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Fermion quartets on the square lattice
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We study a microscopic model for four spinless fermions on the square lattice which exhibits a quartet bound
state in the strong coupling regime. The four-particle quantum states are analyzed using symmetry arguments
and by introducing a zoo of relevant lattice animals. These considerations, as well as variational and exact
diagonalization calculations, demonstrate the existence of a narrow quartet band at small hopping and a first-
order transition to delocalized fermions at a critical hopping parameter, in qualitative contrast to, e.g., the BCS-
BEC crossover in the attractive Hubbard model. In the case of pure attraction, an intermediate phase is found, in
which a more extended and presumably more mobile hybrid quartet dominates the ground state. We comment
on the relevance of the spin degree of freedom and on the reasons why electron quartetting is rarely observed in
real materials.
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I. INTRODUCTION

Pairing, the central paradigm of superconductivity, has
been amply confirmed experimentally. For example, the mag-
netic flux in superconductors is quantized in units of �0 = h

2e

(and not h
e ) and tunneling supercurrents are characterized

by the Josephson constant KJ = 2e
h . However, there exists

no fundamental objection against building blocks consisting
of 4, 6, 8, . . . electrons. In Yang’s concept of off-diagonal
long-range order the only requirement is that the number of
fermions forming the “basic group” of particles be even [1].

Very recently, flux quantization in units of h
4e (and even

h
6e ) has been reported for the kagome lattice superconductor
CsV3Sb5 [2]. While below the critical temperature Tc the
conventional h

2e period is observed in the magnetoresistance
(Little-Parks effect), this oscillation vanishes above Tc, and
new oscillations with a period h

4e appear, taken as evidence
for “vestigial” charge 4e superconductivity. Vestigial order
can occur in systems with more than one potentially broken
symmetry and is described by a composite order parameter,
which may emerge if the primary order parameters vanish
[3–7]. An example of a system with more than one broken
symmetry is a condensed state of Cooper pairs with nonzero
momenta, a pair density wave, which is superconducting and
also breaks translational symmetry. If both order parame-
ters vanish, a condensation of Cooper quartets—products of
Cooper pairs with opposite momenta—remains possible as a
vestigial phase, leading to charge 4e superconductivity. Such a
mechanism may be at work in the kagome material CsV3Sb5

[8]; the nature of the parent superconducting phase however
remains to be clarified.

An interesting neutral four-fermion bound state is the
positronium molecule, consisting of two electrons and two
positrons. A long time ago, variational calculations have
shown that this bound state is indeed stable [9,10], but ex-
perimental evidence for the positronium molecule has been
reported only relatively recently [11]. A closely related prob-

lem is that of two electrons and two holes in a semiconductor,
which can form a bound state, a biexciton [12]. The simplest
model of a semiconductor, with parabolic conduction and
valence bands, is essentially the same as the Hamiltonian
for electrons and positrons, except that the electron and hole
masses are in general different (and may be anisotropic) and
the Coulomb interaction is reduced by a dielectric constant.
Variational calculations for the ground state of two electrons
and two holes in fact have shown that the biexciton state is sta-
ble for arbitrary mass ratios [13,14]. In a biexciton, attraction
exists only between electrons and holes, and it is tempting
to determine first the electron-hole bound state, the exciton.
In a second step, the excitons are treated as bosons coupled
by a residual attraction [15]. Unfortunately, it is not easy to
determine accurately the effective exciton-exciton interaction
[16].

A crucial question is whether biexcitons remain stable in
a semiconductor with a finite density of electrons and holes.
For Ge the preferred state at a large density has been shown
to be an electron-hole plasma, both experimentally [17] and
theoretically [14,18], for early reviews see Refs. [19,20]. Ex-
perimental evidence for biexcitons has been reported for CuCl
[21]. Luminescence spectra at high excitation density have
been interpreted in terms of Bose-Einstein condensation of
biexcitons [22], but this view has been challenged. A cen-
tral point is that CuCl is a direct gap semiconductor. This
means, on the one hand, that thermalization of electron-hole
pairs is preceded by recombination, in contrast to indirect gap
semiconductors such as Ge or Si, where the recombination
time is much longer. On the other hand, the coupling to light
can no longer be ignored and biexcitons become bipolaritons,
which can be brought into a coherent state through resonant
two-photon absorption with total momentum 0 [23]. This
produces a “pump-induced” out-of-equilibrium distribution of
polaritons, which resembles Bose-Einstein condensation.

