j × j Pauli X matrix. Following the same de-
fine: zNl = ∏ml

k=1 znk , where znk is the phase factor coming
from measuring Xnk on the vertex. The value of znk is same
as acting Pauli Znk operator on the vertex before measure-
ment. After measurement, with the outcome being XNl =
{ω−p1

1 , . . . , ω
−pml
1 } (ωk being nkth root of unity), there is a cor-

responding phase factor
∏ml

k=1 z−pk
nk . Using the transmutation

rule for each of the phase terms in the product zNl ,

Znk (Nl (g2))Znk (Nl (g1)Nl (g2)−1φNl (g2 )(ge)) = Znk (Nl (g1)),

(J12)

one can correct all those factors by moving them to a sin-
gle vertex, resulting in an Ml SET ground state. (Note that
Znk (φNl (g2 )(g3)) = 1. This is because φNl (g2 )(g3) ∈ (...(N1 ⊗
N2) ⊗ .... ⊗ Nl−1) for g3 ∈ (...(N1 ⊗ N2) ⊗ ... ⊗ Nl−1) and
hence has no component in Nl . The notation G ⊗ H is a short
hand for group extension of G by H .)

(8) Repeat this process for all till the last normal
subgroup Nn.

The groups formed from extensions are

Gl ≡ ((N1 ⊗ N2) ⊗ N3)... ⊗ Nl

≡ {
s̃l−1

(
ail

l

)
...s̃1

(
ai2

2

)
i
(
ai1

1

)∣∣ail
l ∈ Nl , . . . , ai1

1 ∈ N1
}
.

(J13)

Claim J.2. Gl is a subgroup of G.
Proof. We prove this by induction. First we prove

G2 is subgroup of G. G2 = N1 ⊗ N2. Suppose g1 =
s(q1)i(n1) ∈ G2 and g2 = s(q2)i(n2) ∈ G2, then g1g2 =

s(q1)i(n1)s(q2)i(n2) = s(q1)s(q2)s(q2)−1(i(n1))s(q2)i(n2) =
s(q1q2)ω(q1, q2)φq−1

2 (i(n1))i(n2). Hence, g1g2 ∈ G2.
Assume Gl−1 is a subgroup of G. We prove Gl is a
subgroup of G. Suppose g1 = s̃l−1(aīl

l )...s̃1(aī2
2 )i(aī1

1 ) ∈ Gl ,
g2 = s̃l−1(ail

l )...s̃1(ai2
2 )i(ai1

1 ) ∈ Gl . Let us define

b1 = s̃l−1
(
ail

l

)
...s̃1

(
ai2

2

)
b2 = s̃l−1

(
ail

l

)
...s̃2

(
ai3

3

)
...

bl = s̃l−1
(
ail

l

)
.

(J14)

Then

g1g2 = s̃l−1
(
aīl

l

)
s̃l−1

(
ail

l

)
φb−1

l
(
s̃l−2

(
aīl−1

l−1

))
s̃l−2

× (
ail

l−1

)
...φb−1

1
(
i
(
aī1

1

))
i
(
ai1

1

)
. (J15)

Only the first two terms in the above equation lies in Nl . The
remaining terms lie in Gl−1. Hence, they can be expressed as

φb−1
l
(
s̃l−2

(
aīl−1

l−1

))
s̃l−2

(
ail

l−1

)
...φb−1

1
(
i
(
aī1

1

))
i
(
ai1

1

)
= s̃l−2

(
a

i′l−1

l−1

)
....i

(
a

i′1
1

)
. (J16)

Now we prove that s̃l−1(aīl
l )s̃l−1(ail

l ) = s̃l−1(aīl +il
l )h where h ∈

Gl−1. Then by induction hypothesis,

g1g2 = s̃l−1
(
aīl +il

l

)
s̃l−2

(
a

i′′l−1

l−1

)
...s̃1

(
a

i′′2
2

)
i
(
a

i′′1
1

)
, (J17)

which shows that g1g2 ∈ Gl . First note that applying the rela-
tion s(a)s(b) = s(ab)ω(a, b), we get

s̃l−1
(
aīl

l

)
s̃l−1

(
ail

l

) = s
(
s̃l−2

(
aīl

l

)
s̃l−2

(
ail

l

))
ω
(
s̃l−2

(
aīl

l

)
, s̃l−2

(
ail

l

))
,

= s
(
s
(
s̃l−3

(
aīl

l

)
s̃l−3

(
ail

l

))
ω
(
s̃l−3

(
aīl

l

)
, s̃l−3

(
ail

l

)))
ω
(
s̃l−2

(
aīl

l

)
, s̃l−2

(
ail

l

))
,

... (J18)

One can write this equation in short hand as

s̃l−1
(
aīl

l

)
s̃l−1

(
ail

l

) = s(M1)N1,

= s(s(M2)N2)N1,

= s(s(s(M3)N3)N2)N1,
...

