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Quantum circuit dynamics with local projective measurements can realize a rich spectrum of entan-
gled states of quantum matter. Motivated by the physics of the Kitaev quantum spin liquid [A. Kitaev,
Ann. Phys. 321, 2 (2006)], we study quantum circuit dynamics in 2 + 1 dimensions involving local projective
measurements, in which the monitored trajectories realize (i) a phase with topological quantum order or (ii)
a “critical” phase with a logarithmic violation of area-law scaling of the entanglement entropy along with
long-range tripartite entanglement. A Majorana parton description of these dynamics, which provides an out-
of-equilibrium generalization of the parton description of the Kitaev honeycomb model, permits an analytic
understanding of the universal properties of these two phases, including the entanglement properties of the
steady state, the dynamics of the system on the approach to equilibrium, and the phase transition between these
states. In the topologically ordered phase, two logical qubits can be encoded in an initial state and protected for
a time which scales exponentially in the linear dimension of the system, while no robust encoding of quantum
information persists in the critical phase. Extensive numerical simulations of these monitored dynamics confirm
our analytic predictions.
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I. INTRODUCTION

Quantum spin liquids [1–3] and topological orders char-
acterized by long-range entanglement [4] have advanced our
understanding of the possible phases of quantum matter. In
equilibrium, quantum spin liquids can arise from frustration;
examples include geometric frustration in nonbipartite lat-
tices such as the nearest-neighbor Heisenberg model on the
kagomé lattice [5–14], competition between longer-ranged
and shorter-ranged interactions such as the nearest- and
second-nearest-neighbor Heisenberg model on the triangular
lattice [15–18], and anisotropic interactions such as the cele-
brated Kitaev honeycomb model [19].

The search for material realizations of quantum spin liq-
uids remains challenging due to the requirement of strong
correlations, while definitive signatures of spin liquids can be
difficult to experimentally probe. On the other hand, digital
quantum simulators [20] have recently emerged as a plat-
form for using controllable operations to simulate interesting
phases of quantum condensed matter. Therefore, it is natural
to consider a constructive way to design long-range entangled
states in this setting using local unitary operations and projec-
tive measurements.

In this work, we exploit noncommutative, projective
measurements as a new source of frustration to generate
out-of-equilibrium analogs of spin-liquid states. Specifi-
cally, we consider projective measurements of the competing
anisotropic interactions in the Kitaev honeycomb model [19].
When these measurements are performed in a spatially ran-
dom fashion, we find that the monitored trajectories of the
quantum many-body system produce analogs of the two

phases in the original Kitaev model, as the relative rate of the
different kinds of measurements are tuned: (i) a topologically
ordered phase with long-range entanglement, and area-law
scaling of the entanglement entropy, and (ii) a “critical” phase
with a logarithmic violation of area-law entanglement and
long-range tripartite entanglement. The latter phase appears to
resemble a state in which the Majorana partons of the Kitaev
spin liquid have formed a Fermi surface, which cannot occur
in the ground state of the Kitaev spin liquid on the honey-
comb lattice while preserving time-reversal and translation
symmetries [19]. Through analytical arguments and numerical
studies, we argue that these two phases are robust in the
presence of other perturbations, such a small rate of additional
projective measurements.

An analytic understanding of these phases is obtained by
invoking a Majorana-fermion parton representation, which
has been previously used to recast the honeycomb model as a
model of Majorana fermions coupled to a static Z2 gauge field
[19]. The dynamics that we consider can be formulated as the
dynamics of the Majorana partons evolving under the action
of local measurements, followed by a projection back into the
physical spin Hilbert space. A limit of these measurement-
only dynamics admits a particularly simple representation in
terms of the Majorana partons, allowing for an understanding
of the universal properties of the topologically ordered and
critical phases, as well as the phase transition between them.
This representation is also used to argue in general terms that
certain high-symmetry regimes of these measurement-only
dynamics must give rise to either a topologically ordered
phase for the monitored pure states or a phase in which
these states have super-area-law scaling of the entanglement
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entropy. We note that the far-from-equilibrium parton con-
struction invoked in this work could potentially be useful to
study other long-range-entangled phases of quantum matter
that can emerge in monitored quantum dynamics.

We note that quantum circuits with both projective mea-
surements and local unitary gates (“hybrid” circuits) have
been extensively studied to uncover a rich behavior of the
monitored pure-state trajectories. In 1 + 1 dimensions, these
dynamics can give rise to a new phase of volume-law-
entangled quantum matter [21] with close connections to the
theory of quantum error-correcting codes [22–26]. Dynamics
in which the measurements and unitary gates commute pre-
serve a global symmetry can give rise to monitored trajectories
that exhibit symmetry-protected topological order [27] and
spin-glass order [28]. In 2 + 1 dimensions, hybrid quantum
circuits can yield monitored pure states with truly long-range
entanglement [29]. Previous studies on the emergence of
topological order in measurement-only circuits have consid-
ered the competition between different sets of measurements,
where each set is composed of mutually commuting opera-
tors that stabilizes a certain phase. For instance, Ref. [29]
studied the competition between measurements of the toric
code stabilizers, which stabilize the toric code phase, and
single-qubit measurements, which stabilize a trivial phase. In
contrast, for the circuit model which is studied in this work,
subsets of mutually commuting operators do not stabilize
any interesting phase, and noncommuting measurements are
crucial for the emergence of the nontrivial phases. Moreover,
the lower weight of the measurements used in the circuit could
make experimental investigation of the phase diagram more
feasible.

The remainder of the paper is organized as follows. A
detailed summary of the key results is presented in Sec. I A.
In Sec. II we introduce the circuit model considered in this
work and we provide a general analytical understanding of
the corresponding entanglement dynamics using the Majorana
parton description of the steady state of the circuit. In par-
ticular, Sec. II A presents the Majorana parton representation
of the dynamics of the monitored pure states, Sec. II B uses
the parton representation to obtain general analytical results
regarding the entanglement structure and topological order of
the quantum trajectories, and Sec. II C explains how one can
describe the dynamics of the Majorana partons in terms of
a classical fully packed loop model in three dimensions and
use that to argue about possible entanglement phases in this
system. In Sec. III we discuss analytically the purification
dynamics of the circuit model in each phase. The numerical
results are presented in Sec. IV which supports the analytical
arguments that are presented in previous sections. In Sec. V
we study small perturbations to the monitored dynamics stud-
ied in Sec. II, and show through a combination of numerical
and analytic arguments that the critical and topologically
ordered phases remain stable. We conclude with a short dis-
cussion and outlook in Sec. VI.

A. Summary of results

The monitored random circuit studied here is inspired by
the Kitaev honeycomb model [19]. We consider the same
arrangement of qubits on an L × L honeycomb lattice with pe-

px = 1 py = 1

pz = 1

A

C

Area Law

Critical

FIG. 1. Phase diagram:. As the probabilities of measuring differ-
ent bond operators (px , py, pz with px + py + pz = 1) are tuned, the
monitored pure-state trajectories realize (i) a topologically ordered
phase with an area-law scaling of the entanglement entropy (green
regions) or (ii) a “critical” phase with a logarithmic violation of
area-law entanglement scaling along with long-range tripartite en-
tanglement (yellow regions). The black dots show the numerically
extracted phase transition from simulations of these dynamics, while
the remaining dots are obtained by π/3 rotations. The topologi-
cally ordered and critical phases are robust when the dynamics are
perturbed, e.g., by adding a small rate of single-qubit projective
measurements.

riodic boundary conditions. We first study dynamics involving
projective measurements of the nearest-neighbor interaction
terms in the Kitaev honeycomb model [19], which depend
on the orientation j ∈ {x, y, z} of the bond connecting the two
qubits: at each updating step of the circuit, a random two-qubit
operator along a bond of type j is measured with probability
p j (with px + py + pz = 1); these operators and the arrange-
ment of qubits are discussed in greater detail in Sec. II. A
time step is defined to be N consecutive updating steps. As
these measurement rates are tuned, the monitored pure-state
trajectories of the system support two distinct phases, as sum-
marized in Fig. 1:

(i) Topologically ordered phase. For highly biased mea-
surement probabilities (e.g., pz � px, py) corresponding to
the green regions in Fig. 1, the monitored pure states exhibit
topological order. In addition to exhibiting area-law scaling
of the von Neumann entanglement entropy,1 the steady state
of the monitored dynamics exhibits long-range entanglement,
as evidenced by a quantized topological entanglement entropy
[30,31] Stopo = 1 as well as a bipartite mutual information be-
tween two noncontractible regions on the torus and separated
by O(L) distance, which is equal to 1.

The evolution of a maximally mixed initial state in this
dynamical regime further reveals the persistent, long-ranged
entanglement in this phase. Projective measurements have the
effect of rapidly disentangling the maximally mixed initial
state, resulting in an exponential decay of the entanglement
entropy until it plateaus at 2. This plateau persists until a time
tpurif ∼ O[exp(L)], when the system completely purifies. This

1We use the following definition of the von Neumann entropy of a
density matrix ρ throughout this work as S(ρ ) = −Tr(ρ ln2 ρ ).
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protected information which survives until exponentially long
times in the system size corresponds to the entanglement be-
tween the environment and two operators which loop around
the topologically nontrivial cycles of the torus, and suggests
the emergence of a dynamically generated quantum code with
two logical qubits.

In contrast, we note that the Kitaev honeycomb model
does not encode any logical qubits as a subsystem code [32],
while the recently discovered honeycomb code [33] uses a
time-periodic schedule of measurements to protect two logical
qubits. In contrast, the topologically ordered phase that we
find demonstrates that randomness in measurement order can
also lead to the emergence of a long-lived logical subspace.

(ii) Critical phase. A “critical” phase is found in region C
in Fig. 1. In this phase, the entanglement entropy of a large
subsystem A scales with its linear dimension LA as

SA = c0LA ln LA + · · · , (1)

where the ellipsis denotes subleading corrections, and c0

is a nonuniversal constant. Furthermore, on the torus, the
bipartite mutual information between two noncontractible re-
gions of width O(L) separated by a similar distance, denoted
I2(L), scales linearly with L. The critical phase also supports
multipartite long-range entanglement as quantified by the neg-
ative tripartite mutual information between noncontractible
regions, in contrast to the area-law phase. Finally, the mag-
nitude of the expectation value of open Wilson lines with end
points separated by a distance r decays as a power law 1/r�

with � = 3.
The purification dynamics in the critical phase is quite

different from the area-law phase. Starting from a totally
mixed state, there is an initial exponential drop, followed
by 1/t decay of entanglement entropy of the system, which
can be understood as a “Lévy flight” annihilation process of
unpaired Majorana partons. The system completely purifies at
a time tpurif ∼ O(L2). No logical information is protected in
this phase.

We also consider small perturbations to these dynamics,
e.g., single-qubit or other multisite measurements, which have
the important effect of removing the extensive number of
conserved quantities which are present in dynamics involving
only bond measurements. Through a combination of numer-
ical and analytical arguments, we show that the critical and
topologically ordered phases persist in the presence of these
perturbations.

We may compare the entanglement properties of these
monitored trajectories with the phases of the Kitaev spin
liquid. In the presence of time-reversal and translational sym-
metries, the Kitaev spin liquid on the honeycomb lattice [19]
has two phases: a gapless phase where the Majorana par-
tons have a semimetallic dispersion, and three gapped phases
which each exhibit Z2 topological order, and are related to
each other by threefold (θ = 2π/3) spatial rotations. The
area-law-entangled phase that arises in the monitored dynam-
ics that we study is quantitatively similar to the Z2 topological
order that arises in the ground state of the Kitaev honey-
comb model, due to the quantized topological entanglement
entropy, and the ability to encode two logical qubits on the
torus. As discussed in Sec. II A, the quantized bipartite mu-
tual information between a pair of noncontractible regions

on the torus is also shared by a particular ground-state sec-
tor of the two-dimensional Z2 toric code on the torus, into
which we argue that the steady state of the measurement-only
dynamics purifies when the measurement rates are highly
anisotropic.

