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Variation of Landau level splitting in the Fermi level controlled Dirac metals (Eu, Gd)MnBi2
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We have experimentally studied the Landau levels near the quantum limit in the magnetic Dirac material
(Eu, Gd)MnBi2. In this series of materials, the Fermi level is systematically controlled by substituting Eu2+

with Gd3+ while keeping high mobility. We measured the Shubnikov–de Haas (SdH) oscillation for a single
crystal with the lowest hole concentration at tilted magnetic fields up to 20–50 T and clarified the dependence
of the splitting of the Landau levels N � 1 on the ratio of Zeeman energy to cyclotron energy. In the low-field
antiferromagnetic phase, the splitting is well explained by the (Zeeman) spin splitting, from which we have
found that the effective g factor of the Dirac fermion depends significantly on the Fermi energy. In the high-field
antiferromagnetic phase, on the other hand, the SdH oscillation was found to change in a complex manner as a
function of the tilt angle of the field, implying the lifting of the valley degeneracy as well as the spin degeneracy.

DOI: 10.1103/PhysRevB.108.115142

I. INTRODUCTION

Magnetic materials hosting relativistic quasiparticles,
called Dirac-Weyl magnets, have attracted much attention not
only in fundamental physics but also in potential applications
owing to their unconventional transport phenomena [1,2]. In
Weyl magnets, for instance, the Weyl points (i.e., nondegener-
ate linearly crossing bands) formed by the peculiar magnetic
and/or lattice structures work as a source of the Berry phase,
leading to giant anomalous Hall and Nernst effects [3–12] and
magneto-optical responses [13,14]. Another important feature
of the relativistic quasiparticle is ultrahigh mobility due to the
suppression of backscattering, which may enable new spin-
tronic functions when coupled with the magnetism. However,
Dirac-Weyl magnets rarely exhibit high mobility probably due
to the influence from many trivial carriers.

In contrast to this, AMnX2 (A = alkaline and rare-earth
ions; X = Sb, Bi) is a promising series of materials for
achieving both high mobility and magnetic order [15–33].
Since its crystal structure consists of the alternate stacking of
two-dimensional (2D) Dirac fermion layers (X − square net)
[34] and magnetic block layers (A2+-Mn2+-X 3−) [Fig. 1(a)],
the high-mobility transport of the Dirac fermion is control-
lable by modifying the spatially separated block layer [35].
In fact, in EuMnBi2 (A = Eu, X = Bi), the quantum transport
phenomena significantly vary as a function of the field-tunable
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antiferromagnetic (AFM) order of the Eu layer; the large
magnetoresistance effect manifests itself when the Eu spins
flop by applying an external field [25,26], accompanied by a
marked change in quantum oscillation [26]. Specifically, the
spin splitting of Landau levels (LLs) depends on the AFM or-
der of the Eu layer, which is explained by the strong exchange
interaction between the Dirac fermion and the Eu spin [36].

The block layer for this material also works as charge
reservoir for the Dirac fermion layer. Partial substitution of
Eu2+ with Gd3+ reduces the hole concentration in EuMnBi2,
which is unintentionally hole doped, and even makes the crys-
tal n type across the charge neutral point. Consequently, the
Seebeck and Nernst effects were widely and systematically
tuned by Gd concentration in (Eu, Gd)MnBi2 [37]. The vari-
ation in LLs should also be interesting when the Fermi level
approaches the Dirac point; the extreme quantum limit can be
achieved at strong magnetic fields. In the LLs near the Dirac
point, the simple single-particle picture may break down due
to the many-body interaction and lift the sublattice (valley)
degeneracy, as intensively investigated for graphene [38–40].
For EuMnBi2, only the LLs N � 2 were observed in the
AFM phases (below ∼20 T), where the quantum oscillation
is enhanced due to the two-dimensional confinement [26,36].
Thus the low-energy LLs near the Dirac point have not been
uncovered in this material.

