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Coulomb integrals, i.e., matrix elements of bare or screened Coulomb interaction between one-electron
orbitals, are fundamental objects in many approaches developed to tackle the challenging problem of calculating
the electronic structure of strongly correlated materials. In this paper, Coulomb integrals are analyzed by
considering both the point-group symmetry of the site occupied by the atom in the crystal or molecule and the
permutation symmetries of the orbitals in the integrals. In particular, the case where one-electron orbitals form the
basis of a general (i.e., a real, complex, or pseudoreal) irreducible representation is considered. Explicit formulas
are provided to calculate all integrals of the interaction tensor in terms of a minimum set of independent ones.
The effect of a symmetry breaking is also investigated by describing Coulomb integrals of a group in terms of
those of one of its subgroups. We developed the specific example of O(3) as the larger group which can therefore
be used to quantify the deviation of a specific system from the spherical symmetry. Possible applications of the
presented framework include the calculation of solid-state and molecular spectroscopies via multiplet techniques,
dynamical mean-field theory, or the GW approximation.
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I. INTRODUCTION

Electronic correlations play a fundamental role in deter-
mining the properties of compounds with partially filled d or
f shells. Strong Coulomb interactions occuring between elec-
trons occupying these localized orbitals are indeed among the
most important parameters favouring, for instance, a particu-
lar ground-state symmetry of the ions. Thus they determine
their magnetic properties [1,2], induce metal-insulator transi-
tions [3,4], superconductivity or trigger long-range ordering
phenomena involving either charge, orbital, or spin degrees of
freedom [5].

From a theoretical point of view, the explicit inclusion
of local Coulomb interactions between correlated electrons
beyond single-particle approaches often relies on the density-
density approximation, where only dominant direct Coulomb
and exchange terms are retained from the full tensor. These
terms are then frequently averaged over the manifold of
correlated orbitals, resulting in effective Hubbard U and
Hund’s exchange JH parameters [6]. The averaged parame-
ters are commonly employed in standard implementations of
the so-called LDA + U method, where an effective single-
particle approach based on the local density approximation
is corrected in the manifold of correlated orbitals by on-site
Hubbard and exchange terms [7,8]. The orbitally averaged
density-density approximation is also frequently employed
in Green’s function based many-body techniques, such as
dynamical mean-field theory (DMFT) [9–12].

While this approach might be accurate enough to approx-
imate the ground-state properties of materials in many cases,
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it is clearly not sufficient to provide a good description of
the full multiplet structure accessible by many solid-state or
molecular spectroscopies, ranging from infrared or visible
light optical absorption [13], x-ray absorption, (non)resonant
inelastic x-ray scattering to electron energy loss spectroscopy
[14]. In this case, indeed, a full account of the Coulomb tensor
within and between the correlated electronic shells involved
in the excitation process is mandatory but theoretically and
numerically very challenging. For decades, this problem has
been tackled by assuming that transition metal or rare-earth
ions retained a dominant atomic-like character in the molec-
ular or solid state and, therefore, that Coulomb interaction
could be handled within the spherical symmetry [15]. A great
advantage of this approximation lies in the fact that only
a very limited number of numerical parameters, known as
Slater integrals or Slater-Condon parameters [16,17], need to
be introduced to parametrize the full tensor. For example, if
one considers the case of d electrons, the 54 = 625 elements
of the spin-independent Coulomb tensor can be expressed
in terms of only three Slater integrals, F 0, F 2, and F 4 and
simple expressions such as U = F 0 and JH = (F 2 + F 4)/14
are obtained. Also when considering d electrons within a
perfectly cubic symmetry represented by real wave functions,
effective descriptions like the Kanamori form [18], which
goes beyond density-density interactions, can be expressed in
terms of these three Slater integrals [19].

The validity of this approximation is, however, question-
able for ions in solids or molecules where the local symmetry
of the atomic site is reduced and a covalent interaction with
the surrounding ligand atoms always occurs to a certain de-
gree. In this case, the inclusion of the resulting anisotropy
of the interaction can lead to important corrections, for in-
stance for the Fermi surface [20,21]. Recent progresses in the
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first-principle calculation of screened Coulomb interactions
within the constrained random phase approximation in
solids [22] indeed show numerically that, whereas Slater
parametrization is fairly accurate for ions with very localized
states and in highly symmetric environments, larger devia-
tions are expected when increasing the spatial extension of
the orbitals, the covalent character of the interaction with the
ligands or reducing the local site symmetry [23–25]. In such
cases, a proper analysis of the effective interaction tensor
should be carried out by accounting explicitly for the local
point-group symmetry of the atomic site. In particular, the
central question of the number of independent parameters
required to describe exactly the entire tensor immediately
arises. This is indeed of primary importance in the analysis of
spectroscopic data, since this number is the maximum number
of independent parameters to fit, but also when investigating
numerically the properties of realistic model Hamiltonians
accounting for the exact spatial symmetry of the system.

This problem was pioneered by Tanabe, Sugano, and
Kamimura [26] in the early 1970’s for the specific case of
d-shell electrons in octahedral Oh symmetry. It was recently
extended by Bünemann and Gebhard to the case of d- and
f -shell electrons in Oh, O, Td , Th, D6h and D4h symmetries
[27]. Iimura, Hirayama, and Hoshino followed a different
route and expressed the anisotropic Coulomb tensor in terms
of multipole operators [28]. A general theory dealing with
any orbital in any group is, however, still missing and is
therefore the main focus of the present paper. In particular, we
consider here all types of irreducible representations (irreps)
whereas previous works only focused on real wave functions.
Moreover, we provide general expressions for the independent
Coulomb parameters as well as for any Coulomb integral on
the interaction tensor in terms of these parameters. Finally,
we study the effect of a symmetry breaking by comparing
Coulomb integrals of a group with those of one of its sub-
groups.

We would like to underline the broad applicability of our
approach. Indeed, we make only two assumptions: (i) the
(possibly screened) electron-electron interaction U (r, r′) is
symmetric [i.e., U (r, r′) = U (r′, r)] and invariant under the
operations of a crystal point group G; (ii) the basis functions
φ(α)

a (r) transform as the basis elements of an irrep α of G
[29]. In particular, we do not assume that the wave functions
ϕ(α)

a (r) entering the Coulomb integrals are built from spher-
ical harmonics of a specific �, nor do they need to have the
same radial part. In addition, U (r, r′) can also be frequency-
dependent (corresponding to a dynamical interaction) since
the frequency ω does not enter in the following derivations.
This renders the framework applicable to dynamical interac-
tions, which are for instance used in the context of the GW
approximation [30,31], extended DMFT [32], or techniques
combining both [33,34].

The paper is organized as follows. Section II starts with
a discussion of the various symmetries of Coulomb integrals
for complex and real one-electron orbitals. More specifically,
we consider the case of one-electron orbitals forming bases
for irreducible representations of a crystal point group G.
In Sec. III, we use the Clebsch-Gordan coefficients of G to
define linear combinations of Coulomb integrals (called G
invariants) that are invariant under the action of the operations

of G and we show that all Coulomb integrals can be written in
terms of these G invariants. Section IV describes how permu-
tation symmetries can be taken into account to further reduce
the number of independent integrals, which are now called
(permutation)-symmetrized G invariants. In this section, we
give an explicit formula for calculating any Coulomb integral
in terms of these symmetrized G invariants and we show,
conversely, that symmetrized G invariants can be calculated
from the same number of well-chosen Coulomb integrals.
Section V explores the important case of symmetry breaking
by considering that G is the subgroup of a larger group G
and presents the expression of the G invariants in terms of G
invariants. The example where G is the infinite group O(3) is
detailed to illustrate the calculations. In this case, the relation
between O(3) invariants (related to Slater integrals) and G
invariants can be used to quantify the deviation of the system
from spherical symmetry. In Sec. VI finally, we present our
conclusions as well as possible extensions of our work.