More recently, the interest in excitons and biexcitons in-
creased dramatically with the advent of coupled quantum well
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structures [24], where electrons and holes reside on two neigh-
boring layers, which strongly enhances the exciton lifetime. A
second boost occurred when atomically thin transition metal
dichalcogenides became available [25]. In monolayer WSe2,
the Coulomb interaction between electrons and holes is very
strong and biexcitons have been created and detected [26–28].

In nuclear physics, the α-particle, a bound state of two
protons and two neutrons, has played a central role, ever
since its discovery at the end of the 19th century. In con-
trast to the biexciton problem, where interactions are both
simple and well defined (Coulomb), the nucleon-nucleon in-
teractions responsible for the bound state of two protons and
two neutrons are neither simple (they include tensor, spin-
orbit, and three-body forces) nor unique. In the early days
of nuclear physics Yukawa’s pion exchange [29] provided a
mechanism for the strong intermediate-range attraction be-
tween nucleons. The pion model has become very popular
and still is used successfully. Experimental input (such as
scattering data) is often required for fixing the parameters of
the nucleon-nucleon potential. Since the advent of Quantum
Chromodynamics (QCD) a lot of effort has been invested to
derive the nucleon-nucleon interaction ab initio, using chiral
effective field theory [30,31] or lattice QCD [32].

Already in the thirties, it has been proposed that nuclei
consisting of 2n protons and 2n neutrons, 8Be, 12C, 16O,
etc., consist of α particles [33,34]. The nucleus 12C is then
a triangle of α clusters and 16O a tetrahedron. This molec-
ular view point was not universally accepted because nuclei
are compact objects, at least in the ground state. Hence, a
mean-field approach was advocated, where the nucleons move
independently in a spherically symmetric confining potential.
This shell model was quite successful [35], especially for
light nuclei with filled neutron or proton shells (magic nu-
clei), but unbiased studies suggest that in reality, shell and
cluster structures coexist [36]. For the enigmatic Hoyle state,
an excited state (resonance) of 12C, which is believed to be
responsible for the abundance of 12C in the universe [37,38],
the naive shell model fails badly due to the large spatial extent
of the state. The molecular point of view appears to be much
more appropriate, although it is not firmly established how
the three α clusters are correlated. Spatial clustering [34], a
(Bose-Einstein) condensate [39] and a superposition of quan-
tum liquid and clustering [40] have been proposed.

Quartets have also been discussed in the context of cold
atoms, in particular for fermions with spin 3/2, representing
four hyperfine levels. The (solvable) one-dimensional model
of S = 3/2 fermions with attractive contact interaction, de-
scribing atoms confined to elongated traps, indeed exhibits
quartetting [41–43]. Its lattice version, the attractive Hubbard
model (with on-site coupling U < 0) has also been investi-
gated and found to show quartetting [44–46]. This is easily
understood in the large-|U | limit, where the system is well
desribed by an ensemble of local quartets, similarly to the
S = 1/2 case, where we just have local pairs in this limit.

In our study, we have in mind electrons in layered mate-
rials, and therefore consider a square lattice and assume the
on-site interaction to be repulsive. With nearest- and next-
nearest-neighbor attraction and repulsion between third and
fourth neighbors we favor quartets on the four sites of a
plaquette. We limit ourselves mostly to four particles and

determine both the ground state and the energy spectrum. For
these investigations, the concept of quantum lattice animals
turns out to be very useful in the limit of strong interactions.
We first consider the spinless case, where we find a first-order
transition from a compact quartet at strong coupling to com-
plete delocalization for weak coupling. Later we show that this
picture does not change if spin is added. Therefore we do not
find any Cooper quartets and there is no BCS-BEC crossover.
Some issues of quartetting become particularly transparent in
our model, such as the stability of real quartets, the problem of
Bose-Einstein condensation and its competition with spatial
ordering, or the relation between position and momentum
space representations.