In this paper, we performed high-field transport mea-
surements on (Eu, Gd)MnBi2 single crystals with reduced
hole concentration to clarify the detailed features of low-
energy LLs including N = 1. In particular, we measured the
Shubnikov–de Haas (SdH) oscillation by changing the tilt
angle of the field, i.e., the Zeeman-energy-to-cyclotron-energy
ratio. We have found that the spin splitting is dominant in
the LLs N � 3 observed in the low-field AFM phase and

2469-9950/2023/108(11)/115142(7) 115142-1 ©2023 American Physical Society

https://orcid.org/0000-0001-9839-1377
https://orcid.org/0000-0002-5464-9839
https://orcid.org/0000-0002-1401-9381
https://orcid.org/0000-0003-2043-1628
https://orcid.org/0000-0003-0251-063X
https://orcid.org/0000-0002-4579-3302
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.115142&domain=pdf&date_stamp=2023-09-21
https://doi.org/10.1103/PhysRevB.108.115142


H. SAKAI et al. PHYSICAL REVIEW B 108, 115142 (2023)

(a
rb

. u
ni

ts
)

FIG. 1. (a) Crystal structure of (Eu, Gd)MnBi2 showing the antiferromagnetic (AFM) order at 0 T (low-field AFM order) [42,43]. (b) and
(c) Field dependences of in-plane resistivity ρxx (b) and Hall resistivity ρyx (c) at 1.4 K (B ‖ c) for EuMnBi2 (undoped) and Gd-doped EuMnBi2

(samples Gd#1–Gd#3). Bflop and Bc denote the transition fields to the high-field AFM and forced ferromagnetic phases, respectively. Insets in
(b): Schematic illustrations of the low-field (left) and high-field (right) AFM orders of the Eu layer. Inset in (c): Fast Fourier transform (FFT)
of the oscillatory component of ρyx below Bflop. The peak position corresponds to the frequency of SdH oscillation. (d) Schematic illustration
of EF shift as a function of Gd substitution in the 2D massive Dirac cone for (Eu, Gd)MnBi2.

that the effective g factor is enhanced as the Fermi energy
approaches the Dirac point. On the other hand, in the LLs
N = 1 and 2 appearing in the high-field AFM phase, addi-
tional splitting other than the spin origin was clearly observed.
As a result, the SdH oscillation shows a much more com-
plicated dependence on the tilt angle of the field. We shall
discuss the origin in terms of the lifting of spin and valley
degeneracy.

II. EXPERIMENT

Single crystals of (Eu, Gd)MnBi2 were grown by a Bi
self-flux method [37]. High-purity ingots of Eu (99.9%), Gd
(99.9%), Mn (99.9%), and Bi (99.999%) were mixed in the
ratio Eu : Gd : Mn : Bi = 1 − x : x : 1 : 9 and put into an alu-
mina crucible in an argon-filled glove box (x = 0, 0.005,
0.0075, and 0.01) The crucible was sealed in an evacuated
quartz tube and heated at 1000 ◦C for 10 h, followed by slow
cooling to 350 ◦C at a rate of ∼2 ◦C/h, where the excess
Bi flux was decanted using a centrifuge. The powder x-ray
diffraction at room temperature indicates that the crystal struc-
ture of the obtained single crystals is tetragonal (I4/mmm)
and the lattice constants are almost unchanged irrespective
of the nominal Gd concentration. Since the Gd concentration
in the obtained crystals is too low to be precisely determined
by the energy-dispersive x-ray analysis, the variation in EF

among the samples was determined by their transport prop-

erties, i.e., SdH oscillation and the Hall effect, as shown
below. We thereby label the Gd-doped samples as samples
Gd#1–#Gd3 in order of increasing EF [from low to high; see
Fig. 1(d)], as was adopted in Ref. [37].

In-plane resistivity ρxx and Hall resistivity ρyx were mea-
sured by a conventional five-terminal method with electrodes
formed by room-temperature curing silver paste. For precise
measurements, we adopted the lock-in technique at 20–
150 Hz with an ac excitation of 1–5 mA. The measurements
up to 24 T at 1.4 K were performed (for sample Gd#3) with
the 25-T cryogen-free superconducting magnet (25T-CSM) at
the High Field Laboratory for Superconducting Materials in
the Institute for Materials Research, Tohoku University [41].
The field direction was controllable by using a sample probe
equipped with a rotating stage, where the tilt angle of the
field was determined by a Hall sensor attached on the sample
stage. The measurements up to 55 T at 1.4 K were performed
(for the undoped sample, sample Gd#1, and sample Gd#2)
by using a nondestructive pulsed magnet at the International
Mega-Gauss Science Laboratory at the Institute for Solid
State Physics.