= s(...(s(Ml−1)Nl−1)...)N1, (J19)

where Nl denote the terms coming from ω factors in Eq. (J18)
and Mr denote s̃l−1−r (aīl

l )s̃l−1−r (ail
l ), Ml−1 denote aīl +il

l . Now
applying the relation s(a)s(b)ω(a, b)−1 = s(ab), we get

s̃l−1
(
aīl +il

l

)× (terms in Gl−1). (J20)

By induction hypothesis, terms in Gl−1 can be written as
s̃l−2(aĩl−1

l−1)s̃l−3(aĩl−2

l−2)...s̃1(aĩ1
1 )i(aĩ1

1 ). Combining the terms in
Eq. (J16), we get the desired decomposition of g1g2 as in
Eq. (J17) which prove g1g2 ∈ Gl . One can show if g ∈ Gl ,
g−1 ∈ Gl by applying π̃l−1, π̃l−2, . . . upto π on g−1. This
will give the explicit decomposition of g−1 using each of the
normal subgroups Ni for i = 1, . . . , l .

Claim J.3. Gl is normal in G. �

Proof. Let g ∈ G. g = s̃n−1(ain
n )...s̃1(ai2

2 )i(ai1
1 ). If

k ∈ Gl , then let k = s̃l−1(aīl
l )...s̃1(aī2

2 )i(aī1
1 ). Then gkg−1 =

s̃n−1(ain
n )...s̃1(ai2

2 )i(ai1
1 )s̃l−1(aīl

l )...s̃1(aī2
2 )i(aī1

1 )i(ai1
1 )−1s̃1(ai2

2 )−1

. . . s̃n−1(ain
n )−1. Applying π̃i for i = n − 1, . . . , l , we see that

π̃i(gkg−1) = 1. This shows that gkg−1 ∈ Gl . Hence, Gl is
normal in G. �

APPENDIX K: PROOF OF SOLVABLE EQUIVALENT
TO ADMITTING SEQUENTIAL NORMAL

ABELIAN SUBGROUPS

In this Appendix, we prove that the assumption about the
group G we used in Appendix J is equivalent to the assumption
that G is a solvable group.

Definition 1. A derived series of a finite group G is a
sequence of normal subgroups normal inside the previous
one

G � G(1) � G(2) � G(3).... � G(n) � e, (K1)

for some n such that the quotient groups G/G(1),
G(1)/G(2), . . . , G(n)/e are all Abelian.
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Definition 2. A finite group G is solvable if it admits a
derived series.

Proposition K.1. If G is solvable, then it admits the follow-
ing sequence:

G � G1 � G2 � ... � Gm � e, (K2)

for some m which is called the derived length of the group G.
Here Gi+1 = [Gi, Gi] is the commutator subgroup of Gi.

Proof. Note that the commutator subgroup of a group G
is the smallest normal subgroup in G such that G/[G, G]
is Abelian. Hence, we have G1 ⊂ G(1). Now we have
G2 = [G1, G1] ⊂ [G(1), G(1)] ⊂ G(2). Inductively we can as-
sume that Gk ⊂ G(k). Then Gk+1 = [Gk, Gk] ⊂ [G(k), G(k)] ⊂
G(k+1). Hence, Gk ⊂ G(k) ∀k ∈ {1, 2, . . . , m}. This clearly
says that the sequence of commutator groups does not ter-
minate. If it would have terminated at Gk+1, then Gk+2 =
[Gk+1, Gk+1] = Gk+1. One can repeat this to argue Gk+1 ⊂
G(k+1), Gk+1 ⊂ G(k+2), . . . Gk+1 ⊂ G(n). But Gk+1 is non-
Abelian group and G(n) is Abelian. Hence, we cannot
have Gk+1 ⊂ G(n), contradiction. So the sequence of com-
mutator subgroups does not terminate and we have the
sequence. �

Definition 3. We say a finite group G admits a sequential
normal subgroups if it satisfies the following property:

N1 � G, N1 Abelian M1 = G/N1,

N2 � M1, N2 Abelian M2 = M1/N2,

...