II. INVARIANCE OF COULOMB INTEGRALS

In solid-state and molecular physics, the electron-electron
interaction between orbitals ϕa, ϕb, ϕc, ϕd is described by
Coulomb integrals defined as

Uabcd = 〈ϕaϕb|U |ϕcϕd〉

=
∫

drdr′ϕa(r)∗ϕb(r′)∗U (r, r′)ϕd (r′)ϕc(r), (1)

where U (r, r′) is proportional to 1/|r − r′| for the bare
electron-electron interaction but can be much more compli-
cated if we consider screened Coulomb interactions as we do
here. We assume U (r, r′) to be real (otherwise consider its real
and imaginary parts separately) and permutation symmetric
in the sense U (r′, r) = U (r, r′). Note that the spin degree of
freedom is not considered in the present work.

In this paper, we focus on two kinds of symmetries of
Uabcd : (i) the on-site symmetry represented by a crystal point
group G (Sec. II A) and (ii) the permutation of the orbitals
(Sec. II B).

A. Invariance under point symmetry operations

a. Action of a group. In an abstract way, the action of a
group G on a vector space X is a linear operation that asso-
ciates to each pair (R, x) ∈ G × X an element of X denoted
by R� x. This operation satisfies

(i) 1� x = x ∀x ∈ X , where 1 is the identity element of
the group;

(ii) ∀R, S ∈ G and ∀x ∈ X , R� (S � x) = (RS)� x.
For example, if X = R3 and G is a point symmetry group

defined by matrices R, then R� r = Rr.
b. Action of a group on functions. In molecular or solid-

state physics, we deal with orbitals or (wave) functions ϕ,
which are functions of r. The action of the symmetry oper-
ation S on ϕ is a new function ϕS of r defined by

(S �ϕ)(r) = ϕS (r) = ϕ(S−1r),

where the argument of ϕ (originally denoted by r) is replaced
by S−1r in ϕ. The presence of S−1r instead of Sr is required
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by the axioms of an action. Indeed,(
R� (S �ϕ)

)
(r) = (R�ϕS )(r) = ϕS (R−1r)

= ϕ
(
S−1(R−1r)

) = ϕ((RS)−1r)

= (
(RS)�ϕ

)
(r) = ϕRS (r).

We can now describe the action of a symmetry operation on
a Coulomb integral by its action on the orbitals (Schrödinger
representation)

R�Uabcd =
∫

drdr′ϕa(R−1r)∗ϕb(R−1r′)∗U (r, r′)

×ϕd (R−1r′)ϕc(R−1r),

which can be transformed into an action on U (r, r′) (Heisen-
berg representation) by a change of variable

R�Uabcd =
∫

drdr′ϕa(r)∗ϕb(r′)∗U (Rr, Rr′)ϕd (r′)ϕc(r),

where we used the fact that symmetry operations preserve vol-
umes [i.e., d (Rr) = dr]. Thus Coulomb integrals are invariant
under the operations of the group G if U is invariant under
the operations of G: U (Rr, Rr′) = U (r, r′) for all R of G. We
assume this to hold in the present paper. As a consequence,
the symmetry of the system is expressed by the property of
the Coulomb integrals

R�Uabcd = Uabcd , (2)

for all R of G.
Group representation. A group representation is a set of

unitary matrices �(R), one for each element R of the group,
which satisfies �(R)�(S) = �(RS) for any two elements R
and S in G. If d is the dimension of the matrices, a basis of
the carrier space of this representation is a set of d orbitals
ϕa, ϕb, . . . such that

R�ϕa =
∑

b

�ba(R)ϕb. (3)

The order of the indices of � might appear surprising at first
glance, but is actually required [35] to satisfy the second
property of the action

R� (S �ϕa) = R�
( ∑

b

�ba(S)ϕb
) =

∑
b

�ba(S)(R�ϕb)

=
∑

bc

�ba(S)�cb(R)ϕc =
∑

c

(�(R)�(S))caϕc

=
∑

c

(�(RS))caϕc = (RS)�ϕa,

where we used the linearity of the action in the first line, then
that �(R)�(S) = �(RS) between the second and third lines.

Irreducible representations. We are particulary interested
in irreducible representations (irreps) which are representa-
tions that cannot be decomposed into smaller representations.
In this paper, we assume that the orbitals transform as irreps
(denoted by α, β, γ and δ) of G. For each of these repre-
sentations, for instance, α, let {ϕ(α)

a }, a = 1, . . . , dim α, be
a basis of this representation and {�(α)(R), ∀R ∈ G} be its
representation matrices. We denote the Coulomb integral on

the basis of the irreps as

U (αβγ δ)
abcd = 〈

ϕ(α)
a ϕ

(β )
b

∣∣U ∣∣ϕ(γ )
c ϕ

(δ)
d

〉
.

The action of R on U (αβγ δ)
abcd can now be described by represen-

tation matrices

R�U (αβγ δ)
abcd =

∑
a′b′c′d ′

�
(α)
a′a (R)∗�(β )

b′b (R)∗�(γ )
c′c (R)�(δ)

d ′d (R)

×U (αβγ δ)
a′b′c′d ′ . (4)

There are three types of irreps, in the sense of the
Frobenius-Schur criterion [36]:

(a) real irreps, for which we can find real representation
matrices;

(b) pseudoreal (or quaternionic) irreps, for which �(R)
and �(R)∗ are equivalent in the sense that they are related by
a similarity transformation, but they are not all equivalent to
real representation matrices;

(c) complex irreps, for which �(R) and �(R)∗ are not
equivalent, meaning that they are associated to different ir-
reps; an example of which is given by e±ik·r for the translation
group.

The distinction between real and nonreal (i.e., pseudoreal
or complex) irreps is crucial. Indeed, in the case of real rep-
resentations, we can choose real representation matrices and
also real-valued basis functions {ϕ(α)

a } of the carrier space of
the irrep. Please note that even real representations can be
represented by complex-valued matrices, as it is the case, for
instance, of the real representation Eg for the group Oh in
Altmann and Herzig’s tables [37]. However, in the case of
nonreal representations, the representation matrices and the
basis functions cannot be chosen real-valued.

For the groups Oh, O, Td , D6h, and D4h investigated by
Bünemann and Gebhard [27], all irreps are real. For the last
group Th studied in that article, there are four complex one-
dimensional representations (1Eg,

2Eg,
1Eu,

2Eu). They can be
grouped into pairs to become two-dimensional real represen-
tations, which are however no longer irreducible.

B. Invariance under some permutations

We now describe additional symmetries of the Coulomb in-
tegrals, related to the permutation of r and r′ and the complex
conjugation in Eq. (1). The permutation symmetries differ
between real- and complex-valued orbitals.

a. Nonreal representations. In the (more general) case of
nonreal representations, we assume complex-valued orbitals
ϕa. Interchanging r and r′ in the integral definition of Uabcd

[Eq. (1)] gives Uabcd = Ubadc, and taking its complex conju-
gate yields U ∗

abcd = Ucdab. As a consequence, we obtain an
equality between four Coulomb integrals

Uabcd = Ubadc = U ∗
cdab = U ∗

dcba. (5)

This can be seen as the invariance of the Coulomb integrals
under the action of an additional group GP of four elements
{p1, p2, p3, p4}. Its action on Uabcd is defined by

p1 �Uabcd = Uabcd , p2 �Uabcd = Ubadc,

p3 �Uabcd = U ∗
cdab, p4 �Uabcd = U ∗

dcba.

and is represented graphically on Fig. 1(a).
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FIG. 1. Geometric representation of the permutation symmetries
of Uabcd . The vertices are labeled clockwise with the orbital indices
a, b, c, and d . (a) The complex conjugation of nonreal orbitals is
graphically represented as a transformation of black vertices into
white ones (and vice versa). The permutations form the group m′m2′

which describes the symmetries of a rectangle with two white and
two black vertices. (b) The permutations of real orbitals form the
group D4 which describes the symmetries of a square.

Due to the complex conjugation in its action, GP is a
magnetic group, of which the Coulomb integrals form a corep-
resentation, as defined by Wigner [38].