III. RESULTS AND DISCUSSION

Figures 1(b) and 1(c) show the field dependences of ρxx

and ρyx for (Eu, Gd)MnBi2 single crystals at 1.4 K for the
field parallel to the c axis (B ‖ c), respectively. At zero field,
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Eu spins order ferromagnetically within the ab plane and
align along the c axis in the AFM sequence of up-up-down-
down [low-field AFM phase shown in Fig. 1(a)] [26,42,43].
As schematically shown in the insets in Fig. 1(b), the AFM
order of Eu spins can be controlled by applying the external
magnetic field parallel to the c axis. Above Bflop, the direction
of Eu spins flops from the c axis to the ab plane (high-field
AFM phase), while all Eu spins are aligned ferromagnetically
above Bc (forced ferromagnetic phase). The values of Bflop

and Bc are almost independent of Gd concentration, which
can be determined by the weak anomalies (i.e., a small kink
or jump) in ρxx and ρyx [vertical dotted lines in Figs. 1(b)
and 1(c)]. As the Gd concentration increases, the slope of
ρyx with respect to field increases [Fig. 1(c)], which evi-
dences that the hole carriers existing in the undoped sample
are reduced by Gd substitution and the Fermi energy EF

moves toward the charge-neutral point [Fig. 1(d)]. Interest-
ingly, the field dependence of ρxx also varies systematically
as a function of Gd substitution. Apart from the oscillatory
component arising from the SdH oscillation (vide infra), the
background of ρxx is nearly linear with field, the slope of
which progressively increases with Gd concentration. For
instance, ρ(20 T)/ρ(0 T) = 1800% for the undoped sample,
while ρ(20 T)/ρ(0 T) = 8300% for sample Gd#3. Since the
carrier mobility remains almost unchanged among the sam-
ples [37], the carrier compensation due to electron doping may
play a role in such an enhancement in the magnetoresistance
effect.

All the ρxx and ρyx data shown in Fig. 1 exhibit marked
SdH oscillations, which reflect the high mobility of the Dirac
fermion even in the Gd-substituted crystals. By analyzing the
SdH oscillation in detail, we are able to obtain more quan-
titative information on the variation in the Dirac fermion as
a function of Gd substitution. The inset in Fig. 1(c) shows
the fast Fourier transform of the oscillation component of
ρyx, where the frequency of SdH oscillation, the extremal
cross section of the quasi-2D cylindrical Fermi surface, sys-
tematically decreases with increasing Gd substitution. For
sample Gd#3, the frequency decreases to approximately half
of that for the undoped sample. The fine structures of SdH
oscillation, such as splitting of the peak, are also important
to reveal the microscopic features of the system, since they
correspond to the LL splitting caused by the Zeeman interac-
tion and/or many-body electron-electron interaction. Below,
to study the details of SdH oscillation, we analyze longitudi-
nal conductivity σxx = ρxx/(ρ2

xx + ρ2
yx ), which directly reflects

the density of states of LLs in the conventional quantum
Hall systems.

Figure 2(a) presents σxx versus 1/B at 1.4 K for the un-
doped sample, sample Gd#1, and sample Gd#3. Note here
that the dip in σxx corresponds to the energy gap between the
LLs (i.e., the quantum Hall gap). For the undoped sample,
the LLs N = 1, 2, and 3 appear in the high-field AFM phase
(1/Bc < 1/B < 1/Bflop), although the LL N = 1 is terminated
in the middle at Bc. For sample Gd#3 with the lowest hole
concentration, on the other hand, almost the entire LL N = 1
is formed at 1/Bc < 1/B. To clarify the split structure, we here
take the second derivative of σxx with respect to the field for
sample Gd#3 as shown in Fig. 2(b). In the low-field AFM
phase (1/Bflop < 1/B), the LLs N = 3, 4, and 5 are clearly
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FIG. 2. (a) In-plane conductivity σxx vs 1/B at 1.4 K with B ‖ c
for the undoped and Gd-doped crystals. Each profile is shifted verti-
cally for clarity. N indicates the Landau index. (b) −d2σxx/d (1/B)2

vs 1/B for sample Gd#3 [44]. The inverted triangles denote the
splitting of the Landau levels.

identified, where the LL N = 3 exhibits clear splitting. The
splitting is more conspicuous in the high-field AFM phase.
Noting that the deep dip at 1/B = 0.12 T−1 corresponds to
the energy gap between N = 1 and N = 2, the LL N = 1
apparently splits into four as denoted by the inverted triangles.
This suggests the lifting of both spin and valley degeneracy (as
detailed later in Fig. 4).