In contrast to these area-law-entangled phases [34], the
critical phase quantitatively resembles a state in which the
Majorana partons in the Kitaev spin liquid have formed a
Fermi surface, due to both (i) the scaling of the entanglement
entropy with subsystem size and (ii) the extensive scaling
of the bipartite mutual information I2(L) ∼ L. Such a state
cannot emerge in the ground state of the Kitaev spin liquid
in the presence of time-reversal and translation symmetries.
Since the critical phase of the monitored dynamics arises
when measurements are applied randomly in space, trans-
lation symmetry is not present in any typical realization of
the dynamics, though it is preserved by the statistical ensem-
ble of monitored pure states. As a result, a more appropriate
comparison may be to the Kitaev honeycomb model with
broken translation symmetry, e.g., by introducing randomness
in the spin-exchange interaction [35], which can produce an
effective description of the Majorana partons with random
hopping matrix elements on a bipartite lattice, which could
lead to a “metallic” phase for the partons [36] in which
states at zero energy are delocalized. The entanglement prop-
erties of such a phase are not known to us, however, and
we are unable to draw any further quantitative comparisons
between this phase and the critical phase of the monitored
dynamics.

Finally, perturbations which break time-reversal symmetry,
such as an external magnetic field, can drive the gapless phase
of the Kitaev honeycomb model into a gapped, chiral spin
liquid supporting non-Abelian anyons [19]. Furthermore, in
the presence of both strong disorder and broken time-reversal
symmetry, the Majorana partons can form a metallic state [37]
in which the fermionic parton wave functions ψn(r) are spa-
tially extended [38,39], as quantified by a nontrivial scaling
of the inverse participation ratios (IPR) with system size L
as Iq = ∫

d2r|ψn(r)|2q ∼ L−(q−1)Dq , with Dq a q-dependent
constant. Analogous perturbations to the measurement-only
dynamics that we consider, such as single-qubit projective
measurements, do not appear to qualitatively alter the en-
tanglement properties of the critical phase. Furthermore, the
stabilizer nature of the dynamics that we study, as clarified in
Sec. II, necessarily prevents the parton wave functions from
being spatially extended in a manner which is characteristic
of this disordered, metallic phase.

We also study phase transitions between the critical and
topologically ordered phases in this monitored dynamics. We
argue that the generic nature of the phase transition is related
to a geometrical phase transition in a three-dimensional clas-
sical loop model, which has arisen in a different context in the
study of measurement-only dynamics of free fermions [40].
The tripartite mutual information, which serves as an order
parameter for the phase transition between the critical and
topologically ordered phases, is used to numerically extract
the correlation length critical exponent ν ≈ 0.9 consistently
at distinct phase transition points in the bulk of the phase
diagram. This value is close to the numerically obtained value
of this exponent from previous studies of this phase transition
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FIG. 2. Dynamics. Qubit degrees of freedom reside on the sites
of the honeycomb lattice. Bonds of the lattice are of type j ∈ {x, y, z}
shown in (a) and a bond operator is defined as the product of the
two Pauli operators of type j along that bond. A plaquette operator
Wp is defined as the product of bond operators over an elementary
plaquette, as shown in (b).

[41,42]. We note that the transitions at the boundary of the
phase diagram, e.g., pz = 0, can be understood by mapping
the growth of local operators which stabilize the evolving
wave function to the problem of bond percolation in two spa-
tial dimensions, which is in a different universality class from
the phase transition between the critical and topologically
ordered phases.

II. MONITORED DYNAMICS

We now describe the monitored dynamics in detail. Con-
sider a system of N = 2L2 qubits arranged on vertices of a L ×
L honeycomb lattice with periodic boundary condition. On
each edge of the honeycomb lattice connecting sites r and r′,
we define a bond operator depending on the orientation of the
edge and which acts on the two qubits as XrXr′ , YrYr′ or ZrZr′

(see Fig. 2). Starting from a maximally mixed initial state
ρ = 1/2N , we choose a bond of type x, y, or z randomly with
probability px, py, or pz, respectively (px + py + pz = 1), and
we measure the corresponding two-qubit bond operator, with
measurement outcomes obtained according to Born’s rule. A
time step of these dynamics corresponds to N consecutive
measurements.

We note that product of bond operators around an el-
ementary plaquette p of the honeycomb lattice, as shown
in Fig. 2(b), commutes with all of the bond operators; we
refer to this as the plaquette operator Wp. As a result, a
monitored dynamics involving measurements of bond op-
erators contains extensively many conserved quantities. In
Sec. V, we will consider perturbing away from these dynamics
in such a way that this conservation law is no longer micro-
scopically maintained.

A. Parton description of the steady state

We now explore the steady-state entanglement properties
of the monitored pure state of the system as a function of
the probabilities px, py, pz. To make analytic progress, we
replace each qubit with four Majorana fermions with fixed
fermion parity so that the Pauli spin operators at lattice site r
are represented as Xr = ibx

rcr, Yr = iby
rcr, and Zr = ibz

rcr [19].
It is convenient to arrange the fermions within each lattice site
so that each bj Majorana fermion lies at the end of a bond of
type j. By requiring that the fermion parity is constrained at
each site as bx

rby
rbz

rc = −iXrYrZr = 1, we faithfully recover the
spin Hilbert space.

The monitored pure state of the spins evolves through
the application of local projectors, which correspond to a
sequence of local measurements and outcomes, which are
drawn according to Born’s rule. Within a particular monitored
trajectory, the dynamics of the spins may be recast as a dy-
namics for the Majorana partons, followed by a projection
P ≡ ∏

r(1 + crbx
rby

rbz
r)/2 back into the Hilbert space of the

spins, due to the fact that the projector P commutes with
any operator acting on the spin degrees of freedom. As a
concrete example, let |ψ f 〉 be a state of the Majorana partons,
while |�〉 ∼ P |ψ f 〉 be the corresponding wave function for
the spins. A measurement of a single-qubit operator Xr which
yields the outcome +1 modifies the state of the spins, up to
normalization, as [(1 + Xr)/2] |�〉 ∼ P[(1 + ibx

rcr)/2] |ψ f 〉.
The latter expression may be interpreted as a dynamics for the
Majorana parton wave function |ψ f 〉 followed by a projection
into the spin Hilbert space.

While a monitored trajectory of the spins corresponds to
a monitored evolution of the Majorana partons, we note an
important difference in the probability distribution of mon-
itored trajectories between these two kinds of dynamics. If
ρ f is the density matrix of the Majorana partons, so that
ρ = Pρ f P/Tr(Pρ f ) is the corresponding state of the spins,
then a measurement of a Pauli operator O yields the two pos-
sible outcomes with probability p± = Tr(P	±ρ f )/Tr(Pρ f ),
respectively, where 	± = (1 ± O)/2. This is a priori differ-
ent from the probability distribution Tr(	±ρ f ) of obtaining
these outcomes when measuring the corresponding operator
in the state of the Majorana partons.2 Below, however, we will
focus on understanding the monitored pure-state trajectories
when ρ describes a stabilizer state [43], for which the entan-
glement properties of the evolving pure state are sensitive to
the Pauli operators which are measured, but insensitive to their
outcomes.

Starting with a maximally mixed initial state, we perform
measurements of the bond operators. The plaquette operators,
given by the product of bond operators around an elementary
plaquette, are all measured after a short time t∗ ∼ O(ln L),
as we argue in Sec. III. Inspired by the solution of the Ki-
taev honeycomb model [19], we take the following ansatz to
describe the density matrix of the Majorana fermions ρ f (t )
for times t > t∗, before projecting back into the spin Hilbert
space:

ρ f (t ) = ρc(t ) ⊗ ρb. (2)

Here, ρb = |�b〉 〈�b| is a pure state in which each b Majo-
rana fermion is “dimerized” with its nearest neighbor, i.e.,
so that ibj

rbj
r′ |�b〉 = |�b〉 where r, r′ are lattice sites which

are connected by a j-type bond with j ∈ {x, y, z}. This ansatz
for the density matrix is particularly convenient since its
form is preserved under the circuit dynamics: Note that any
bond operator may be represented as the product of the four

2A simple example of such an observable is the operator bx
rb

y
rb

z
rcr;

this operator is mapped to the identity within the spin Hilbert space,
and thus has only one possible outcome when “measured.” In con-
trast, the operator bx

rb
y
rb

z
rcr can take on various values depending on

the precise state of the Majorana partons.
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Majorana fermions along that bond. A measurement of this
operator manifestly commutes with the density matrix ρb. As
a result, these measurements give rise to dynamics of the c
Majorana partons, while leaving the state of the b fermions
invariant. It is also important to note that when we project
the ansatz in Eq. (2) back into the Hilbert space of the spins,
the resulting density matrix ρ(t ) = Pρ f (t )P/Tr(Pρ f ) is stabi-
lized by all of the plaquette operators so that Tr[Wpρ(t )] = 1.3

Therefore, the ansatz in Eq. (2) is only valid for t > t∗, when
all plaquette operators have been measured and have definite
values.4

A partial understanding of the steady-state entanglement
properties of the monitored pure states is obtained by taking
the c Majorana partons to be in a pure state |�c〉 in which all
of the Majoranas are “dimerized,” i.e., for each site r there
is another site r′ such that icrcr′ |�c〉 = ± |�c〉; the sign of
the fermion parity will be unimportant for determining the
entanglement properties of the steady state. These operators
can be visualized as forming a unique pairing of distinct sites
on the honeycomb lattice which evolves under the monitored
dynamics generated by the two-spin measurements. We may
see this by considering a concrete example, which is sum-
marized in Fig. 3(a): let the pure state |�c〉 be given such
that ic1c1′ |�c〉 = ic2c2′ |�c〉 = 1 where the sites 1 and 2 are
nearest neighbors connected by a y-type bond. The two-spin
measurement Y1Y2 = c1by

1by
2c2 is now performed, yielding the

outcome that Y1Y2 = +1. Applying the projection operator
	 ≡ (1 + c1by

1by
2c2)/2,

	
1 + ic1c1′

2

1 + ic2c2′

2

1 + iby
1by

2

2
	

= 1 − ic1c2

2

1 + ic1′c2′

2

1 + iby
1by

2

2
, (3)

yields the result that −ic1c2 and ic1′c2′ are the new stabilizers
for the evolving pure state of the c fermions. In terms of the
original configuration, the end points of the two dimerized
Majoranas have now been paired together as a result of the
measurement.

The evolving density matrix for the original spins ρ(t ) ∼
Pρ f (t )P is stabilized by all elements of the stabilizer group
of ρ f (t ) which commute with P. Each Majorana dimer icrcr′

stabilizing ρ f (t ) gives rise to a stabilizer Wrr′ for ρ(t ), which
is given, up to an overall sign, by the product of bond op-
erators along any path connecting the two points, as shown
in Fig. 3(b). Physically, the c Majorana partons carry gauge
charge, and must be connected by a Wilson line in the physical
Hilbert space. The full entanglement structure of the steady

3The density matrix in Eq. (2) on the torus is also stabilized by the
product of the bond operators around any noncontractible cycle of
the torus. We will return to this point at the end of this section.

4In general, when plaquette operators get measured by the circuit
dynamics, their value is randomly set to be ±1, while for the ansatz
in Eq. (2) all plaquette operators have value +1. This is not an issue
because we are only interested in the entanglement properties of the
resulting state which is independent of the sign of the stabilizers.
Alternatively, one can choose the parity of ibj

rbj
r′ dimers in the ansatz

(2) such that it results in correct signs for the plaquette stabilizers.

FIG. 3. Parton dynamics. A projective measurement of a bond
operator gives rise to a dynamics of the Majorana partons as shown
in (a) and described in Sec. II A. Each pair of dimerized Majorana
fermions icrcr′ = ±1 in the parton wave function gives rise to a
stabilizer in the spin Hilbert space, which has support along a string
connecting r, r′ as shown in (b).

state depends on the plaquette stabilizers Wp in addition to
Wrr′ stabilizers.