More precisely, the permutation group GP is isomorphic
to the Shubnikov group of the third kind m′m2′. It has two
unitary operations E and σy, and two antiunitary operations
C2z and σx [39].

b. Real representations. In the case of real representa-
tions, we assume real-valued orbitals. The previous equality
[Eq. (5)] still holds with Uabcd = Ucdba = Ubadc = Udcba. In
addition, the two orbitals ϕa(r) and ϕc(r), as well as ϕb(r′) and
ϕd (r′), now play an equivalent role and can be interchanged,
yielding equalities like Uabcd = Ucbad . We therefore get equal-
ities between eight Coulomb integrals [27]

Uabcd = Ucdba = Ubadc = Udcba

= Uadcb = Ucbad = Ubcda = Udabc. (6)

Again, these equalities can be interpreted as the invariance of
the Coulomb integral under the action of a group GP = D4 of
eight permutations [see Fig. 1(b)].

III. GROUP INVARIANTS

We now introduce the central objects of the present paper.
Since they are built to be invariant under the action of the
considered group, we call them group invariants and denote
them I . As we shall see, they correspond to the eigenvalues of
the interaction matrix, on the basis of the irreps of the group.

As a starting point, we consider the point group only,
leaving the permutation groups to the next section.

A. Clebsch-Gordan coefficients

For any finite (or compact) group G, the tensor product
(also known as the direct product, or the Kronecker product
[35]) of two irreps can be written as a direct sum of irreps,
called a Clebsch-Gordan series [40]

α ⊗ β = η1 ⊕ · · · ⊕ ηk, (7)

where we assume that no irrep ηi appears more than once.
In other words, we assume tensor products of irreps to be

multiplicity-free. This assumption can be relaxed without
conceptual complication by using methods which are now
standard in the literature [41–47], but this leads to a cluttering
of indices in formulas, that we prefer to avoid. Additionally,
this assumption is actually justified for crystal point groups.
Indeed, their product tables [37] indicate that all crystal point
groups except T and Th are multiplicity-free. Even the excep-
tions T and Th satisfy the assumption in the broader sense
that their doubly occuring irreps can be distinguished by their
symmetric and antisymmetric nature.

At the level of the matrix representations of the irreps,
a unitary transformation brings their tensor product into a
sum of the irrep matrices. The coefficients of this unitary
transformation are called Clebsch-Gordan coefficients. More
precisely, we define the Clebsch-Gordan coefficients to be any
set of complex numbers (αaβb|ηe) solving the equation [35]

�
(α)
a′a (R)�(β )

b′b (R) =
∑
ηee′

(αa′βb′|ηe′)�(η)
e′e (R)(αaβb|ηe)∗. (8)

A possible solution of this equation is given by Dirl’s
formula [48]

(αaβb|ηe) =
∑

R �(α)
aa0

(R)�(β )
bb0

(R)
(
�(η)

ee0
(R)

)∗
√

N (a0, b0, e0)
, (9)

with

N (a0, b0, e0) = |G|
dim η

∑
R

�(α)
a0a0

(R)�(β )
b0b0

(R)
(
�(η)

e0e0
(R)

)∗
,

where |G| is the order of G (i.e., the number of its elements)
and, for each triple (α, β, η), three components (a0, b0, e0) are
chosen so that N (a0, b0, e0) �= 0. Such components exist if η

belongs to the tensor product of α ⊗ β (see also Ref. [40]).
These Clebsch-Gordan coefficients are a generalization of the
ones used in angular momentum theory. They satisfy orthog-
onality relations∑

ab

(αaβb|ηe)∗(αaβb|φ f ) = δηφδe f , (10)

∑
ηe

(αaβb|ηe)∗(αa′βb′|ηe) = δaa′δbb′ , (11)

due to the fact that they are elements of a unitary matrix [35].
The definition of Clebsch-Gordan coefficients as any so-

lution of Eq. (9) is inspired by Derome and Sharp (see note
[49]). Note that this definition does not fully specify the
Clebsch-Gordan coefficients, since multiplying them by a
phase depending on α, β and γ transforms a solution into
another one. Other approaches choose these phases carefully
in order to maximize the symmetry of Clebsch-Gordan co-
efficients [43,45–47,50–52]. However, these phases depend
on each group and the Clebsch-Gordan coefficients given by
Dirl’s formula [Eq. (9)] generally do not satisfy these symme-
tries. We also chose to use the Clebsch-Gordan coefficients as
defined by Derome and Sharp for another, crucial but tech-
nical reason; the interested reader is invited to read the note
[53].
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B. Definition and properties of the point-group invariants

As a first step of the symmetry analysis of Coulomb inte-
grals, we consider the submatrix U (αβγ δ) of elements U (αβγ δ)

abcd
for a given quadruple of irreps σ = (αβγ δ). We define the
associated G invariant as

I (αβγ δ,η) =
∑
abcde

(αaβb|ηe)∗U (αβγ δ)
abcd (γ cδd|ηe)

dim η
, (12)

where η belongs to the Clebsch-Gordan series of both α ⊗ β

and γ ⊗ δ.
Note that I (αβγ δ,η) is basis-independent. Indeed, let P(α) =∑
a |ϕ(α)

a 〉〈ϕ(α)
a | be the projector onto a representation α. There

is a way to map tensor products of states into sums of states
so that

(γ cδd|ηe) = (〈
ϕ(γ )

c

∣∣ ⊗ 〈
ϕ

(δ)
d

∣∣) ∣∣ϕ(η)
e

〉
,

(αaβb|ηe)∗ = 〈
ϕ(η)

e

∣∣(∣∣ϕ(α)
a

〉 ⊗ ∣∣ϕ(β )
b

〉)
.

Recalling that U (αβγ δ)
abcd = 〈ϕ(α)

a ϕ
(β )
b |U |ϕ(γ )

c ϕ
(δ)
d 〉, we obtain

I (αβγ δ,η) = 1

dim η
Tr[P(η)(P(α) ⊗ P(β ) )U (P(γ ) ⊗ P(δ) )],

which is basis independent. This means that G invariants can
be compared even if the matrices of the irreps are different.
However, if (γ , δ) �= (α, β ), they can differ from one another
by a phase due to the phase ambiguity of Clebsch-Gordan
coefficients (corresponding to the phase ambiguity of the
mapping of tensor products of states into sums of states).

The second result is a consequence of Schur’s lemma:
if U (αβγ δ)

abcd is invariant under the action of G [i.e., satisfies
Eq. (2)], then the matrix U (αβγ δ)

abcd is diagonalized by the
Clebsch-Gordan coefficients and its eigenvalues are I (αβγ δ,η)

∑
abcd

(αaβb|φ f )∗U (αβγ δ)
abcd (γ cδd|ηe) = δφηδe f I (αβγ δ,η). (13)

As a consequence, any U (αβγ δ)
abcd can be written explicitly in

terms of G invariants

U (αβγ δ)
abcd =

∑
ηe

(αaβb|ηe)I (αβγ δ,η)(γ cδd|ηe)∗. (14)

This shows that, if η runs over the n(αβγ δ) irreps shared by
α ⊗ β and γ ⊗ δ, then the set of I (αβγ δ,η) forms a complete
family of G invariants generating U (αβγ δ).

Moreover, the number n(αβγ δ) of G invariants for the set
(αβγ δ) can be obtained by the character formula

n(αβγ δ) = 1

|G|
∑
R∈G

χα (R)∗χβ (R)∗χγ (R)χδ (R), (15)

where the character of a representation η is defined as
χη(R) = Tr[�(η)(R)].

IV. PERMUTATION-SYMMETRIZED INVARIANTS

The G invariants of Eq. (12) do not take into account
the permutation symmetry as described in Sec. II B. These
additional constraints considerably decrease the number of
invariants and are discussed now.

A. Real representations

In this section, we assume that all the irreps are real and
that they are represented by real matrices. Consequently, the
Clebsch-Gordan coefficients can be chosen real, too. The
suitable permutation invariance of the integrals were given in
Eq. (6).