To reveal the origin of the LL splitting, we studied the
variation of σxx when the field is tilted from the c axis to the
ab plane. For a 2D system, the ratio of Zeeman energy EZ to
cyclotron energy Ec varies depending on the tilt angle θ of the
field [36,45–47]:

EZ/Ec = g∗mc

2m0 cos θ
. (1)

This results from the fact that EZ = g∗μBB is proportional
to the total field B while Ec = eh̄B⊥/mc is proportional to
the field component perpendicular to the 2D plane (B⊥ =
B cos θ ), where g∗ is the effective g factor, mc is the cy-
clotron mass, and m0 is the bare electron mass. Consequently,
by analyzing the θ dependence of the SdH oscillation, we
can quantitatively estimate the microscopic parameters of 2D
electrons, such as g∗mc. Note here that since the energy spac-
ing of Landau levels for a 2D Dirac fermion is not uniform
(i.e., Ec is dependent on N), we need to effectively define
Ec ≡ eh̄B⊥/mc by using a semiclassical expression of the
cyclotron mass mc = EF /v2

F with vF being the Fermi velocity
[48,49]. With this definition, EZ/Ec indicates the magnitude
of the Zeeman spin splitting in the SdH oscillation [36], as
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FIG. 3. (a) −d2σxx/d (1/B)2 vs BF (θ )/B in the low-field AFM phase (1/Bflop < 1/B) at various tilt angles θ for sample Gd#3 (1.4 K).
Each profile is shifted vertically. The phase of the SdH oscillation is inverted around the arrowheads shown on the right axis. (b) and (c) θ

dependences of the peak (BF /B = 3.75 and 4.75) and dip (BF /B = 4.25) values of −d2σxx/d (1/B)2 (b) and the Zeeman-energy-to-cyclotron-
energy ratio (EZ/Ec) (c). Vertical dotted lines denote the θ values where the phase of SdH oscillation is inverted. In (c), the red (blue) solid
curve denotes g∗mc

2m0 cos θ
for g∗mc/m0 = 3.1 (4.5), where the phase inversion corresponds to EZ/Ec = 1.5 and 2.5 (EZ/Ec = 2.5 and 3.5). Inset:

Geometry of the transport measurements in a tilted magnetic field, where θ is the angle between the field and the c axis. (d) Spin-split
Landau levels (N = 0–3) of a 2D massless Dirac fermion at BF (θ )/B = 2 as a function of energy, where the solid (dashed) curve represents
the spin-down (spin-up) Landau level. As EZ/Ec increases as a function of θ , the density of states at EF changes as follows: A peak for
EZ/Ec = 0.1 (top panel), a node for EZ/Ec = 0.5 (middle panel), and a dip for EZ/Ec = 1 (bottom panel). For details of the calculation, see
Supplemental Material, Fig. S4 [50].

in the case for a normal 2D electron gas (for details, see
Supplemental Material, Fig. S4 [50]). Below, we analyze the
LL splitting for each AFM phase in detail and compare the
results for sample Gd#3 with those for the undoped sample to
see the dependence on EF .

We first focus on the low-field AFM phase. Figure 3(a)
displays −d2σxx/d (1/B)2 versus BF (θ )/B for sample Gd#3
at 1.4 K for various θ , where the field is tilted from the c
axis toward the b axis and the current is applied along the
a axis [inset of Fig. 3(c)]. In principle, σxx in a tilted field is

calculated as σxx = ρxx

ρ2
xx+ρ2

yx
(1 + ρ2

zxρxx

(ρ2
xx+ρ2

yx )ρzz
)−1. However, from

the previous study on the undoped sample [36], it is known

that the factor ρ2
zxρxx

(ρ2
xx+ρ2

yx )ρzz
is so small (�1) for θ � 70◦ that

σxx is safely approximated as σxx = ρxx

ρ2
xx+ρ2

yx
[51]. BF (θ ) is the

SdH frequency for each θ , deduced from the fast Fourier
transform. Reflecting the quasi-two-dimensional Fermi sur-
face, BF (θ ) is proportional to 1/ cos θ up to θ = 60◦, although
it significantly deviates downward above θ = 70◦ presumably
owing to the warping of the cylindrical Fermi surface (see
Fig. S1 for details [50]). To clarify the θ dependence of LL
splitting, it is useful to plot the SdH oscillations as a function
of BF (θ )/B, which is the filling factor normalized by the
spin and valley degeneracy factor [36,52], i.e., BF (θ )/B =
N + 1/2 − γ , where N is the Landau index and γ is the phase
factor expressed as γ = 1/2 − φB/2π with φB being the Berry