B. Entanglement properties of the monitored trajectories

For any qubit stabilizer wave function, the von Neumann
entanglement entropy of a subsystem A is given by SA =
−Tr(ρA log2 ρA) = IA − |A| where |A| is the number of qubits
in the A subsystem and IA counts the number of stabilizers
which are linearly independent, after restricting their sup-
port to the region A. Using this expression, we show in
Appendix A that if the A subsystem is semi-infinite with a
perfectly “flat” boundary that cuts across the z-type bonds of
the honeycomb lattice, that the entanglement entropy of this
region

SA = np + n


2
− 1, (4)

where np is the number of plaquettes that cross the entangle-
ment bipartition, and n
 counts the number of string stabilizers
Wrr′ which contain only one of their end points in the A
subsystem (equivalently, the number of dimerized pairs of
the c Majorana partons which cross the entanglement cut).
Although the above expression is not exact when the boundary
of the A subsystem is not perfectly flat, we conjecture that for
any sufficiently large subsystem, that SA and n
 scale in the
same way with subsystem size, up to area-law corrections.

The above relation may be used to determine the entangle-
ment properties of the monitored pure states as the relative
measurement rates px, py, pz are tuned. First, using (4), we
argue on general grounds that when px = py = pz = 1

3 , the
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steady state must exhibit topological order or super-area-law
scaling of the entanglement entropy. Consider starting from a
pure stabilizer state where all plaquette operators have been
already measured and the rest of degrees of freedom are spec-
ified by a set of short string stabilizers {Wrr′ } between distinct
pairs of lattice sites, e.g., when all links of a particular color,
say red, have been measured. As the circuit dynamics changes
the state, the collection of the string stabilizers {Wrr′ } evolves
with time. In the steady state, let Q(r) be the probability distri-
bution over the ensemble of monitored pure states for a string
stabilizer to connect two sites at a Cartesian distance r apart
from each other,5 meaning that for a given string stabilizer, the
probability that the distance between its end points is between
r and r + dr is given by Q(r)dr. If the string stabilizers in
the steady state are short ranged so that the typical Cartesian
distance between their end points

∫
dr r Q(r) ∼ const in the

thermodynamic limit, then Q(r) must decay faster than r−2

at long distances. In this case it is meaningful to define the
number of string stabilizers Wrr′ that pass through a cut that
wraps around a cycle of the torus, i.e., when r and r′ are on
different sides of the cut. As we demonstrate in Appendix B,
the number parity of strings crossing such a cut is (i) preserved
by the dynamical rules evolving a dimer configuration and (ii)
the same for all other vertical cuts on the lattice. This number
parity can be detected in the steady state by an operator whose
support extends along the cut and is localized in the direction
transverse to the cut. Therefore, a short-ranged ensemble of
string stabilizers in the steady state implies that the dynamics
at the isotropic point can encode nonlocal information about
the initial state of the system, similar to a topological quantum
order. On the other hand, if Q(r) ∼ r−α with α � 2 at long
distances, the typical string stabilizers are long ranged, and
the dimer number parity across a vertical cut becomes ill
defined. Note that in this case, since the string lengths could
grow to be of the order of the system size, being on different
sides of the cut is no longer well defined due to the periodic
boundary conditions.6 If one considers putting the system on
an infinite cylinder instead, the number parity across a cut
can be defined and it would be conserved, yet the operator
that measures this quantity is no longer localized around the
cut, but is extended across the system. However, in this case,
the system will exhibit super-area-law scaling of the entan-
glement entropy; since Q(r) ∼ r−α with α � 2, given a disk
of diameter 
, the contribution to the von Neumann entropy
from string stabilizers which extend a distance larger than 
 is
SA ∼ 
2

∫
r�


Q(r)dr ∼ 
3−α .
In summary, we find on general grounds that either (a)

the steady state encodes and preserves nonlocal information
about the initial state similar to a topological quantum or-
der or (b) exhibits a super-area-law scaling of entanglement
entropy. As we will see, both scenarios happen at differ-
ent points in the phase diagram. It is worth noting that this

5On a torus, the Cartesian distance between two points is defined
to be the length of the shortest path connecting the two.

6One can define left and right sides of the cut as the regions of
width L/2 on either side of the cut, but given that the strings are
long ranged, the number parity would no longer be conserved by the
dynamics with this definition.

FIG. 4. Loop representation of the stabilizer evolution. The
space-time evolution of the string stabilizers Wrr′ can be understood
by keeping track of their end points. A projective measurement of
a bond operator leads to a dynamical rule that the loops incident
upon the vertices of bond are connected, and a new pair of loops
is sourced at the bond, as shown in (b). These end points evolve as
in (a) when no measurement is performed. The collective evolution
of these end points can be interpreted as a loop model on a bipartite,
three-dimensional lattice, as shown in (c).

line of argumentation and conclusion are reminiscent of a
Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH) theorem
[44–46] for the nature of the ground state in the Kitaev model
in the presence of threefold (C3) rotational symmetry; in this
case, since the C3 symmetry anticommutes with the parity of c
Majorana partons, the ground state cannot be parity symmetric
and short-range entangled.

C. Loop model representation of the stabilizer evolution

A universal understanding of the entanglement properties
of the steady state may be obtained by studying the dynamics
of the Majorana partons as the relative measurement rates
px, py, pz are tuned. Given the initial state (2), the bond
measurements give rise to a free-fermion evolution of the c
Majorana partons, as derived in Eq. (3). After projecting back
into the spin Hilbert space, each pair of dimerized partons
can be viewed as forming the end points of a string which
has zero line tension, due to the fact that all of the plaquette
operators {Wp} belong to the stabilizer group (the Z2 fluxes are
pinned and static within the steady state of each realization
of the monitored evolution involving bond measurements).
A space-time representation of the evolving string operators
{Wrr′ } may now be invoked, by keeping track of the evolving
end points of each string stabilizer. The space-time evolution
of these end points traces out loops in three dimensions, as
shown in Fig. 4. A projective measurement of a bond operator
leads to the dynamical rule that the loops incident upon the
vertices of the bond are connected and a new pair of loops are
sourced at this bond, as shown in Figs. 4(a) and 4(b). We note
that this representation has been previously used to understand
the free-fermion evolution of Majorana fermions in two spa-
tial dimensions under frequent measurements [40], where it
was shown that the space-time evolution of the end points of
the paired Majorana fermions leads to a representation of the
ensemble of evolving pure states of the Majorana fermions
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as a fully packed loop model on a bipartite lattice in three
dimensions.

A description of this loop model as a nonlinear sigma
model with target space CPn−1 and in the replica limit n → 1
was studied in Refs. [47,48] and it is known that this model
supports two phases: one in which the loops behave as a Brow-
nian walk, so that the probability distribution of the Cartesian
distance between end points of a loop, denoted Q(r), scales as
Q(r) ∼ r−2 [49], and another phase in which the loops are
“short” and Q(r) ∼ exp(−r/ξ ). Much is also known about
the continuous phase transition separating these two phases
[41]. In conjunction with Eq. (4), we then conjecture that
the monitored pure states exhibit either (i) logarithmic viola-
tion of area-law scaling of the entanglement SA ∼ LA ln LA or
(ii) area-law scaling SA ∼ LA, respectively. Indeed, numerical
simulations reveal two entanglement phases corresponding
to cases (i) and (ii), confirming this conjecture. We note
that the while scaling (i) is typical in two-dimensional (2D)
Fermi liquids with a one-dimensional (1D) Fermi surface,
it is generally not possible in the presence of time-reversal
and translation symmetries in the ground state of the Kitaev
honeycomb model7 (see also Appendix C). Finally, we note
that when one of the probabilities is zero, e.g., pz = 0, the
two-dimensional system is effectively comprised of L decou-
pled one-dimensional systems. The entanglement dynamics
of each one-dimensional system can be mapped to a two-
dimensional classical loop model (see Refs. [27,28,40] and
Appendix D).

The area-law-entangled phase exhibits topological quan-
tum order. The easiest way to see this is to observe that
the probability of having a stabilizer which is given by the
product of bond operators around a noncontractible cycle of
the torus in the steady state is exponentially small in the linear
dimension of the system in the area-law-entangled phase.
Starting with a maximally mixed initial state and evolving the
system in this phase, the time for this Wilson loop operator
to be measured should then scale as tpurif ∼ O[exp(L)]. The
dynamics can then lead to a nonlocal encoding of information
about the initial state which is exponentially long lived.

Other universal entanglement properties of the critical and
topologically ordered phases, which follow from the two
phases of the loop-model representation of the stabilizer evo-
lution (e.g., measures of long-ranged tripartite entanglement,
the expectation values of Wilson loop operators, topological

7In the Kitaev honeycomb model, time-reversal symmetry can be
chosen to act on the Majorana partons as cr → ±cr where the sign
depends on whether r belongs to the A or B sublattice of the hon-
eycomb lattice, respectively [19], which requires that the Majorana
partons can only hop between different sublattices. In the presence
of translational symmetry, the Hamiltonian describing the Majorana
partons in momentum space then takes the form h(k) = fx (k)τ x +
fy(k)τ y where the τ Pauli matrices act in sublattice space, so that the
dispersion vanishes when both fx (k) = 0 and fy(k) = 0. The solution
to these equations generically gives a set of points in momentum
space, as opposed to a gapless manifold of states, which would be
required to obtain a logarithmic violation of area-law scaling of the
entanglement.

entanglement entropy) will be discussed in Sec. IV alongside
numerical simulations of these dynamics.

III. PURIFICATION DYNAMICS

We now study the purification dynamics of the sys-
tem, starting from a maximally mixed initial state ρ0 =
1/2N1 with entanglement entropy S(ρ0) = N , where S(ρ) =
−Tr(ρ log2 ρ) denotes the von Neumann entanglement en-
tropy. One can imagine that at the start each qubit of the
system is entangled with a reference qubit in the environ-
ment, making up a Bell pair together. After tracing out all
the reference qubits, one obtains the maximally mixed ini-
tial density matrix ρ0 = 1/2N1 on the system qubits. Due to
the measurements involved in the circuit, the system would
eventually purify the state, with S(ρ) = 0 after sufficiently
long time, which corresponds to disentangling the system
qubits from the reference qubits. As is shown in Refs. [50,51],
the measurement-induced entanglement phase transition man-
ifests itself as a phase transition in the purification dynamics,
meaning that different entanglement phases can be character-
ized by how long it takes the circuit to purify the state. As we
will explain bellow, the same connection holds in our system.
We will argue that one can use the classical three-dimensional
(3D) loop model picture to argue about the purification dy-
namics of the circuit. In particular, we show that when the
loops in the loop model are long ranged, which correspond the
the phase with LA ln LA entanglement the system would purify
in a time that is at most polynomial in system size, whereas
when the loops are short, which corresponds to the phase with
area-law entanglement, it takes an exponentially long time for
the circuit to completely purify the state (see Fig. 6).

As we shall see, different degrees of freedom in the system
get disentangled from the environment with different rates.
Thus, we start by identifying the degrees of freedom which are
relevant to the purification dynamics. Consider the following
set of commuting operators: (1) plaquette operators, (2) the
set of bond operators of a specific type (e.g., z-type bond
operators), and (3) the two long-cycle stabilizers, which are
given by the product of bond operators along the nontrivial
cycles of the torus (one horizontal and one vertical). It is easy
to see that there are L2 − 1 independent plaquette operators
and L2 − 1 independent z-bond operators in this set, and thus
by including the two long-cycle stabilizers, we have a com-
plete set of N = 2L2 commuting Pauli operators. Therefore,
we may view the Hilbert space of the system as the tensor
product of the Hilbert spaces of N virtual qubits consisted of
L2 − 1 plaquette qubits, L2 − 1 bond qubits, and 2 long-cycle
qubits [52]. Accordingly, one can view the density matrix
ρ0 = 1/2N1 as the reduced density matrix of a larger state
in which each virtual qubit makes a Bell pair with a cor-
responding reference qubit in the environment. Hence, the
entanglement between the environment and the system can
be viewed to be consisted of three different parts: (1) entan-
glement with the plaquette qubits, (2) entanglement with the
bond qubits, and (3) entanglement with the long-cycle qubits.
In the following we discuss how each part gets disentangled
from the reference system on the approach to the steady state.