1. Symmetrization

As for any group, we obtain D4-symmetrized G invariants
by projecting U (αβγ δ)

abcd onto the fully symmetric irrep A1 of the
permutation group D4

〈
U (αβγ δ)

abcd

〉 = 1

|D4|
∑
p∈D4

U p(αβγ δ)
p(abcd )

= 1

8

(
U (αβγ δ)

abcd + U (γ δαβ )
cdab + U (βαδγ )

badc + U (δγ βα)
dcba

+U (αδγ β )
adcb + U (γ βαδ)

cbad + U (βγ δα)
bcda + U (δαβγ )

dabc

)
.

(16)

By definition, 〈U (αβγ δ)
abcd 〉 is invariant under the action of D4.

In fact, we know from Eq. (6) that Coulomb integrals satisfy
〈U (αβγ δ)

abcd 〉 = U (αβγ δ)
abcd , but as for the calculation of G invariants,

we investigate the properties of D4-symmetrized Coulomb in-
tegrals by assuming that we start from nonsymmetrized ones.
As a consequence, the permutation-symmetrized G invariants
are given by

〈I (αβγ δ,η)〉 =
∑
abcde

〈
U (αβγ δ)

abcd

〉
(αaβb|ηe)(γ cδd|ηe)

dim η
, (17)

which is a sum of eight terms as in Eq. (16). This is the
expression of the G × D4 invariants in terms of the Coulomb
integrals. We will write them in terms of the G invariants, as
detailed in the next two subsections. The goal is to transform
the Clebsch-Gordan coefficients of each sum so that they
match the indices of the permuted integral U p(αβγ δ)

p(abcd ) , in order
to identify a G invariant. Two cases must be distinguished:
either the representations coupled by the Clebsch-Gordan
coefficients are also coupled in the permuted integral (pair-
conserving permutations) or they are reshuffled (pair-mixing
permutations).

a. The first four terms: pair-conserving permutations. The
terms of 〈I (αβγ δ,η)〉 corresponding to the first two terms on the
right-hand side of Eq. (16) are trivial∑

abcde

U (αβγ δ)
abcd (αaβb|ηe)(γ cδd|ηe) = I (αβγ δ,η) dim η,

∑
abcde

U (γ δαβ )
cdab (αaβb|ηe)(γ cδd|ηe) = I (γ δαβ,η) dim η.

To deal with the next two terms, we notice that, as a con-
sequence of Schur’s lemma, the Clebsch-Gordan coefficients
(αaβb|ηe) and (βbαa|ηe) differ by at most a phase depending
on α, β and η (but not on a, b, and e). We denote this phase by
{αβ, η} [45,51]: (αaβb|ηe) = {αβ, η}(βbαa|ηe). Moreover
{αβ, η} = ±1 for real Clebsch-Gordan coefficients.
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This enables us to write

∑
abcde

U (βαδγ )
badc (αaβb|ηe)(γ cδd|ηe)

= {αβ, η}{γ δ, η}
∑
abcde

U (βαδγ )
badc (βbαa|ηe)(δdγ c|ηe)

= {αβ, η}{γ δ, η}I (βαδγ ,η) dim η,

and similarly,

∑
abcde

U (δγ βα)
dcba (βbαa|ηe)(δdγ c|ηe)

= {αβ, η}{γ δ, η}I (δγ βα,η) dim η.

b. The last four terms: pair-mixing permutations. The last
four terms are more cumbersome, because their Clebsch-
Gordan coefficients couple the first and third, and the second
and fourth representations of the integrals, thus breaking the
“bra” and “ket” pairs.

In order to reshuffle these Clebsch-Gordan coefficients into
new pairs, we need to use a recoupling formula. Precisely, we
use the one proposed by Derome and Sharp (theorem 3 of
Ref. [41], and see notes [53,54]) for their general Clebsch-
Gordan coefficients. For real representation matrices (and
multiplicity-free point groups), the recoupling formula takes

the form∑
e

(αaβb|ηe)(γ cδd|ηe) = dim η
∑
φ f

(−1)φ+η

{
α β η

γ δ φ

}

× (γ cβb|φ f )(αaδd|φ f ), (18)

where the 6 j symbols are defined by{
α β η

γ δ φ

}
= (−1)α+β+η+γ+δ+φ

dim η dim φ

∑
abcde f

(γ cδd|ηe)

× (γ cβb|φ f )(αaδd|φ f )(αaβb|ηe).

(19)

In Eqs. (18) and (19), the symbols (−1)α , (−1)β, . . . are
defined as follows. According to Derome and Sharp, we first
define 1 j symbols by (α)aa′ = (αa00|αa′), where 0 is the
fully symmetric irrep. By Schur’s lemma, it can be shown
that (α)aa′ = ±δaa′ and we denote the sign ± by (−1)α . In
particular, if Clebsch-Gordan coefficients are calculated from
Dirl’s formula in Eq. (9), then (−1)α = 1 for every irrep α.
We also use the obvious notation (−1)φ+η = (−1)φ (−1)η.

In the literature, other 6 j symbols were defined which
display interesting symmetry properties [45,51]. However,
these symmetries require to adjust the phases of the Clebsch-
Gordan coefficients. Instead, we follow Derome’s approach
again and work with general Clebsch-Gordan coefficients
[41,42,56]. We are now ready to apply the remaining permu-
tations of D4 to I (αβγ δ,η). For example,

∑
abcde

U (γ βαδ)
cbad (αaβb|ηe)(γ cδd|ηe) = dim η

∑
φ

(−1)φ+η

{
α β η

γ δ φ

} ∑
abcdf

U (γ βαδ)
cbad (γ cβb|φ f )(αaδd|φ f )

= dim η
∑

φ

(−1)φ+η dim φ

{
α β η

γ δ φ

}
I (γ βαδ,φ).

c. D4-symmetrized invariant. By treating the three remain-
ing terms in the same manner, the D4-symmetrization of
I (αβγ δ,η) yields

〈I (αβγ δ,η)〉 = 1

8

(
Ipc +

∑
φ

(−1)η+φ dim φ

{
α β η

γ δ φ

}
Inpc

)
,

(20)

where the pair-conserving terms Ipc and the pair-
nonconserving terms Inpc are

Ipc = I (αβγ δ,η) + I (γ δαβ,η)

+{αβ, η}{γ δ, η}(I (βαδγ ,η) + I (δγ βα,η) ),

Inpc = I (αδγ β,φ) + I (γ βαδ,φ)

+{αδ, φ}{βγ , φ}(I (βγ δα,φ) + I (δαβγ ,φ) ).

2. Enumeration of G × D4 invariants

A permutation p of D4 transforms a quadruple of irreps
σ = (α, β, γ , δ) into another quadruple p(σ ). Let S be
the set of quadruples obtained from σ by the action of D4

(this is called the orbit of σ ). The number of elements of S
depends on the irreps in σ . For instance, if σ = (α, α, α, α),
then S has only one element S = {σ }. If all irreps are different,
then S has 8 elements. We shall see that there are five different
types of S.

As noticed in Ref. [27], the number of independent
permutation-symmetrized G × D4 invariants for a given set S
can again be obtained from the character formula

nS = 1

|G × D4|
∑

(R,p)∈G×D4

χS (R, p), (21)

where the character χS (R, p) of the element (R, p) in G × D4

in the orbit S is defined by

χS (R, p) =
∑

(αβγ δ)∈S

δ(αβγ δ),p(αβγ δ)

×
∑
abcd

�
(α)
a′a (R)�(β )

b′b (R)�(γ )
c′c (R)�(δ)

d ′d (R)
∣∣
(a′b′c′d ′ )=p−1(abcd ).

We give the formula for
∑

p χS (R, p) in terms of the
characters χα (R) of G for every possible set S.
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(i) S1 = {(α, α, α, α)}∑
p

χS1 (R, p) = χα (R)4 + 3χα (R2)2

+ 2χα (R2)χα (R)2 + 2χα (R4).

(ii) S2 = {(α, β, α, β ), (β, α, β, α)} with β �= α∑
p

χS2 (R, p) = 2(χα (R)2 + χα (R2))(χβ (R)2 + χβ (R2)).