phase [53,54]. The deep minima of the oscillation correspond
to the energy gap between the LLs. Although these minima
should be located at N + 1/2 for the Dirac fermion exhibiting
the Berry phase of π (φB = π ), their positions are found to
be around N + 1/4. This slight phase shift might arise from
the fact that the Fermi surface is not exactly two dimen-
sional. At θ = 0◦, the LLs N = 3–6 are observed, where a
clear split structure is discernible for N = 3, as explained in
Fig. 2(b). Noteworthy is that the amplitude and phase of the
SdH oscillation systematically vary as θ increases from 0◦. At
first, the amplitude monotonically decreases and reaches the
minimum at θ ∼ 15◦. However, it begins to increase above
20◦, where the phase of the oscillation is inverted (i.e., the
peaks are located around N + 1/4). The amplitude reaches
the maximum at θ ∼ 40◦ and then decreases, reaching the
minimum at θ = 50◦. Above 50◦, the phase of oscillation is
again inverted.

Such variation of SdH oscillation as a function of θ is well
explained by spin splitting of LLs, as schematically shown in
Fig. 3(d). The LLs slightly split for EZ/Ec = 0.1 (top panel).
As EZ/Ec increases to 0.5, the splitting evolves, and the
amplitude of the SdH oscillation becomes minimum (middle
panel). A further increase in EZ/Ec up to 1 leads to crossing
of the neighboring LLs with opposite spins, which results in
the enhanced SdH oscillation with an inverted phase (bottom
panel). For each integer change in EZ/Ec, the SdH oscillation
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FIG. 4. −d2σxx/d (1/B)2 vs BF /B in the high-field AFM phase
(1/B < 1/Bflop) at various tilt angles θ for sample Gd#3 (1.4 K) [44].
Each profile is shifted vertically. A schematic of the Landau levels is
shown at the bottom, where red (blue) arrows indicate the splitting at
BF /B = N (N ± 1/4).

repeats this variation. Note here that for the LLs with large N
(N � 4), the spin splitting with respect to B is small, which
makes it difficult to observe a clear splitting structure (see
Fig. S4 for a calculation of the SdH oscillation of the spin-split
LLs [50]).

To quantitatively clarify such θ dependence of the SdH os-
cillation, we plot the peak and dip values of −d2σxx/d (1/B)2

versus θ [Fig. 3(b)]. There, BF /B = 4.25 corresponds to the
dip in the oscillation at θ = 0◦, while BF /B = 3.75 and 4.75
correspond to the peak at θ = 0◦. With increasing θ , the
peak and dip values are first inverted at ∼17◦, followed by
the second inversion at ∼52◦. Since the phase inversion of
SdH oscillation corresponds to half-integer values of EZ/Ec
(= 0.5, 1.5, 2.5, . . .), the observed θ dependence means that
EZ/Ec passes through the half-integer value twice from θ =
0◦ to θ = 70◦. By adjusting the g∗mc value in Eq. (1), we have
found that two cases well reproduce the experimental θ depen-
dence [Fig. 3(c)]: (i) EZ/Ec = 1.5 (θ = 17◦) and EZ/Ec = 2.5
(θ = 51◦), displayed in red, and (ii) EZ/Ec = 2.5 (θ = 17◦)
and EZ/Ec = 3.5 (θ = 51◦), displayed in blue. Since the value
of mc/m0 is independently estimated to be 0.080(3) from
the temperature dependence of the SdH oscillation at θ = 0◦
based on the standard Lifshitz-Kosevich formula (Fig. S2
[50]), we obtain g∗ = 37 ± 2 for case (i) and g∗ = 54 ± 2 for
case (ii).

Also for the undoped sample, a similar phase inversion
of the SdH oscillation was observed in the low-field AFM
phase when the field is tilted [36]. However, the phase

inversion occurs only once at θ = 18◦ (see Fig. S3 for
details [50]), which results in g∗ ∼ 10 [55]. Therefore the ef-
fective g factor is larger for sample Gd#3 than for the undoped
sample; it likely increases as EF approaches the charge-neutral
point. The EF dependence of the effective g factor is roughly
explained by the theoretical expression obtained by the k · p
theory in the presence of spin-orbit interaction [56]; it has
a leading term ∝ 1/(�E + |EF |), where �E is the energy
gap of the massive Dirac band. However, the enhancement of
the effective g factor is estimated to be ∼20–30% for sample
Gd#3 when we adopt the results of band calculation, i.e.,
�E ∼ 50 meV and EF ∼ −40 meV for the undoped sample
while EF ∼ −25 meV for sample Gd#3. The origin of such a
quantitative difference remains unclear but might be relevant
to the many-body effect.