(1) Plaquette stabilizers. Due to their local nature, the
plaquette stabilizers are measured with constant relative rate
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for any point inside the phase diagram with 0 < px, py, pz

(see Appendix E for details). Hence, the entanglement entropy
of the system will drop exponentially until O[ln(L)] times
when all plaquettes are measured. This is true in both the
topologically ordered and the critical phases.

(2) Bond operators. The purification dynamics of the bond
qubits may be understood by starting with a density matrix for
the Majorana partons

ρ f ∼ |�b〉 〈�b| ⊗ 1, (5)

where |�b〉 describes a dimerized pure state of the b Majo-
rana fermions as described below Eq. (2). The corresponding
density matrix for the spin degrees of freedom is volume-law
entangled, and is stabilized by all of the plaquette operators.

A subsequent measurement of a bond operator such as
XrXr′–where r and r′ are adjacent sites separated by an x-type
bond is equivalent to adding ±icrcr′ as a stabilizer for the
evolving state of the Majorana partons. We refer to cr and cr′

as “paired” Majorana partons since they are now dimerized.
The “unpaired” c Majorana partons each provide an O(1)
contribution to the entropy of the evolving state; once a bond
operator connecting two such unpaired partons is measured,
these degrees of freedom become “paired” and the entropy
of the state decreases. In Appendix F, we show that the dy-
namics of these unpaired Majorana partons can be understood
as a classical diffusion or annihilation reaction, in which the
partons can take random steps whose lengths are power-law
distributed in the critical phase. We show that this leads to
a power-law decay of the entropy in the critical phase, as
S(t ) ∼ L2/t . As a result, it takes a polynomial time of O(L2)
to disentangle the bond operators. On the other hand, the
bond qubits will be disentangled exponentially fast in the
topologically ordered phase.

We note that an alternate understanding of the purifica-
tion dynamics in the critical and topologically ordered phases
comes from the fully packed loop model, which clarifies the
universal nature of these dynamics in both phases. We again
start from the state (5) of the parton degrees of freedom. This
state may be viewed as the reduced density matrix of a pure
state in which each c Majorana parton has been dimerized
with a reference Majorana degree of freedom. As a result, we
may view each unpaired c Majorana parton as the end point
of a loop which is attached to a reference Majorana. As the
measurements proceed, these loops evolve according to the
rules presented in Sec. II B, and as shown schematically in
Fig. 5. In a time interval t , we may follow the space-time tra-
jectory of a loop; if the loop does not return to the initial time
slice within this interval, then the corresponding unpaired Ma-
jorana parton remains unpaired after time t , and contributes
to the entropy of the system. Since each loop resembles a
Brownian path in the critical phase, the motion of the loop
in the time direction resembles a one-dimensional random
walk. The probability that a given loop does not return to the
initial interface is then given by the probability that a random
walk on the interval (0, t ) initialized near the origin reaches
the point t first, before reaching the origin. This probability
decays as t−1 at long times [53]. From this reasoning, the
entropy of the purifying state of the system may be identified
with the spanning number of the loop model in a system with
dimensions L × L × t , which counts the number of strands

FIG. 5. Spanning number. The purification dynamics of the bond
operators may be understood in the fully packed loop model, by
considering the number of strands of loops which connect an initial
time t1 to a final time t2. This spanning number decreases polynomi-
ally (exponentially) in t2 − t1 in the critical (topologically ordered)
phases.

of loops which connect the bottom and top layers which are
separated by a distance t . Since there are O(L2) such strands
(one for each unpaired Majorana parton) in the initial time,
the entropy should decay as L2/t in the critical phase. In the
topologically ordered phase on the other hand, the spanning
number decays exponentially in time, due to the exponentially
small probability of having long loops [54].

(3) Long cycle stabilizers. In the topologically ordered
phase, the long-cycle stabilizers will remain entangled with
reference qubits until times which are exponentially large in
system size, as discussed in Sec. II A, due to the fact that in
the topologically ordered phase, the probability of having a
long loop is exponentially small. In the critical phase, this
entanglement survives only up to polynomial times.

The purification dynamics in both phases is summarized
schematically in Fig. 6.

IV. NUMERICAL RESULTS

In this section, we numerically study the measurement-
only dynamics considered in the previous section. The
measurement-only dynamics here are studied in L × L sys-
tems with periodic boundary conditions, with L � 40 sites.

2

L2

2L2

t

S

∼ t−1

∼ exp(−αt)

∼ exp(−α t)

O(log L) O(log L) O(L2) O(exp(L))

Critical
Area Law

FIG. 6. Purification dynamics. A summary of the evolution of the
entropy of the system, starting from a maximally mixed initial state
in the critical phase (blue) and topologically ordered phase (red).
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(a) (b)

FIG. 7. Purification of the plaquette stabilizers. Entropy density
as a function of time, starting from a totally mixed density matrix
at (a) isotropic point px = py = pz = 1

3 and (b) highly biased mea-
surements with px = py = 0.1 and pz = 0.8. The exponential decays
in both plots are related to plaquette stabilizers being measured at
constant rate.

Large-scale simulations of the monitored pure states are made
possible by the Clifford nature [43] of these dynamics, which
permit an efficient storage of the evolving state of the spin
degrees of freedom.

A. Purification dynamics

We first numerically study the purification dynamics of
the spins, starting from a maximally mixed initial state. We
observe that the plaquette stabilizers are added in a time
O(ln L) in both the topologically ordered and critical phases,
as shown in Figs. 7(b) and 7(a), respectively. We note that
starting with a maximally mixed initial state, the rate at which
plaquette stabilizers are being measured is very small; a pla-
quette stabilizer is added to the stabilizer group after the bond
measurements are performed in a particular sequence around
a given plaquette. As a result, the pre-factor appearing in the
logarithmically large timescale is quite large. For this reason,
to study the purification dynamics of the bond operators in
the topologically ordered and critical phases, we initialize
the system in a state in which all of the plaquette stabilizers
belong to the stabilizer group. The system still contains a finite
entropy density. The reduction of the entropy of the system
follows a power-law in time [Fig. 8(a)] in the critical phase.
In contrast, the entropy of the system decreases exponentially
in time in the topologically ordered phase before saturating at
2 [Fig. 8(b)] for an exponentially long time before the system
completely purifies. We can use the purifying dynamics as an
order parameter to distinguish the topologically ordered phase
from the critical phase [50,51]. To this end, we may look at
S(t ) for t = O(L), which is 2 in the topologically ordered
phase while it is O(L) in the critical phase [see Fig. 9(a)].
Otherwise, we can look at S(t ) at T = O(L2) which is 0 in
the critical phase and 2 in the topologically ordered phase
[see Fig. 9(b)].

B. Scaling of subsystem entanglement entropy

We now study properties of the steady state of the moni-
tored dynamics. To study the properties of the steady state, we
measure all stabilizers (plaquettes and long-cycle stabilizers)
and all z-type bond operators. Then we run the circuit for O(L)
time step. We check the time dependence of the averaged

(a)

(b)

FIG. 8. Purification of the bond operators. (a) Entanglement en-
tropy density versus time at the isotropic point px = py = pz and
(b) entanglement entropy versus time at px = py = 0.1 and pz = 0.8.
The initial state is the projection onto the subspace where all plaque-
tte operators have definite values, say +1.

quantities of interest to make sure they are saturated by this
time.

At the critical phase, we expect the string operators to have
the length distribution of 1/l2 based on the 3D loop model.
This in turns implies that the entanglement entropy of a subre-
gion of linear size R should diverge as R ln R, for R  L [40].
Figure 10 shows the entanglement entropy of a cylindrical
region as a function of its length x, at a fixed system size
L = 40, at the isotropic point px = py = pz = 1

3 after t = L
time steps. Figure 11 shows the entanglement entropy of the
cylinder of size L/2 as a function of time, to make sure the
value we are reading is already saturated to its steady-state
value. As is clear from Fig. 10, the entanglement entropy fits
very well to the following:

S(x) = b(L) + a(L) ln

[
L

π
sin

(
πx

L

)]
, (6)

where a(L) and b(L) have been used as fitting parameters.
Moreover, by changing the system size we find that the best-fit
parameter a(L) scales linearly with system size as is shown in
the inset of Fig. 10. At the isotropic point, we find a(L) =
αL + β with α ≈ 0.173, which results in a αL ln L leading
term for scaling of the entanglement. Note that if we are at
one of the percolation points, e.g., (px, py, pz ) = ( 1

2 , 1
2 , 0),

the system decouples into L 1D critical chains, resulting in

the same α L ln L violation but with a prefactor α = ln(2)
√

3
2π

≈
0.191 [40,55].

115135-9



ALI LAVASANI, ZHU-XI LUO, AND SAGAR VIJAY PHYSICAL REVIEW B 108, 115135 (2023)

(a)

(b)

FIG. 9. Entropy of the purifying state of the system S(t ) for
different values of px on the line px = py at time (a) t = L and
(b) t = L2.

In general α seems to change inside the critical region.
Moreover, it seems that it depends on the direction of the
cylindrical region. Figures 12(a) and 12(b) show the entan-
glement entropy of cylindrical regions with different cuts at
the same point (px, py, pz ) = (0.2, 0.2, 0.6) which is still in
the critical phase. As one can see, not only the value of α

is different from that of the isotropic point, but its value also

FIG. 10. Entanglement in the critical phase. Entanglement en-
tropy of a cylindrical region of size x × L as a function of x for the
steady state of the circuit at the point px = py = pz = 1

3 . The dashed
line shows the best fit to the functional form in Eq. (6). The inset
shows the best-fit value of the parameter a(L) for different system
sizes, which scales linearly in L.

FIG. 11. Entanglement entropy of a cylinder of size L/2 × L as
a function of time at the isotropic point px = py = pz, starting from
a state which is a projection onto the subspace where all stabilizers
(plaquettes + long cycles) and all the z-bond operators have some
definite value, say +1. It is clear from the plot that the entanglement
entropy is saturated at the final value after time t = L. This should
be contrasted to the case when one starts from a totally mixed initial
state, where one needs to wait for t = O(L2) time steps for the system
to reach the steady state.

depends significantly on the configuration of the region, which
shows that the steady state does not have rotational symmetry.

In the topologically ordered phase, the entanglement en-
tropy exhibits area-law scaling as is expected from the the
fact that the loops in the 3D loop model are short ranged in
this phase. An example is shown in Fig. 13 for (px, py, pz ) =
(0.1, 0.1, 0.8).

C. Mutual information

To detect the phase transition between the critical phase
and the area-law phase, we may look at how the information
is shared between distant parts of the system. To this end,
consider slicing the torus into four cylinders with equal length
of L/4 as is shown in Fig. 14. A natural diagnostic for the
phase transition between the topologically ordered and critical
phases is the mutual information between A and C [56]:

I2(A : C) = SA + SC − SAC . (7)

I2(A : C) measures the correlations between the information
in A and C. In terms of stabilizers of the state, I2(A : C) counts
the number of independent stabilizers that have support only
on A and C, but cannot be expressed as product of stabilizers
which are supported only on A or C. Another measure used for
detecting entanglement phase transition is the tripartite mutual
information between A, B, and C [57], which is defined as

I3(A : B : C) = I2(A : B) + I2(A : C) − I2(A : BC) (8)

= SA + SB + SC − SAB − SBC − SAC + SABC .

(9)

I3(A : B : C), when negative, is indicative of information
shared between three regions that can only be inferred by
having access to all three regions.
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(a) (b)

FIG. 12. Entanglement entropy of cylindrical region of size x × L for the steady state of the circuit model at px = py = 0.2 in the critical
phase when (a) the boundary cuts through the Z bonds and (b) when the boundary cuts through the X bonds. Note that the best-fit value of a
is different for different cuts, and they are different from their value at the isotropic point px = py = pz (see Fig. 10).