(iii) S3 = {(α, α, β, β ), (α, β, β, α), (β, β, α, α), (β,

α, α, β )} with β �= α∑
p

χS3 (R, p) = 4χα (R)2χβ (R)2 + 4χα (R2)χβ (R2).

(iv) S4 = {(α, β, α, γ ), (α, γ , α, β ), (β, α, γ , α), (γ ,

α, β, α)} where β �= α and β �= γ , but γ = α is allowed∑
p

χS4 (R, p) = 4
(
χα (R)2 + χα (R2)

)
χβ (R)χγ (R).

(v) For all the other cases∑
p

χS5 (R, p) = 8χα (R)χβ (R)χγ (R)χδ (R).

3. Independent components of Coulomb integrals

For convenience, we write Eq. (20) in matrix form: 〈I p〉 =
MpqIq, where p and q are compound indexes (σ, η) and where
M2 = M is a projection matrix. As such, it is diagonalizable,
but since M is not an orthogonal projection, its eigenspaces are
not orthogonal. To solve this problem, we define the matrix
Q(σ,η)(τ,φ) = δστ δηφ

√
dim η and the modified projection ma-

trix N = QMQ−1, which is symmetric (i.e., NT = N) because
of the symmetries of 6 j symbols [41]. The eigenvalues of N
are 0 and 1 and its orthonormal eigenvectors are denoted by
vp.

In general, when a matrix N is diagonalizable with eigen-
values λp and eigenvectors vp, we can define the matrix
Bqp = v

p
q , where v

p
q is the qth component of vp and N is

recovered by Npr = ∑
q Bpqλq(B−1)qr . The eigenvalue λq = 0

does obviously not contribute and we are left with Npr =∑
q s.t. λq=1

Bpq(B−1)qr . We can now define the independent
components uq of symmetrized G invariants to be

uq =
∑

r

(B−1Q)qrIr, (22)

where q is such that λq = 1. These independent components
are the minimal information required to compute all Coulomb
integrals. Indeed,∑

q s.t. λq=1

(Q−1B)pquq =
∑

r

MprIr = 〈I p〉. (23)

4. The norm of Coulomb integrals

In order to analyze the screening of electron-electron in-
teraction in the solid state, evaluate the effect of an external
parameter such as pressure on Coulomb integrals, or simply
fit Coulomb integrals in a crystal with a spherical model,
we need to evaluate the distance between Coulomb integrals.

Since Coulomb integrals are matrix elements of an opera-
tor, the natural distance is given by the Hilbert-Schmidt (or
Frobenius) norm defined by

||U (αβγ δ)||2 =
∑
abcd

∣∣U (αβγ δ)
abcd

∣∣2
.

This norm is natural because it is invariant under unitary
transformations and it is perfectly suited to least square min-
imization. The mixing of irreps due to permutations leads us
to consider also the distance between Coulomb integrals for a
given set S of quadruples σ = (αβγ δ)

||U S||2 =
∑
σ∈S

||U σ ||2.

Since we express Coulomb integrals in terms of G invari-
ants, we need to define a distance between G invariants which
is compatible with the distance between Coulomb integrals.
By using Eq. (14) and the orthogonality of Clebsch-Gordan
coefficients, we obtain

||U S||2 =
∑
σ∈S

∑
η

dim η|I (σ,η)|2. (24)

We are now ready to compute the norm of Coulomb integrals
in terms of the independent components. Since matrix Q−1

in Eq. (23) removes the coefficient dim η in Eq. (24) and the
columns of B are orthonormal, we find

||U S||2 =
∑

q s.t. λq=1

|uq|2, (25)

where, in Eq. (24), we used I p = 〈I p〉, which is a consequence
of definition (17) of 〈I p〉 when Coulomb integrals satisfy the
D4-permutation symmetry (i.e., U (αβγ δ)

abcd = 〈U (αβγ δ)
abcd 〉).

In summary, it is possible to evaluate the total distance
between two sets of Coulomb integrals from the distance
between the independent components uq. An example of this
calculation is given in Sec. V A 2.

5. Minimizing Coulomb integral calculations

In this section, we determine the minimal number of
Coulomb integrals U (αβγ δ)

abcd that we have to calculate to be
able to determine all Coulomb integrals. This is obviously
useful to mimize the computational cost of electronic structure
calculations. We recall Eq. (14)

U (αβγ δ)
abcd =

∑
ηe

(αaβb|ηe)(γ cδd|ηe)I (αβγ δ,η),

which can be used to calculate n = dim α dim β dim γ dim δ

Coulomb integrals in terms of n(αβγ δ) G invariants [see
Eq. (15)]. If S denotes the type of set described in Sec. IV B 2
to which (αβγ δ) belongs, symmetrization mixes now |S|n
Coulomb integrals, where |S| is the number of elements of
S, and these |S|n Coulomb integrals can be determined in
terms of nS permutation-symmetrized G invariants, as ex-
plained in Sec. IV B 2. More precisely, we have shown in
the previous section that there are nS quantities uq such that
〈I p〉 = ∑

q(Q−1B)pquq. Combining these two relations, we

see that there is an (|S|n) × nS matrix Aαβγ δ,q
abcd , where (αβγ δ)

is in S, such that

U (αβγ δ)
abcd =

∑
q

Aαβγ δ,q
abcd uq.
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The rank r of A is the length of the longest list of inde-
pendent columns of A [57]. The case r < nS is possible, but it
means that the Coulomb integrals are linear combinations of a
number of parameters smaller than nS . This can happen when
the true symmetry group is larger than the one considered in
the calculation. However the most common case is r = nS and
we only consider this case. By definition of the rank of A,
we can choose nS independent columns of A. Each column
corresponds to a specific Coulomb integral U

(αpβpγpδp)
apbpcpdp

. We

take such a set of independent columns to build an nS × nS

matrix P relating the U
(αpβpγpδp)
apbpcpdp

to uq. The matrix P is invert-

ible since the columns are independent. Therefore P−1 allows
us to express the nS independent components uq in terms
of the nS selected Coulomb integrals. Since the independent
components generate all Coulomb integrals, we can compute
all Coulomb integrals from nS of them.

An example of this selection of a minimal set of Coulomb
integrals is given in Sec. V A 2.

B. Nonreal representations

In this section, the representation matrices, the orbital wave
functions and the Clebsch-Gordan coefficients are assumed
to be complex. The suitable permutation invariance of the
integrals were given in Eq. (5).

1. Symmetrization

It is clear that〈
U (αβγ δ)

abcd

〉 = 1
4

(
U (αβγ δ)

abcd + U (βαδγ )
badc + (

U (γ δαβ )
cdab

)∗ + (
U (δγ βα)

dcba

)∗)
is invariant under the operations of m′m2′. Therefore the rela-
tion between symmetrized and nonsymmetrized components
for nonreal representations is

4〈I (αβγ δ,η)〉 =
∑
abcde

U (αβγ δ)
abcd (αaβb|ηe)∗(γ cδd|ηe)

+
∑
abcde

U (βαδγ )
badc (αaβb|ηe)∗(γ cδd|ηe)

+
∑
abcde

(U (γ δαβ )
cdab )∗(αaβb|ηe)∗(γ cδd|ηe)

+
∑
abcde

(U (δγ βα)
dcba )∗(αaβb|ηe)∗(γ cδd|ηe)

= I (αβγ δ,η) + {αβη}{γ δη}I (βαδγ ,η)

+ (I (γ δαβ,η) )∗ + {αβη}{γ δη}(I (δγ βα,η) )∗.

By similarly calculating 〈I (βαδγ ,η)〉, 〈I (γ δαβ,η)〉, and 〈I (δγ βα,η)〉,
we obtain the following relations between symmetrized
components:

〈I (βαδγ ,η)〉 = {αβη}∗{γ δη}〈I (αβγ δ,η)〉,
〈I (γ δαβ,η)〉 = 〈I (αβγ δ,η)〉∗,
〈I (δγ βα,η)〉 = {αβη}∗{γ δη}〈I (αβγ δ,η)〉∗.