Several other mechanisms have been reported to explain
the variation of SdH oscillations as a function of tilting
the field. In 3D Weyl semimetals, for instance, the phase
may be affected by the change in the extremal orbits of the
anisotropic Fermi surface [57]. It is also reported that the
band dispersion may be modified by a magnetic field tilted
away from the high-symmetry direction [58,59]. However, in
both cases, the SdH phase exhibits various values depending
on the field direction while the SdH amplitude remains un-
changed. These features are different from what was observed
in (Eu, Gd)MnBi2.

Next, to show the details of LL splitting in the high-
field AFM, we plotted −d2σxx/d (1/B)2 versus BF (θ )/B at
1/B < 1/Bflop for various θ in Fig. 4. There, we adopt BF (θ )
obtained in the low-field AFM phase. (For the undoped sam-
ple, the change in BF between the high-field and low-field
AFM phases is less than 3%.) For θ = 0◦, almost the entire
LL N = 1 and a part of LL N = 2 are observed, as ex-
plained in Fig. 2(b). The deep dips located near BF (θ )/B =
0.5 (1.5) correspond to the energy gaps between N = 0 (1)
and N = 1 (2), which is consistent with the Berry phase of
π [53,54]. Considering the similarity to the low-field AFM
phase, the weak dips located at BF (θ )/B = 1 and 2 (denoted
by red arrows in the schematic diagram) should originate
from the spin splitting in the LLs N = 1 and 2, respec-
tively. In addition to these splittings, clear dip structures are
also discernible around BF (θ )/B = 0.75 and 1.25 in the LL
N = 1 (denoted by blue arrows), which suggests the pres-
ence of splitting other than the spin origin. As θ increases,
the SdH oscillation shows a very complicated change, which
is quite different from the θ dependence in the low-field
AFM phase. While no significant changes are observed up to
θ = 15◦, gap collapse is discernible around BF /B = 0.75 and
1.5 at θ = 20◦. In particular, the gap collapse at BF /B = 1.5
appears to result from the LL splitting of N = 2 (blue ar-
row), followed by the gap growing above θ = 35◦. On the
other hand, the gap that collapses at BF /B = 0.75 gradually
grows up to 45◦. Above θ = 50◦, fine split structures become
less visible, where the superposition of multiple oscillations
varies as a function of θ in a complex manner. Thus the
observed θ dependence cannot be explained by simple spin
splitting.

For the undoped sample, the θ dependence of SdH oscil-
lation in the high-field AFM phase, which corresponds to the
LLs N = 2 and 3, is well explained by the spin splitting up to

115142-5



H. SAKAI et al. PHYSICAL REVIEW B 108, 115142 (2023)

θ = 70◦. For sample Gd#3, on the other hand, the LL N = 1
suffers from splitting other than the spin origin, leading to
the complicated θ dependence probably due to the overlap
with each splitting. Considering four equivalent valleys in the
Fermi surface for EuMnBi2 [28], the most plausible origin
of the new splitting is the valley splitting [60]. In fact, it is
particularly pronounced in the LL N = 1 at high magnetic
fields, where strong electron-electron interaction is antici-
pated. Furthermore, in graphene, the LL splitting associated
with the spin-valley degrees of freedom shows similar reen-
trant behavior at tilted fields, i.e., the energy gap collapses and
then grows as EZ/Ec is increased [40]. As future research, it
would be important to compare these results with theoretical
calculations that consider the variation of valley splitting as a
function of θ and its interaction with the spin splitting.

IV. CONCLUSIONS

We report the overall features of Landau level splitting in
Gd-doped EuMnBi2, where the Landau level down to N = 1
is clearly observed. In the low-field antiferromagnetic phase,
the Landau levels (N = 3–5) exhibit spin splitting, from
which we have found that the effective g factor is enhanced as

the Fermi energy approaches the charge-neutral Dirac point.
In the high-field antiferromagnetic phase, the Landau level
N = 1 shows additional splitting other than the spin origin,
implying the lifting of valley degeneracy. The complicated
variation of Landau level splitting as a function of tilting the
field cannot be reproduced by a simple model considering the
Zeeman energy.
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