Figure 15(a) shows I2(A : C) as a function of px on the
symmetric line px = py. The initial state of the circuit has
been chosen similar to that of Sec. IV B and mutual infor-
mation is measured after O(L) time steps. As is clear form
Fig. 15(a), I2(A : C) = 1 throughout the area-law phase. It
is straightforward to understand this result in the limit that
px = py = 0. The stabilizer group has a very simple form in
this limit. Since pz = 1, the stabilizer group of the state is
generated by all the z-bond operators, in addition to plaquette
operators and the two long-cycle stabilizers. Now consider the
operator which is the product of all z-bond operators with
a nontrivial support in region B (shown as thick red lines in
Fig. 16) multiplied by plaquette operators in every other row
of B (shaded plaquettes in Fig. 16). This operator, which is a
stabilizer of the state, acts trivially in B and only has nontrivial
support in A and C, while it can not be expressed as a product
of stabilizers which are localized in either A or C. Hence, it
results in a unit mutual information between A and C. When
pz < 1 and px and py are finite, the generating set of the
stabilizer group would be more complicated, but as is shown

FIG. 13. Entanglement entropy of cylindrical region of size x×L
for the steady state of the circuit model at px = py = 0.1, which
clearly indicates an area-law scaling of entanglement.

in Appendix G, a similar operator still exists in the stabilizer
group, resulting in I (A : C) = 1.

On the other hand, in the critical phase, there are long-
range string operators spanning between A and C. A single
string operator that goes from A to C does not contribute
to I2(A : C) because it has nontrivial support on B as well.
However, the product of any two string operators that span
between A and C can be made to have a trivial support on B
by multiplying it with appropriate plaquette operators inside B
(see Appendix G for details) and hence contributes to I (A : C).
Therefore, one expects I2(A : C) to scale asymptotically as the
number of independent string stabilizers that go from A to C,
which itself increase with system size. The inset of Fig. 15(a)
plots I2(A : C) as a function of system size L at the isotropic
point px = py = pz. It is clear from the inset plot that I2(A : C)
scales linearly with L for large enough system sizes. This
scaling can be easily understood by computing the number
of string operators going from A to C. Let

G(r)da (10)

denote the probability that a string which starts at the origin,
and ends at an infinitesimal area element da around position
r. Based on the loop model picture we have G(r) ∼ 1/r3 at

RRA

B

C
D

L/4

FIG. 14. The noncontractible regions A, B, and C which are used
for the calculation of the bipartite mutual information I2(A : C) and
the tripartite mutual information I3(A : B : C) in Sec. IV C.
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(a)

(b)

FIG. 15. Steady-state mutual information between cylindrical re-
gions (shown in Fig. 14) versus px for points on the symmetric line
px = py: (a) bipartite mutual information I2(A : C). The inset shows
I2(A : C) at px = py = 1

3 versus system size L. (b) Tripartite mutual
information I3(A : B : C).

FIG. 16. The product of the red bond operators and the shaded
plaquette operators act trivially in B and only has support in A and
C. This is the operator which results in I (A : C) = 1 in the limit that
px = py = 0.

dx

dy

dy
dx x

y

x

y

L/4 L/4 L/4

A B C

FIG. 17. Geometrical meaning of variables appearing in
Eq. (11), to count the number of string operators that start in region
A and end in region C.

the isotropic point.8 Therefore, the expected total number of
strings with end points in A and C would be proportional to
(see Fig. 17)

I2(A : C) ∝
∫ L/2

−L/2
dy′

∫ L/4

0
dx′

∫ L/2

−L/2
dy

∫ x′+L/2

x′+L/4

dx

(x2 + y2)3/2
.

(11)

As can be seen from dimensional analysis, this integral is
proportional to L which explains the linear scaling of the
mutual information shown in the inset of Fig. 15(a).9

Figure 15(b) shows the tripartite mutual information I3(A :
B : C) as a function of px on the symmetric line px = py. In
the topologically ordered phase, since the string operators are
short ranged, the first and last terms in Eq. (8) cancel out
and we find I3(A : B : C) = I2(A : C) = +1. However, deep
in the critical phase, I2(A : BC) picks up a contribution from
one string operator which spans the whole ABC interval and
hence we get I3(A : B : C) = −1. Note that while there are
extensive number of strings that span the whole ABC, only one
of them is independently shared between the three regions. In
other words, one can choose the generators of the stabilizer
group of ρABC such that all operators are localized on either
AB, BC, or AC regions except one generator that spans the
whole ABC region. This is because of the fact that the product
of two string operators spanning the whole ABC region can
be made to have trivial support on B by multiplying it with
appropriate plaquette operators in B.

It is worth noting that in a 2D free-fermion system one
would find the L ln L violation of the area law as well as
the linear scaling of mutual information, similar to what we
observe in the critical phase of the circuit, while the tripartite
mutual information for similar geometry vanishes, in contrast
to the −1 value we find in the critical phase of our model. See
Appendix C for more details.

We also contrast the behavior of I3(A : B : C) consid-
ered above with the topological entanglement entropy (TEE),
which is equivalent to the tripartite mutual information be-
tween three contractible regions A, B, C arranged in a
particular geometry (see [30,31]), in which each region shares

8Note that the length probability distribution Q(r)dr mentioned in
Sec. II is given by the integral of G(r) along a thin circular strip of
radius r and hence is given by Q(r) ∼ 1/r3 × 2πr ∼ 1/r2, assuming
rotational symmetry of G(r).

9We note that G(r) ∼ 1/r3 is only valid when r  L, so the above
calculation should be seen as heuristic, not rigorous.
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FIG. 18. Topological entanglement entropy in the steady state
versus px on the symmetric line px = py. As is clear from the fig-
ure the topological entanglement entropy is always 1 irrespective of
whether the system is in the area-law phase or the critical phase. This
is due to the fact that the plaquette operators belong to the stabilizer
group of the steady state in both phases.

an edge with both of the remaining regions. To this end, we
numerically investigate the behavior of the TEE of the steady
state. We find that the TEE is always equal to 1 regardless of
which phase we are in (see Fig. 18), due to the fact that any
monitored trajectory contains a frozen configuration of the Z2

fluxes and is thus stabilized by each of the plaquette operators.
We note that the ground state of the Kitaev honeycomb model
has also TEE equal to 1 in both the gapped phase and the
gapless phase.

D. Wilson line correlators

Let Wrr′ denote the string operator which is composed of
product of bond operators along a path which starts at site
r and ends at site r′. We are interested in evaluating 〈Wrr′ 〉2

in the steady state, where the line indicates an average over
trajectories of the monitored dynamics using Born’s rule. We
note that 〈Wrr′ 〉 is always short ranged due to the fact that each
monitored pure state hosts a random background of pinned Z2

fluxes. Since the monitored pure state of the spins is always a
stabilizer wave function, the quantity 〈Wrr′ 〉2 is either +1 or
0 within any monitored trajectory, and 〈Wrr′ 〉2 is proportional
to the probability that the string operator connecting r and r′
belongs to the stabilizer group of the steady state. Based on
the symmetries of the ensemble of monitored trajectories, this
probability is only a function of r − r′, hence, we study

g(r − r′) ≡ 〈Wrr′ 〉2. (12)

Here we focus on the the isotropic point px = py = pz = 1
3 ,

where we expect these correlations to only depend on the
distance |r − r′|. We expect that for r much greater than lat-
tice spacing, g(r) would have the same behavior as G(r) in
Eq. (10).

Due to the particular nature of the circuit model, g(r −
r′) = 0 for any |r − r′| = 2k with k ∈ Z at any time.10 At
the isotropic point px = py = pz = 1

3 , these correlations only
depend on the graph distance |r − r′|. Figure 19 shows g(r)

10In an abuse of notation, we use |r − r′| to denote the graph
distance between r and r′, i.e. the minimum number of edges on the
Honeycomb lattice one should cross to go from r to r′.

FIG. 19. The expectation value g(r) ≡ 〈Wrr′ 〉2 as a function of
r ≡ |r − r′| at the isotropic point px = py = pz. The dashed line is
the best power-law fit for system size L = 32, which is consistent
with analytic predictions.

for r = 2k + 1 at the isotropic point. We observe that this
quantity falls as a power law ∼r−�, with an exponent � ≈ 2.9
until r ∼ L/2 where it flattens. This agrees with G(r) ∼ 1/r3

scaling from the loop model picture.

E. Phase transition

If the point at pxx̂ + pyŷ + pzẑ corresponds to the circuit
parameters (px, py, pz ), the phase diagram consists of the
points inside a equilateral triangle whose three vertices lie
at x̂, ŷ, and ẑ (see Fig. 1). Based on the symmetries of the
circuit model, the phase diagram should be symmetric under
rotations around the center of the triangle by θ = 2π/3 as well
as reflections about the perpendicular bisector of each side.
We may use these symmetries to simplify mapping out the
phase diagram.

To map out the phase diagram and determine the critical
exponents associated with the corresponding phase transition,
we make use of the tripartite mutual information I3(A : B : C)
defined above, using the same partitioning of the torus as in
Fig. 14.

FIG. 20. The tripartite mutual information of the steady state
versus px on the symmetric line px = py, near the phase transition
at pc = 0.172(5). The inset shows the data collapse of the same data
using the scaling form of Eq. (13) with ν = 0.9(1).
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FIG. 21. The tripartite mutual information I3(A : B : C) versus py for fixed (a) px = 0.05, (b) px = 0.1, (c) px = 0.25, and (d) px = 0.33.
The regions A, B, and C are chosen according to Fig. 14. The inset in each plot shows the corresponding data collapse. The estimate for the
correlation length critical exponent which is found via data collapse is shown above each inset plot. Note that the critical points of (a) and
(d) as well as the critical points of (b) and (c) are related by a reflection along z bonds.

Figure 20 shows I3(A : B : C) as a function of py = px in
the vicinity of the phase transition. We choose sections A, B,
and C such that their boundaries cut through the z bonds. On
general grounds, we may assume that I3 follows the scaling
form

I3(p, L) = F [(p − pc)L1/ν], (13)

where ν is the correlation length critical exponent. By col-
lapsing the data according to this scaling form, we find pc =
0.172(5) and ν = 0.9(1).

By fixing px and varying py we can map out the whole
phase diagram. Figure 1 shows the result. The black dots are
found via numerical simulation (see Fig. 21 for the corre-
sponding plots) while the white dots are just the symmetric
counterparts of the black dots. The black squares on the sides
correspond to 2D percolation fixed points. The three green
regions are area-law phases while the middle phase C cor-
responds to the critical phase with L ln L violation of entan-
glement entropy. Based on the numerical results it seems that
the phase boundary corresponds to the incircle of the trian-
gular phase diagram although this needs further investigation.

Along the phase boundary the numerical estimate for the value
of ν changes between 0.7 to 0.9 but the variation is inside
the margin of error. On the other hand, for the 2D percolation
fixed points on the boundary, we have ν = 4

3 .

V. PERTURBATIONS TO THE CRITICAL AND
TOPOLOGICALLY ORDERED PHASES

In this section, we consider perturbing away from the limit
in which only bond operator measurements are performed in
the monitored evolution, by adding in other kinds of mea-
surements which have the effect of (i) removing the extensive
number of conserved quantities in the dynamics considered
previously and (ii) preventing a free-fermion description of
the effective dynamics of the Majorana partons. We find that
the critical and topologically ordered phases remain stable.

In particular, we consider two different types of pertur-
bations to the circuit dynamics. First we study the effect of
adding random single-qubit measurements. In particular, we
consider a circuit model where at each step a random qubit
is measured in the Z basis with probability ps or a bond
operator is measured at random with probability (1 − ps) such
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a

FIG. 22. We may choose all string operators such that all com-
mute with a given single-qubit measurement. For example, in the
shown example, if we choose the string operator that ends on site
a to come through the vertical z bond, it will commute with the Za

measurement.

that ps + (1 − ps)(px + py + pz ) = 1. As we will argue in
the following, we expect both phases to be stable for small
enough values of ps. To see this, it is helpful to consider the
effect of this perturbation on a slightly modified circuit model
first. Assume that we measure all the plaquette operators after
each measurement of either bond operators or of single-qubit
operators. Note that when ps = 0, measuring plaquette oper-
ators has no effect since in the original model all of plaquette
operators already belong to the stabilizer group of the steady
state.