2. Enumeration of symmetrized G components

Irreducible corepresentations are not as familiar as irreps
but there is also a character formula for counting the num-
ber of times a given irreducible corepresentation appears in

a general corepresentation [58]. In Newmarch’s language,
we consider the fully symmetric irreducible corepresentation,
which is of type (a), corresponding to an intertwining number
I = 1.

A particularity of the character theory of corepresentations
is that it takes into account only unitary operations (in our case
the unit permutation (αβγ δ) and the permutation (βαδγ )).
The character of the representation corresponding to permuta-
tion p is

χS (R, p) =
∑

(αβγ δ)∈S

δ(αβγ δ),p(αβγ δ)

×
∑
abcd

�
(α)
a′a (R)∗�(β )

b′b (R)∗�(γ )
c′c (R)�(δ)

d ′d (R)|(a′b′c′d ′ )=p−1(abcd ),

and the number of symmetrized G components is

nS = 1

2|G|
∑

p

′ ∑
R

χS (R, p),

where
∑′ runs only over the two permutations corresponding

to unitary operations. We have only two cases to consider.
(i) S = {(α, α, β, β )}, where α and β can be equal

nS = 1

2|G|
∑

R

((χα (R)∗)2χβ (R)2 + χα (R2)∗χβ (R2)). (26)

(ii) For all other cases

nS = 1

|G|
∑

R

χα (R)∗χβ (R)∗χγ (R)χδ (R). (27)

3. Minimizing Coulomb integral calculations

Exactly as in the case of real representation matrices
treated in Sec. IV A 5, Coulomb integrals can be calculated
from a minimum number nS of them.

V. SUBDUCTION

In this section, we consider that the point group G is a
subgroup of a larger group G (symmetry breaking) in order
to compare the invariants of both groups. To do so, we will
give the expression of the G invariants on the basis of the G
invariants.

A typical application consists in taking the continuous rota-
tion group SO(3) as the larger group. Therefore we first show
that the SO(3) invariants are related to the well-known Slater
integrals, which parametrize Coulomb interaction in spherical
symmetry.

All point symmetry groups are subgroups of O(3) rather
than SO(3), but since O(3) is the direct product of SO(3) and
Ci{1, I}, where I is the inversion, the irreps of O(3) are direct
products of irreps of SO(3) and of Ci. To simplify notations,
we first concentrate on SO(3) and use the results to describe
subduction from O(3).

A. SO(3) invariants

1. SO(3) invariants for spherically
symmetric potentials

The theory presented in the previous section does not di-
rectly apply to SO(3) because, although irreps � are real (in

115137-8



PARAMETRIZATION OF THE COULOMB INTERACTION … PHYSICAL REVIEW B 108, 115137 (2023)

the sense of Frobenius-Schur), they are usually represented
by Wigner matrices D�(R) which can be complex. The usual
basis of spherical harmonics Y m

� is also generally not real.

This, however, has only a benign effect and we only indicate
the results. We follow the notation used in Cowan’s book
[59], where Coulomb integrals are given (for a Coulomb
potential) by

U (�1�2�3�4 )
m1m2m3m4

= 〈�1m1�2m2| 2

ri j
|�3m3�4m4〉

=
∑

k

Rk (�1�2, �3�4)δm3−m1,m2−m4 (−1)m2+m3
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)(2�4 + 1)

×
(

�1 k �3

0 0 0

)(
�2 k �4

0 0 0

)(
�1 k �3

−m1 m1−m3 m3

)(
�2 k �4

−m2 m2−m4 m4

)
,

where [59]

Rk (�1�2, �3�4) =
∫ ∞

0
r2

1dr1

∫ ∞

0
r2

2dr2
2rk

<

rk+1
>

R�1 (r1)R�2 (r2)R�3 (r1)R�4 (r2),

are radial integrals and we assumed real radial wave functions R�. The 3 j symbols involving a row of zeros can only be nonzero
if �1 + �3 + k and �2 + �4 + k are even. As a consequence, �1 + �3 + �2 + �4 is even and (−1)�1+�3+�2+�4 = 1.

Our SO(3) invariants I (�1�2�3�4,�) were calculated by Cowan (Eqs. (10.17) and (10.20), [59])

I (�1�2�3�4,�) = 〈(�1 ⊗ �2)�m| 2

ri j
|(�3 ⊗ �4)�m〉

= (−1)�1−�3+�
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)(2�4 + 1)

×
∑

k

(
�1 k �3

0 0 0

)(
�2 k �4

0 0 0

){
�1 �2 �

�4 �3 k

}
Rk (�1�2, �3�4),

where the right-hand side is known to be independent of m.
Cowan’s result relates to the present work through∣∣(�1 ⊗ �2)�m

〉 =
∑
m1m2

(�1m1�2m2|�m)ϕ�1
m1

(ri )ϕ
�2
m2

(r j ).

Moreover, since the right-hand side of the equation for
I (�1�2�3�4,�) is independent of m, it can be replaced by its
average over m. Thus we obtain

I (�1�2�3�4,�) = 1

2� + 1

∑
m1m2m3m4m

(�1m1�2m2|�m)

× (�3m3�4m4|�m)U (�1�2�3�4 )
m1m2m3m4

,

which is indeed an SO(3) invariant in the sense of Eq. (12).
In the case of d electrons for which �1 = �2 = �3 = �4 =

2, we write F k = Rk (22, 22) for the standard d-shell Slater
integrals and we obtain

I (24,0) = F 0 + 2
7 F 2 + 2

7 F 4,

I (24,1) = F 0 + 1
7 F 2 − 4

21 F 4,

I (24,2) = F 0 − 3
49 F 2 + 4

49 F 4,

I (24,3) = F 0 − 8
49 F 2 − 1

49 F 4,

I (24,4) = F 0 + 4
49 F 2 + 1

441 F 4.

The expressions of this section were obtained by explicitly
assuming that the interaction potential is the Coulomb poten-
tial. In the following, we only assume that the potential is
spherically symmetric (so that the invariants remain SO(3)

invariants) and symmetric under the exchange of particles
(so that the D4 permutation symmetry is still valid). This
enables us to consider more general effective potentials.

2. Permutation-symmetrized SO(3) invariants

As in the case of the general group G, we can build
permutation-symmetrized SO(3) invariants. The D4 permuta-
tion symmetry can only be applied if the complex spherical
harmonics are transformed into real (or cubic or tesseral) har-
monics, but the corresponding Clebsch-Gordan coefficients
are not the usual ones. We prefer to work with spherical
harmonics, but the action of D4 permutations is now different

U (�1�2�3�4 )
m1m2m3m4

= U (�2�1�4�3 )
m2m1m4m3

= (−1)m1+m3U (�2�3�4�1 )
m2−m3m4−m1

= (−1)m1+m2+m3+m4U (�3�4�1�2 )
−m3−m4−m1−m2

= (−1)m1+m2+m3+m4U (�4�3�2�1 )
−m4−m3−m2−m1

= (−1)m1+m3U (�3�2�1�4 )
−m3m2−m1m4

= (−1)m2+m4U (�4�1�2�3 )
−m4m1−m2m3

= (−1)m2+m4U (�1�4�3�2 )
m1−m4m3−m2

.

Still, the result 〈I (�1�2�3�4,�)〉 of permutation symmetrization
has the same form as the one for real representation matrices
given by Eq. (20), if we substitute α = �1, β = �2, γ = �3,
δ = �4, η = �, and φ = �′, all permutation factors {�i� j, �k} =
(−1)�i+� j−�k and (−1)η+φ is replaced by (−1)�1+�3 . Note that,
because of the last substitution, the formula for SO(3) is not a
special case of the general formula given in Eq. (20) because,
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for all irreps α(= �) of SO(3), (−1)α = 1 in the sense of
the definition given in Sec. IV A 1 b. The additional factor
(−1)�1+�3 comes from the fact that the action of D4 involves
signs due to the complex nature of the representation matrices.

In particular, if �1 = �2 = �3 = �4, then

〈
I (�4

1,�)
〉 = 1

2 I (�4
1,�) + 1

2

∑
�′

(2�′ + 1)

{
�1 �1 �′
�1 �1 �

}
I (�4

1,�
′ ).