Nn � Mn−1, Nn Abelian Mn = Mn−1/Nn = e. (K3)

Claim K.1. Suppose the finite group G is solvable then it
admits sequential normal subgroups.

Proof. From proposition K.1 we see that G admits the
sequence

G � G1 � G2 � ... � Gm � e, (K4)

where Gi+1 = [Gi, Gi] is the commutator subgroup. First we
prove that Gk � G ∀k ∈ {1, 2, . . . , m}. This we prove by in-
duction on k. Clearly, G1 � G. Assuming Gk−1 � G, we need
to prove Gk � G. Gk = [Gk−1, Gk−1]. Hence, Gk is generated
by elements of the form ghg−1h−1 where g, h ∈ Gk−1. Now
one can write kghg−1h−1k−1 = kgk−1khk−1kg−1k−1kh−1k−1.
Since Gk−1 � G, kgk−1 ∈ Gk ∀g ∈ Gk and k ∈ G. So
kgk−1khk−1kg−1k−1kh−1k−1 ∈ [Gk−1, Gk−1] = Gk . So we
see that Gk � G.

Now we choose

N1 = Gm � G, N1 Abelian M1 = G/N1,

N2 = Gm−1/Gm � G/Gm, N2 Abelian M2 = M1/N2,

...

Nm+1 = G/G1, Nm+1 Abelian Mm+1 = Mm/Nm+1 = e.
(K5)

�
Claim K.2. If the finite group G admits a sequential normal

subgroups, then G is solvable.
Proof. Suppose G is not solvable, assuming it admits

sequential normal subgroups. Then the derived series of com-
mutator subgroup terminate

G � G1 � G2 � ... � Gk (K6)

for some k, where Gi+1 = [Gi, Gi]. Now one could consider
the series

M1 �M1(1) � M1(2) � ...

M2 �M2(1) � M2(2) � ...

...

Ml �Ml (1) � Ml (2) � ...

Mn−1 �M (n−1)(1) � M (n−1)(2) � ..., (K7)

where M j(l+1) = [M j(l ), M j(l )] is the commutator subgroup
and M j(0) ≡ M j . Now let us look at the following proposition.

Proposition K.2. If the derived series of commutator sub-
groups of G terminates, then so does for M1, M2, . . . , Mn−1.

Proof. Consider [M1, M1] = [G/N1, G/N1]. It is gener-
ated by gN1g′N1g−1N1g′−1N1 = gg′g−1g′−1N1. We know that
gg′g−1g′−1 ∈ G1. However, gN1 = N1 if and only if g ∈ N1 ∩
G1. Hence, we find [G/N1, G/N1] ∼= G1/(N1 ∩ G1). Repeat-
ing this we find [G1/(N1 ∩ G1), G1/(N1 ∩ G1)] = G2/(N1 ∩
G2) and so on. Hence, the derived series for commutator
subgroups for M1 is given by

G/N1 � G1/(N1 ∩ G1) � G2/(N1 ∩ G2) � . . .

� Gk/(N1 ∩ Gk ). (K8)

This terminates since [Gk, Gk] = Gk and hence [Gk/(N1 ∩
Gk ), Gk/(N1 ∩ Gk )] = Gk/(N1 ∩ Gk ). A similar argument
shows that all other derived series terminates. �

Now we have the following terminating derived series

G � G1 � ... � Gk,

G/N1 � G1/(N1 ∩ G1) �... � Gk/(N1 ∩ Gk ),

M1/N2 � M1(1)/(N2 ∩ M1(1)) �... � M1(k)/(N2 ∩ M1(k) ),
...

Ml/Nl+1 � Ml (1)/(Nl+1 ∩ Ml (1) ) �... � Ml (k)/(Nl+1 ∩ Ml (k) ),

...

Mn−2/Nn−1 � M (n−2)(1)/(Nn−1 ∩ M (n−2)(1) ) �... � M (n−2)(k)/(Nn−1 ∩ M (n−2)(k) ). (K9)

Since the last series is Mn−1 = Nn � e, it terminates in length 1. This is a contradiction. Hence, G is solvable. �
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