Now let us see how the stabilizer group changes when
a single-qubit measurement is performed. Imagine the qubit
denoted by the red dot in Fig. 22 is measured in the Z basis.
First we note that we can choose all of the string stabilizers
such that they all commute with the Z measurement on the red
qubit. To this end, we may choose the string operator which
ends on the red qubit to pass through the z-bond emanating
from the red dot, and we may choose the other string operators
such that none have support on the red qubit. With this choice
of generators for the stabilizer group, it is clear that after the
single-qubit measurement, the only change in the stabilizer
group would be (i) the single-qubit Z operator is added to the
stabilizer group, and (ii) the two shaded plaquette operators
in Fig. 22 are replaced by their product. As such, single-qubit
measurements pin the end points of string operators ending at
these sites in particular directions, which should not change
the long-distance properties of the length distribution Q(r) of
stabilizer end points. It is also clear that a subsequent mea-
surement of all plaquette operators will undo the effect of the
Z measurement. So, for any ps we find the exact same phase
diagram. Now let us relax the assumption of measuring all
plaquette operators at each time step of the circuit. Instead, we
assume that plaquette operators are measured randomly with
probability pplq, such that ps + pplq + (1 − ps − pplq)(px +
py + pz ) = 1. Based on the above arguments, one would
expect to find the same phase diagram even in this model,
as long as ps  pplq. This is indeed consistent with what we
observe in numerical simulations.

Figure 23(a) shows the purification dynamics of the sys-
tem, starting from a maximally mixed initial state, when
px = py = 0.1 with perturbation parameters ps = 0.01 and

(a)

t

S/
L²

(b)

FIG. 23. Purification dynamics in the presence of additional
single-qubit measurements with ps = 0.01 and pplq = 0.1. (a) Cor-
responds to perturbing an area-law point with px = py = 0.1 and
(b) corresponds to perturbing the isotropic point px = py = pz, as
described in the text.

pplq = 0.1. As is clear from the figure, the long-cycle stabi-
lizers remain entangled to the environment until long times,
while the remaining of degrees of freedom rapidly disentan-
gle, as was observed to be the case when ps = 0. Moreover,
TEE and I3(A : B : C) also remain equal to +1 for large sys-
tem sizes as shown in Figs. 24(a) and 24(b), respectively.

Figure 23(b), on the other hand, corresponds to the purifi-
cation dynamics when px = py = pz = 1

3 , with ps = 0.01 and
pplq = 0.1, again showing a power-law decay of the entropy
density as a function of time. The steady-state entanglement
entropy also shows SA ∼ LA ln LA scaling, as seen in Fig. 25
and the Wilson line correlation g(r) defined in Sec. IV D also
decays as a power law 1/r� with � ∼ 3 as shown in Fig. 26.
On the other hand, we find that TEE computed via the Kitaev-
Preskill construction is no longer equal to 1 but it rather
grows slowly with the system size as shown in Fig. 24(c);
we note, however, that the interpretation of the TEE for a
super-area-law-entangled phase is not clear, and need not be
a universal constant as it is in an area-law-entangled phase.
Similarly, as can be seen in Fig. 24(d) the tripartite mutual in-
formation I3(A : B : C) is also no longer fixed at −1, but rather
scales linearly with the system size. Note that the argument
we provide in Sec. IV C for I3(A : B : C) = −1 fails in the
presence of single-qubit measurements. For every single-qubit
measurement performed near the boundary of AB, the product
of plaquette operators spanning the boundary becomes part of
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(a) (b)

(c) (d)

FIG. 24. (a) TEE and (b) tripartite mutual information versus
system size in the steady state of an area-law point with px = py = 0.1
perturbed with pplq = 0.1 and ps = 0.01. (c), (d) Show analogous
quantities when the same perturbation is applied to the isotropic point
px = py = pz.

the stabilizer group. As a result, the product of a typical pair of
string operators spanning ABC cannot necessarily be reduced
in its support, by the action of elements of the stabilizer group,
to an operator supported exclusively on A and C. From the
distribution Q(r) ∼ r−2 in the critical phases, there should be
O(L) such long stabilizers spanning the ABC region, which
gives rise to the behavior in Fig. 24(d).

Finally, let consider perturbing the original circuit model.
So now, at each step, a random qubit would be measured with
probability ps, or a bond operator would be measured with
probability (1−ps) such that ps + (1 − ps)(px + py + pz ) = 1.
As we have discussed before, plaquette operators are still
being measured with constant rate, say q, due to the bond
operator measurements, though we no longer measure the
plaquette operators directly. Therefore, based on the discus-

FIG. 25. Entanglement entropy of a cylindrical region of size
x × L as a function of x for the steady state of the circuit at
the isotropic point px = py = pz perturbed with ps = 0.01 and
pplq = 0.1.

FIG. 26. The Wilson line correlation g(r) in the steady state
of the isotropic point px = py = pz perturbed with ps = 0.01 and
pplq = 0.1.

sion so far, we expect both phases survive as long as ps  q.
Because q is very small in our model [see Fig. 27(b)], one
has to go to very large system sizes to numerically verify this
statement. Instead, we provide a more detailed argument in
Appendix H to support this claim. On the other hand, when
ps � q, we observe that the monitored trajectories of the
system settle into a volume-law phase (see Fig. 28).

Another way of perturbing the original dynamics is to add
three-qubit measurements, given by the product of adjacent
bond operators; this kind of perturbation, however, preserves
both the free-fermion nature of the parton dynamics, while
also keeping the extensive number of conservation laws. In
the Majorana parton picture it translates into next-nearest-
neighbor coupling of c Majoranas, which in turn translates
into next-nearest-neighbor moves in the classical loop model.
From the classical model, we know such a system would
flow into another critical phase with long-range correlations.
This is indeed what we observe by numerically simulating the
quantum circuit, where at each step either a product of two
adjacent bond operators is measured randomly with probabil-
ity p3 or a random bond operator is measured with probability
(1 − p3). The entanglement entropy scaling in the steady
state is shown for p3 = 0.5 in Fig. 29(a) and for p3 = 0.1 in
Fig. 29(b). The entanglement entropy clearly follows a L log L
scaling with a p3-dependent coefficient.

VI. DISCUSSION AND OUTLOOK

In this work, we studied how random measurements of
noncommutative observables could give rise to nonequilib-
rium phases of matter which exhibit long-range entanglement.
While these dynamical entanglement phases of matter share
some properties with their equilibrium counterparts like spin
liquids, they can in principle exhibit novel features which can
only appear in the nonequilibrium setting.

An interesting aspect of this work that warrants further
investigation is whether the out-of-equilibrium parton con-
struction introduced here can be used to investigate other
regimes of monitored evolution which give rise to long-
range-entangled steady states. Furthermore, it is important
to understand the quantum error-correction properties of the
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(a) (b)

FIG. 27. (a) The fraction of plaquette operators that are in the stabilizer group as a function of time. (b) The rate α of measuring a plaquette
operator versus px along the symmetric line px = py. For each px , α is found by fitting the analytic form np/L2(t ) = 1 − exp(−αt ) to the data
shown in the left panel, for t = 10–20.

area-law phase, which are closely related to the recent devel-
opment of Floquet codes [33,58–60]. As shown in Sec. III,
when the measurement probabilities are highly biased, the
random dynamics give rise to two dynamically generated log-
ical qubits, which would be absent if one interprets the bond
operators as gauge operators of a subsystem quantum error-
correcting code. However, it is not yet clear to what extent the
area-law phase could be used as a quantum error-correcting
code. In particular, it would be interesting to see whether this
model has an efficient decoder with a finite threshold. Note
that due to the random and indirect measurement of the stabi-
lizer, the syndrome data of the dynamically generated code
lacks structures like Z2 gauge symmetry, which should be
trivially present in the standard surface code syndrome data.
On the other hand, the randomness might help the decoder
to be more resilient against adversarial errors, compared to
simpler models like the Floquet honeycomb code [33,58].

FIG. 28. The entanglement entropy of the system at the isotropic
point px = py = pz subjected to random single-qubit Z measure-
ments with probability ps = 0.01, starting from a totally mixed initial
state. As can be seen from the figure, the entropy plateaus at a value
proportional to L2 which means that the steady state has volume-law
entanglement entropy. The inset shows the entanglement entropy of
a half-torus cylinder of size L × L/2 in the pure steady state versus
L2 which scales linearly.

Note added. Recently, we were made aware of forthcoming
work [61] on a related problem.
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APPENDIX A: ENTANGLEMENT ENTROPY
OF THE STEADY STATE

In this Appendix, we will explain how to compute the
entanglement entropy of a subset of spins using the Majorana
fermion picture. In particular, we show that the entanglement
entropy of a region A (with smooth boundaries) can be written
as

S(A) = 1
2 np + 1

2 nc − 1, (A1)

where np is the number of plaquettes on the boundary of A and
nc is the number of Majorana dimers with one end in A and
the other in B = Ā before projecting back to the spin Hilbert
space.

In general, for a stabilizer state of n qubits with the sta-
bilizer group G, let GA ⊆ G be the subgroup of stabilizers
which act trivially on B. Define GB analogously. Then let
the subgroup GAB to be the group that is generated by the
remaining n-rank(GA)-rank(GB) additional generators needed
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(a)

x

(b)

FIG. 29. The entanglement entropy of a cylinder of size x × L in the steady state of the monitored circuit where at each step either a product
of two adjacent bond operators is measured randomly with probability p3 or a random bond operator is measured randomly with probability
1 − p3. (a) Corresponds to p3 = 0.05 and (b) corresponds to p3 = 0.1. The inset shows the best-fit value of a versus system size L which
shows a clear linear scaling, indicating a L ln L violation of the area law.

to generate G, i.e.,

G = GAGBGAB. (A2)

With an abuse of notation, one may write GAB as the quotient
group G/(GAGB). The entanglement entropy of the region A is
given as [62]

S(A) = 1
2 rank(GAB). (A3)

The stabilizer group of the steady state is generated by
the set of all plaquette operators and a set of string operators
obtained via projecting Majorana dimers into the spin Hilbert
space. Let G̃AB be the group that is generated by the plaquette
operators on the boundary of A and the string operators with
one end point in A and the other in B. Clearly, GAB ⊆ G̃AB.
However, in general it might be possible to combine some
generators of G̃AB with other generators G such that the result
is localized in either A or in B. In the following we show that
there are 2, and only 2 such relations.

Given that the product of a subset of plaquette operators
corresponds to a set of closed loops on the lattice, it is clear
that the only way such a product with some plaquettes on the
boundary can be localized in A or B is to consider the product
of all of plaquettes on the boundary. This results in two loops,
one inside A and one inside B. Then one can shrink away the
inside loop via multiplying it with plaquette operators inside
A arriving at something with a support only in B.

Now let us consider a product which also includes a subset
of the string operators from G̃. Such an operator can be repre-
sented by a set of end points (which are fixed by the choice of
the subset of string operators that appear in the product) and a
set of strings that connect them. In what follows we show that
to cancel the support of such a product in B, the product must
include all the lattice points in B as end points. Imagine it has
a end point denoted by the red dot in Fig. 30(a) as an end point
of a string operator whose last segment is shown by a thin red
line. Now, the only way for this operator to act trivially on the
red dot qubit is if there is another string that passes through the
other two bonds connected to the red dot vertex [Fig. 30(b)].
But since the operator has to act trivially on the neighboring
sites too, there have to be end points on neighboring sites as

well [Fig. 30(c)]. Now we can repeat the same argument for
these new end points to show that there should be end points
on all next-neighboring sites in B as well [Fig. 30(d)] and so
on. Indeed, such a product exists and it can be found with a

A

B

(a)

A

B

(b)

A

B

(c)

A

B

(d)

FIG. 30. If P is a nontrivial product of string operators and pla-
quette operators that acts trivially in region B, then it should include
all points in region B as end points of string operators. Say P includes
a string operator with the end point shown in (a). For P to act trivially
on the red dot qubit, it should include another string operator which
passes through the two remaining bonds as shown in (b). But to have
trivial support on the neighboring sites as well, the neighboring sites
should also be end points of string operators that are included in
P, as shown in (c). By repeating the same argument for these new
end points, one can see the neighboring sites shown with red dots in
(d) should also be end points of string operators included in P. This
line of argument then shows that P should included all sites in region
B as end point.
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A

B

a

b

cd

FIG. 31. One can cancel the support of ga,b (red) in B by mul-
tiplying it with gd,e (blue), resulting in an operator that is entirely
supported on A.

procedure similar to what was outlined in Appendix G. The
important point that the above argument shows is that it is the
only nontrivial product with trivial support on B. Therefore,
we find that

rank(GAB) = rank(G̃AB) − 2 = np + nc − 2. (A4)

Plugging Eq. (A4) into (A3) then yields the desired result.
It is worth mentioning that if the boundary between A and

B is not smooth, this argument could fail. A counterexample
is shown in Fig. 31; ga,b has nontrivial support in both A and
B. But, one could multiply it with just gc,d (which has both
end points in A) to arrive at an operator with trivial support
on B.