For �1 = �2 = �3 = �4 = 2, this formula gives us

〈
I (24,�)

〉 =
4∑

�′=0

M��′I (24,�′ ),

where

M = 1

140

⎛
⎜⎜⎜⎜⎝

84 −42 70 −98 126
−14 105 −35 0 84

14 −21 55 56 36
−14 0 40 105 9

14 28 20 7 71

⎞
⎟⎟⎟⎟⎠. (28)

As expected M is a (nonorthogonal) projector (i.e., M2 = M)
with eigenvalues (1,1,1,0,0). Therefore there are three inde-
pendent components that can be related to the three Slater
integrals. The reader can check that 〈I (24,�)〉 = I (24,�) when
I (24,�) is expressed in terms of Slater integrals F k as in the
end of the previous section.

To illustrate the construction described in Sec. IV A 4, we
consider the matrix Q��′ = δ��′

√
2� + 1 and we choose three

orthonormal eigenvectors v1,p of N = QMQ−1 for eigenvalue
1 and two eigenvectors v0,p for eigenvalue 0 (that we did not
orthonormalize to simplify its form) to build the matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5

1√
5

3
5 − 1

2
5

2
√

7
√

3
5

√
3
5

2 − 2
√

3
5 − 5

4
√

3
−

√
3
7

4

1√
5

− 3
14

6
7
√

5
−

√
5

4 −
√

35
4

√
7

5 − 4√
35

− 3
10

√
7

0 1

3
5

6
7
√

5
1

70 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

giving us the three independent components

u1 = 5F 0, u2 = 2
√

5

7
F 2, u3 = 10

21
F 4. (29)

Eigenvectors v1,p were chosen to get this simple relation be-
tween independent components and Slater integrals. By using
Eq. (25), we can now easily calculate the norm of the set of
625 Coulomb integrals for S = {2, 2, 2, 2} in terms of Slater
integrals

||U S||2 =
∑

m1m2m3m4

∣∣U (24 )
m1m2m3m4

∣∣2

= 25(F 0)2 + 20

49
(F 2)2 + 100

441
(F 4)2.

Incidentally, we recover the fact, often used in practice
[23–25], that spherically symmetric potentials can be de-
scribed by the usual three Slater integrals F 0, F 2, and F 4

for d orbitals. Indeed, Slater integrals were originally de-
rived under the assumption that the interaction potential is
of Coulomb type but the conclusion that there are only three
symmetrized SO(3) invariants are obtained here for more
general potentials. We just assumed that the potential is real,
spherically symmetric and invariant under the exchange of
x and y, so that the D4 symmetry holds. Any real potential
of the form V (|x|, |y|, x · y) = V (|y|, |x|, x · y) satisfies these
assumptions.

We can also take advantage of this example to show how
the method described in Sec. IV A 5 minimizes the calculation
of Coulomb integrals. Cowan’s formula gives 625 Coulomb
integrals U (24 )

m1m2m3m4
as a linear combination of three Slater

integrals, which are simply related to our independent com-
ponents in Eq. (29). Therefore the matrix A relating Coulomb
integrals to independent components has 3 lines and 625
columns. From this matrix, we extract three columns corre-
sponding to U (24 )

0000, U (24 )
001−1, and U (24 )

002−2 to build the 3 × 3 matrix

P =

⎛
⎜⎜⎜⎝

1
5

2
7
√

5
6
35

0 − 1
14

√
5

− 1
7

0 2
7
√

5
1

14

⎞
⎟⎟⎟⎠.

Since det P �= 0, P is invertible and we can compute the inde-
pendent components u1, u2 and u3 from the Coulomb integrals
U (24 )

0000, U (24 )
001−1, and U (24 )

002−2. Once we know the independent
components, we can calculate all 625 Coulomb integrals.

3. Enumeration of symmetrized SO(3) invariants

The number of symmetrized SO(3) invariants is expressed
by formulas similar to the one given for G. For example, if
�1 = �2 = �3 = �4 = �, and if the rotations are defined by an
axis n and an angle ω, then the character of the rotation is
χ�(ω) = sin ((2� + 1)ω/2)/ sin(ω/2) and [60]

nS1 = 1

8π

∫ 2π

0
dω sin2(ω/2)(χ�(ω)4 + 3χ�(2ω)2

+ 2χ�(2ω)χ�(ω)2 + 2χ�(4ω)) = � + 1.

Similarly

nS2 = min(�α + 1, �β + 1),

nS3 = min(2�α + 1, 2�β + 1),

nS4 = 1
2 a�β�γ (0) − 1

2 a�β�γ (2�α + 1) + 1
2 b�β�γ (2�α ),

nS5 = a�α�β (|�γ − �δ|) − a�α�β (�γ + �δ + 1),

where

a��′
(m) =

⎧⎨
⎩

2 min(�, �′) + 1 if |m| � |� − �′|,
� + �′ − |m| + 1 if |� − �′| � |m| � � + �′,
0 if |m| > � + �′,

and

b��′
(m) =

⎧⎨
⎩

1 if � + �′ is even and |m| � |� − �′|,
−1 if � + �′ is odd and |m| > � + �′,
0 otherwise.
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B. Subduction from G to G

We now come back to a general point group G, but for
notational convenience, we keep labeling the irreps of the
larger group G by �1, �2, . . ., as for SO(3). However, we insist
that the following formulas do not require G = SO(3).

When lowering the symmetry, each irrep of the larger
group branches into several irreps of the subgroup. For in-
stance, the � = 2 representation of G = SO(3) splits into the
representations Eg and T2g of G = Oh. Let us denote �1α the
irrep α of G that comes from �1 of G, and idem for �2β,
�3γ , �4δ and �η. The basis of the irreps of G, {|�m〉} with
1 � m � dim �, spans the same space as {|�αa〉}, where α

runs over all the irreps subduced from � and 1 � a � dim α.
As a consequence, the interaction elements can be labeled by
U (�1�2�3�4 )

αaβbγ cδd or U (�1α�2β�3γ �4δ)
abcd indiscriminately.

1. Isoscalar factors

We showed in Sec. III B that the group invariants are
basis-independent, but they depend on the point group. In
a G-symmetric point group, the interaction elements can be
expressed either in terms of G invariants I (�1�2�3�4,�)

U (�1�2�3�4 )
αaβbγ cδd =

∑
�ηe

(�1αa�2βb|�ηe)

× (�3γ c�4δd|�ηe)∗I (�1�2�3�4,�), (30)

or in terms of the subduced G invariants I (�1α�2β�3γ �4δ,η)

U (�1α�2β�3γ �4δ)
abcd =

∑
ηe

(αaβb|ηe)(γ cδd|ηe)∗I (�1α�2β�3γ �4δ,η).

(31)

Now, the Racah factorization lemma [45] states that
the Clebsch-Gordan coefficients of G, (�1αa�2βb|�ηe), and
those of G, (αaβb|ηe), are related via complex numbers(
�1 �2

α β

∣∣∣ �

η

)
called isoscalar factors

(�1αa�2βb|�ηe) =
(

�1 �2

α β

∣∣∣∣ �

η

)
(αaβb|ηe). (32)

Isoscalar factors are fundamental ingredients of group-
subgroup symmetry calculations [43,45,51,61–63]. They
satisfy orthogonality relations [45]

∑
�

(
�1 �2

α β

∣∣∣∣ �

η

)(
�1 �2

α′ β ′

∣∣∣∣ �

η

)∗
= δαα′δββ ′ ,

∑
αβ

(
�1 �2

α β

∣∣∣∣ �

η

)(
�1 �2

α β

∣∣∣∣ �′
η

)∗
= δ��′ .

We implicitly assumed that α, β, η, . . . appear in the subduc-
tion of �1, �2, �, . . ., respectively, and that η belongs to the
Clebsch-Gordan expansion of α ⊗ β and α′ ⊗ β ′. Isoscalar
factors are usually calculated from Clebsch-Gordan coeffi-
cients, but their squares can be calculated from characters
[62,64].