APPENDIX B: DIMER NUMBER PARITY

Consider the honeycomb lattice with periodic boundary
conditions and so that each site is paired with another unique
site. We consider a vertical “cut” through the x- and y-type
bonds of the honeycomb lattice, as shown by the dotted orange
line labeled “1” in Fig. 32. We now show that the number
parity of dimers crossing this cut, given by (−1)n1 where n1

is the number of dimers which straddle the cut labeled “1,” is
the same for all vertical cuts on the honeycomb lattice. The
number of dimers crossing a cut is a well-defined quantity
if the dimers are short ranged. An example of another such
vertical cut, labeled “2,” is also shown in Fig. 32(a). The
proof of this statement is obtained as follows. First, consider
the column of s sites which are shaded in blue in Fig. 32(a);

FIG. 32. Under projective measurements of the bond operators
on bonds, the dynamical rules for the evolution of dimer configura-
tions leads to the conservation of dimer number parity across vertical
cuts, such as the one shown in (a).

s is an even integer since each unit cell on the honeycomb
lattice contains two lattice sites. Let n
(nr ) be the number
of dimers which contain one end point in the shaded blue
column and another end point to the left (right) of the column,
respectively. The remaining s − n
 − nr sites in the shaded
blue column are dimerized with each other, so that s − n
 − nr

is an even integer. Since s and s − n
 − nr are both even, we
must have that n
 + nr is even so that (−1)n
 = (−1)nr . Let n1

and n2 be the total number of dimers straddling cut 1 or cut 2,
respectively. These two quantities are related as

n2 = n1 − n
 + nr (B1)

and as a result

(−1)n1 = (−1)n2 . (B2)

This completes the proof.
Finally, we observe that the dynamical rules for the evolv-

ing configuration preserve the parity along the vertical cut.
This is trivially shown by considering the effect of a bond
measurement on the dimers crossing a vertical cut passing
through that bond. If the sites were already dimerized with
each other, then the measurement has no effect on the state
of the system. Now consider the case where the sites are
dimerized with other sites in the system. The sites could be
dimerized with two other sites on (i) opposite sides of the
vertical cut or (ii) on the same side. The former case, and
the dimer configuration after a bond measurement, are shown
in Fig. 32(b). The dimer number parity crossing the cut is
manifestly preserved by the measurement. Case (ii) can be
similarly considered to show that the bond measurements
preserve the dimer number parity across a vertical cut.

APPENDIX C: MUTUAL INFORMATION
IN FREE-FERMION SYSTEMS

1. Free fermions with a Fermi surface

a. 1D

Consider a 1D system of free fermions. Let the sub-
system A be composed of disjoint intervals (u1, v1),
(u2, v2), . . . , (uN , vN ). The entanglement entropy of subsys-
tem A is [63]

SA = 1

3

[∑
k� j

ln[(vk − u j )/a] −
∑
k< j

ln[(vk − v j )/a]

−
∑
k< j

ln[(uk − u j )/a]

]
. (C1)

This expression shows that the mutual information is exten-
sive in this system, in the sense that if A, B, and C are three
disjoint intervals, we have

I (A : BC) = I (A : B) + I (A : C). (C2)

For two disjoint intervals of widths w1 and w2, separated by
distance d , the mutual information would be

I (A : B) = 1

3
ln

(
(d + w1)(d + w2)

d (d + w1 + w2)

)
, (C3)

which falls of as w1w2/d2, for d � w1,w2.
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FIG. 33. (a) The Brillouin zone and the Fermi surface at half-
filling. (b) Two cylinders (A and B) of width L/4 which are L/4 apart.

In particular if we divide a circle of length L into four
regions of equal size L/4 and A and B denote two antipodal
regions, their mutual information would be

I (A : B) = 1
3 ln 2. (C4)

We can also consider the tripartite mutual information be-
tween three adjacent intervals of length L/4. Equation (C2)
already suggests11 that the tripartite mutual information would
vanish in free fermions. We can use Eq. (C1) to explicitly
compute the tripartite mutual information for three adjacent
intervals of width w:

I (A : B : C) = I (A : B) + I (A : C) − I (A : BC)

= 1

3

[
ln

(
w

2a

)
+ ln

(
4

3

)
− ln

(
2w

3a

)]

= 0. (C5)

b. 2D

One may use the 1D result alongside the generalized
Widom formula [64] to find the entanglement entropy of
nonconvex and/or disjoint regions in Fermi-liquid systems in
higher dimensions where the Fermi surface has codimension
one:

S(R) = 1

(2π )d−1

∫
dAxdAk|nxnk|S1+1(x, k)

nint(x, k)
, (C6)

where dAx and dAk are area elements on the surface of the
region R and the Fermi surface, respectively, nx and nk are
the unit normals at the respective points on those surfaces,
S1+1(x, k) is the entanglement entropy of a 1D chiral mode
on the subregion R ∩ L, where L is the straight line pass-
ing through x in the direction of the Fermi velocity v(k),
and nint is the number of times this line intersects with re-
gion R. Consider a tight-binding free-fermion system on a
L × L periodic lattice at half-filling, where the Fermi sur-
face has the simple shape of a rotated square. By using the
Widom formula, we find that the mutual information be-
tween two cylinders of length L/4 which are L/4 apart is

11Note that Eq. (C2) is only valid when the intervals are completely
disjoint.

(a) (b)

FIG. 34. (a) Mutual information of two cylindrical regions of
width L/4 which are L/4 apart in half-filled free fermion on a peri-
odic 2D square lattice. (b) The tripartite mutual information between
the aforementioned cylinders and the one in-between. Instead of
considering half-filled system, we set μ = −0.3 to avoid numerical
instabilities.

(Fig. 33)

I (A : B) = 1

2π
4
√

2π × 4L ×
√

2

2
× 1

4
× 1

2
× log2

3

= log2

3
L, (C7)

where the last 1
2 factor is there since each chiral mode con-

tributes half of the entanglement in Eq. (C1). As can be seen
from the plot in Fig. 34(a), this expression agrees perfectly
with the numerical result. Moreover, by using Widom formula
and Eq. (C5), one can see that the tripartite mutual information
between the two cylinders and the one in-between vanishes
[see Fig. 34(b)].

2. Kitaev Honeycomb model

The Kitaev honeycomb model has two phases, gapped and
gapless. Both phases are area-law entangled. This means that
the entanglement entropy of a x × L cylindrical region on a
L × L torus is proportional to L. In the gapless phase, the
subleading correction to the area law is a function of u = x/L
and it is proportional to 1/u for u  1

2 and 1/(1 − u) when
1 − u  1

2 similar to the case for free 2D Dirac fermion [65].
The subleading terms in the gapped phase vanish much faster
(probably exponentially in the correlation length) as expected
(see Fig. 35). The leading term of the mutual information
for Dirac fermions is computed in Ref. [66]; for two circular
regions of radius R and R′ which are a distance r apart, the
mutual information would be only a function of the cross ratio

z = 4RR′

r2 − (R − R′)2
, (C8)

and scales as

I (z) = 1

15
z2 + · · · (C9)

for z  1. The mutual information being only a function of di-
mension less z means it remains constant when R, R′, and r are
all scaling proportionally, which is similar to the case we are
studying on a toroidal geometry. Figure 36 shows the mutual
information between two cylinders of size L/4 × L which are
distance L/4 apart, for the Kitaev model in the gapless phase,
on the phase boundary, and in the gapped phase. As we expect
from the Dirac fermion, the mutual information saturates to a

115135-20



MONITORED QUANTUM DYNAMICS AND THE KITAEV … PHYSICAL REVIEW B 108, 115135 (2023)

FIG. 35. Entanglement entropy of a x × L cylindrical region of
the Kitaev honeycomb model on a L × L torus as a function of
u = x/L at the isotropic point Jx = Jy = Jz for L = 256.

constant value in the gapless phase. Interestingly, at the phase
boundary the mutual information seems to grow as

√
L. In

the gapped phase it goes to zero, as expected from a finite
correlation length.

The tripartite mutual information between three adja-
cent cylinders also vanishes similar to the free-fermion case
(see Fig. 37).

APPENDIX D: PERCOLATION PHASE TRANSITIONS
AT THE BOUNDARY OF THE PHASE DIAGRAM

Here, we will show that the entanglement dynamics at the
boundary of the phase diagram maps to L decoupled classical
2D bond-percolation problems.

For concreteness let us focus on the py = 0 boundary. We
partition the lattice into L rows, where each row is comprised
of x and z bonds. When py = 0, no inter-row operator is going
to be measured, hence, the entanglement dynamic of each row
is completely decoupled from the others.

In the following we consider the entanglement dynamics
of a single row. We label the spins by an index j = 1, . . . , 2L.
The circuit is then comprised of random measurements of the
following operators:

Ai = X2i−1X2i, (D1)

Bi = Z2iZ2i+1, (D2)

for i = 1, . . . , L. On the other hand the following set of oper-
ators commute with all Ai and Bi operators:

Si = X2iX2i+1 for i = 1, . . . , L, (D3)

and as such we may regard them as symmetries of the circuit.
For simplicity, let us assume that the initial state is in the sym-
metry sector with Si = +1 for all i, e.g., |+〉⊗2L. Finally, we
map this circuit to the XX − Z measurement-only random cir-
cuit which has been studied thoroughly before [27,28,67,68].
In particular, it has been shown that the entanglement
dynamics is described by the 2D classical bond-percolation
problem. To this end, we consider the dual circuit under the

local unitary

U =
⊗

i

CNOT2i,2i+1 (D4)

where CNOTi, j is the CNOT gate with qubit i as the control
and qubit j as the target. Under this unitary, Ai, Bi, and Si

transform as

Ai �→ X2i−1X2iX2i+1, (D5)

Bi �→ Z2i+1, (D6)

Si �→ X2i. (D7)

Since we have assumed the initial state is in the symmetry sec-
tor Si = +1, the local unitary disentangles the spins with even
index into the X2i = +1 state. Therefore, in the dual picture,
the circuit is basically consisted of the random measurement
of Z2i+1 and X2i−1X2i+1.

APPENDIX E: PLAQUETTE OPERATORS
MEASUREMENT RATE

We show that there is a constant c > 0 such that the
probability of a given plaquette being measured during six
consecutive time steps is lower bounded by c. Let q denote
such a probability.

For simplicity, we consider the isotropic point px = py =
pz, but it is clear that the same statement holds as long
px, py, pz > 0. Consider a plaquette shown in Fig. 38, where
numbers represent the qubits on the corresponding sites. Let
Ei j denote the link operator associated to the edge between
qubits i and j. Consider the collection of 12 link operators
C = {Ei j} shown in Fig. 38. At each time step, N link op-
erator gets measured randomly. The probability that at least
one link from C gets measured in a time step is given by
1 − (1 − 12

3N/2 )N � 1 − e−8, where N is the total number of
qubits.12 Let P6 be the probability that during six consecutive
time steps, at least six times a link from C gets measured. Of
course, it needs not to be the same link all six times. P6 can be
lower bounded easily as

P6 � (1 − e−8)6 � 1 − 6 e−8. (E1)

Considering the six consecutive times that links from C have
been measured, there is a probability of (1/12)6 that it is the
following sequence of link operators that has been measured:

E1,2, E3,4, E5,6, E2,3, E4,5, E6,1, (E2)

in which case the corresponding plaquette operator would
have been measured. Note that this is true independent of the
way the links not shown in Fig. 38 get measured. Therefore,
the probability of a plaquette being measured during six con-
secutive time steps is lower bounded by

q � P6 × (1/12)6 � (1 − 6 e−8)/126 > 0. (E3)

Since this lower bound is positive and independent of the
system size, it shows that each plaquette is being measured

12Note that there are 3N/2 edges in a honeycomb lattice with N
vertices.
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(a) (b) (c)

FIG. 36. Mutual information in of two antipodal cylinders of length L/4 in the ground state of Kitaev at Jy = Jz = 1 and (a) Jx = 1,
(b) Jx = 2, and (c) Jx = 3.

at least with constant rate, independent of the system size.
Therefore, it only takes O(ln L) time steps for all plaquettes to
be measured. We note that the actual rate at which plaquettes
are being measured could be much larger than the analytical
lower bound in Eq. (E3) [see Fig. 27(b)].

APPENDIX F: PURIFICATION IN THE CRITICAL PHASE

Starting from a maximally mixed initial state, we argue that
in the critical phase, the system disentangles as a power law
S(t ) ∼ t−1 in time as projective measurements are performed.
Within a short time t∗ ∼ O(ln L) after starting to perform mea-
surements of the bond operators, the plaquette stabilizers Wp

become part of the stabilizer group. To study the subsequent
purification dynamics of the system, it is convenient to con-
sider the following density matrix for the Majorana partons:

ρ f ∼ |�b〉 〈�b| ⊗ 1, (F1)

where |�b〉 is a pure state of the b Majorana fermions, as
described below Eq. (2) in which each b Majorana fermion is
dimerized with its nearest neighbor (ibj

rbj
r′ |�b〉 = |�b〉 where

r and r′ are sites at the ends of a bond of type j). The c
Majorana partons are in a maximally mixed initial state. The
density matrix of the spin degrees of freedom

ρ ∝
∏

p

1 + Wp

2
(F2)

clearly describes a volume-law-entangled state.

FIG. 37. Tripartite mutual information between three cylinders
of length L/4 for the Kitaev honeycomb model on a L × L torus.

As measurements of the bond operators are performed,
the measured bonds become part of the stabilizer group that
describes the evolving, monitored state. Consider measuring
XrXr′ (where r and r′ are sites connected by an x-type bond).
Since XrXr′ = crbx

rbx
r′cr′ , a measurement of this operator in the

state (F2) is equivalent to adding ±icrcr′ as a stabilizer to the
evolving state of the Majorana partons. We refer to cr and cr′

as “paired” Majorana partons since they are dimerized and
belong to the stabilizer group for the density matrix of the
fermions after measuring XrXr′ .

The “unpaired” c Majorana partons each provide an O(1)
contribution to the entanglement entropy of the entire sys-
tem. To understand the purification of the evolving state, we
investigate how these unpaired degrees of freedom are “an-
nihilated” (become paired) as measurements are performed.
First, we note that the unpaired Majorana partons can only
annihilate when two of them become nearest neighbors, and
the corresponding bond operator connecting the two is mea-
sured. It is easily checked that a measurement of a bond
operator connecting two Majorana partons in which at least
one is unpaired will not change the number of independent
generators of the stabilizer group for ρ f . Consider, for exam-
ple, a measurement of XrXr′ = crbx

rbx
r′cr′ in a state ρ f where

icrcs = +1 where s is another site in the system, and where
cr′ is unpaired. After this measurement, ±icrcr′ belongs to the
stabilizer group, while cs is now unpaired. As a result, the
measurement has the effect of moving the unpaired Majorana
parton from r to s.

1

2

3

4

5

6

7

8

9

10

11

12

FIG. 38. The qubits on a plaquette of the honeycomb lattice as
well as the neighboring qubits.

115135-22



MONITORED QUANTUM DYNAMICS AND THE KITAEV … PHYSICAL REVIEW B 108, 115135 (2023)

In the critical phase, the probability distribution of string
stabilizer lengths (the Cartesian distance between their end
points) decays as a power law, as reviewed in Sec. II A;
equivalently, in the parton description of the steady state, the
probability that a Majorana cr is paired with another Majo-
rana cr+s at relative separation s decays as P(s) ∼ |s|−3. To
understand the purification dynamics in the critical phase, we
now assume a dilute concentration of the unpaired c Majo-
ranas, and that the probability that a given paired Majorana
is dimerized with another Majorana fermion at relative sep-
aration r is again given by P(r). As bond measurements are
performed, the dynamics of an unpaired Majorana degree of
freedom is then described by a random walk, where prob-
ability density per unit time for a step in the direction r is
given by P(r). The variance in the distribution of step lengths
〈|r|2|〉 = ∫ |r|2P(r)d2r is infinite, so that the wandering of a
given unpaired Majorana is dominated by rare “long” steps;
such a random walk is known as a Lévy flight.13

The unpaired Majorana degrees of freedom wander and
“annihilate” by pairing with other unpaired Majoranas. To
understand how they wander and annihilate, we define a
coarse-grained density n(r, t ) of the unpaired degrees of free-
dom and compare two ways in which these Majorana degrees
of freedom may annihilate: (i) Unpaired Majorana degrees
of freedom may annihilate when they are sufficiently close
together; in this case, the rate �(n) at which the Majorana de-
grees of freedom annihilate is proportional to the local density
�(n) ∝ n. (ii) Unpaired Majorana degreees of freedom anni-
hilate by taking rare “long” steps. Let P(r) ∼ |r|−� (� = 3
in our case of interest). In a time t an unpaired Majorana
degree of freedom will travel a distance O(t1/(�−2)); this can
be argued by observing that the evolution of the local density
in the absence of annihilation events is given by

∂n(r, t )

∂t
= λ

∫
d2r′ P(r′)[n(r − r′, t ) − n(r, t )]. (F3)

The evident rescaling of space and time that leaves (F3) in-
variant leads to the typical distance traveled by an unpaired
degree of freedom in a time t . In two spatial dimensions, the
typical spacing between unpaired Majoranas in a region with
density n(r, t ) is n(r, t )−1/2. As a result, the annihilation rate
due to long steps in a Lévy flight, obtained by estimating the
typical time to traverse this distance, is �(n) ∼ n(�−2)/2.

At long times, these respective processes lead to a decay
of the density as n ∼ t−1 for process (i) and n ∼ t (2−�)/2 for
process (ii). As a result, when � < 4 (for our case of interest,
� = 3), the effective annihilation dynamics for the unpaired
degrees of freedom leads to the long-time behavior n ∼ t−1.
We conclude that the entanglement entropy of the system
should decay as S(t ) ∼ t−1 in the critical phase.14

13Random walks in d spatial dimensions where a displacement r
occurs with probability P(r) ∼ |r|−d−σ and with σ < 2 define Lévy
flights, for which 〈|r|2〉 is divergent; see, e.g., Ref. [69].

14A simple generalization of this argument for a distribution P(r) ∼
|r|−d−σ in d spatial dimensions can be used to show that process ()
dominates over (ii) at long times whenever d > σ when σ < 2.

APPENDIX G: MUTUAL INFORMATION
IN THE AREA-LAW PHASE

Here we explain why I2(A : C) = 1 throughout the area-
law phase. The py = px → 0 limit has been explained in
Sec. IV C. Here we consider the case when px and py are
finite.

Let ga,b denote the string operator which connects a to b. It
has been already noted that the specific path which connects a
to b does not matter in the sense that any two paths give rise to
the same string operator up to a product of plaquette operators.
Now consider the product of two string operators ga,b gc,d .
Interestingly, this operators can also be specified only by its
end points a, b, c, and d , i.e., not only the paths connecting
the end points do not matter, but all different pairing of the
end points are equivalent up to product of plaquette operators,
e.g.,

ga,b gc,d = ga,d gc,b S, (G1)

where S is a product of plaquette operators (on a torus, S
could include the long-cycle stabilizers as well). This is due
to the simple fact that ga,b gc,d × ga,d gc,b is a string operator
without a boundary. More generally, ga,b gc,d . . . ge, f is equiv-
alent to gπ (a),π (b) gπ (c),π (d ) . . . gπ (e),π ( f ) where π is an arbitrary
permutation on the set of end points. This means a product of
string operators can be specified by its set of end points and
the specific pairing of the end points does not matter.

Now consider a typical state in the area-law phase. Let
P be the product of all string operators which have at least
one end point in the region B. As we discussed above P can
be specified by a set of end points. This set of end points
includes all points inside B plus some points in A and C near
the boundaries of B [Fig. 39(a)]. Now choose a specific pairing
of the end points, where all points in the bulk of B are paired
along the z bonds, and the end points next to the boundary
are paired with the end points which are in A or C, and any
remaining end points on each side (near AB boundary and
near AC boundary) will be paired together [Fig. 39(b)]. This
pairing will be possible as long as the parity of the number
of end points in A is the same as the parity of number of z
bonds that crosses the A and B boundaries (note that the parity
of number of end points in A and in C is the same). For now
we assume this is the case and we will provide an argument
in its support later. Let P′ denote the operator corresponding
to this specific pairing. Now consider the operator C which is
the product of P′ with all plaquette operators on every other
row of B [shown as yellow in Fig. 39(c)]. Note that C has
nontrivial support only on A and C and it acts trivially in B,
hence, it could contribute to I2(A : C).

To see that the parity of end points in A are the same as
the parity of the number z bonds between A and B, note that
we expect the state to be close to the state where all dimers
are along the z bonds (as in Fig. 16), in the sense that if one
uses the latter state as the initial state of the circuit, it will
evolve into the former state with only local rearrangement of
the dimers without generating long-range strings. In this case,
we can use the fact that the parity of dimers crossing a line
is an invariant of the circuit dynamics to reach the desired
result.
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A

B

C

(a)

A
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(b)

A
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(c)

FIG. 39. Evaluating I (A : C) in the area-law phase: Let P be the product of all string operators which has at least one end point in region
B. A typical set of end points specifying P is shown in (a). Up to multiplication by plaquette operators, P can be taken to be the product of the
string operators shown in (b). The product of the shaded plaquette operators and the red string operators in (c) has nontrivial support only in A
and C and thus contributes to I (A : C).

APPENDIX H: STABILITY OF PHASES UNDER
SINGLE-QUBIT MEASUREMENTS

In Sec. V we argued that measuring plaquette operators
directly with a rate pplq � ps would stabilize both phases
against single-qubit measurements. Given that in the original
circuit model plaquette operators are also measured with con-
stant rate, it follows that both phases are robust against small
rates of single-qubit measurements. The only caveat is that
in the original model, plaquette operators are not measured
directly, but rather through a sequence of bond measurements,
which in turn might cause proliferation of defects introduced
via Z measurements. In this Appendix, we show that this
will not happen, i.e., measuring plaquette operators directly
or through a series of bond measurements will likely have the
same effect.

In the absence of perturbation, the steady-state stabi-
lizer group is generated by two types of stabilizers: (1) the
plaquette stabilizers and (2) the string operators. Without per-

turbations, the plaquette operators do not have any dynamics
while the string operators follow a dynamic similar to the
parton dynamics described in Sec. II A: when a bond operator
is measured, the two string operators with end points on that
bond will be replaced by a string operator that is obtained from
connecting the two, and the bond operator itself.

After a single-qubit measurement, the two adjacent plaque-
tte operators will be replaced in the generating set by their
product and a single-qubit Z operator. We denote the latter
by gz. The new stabilizer group has three types of generators:
(1) plaquette operators, (2) string operators (which have re-
mained unchanged), and (3) one gz stabilizer. The important
observation to make is that the presence of gz in the generating
set has no effect on the dynamics of the string and plaquette
operators under the subsequent bond measurements (although
gz has its own dynamic). As such, after a constant time, the
removed stabilizers will be added to the generating set again,
at which point gz will be removed since the set of independent
generators can not have more than N = L2 elements.
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