By comparing the right-hand side of Eqs. (30) and (31)
and using the usual orthogonality relations of Clebsch-Gordan
coefficients, we get

I (�1α�2β�3γ �4δ,η) =
∑

�

(
�1 �2

α β

∣∣∣∣ �

η

)(
�3 �4

γ δ

∣∣∣∣ �

η

)∗

× I (�1�2�3�4,�), (33)

I (�1�2�3�4,�) =
∑

αβγ δη

dim η

dim �

(
�1 �2

α β

∣∣∣∣ �

η

)∗(
�3 �4

γ δ

∣∣∣∣ �

η

)

× I (�1α�2β�3γ �4δ,η). (34)

To summarize the result of this section, I (�1α�2β�3γ �4δ,η) are
G invariants obtained for a system with a symmetry group
G ⊃ G. They can be directly compared to the G invariants of a
system with the actual G symmetry group. Equation (34) can
also be used to calculate a set of (approximate) G invariants
I (�1�2�3�4,�) from the G invariants I (αβγ δ,η); the mean squared
error of the fit would measure the deviation of the lower-
symmetry system from the one with the higher symmetry.

For notational convenience, we assumed that each irrep α

of G appears only once in the subduction of the irrep � of G.
However, if the order of G is small or if the dimension of � is
large, it usually happens that some irrep α appears more than
once in the subduction from �. For example, the irrep � = 5 of
SO(3) generates two independent irreps T1g of the octahedral
group O. To take this multiplicity into account, we add a new
index k and a general subduction is now described by �kα. For
example,

� = 5 → 1T1g ⊕ 2T1g ⊕ 1Eg ⊕ 1T2g.

The Clebsch-Gordan coefficients use this addi-
tional index and the Racah factorization lemma
becomes

(�1kααa�2kββb|�kηe) =
(

�1 �2

kαα kββ

∣∣∣∣ �

kη

)
(αaβb|ηe),

where the additional indices are restricted to the isoscalar
factor. The Coulomb integrals can be written in terms of the
subduced G invariants as

U
(�1kαα�2kββ�3kγ γ �4kδδ)
abcd

=
∑
ηe

(αaβb|ηe)(γ cδd|ηe)∗I (�1kαα�2kββ�3kγ γ �4kδδ,η),

where

I (�1kαα�2kββ�3kγ γ �4kδδ,η)

=
∑
�k

(
�1 �2

kαα kββ

∣∣∣∣ �

kη

)(
�3 �4

kγ γ kδδ

∣∣∣∣ �

kη

)∗
I (�1�2�3�4,�).

This is the generalization of Eq. (33), whereas Eq. (34) be-
comes

I (�1�2�3�4,�) =
∑

kααkββ
kγ γ kδδkη

dim η

dim �
I (�1kαα�2kββ�3kγ γ �4kδδ,η)

×
(

�1 �2

kαα kββ

∣∣∣∣ �

kη

)∗(
�3 �4

kγ γ kδδ

∣∣∣∣ �

kη

)
.
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C. Subduction from O(3)

As explained in the introduction of this section, the irreps
of O(3) are the direct product L = (�, εL ) of an irrep � of
SO(3) and an irrep εL = ±1 of Ci [35]. The commutative
group Ci is of order 2 with two irreps denoted by εL = ±1 that
are one-dimensional and satisfy I �ϕL = εLϕL. Moreover, I
commutes with SO(3). In general, the action of I on a tensor
product of irreps of O(3) is

I � (ϕL1 ⊗ ϕL2 ) = εL1εL2 (ϕL1 ⊗ ϕL2 ).

The Clebsch-Gordan coefficients for O(3) are

(L1m1L2m2|L3m3) = δεL1 εL2 ,εL3
(�1m1�2m2|�3m3).

The O(3) invariants are

I (L1L2L3L4,L) = δεL1 εL2 ,εL δεL3 εL4 ,εL I (�1�2�3�4,�).

The condition εL1εL2 = εL = εL3εL4 implies εL1εL2εL3εL4 = 1,
which is symmetric under permutation of L1, L2, L3, L4 and
also implies εLiεL j = εLk εLl , where (i, j, k, l ) is any permuta-
tion of (1,2,3,4). Therefore 〈IL1L2L3L4,L〉 is obtained from the
same formula as 〈I (�1�2�3�4,�)〉 up to the fact that the pair-
conserving term gets the factor δεL1 εL2 ,εL δεL3 εL4 ,εL while the
pair-nonconserving term gets the factor δεL1 εL4 ,εL′ δεL2 εL3 ,εL′ .

In the calculations of the previous sections, we used spher-
ical harmonics, for which L = (�, εL ) with εL = (−1)�. Thus,
in the following, we denote by � the O(3) irrep (�, (−1)�).
Then

I �U (�1�2�3�4 )
m1m2m3m4

= U (�1�2�3�4 )
m1m2m3m4

,

because the selection rules for 3 j symbols imply (−1)�1+�3 =
(−1)�2+�4 . Similarly I (L1L2L3L4,L) becomes I (�1�2�3�4,L) where
εL = (−1)�1+�2 = (−1)�3+�4 because the L in I (�1�2�3�4,L) does
not correspond to a spherical harmonics, for the same reason
as the cross product of two vectors is a pseudovector (i.e., a
“vector” which is even under inversion). Hence

I � I (�1�2�3�4,L) = I (�1�2�3�4,L).

Finally, since the condition (−1)�1+�3+�2+�4 = 1 is invariant
under permutation of L1, L2, L3, L4, we also obtain

I �
〈
I (�1�2�3�4,L)

〉 = 〈
I (�1�2�3�4,L)

〉
,

and 〈I (�1�2�3�4,L)〉 is obtained from the same formula as
〈I (�1�2�3�4,�)〉, except for the fact that the sum over �′ becomes
a sum over L′ = (�′, εL′ ), with εL′ = (−1)�1+�4 = (−1)�2+�3 ,
the 6 j symbols involving only � and �′.

The subduction formulas are the same, provided we notice
that, if G contains I, then gerade irreps of G can only arise
from even �i and ungerade irreps from odd �i.

VI. CONCLUSION

Starting from the simple and familiar problem of calcu-
lating Coulomb integrals in the most efficient way, we came
to use surprisingly sophisticated tools of group theory, such
as Clebsch-Gordan coefficients, 6 j symbols, corepresentation
theory or Racah factorization theorem, and had to recall the
remarkable work by Derome and Sharp, which was unjustly
forgotten. These tools enabled us to provide explicit expres-
sions for the Coulomb integrals in the most general case, i.e.,
for any orbital in any crystal point-group symmetry. More-
over, instead of providing tables which would depend on the
exact basis used for each irrep and on the phase choice of
Clebsch-Gordan coefficients, we give here general and self-
contained formulas.

Although the spin degree of freedom was neglected in the
present work, it is possible to take it into account as was done
by Sugano and coauthors [26], who considered Coulomb inte-
grals between spin-1 and spin-0 states. This implies adding the
action of permutations (12) and (34), for which the Coulomb
integrals are odd for spin-1 and even for spin-0. In other
words, the full symmetric group S4 should be considered
instead of D4. The methods used in this paper can handle such
a case, but the formula for the permutation-symmetrized G
invariants would involve 24 terms instead of 8.

It would also be tempting to refine the present treatment
of complex irreps, for example by considering their real and
imaginary parts and reducing the problem to the case of real
representations. However, this would be a nontrivial extension
of the present work, because the resulting real representations
would not be irreducible and many of our proofs made a
crucial use of Schur’s lemma, which holds only for irreps.
Pseudoreal irreps could possibly be dealt with by using the
fact that a representation and its complex conjugate are related
by a similarity transformation, generalizing what we did for
SO(3).

Finally, another fruitful extension would be to deal with
magnetic groups and their corepresentations, which are used
to describe the transport and response properties of magnetic
and multiferroic materials [65–69]. Although we dealt with
corepresentations in the present work, the theory of corepre-
sentations is not as developed as the theory of representations,
and this extension would also be nontrivial.
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