The paper is organized as follows. Section II defines the
model, while Sec. III introduces the lattice animals and pro-
vides a symmetry analysis. The weak coupling regime is
studied in Sec. IV and the strong coupling regime in Sec. V.
In Sec. VI, we show that the weak and strong coupling limits
cannot be continuously connected, while Sec. VII demon-
strates the existence of an intermediate phase in the model
with pure attraction. We briefly discuss the effect of spin in
Sec. VIII, before presenting our conclusions in Sec. IX.

II. MODEL HAMILTONIAN AND ITS CLASSICAL LIMIT

A. Hamiltonian

We study spinless fermions described by the Hamiltonian

H = H0 + Hint, (1)

where

H0 = −t
∑
〈m,n〉

(c†
mcn + c†

ncm) (2)

represents the hopping of fermions between neighboring sites
of a square lattice and c†

n, cn are the creation and annihilation
operators for the spinless fermion at site n. It is convenient to
introduce the dimensionless hopping operator

T =
∑
〈m,n〉

(c†
mcn + c†

ncm), (3)

such that H0 = −tT . The interaction term

Hint =V1

∑
〈m,n〉

nmnn + V2

∑
〈〈m,n〉〉

nmnn

+ V3

∑
〈〈〈m,n〉〉〉

nmnn + V4

∑
〈〈〈〈m,n〉〉〉〉

nmnn, (4)

with nn = c†
ncn the density at site n, couples nearest (V1),

second (V2), third (V3), and fourth (V4) neighbors. In most
of the following discussion, we consider a system with
short-range attraction (V1 < 0, V2 < 0) and medium-range re-
pulsion (V3 > 0, V4 > 0). The square lattice has L = Lx × Lx

sites and we use periodic boundary conditions.

B. Origin of the attraction

In a solid, short-range attractive interactions can occur if
the total charge on a plaquette couples to a local phonon, rep-
resenting for example an apical oxygen mode. This situation
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

(n) (o) (p) (q) (r) (s)

FIG. 1. Examples of four-particle configurations, arranged according to their energies, Ea < Eb < · · · < Es, for the coupling parameters (7).

is described by the plaquette Holstein Hamiltonian

Hplaquette = ω0

2
(X 2 + P2) + gNX + H0, (5)

where X and P represent the phonon displacement and
momentum operators, ω0 is the phonon frequency, g the
electron-phonon coupling strength, N = nm1 + nm2 + nm3 +
nm4 the total charge on the plaquette, and H0 the hopping
term. We may decouple the electrons and phonons using
a Lang-Firsov transformation [47]: U = e−iPX0 shifts the
coordinate as X → X − X0, so that the transformed Hamil-
tonian reads H̃plaquette = U†HU = ω0

2 ((X − X0)2 + P2) −
g(X − X0)N +U†H0U. By choosing X0 = g

ω0
N , one obtains

a Hamiltonian without explicit electron-phonon coupling, but
with an induced electron-electron interaction and a modified
hopping term H̃0 = U†H0U:

H̃plaquette = ω0

2
(X 2 + P2) − g2

2ω0
N2 + H̃0. (6)

Multiplying out the N2 term yields, in the anti-adiabatic limit,
an attractive interaction Ũ = − g2

ω0
between nearest-neighbor

and next-nearest neighbor sites on the plaquette (plus a chem-
ical potential shift). Assuming that each plaquette of a square
lattice is coupled to such a phonon, we obtain an attractive
nearest-neighbor interaction V1 = 2Ũ and an attractive next-
nearest neighbor interaction V2 = Ũ .

C. Classical limit

In the absence of hopping (t = 0) the Hamiltonian (1)
is simply the energy E for a set of occupation numbers
nm = 0 or 1. Figure 1 illustrates the four-particle configu-
rations which will turn out to be relevant for small t . The
energies of these “lattice animals” can be directly read off
from the figure, namely E = ∑

i νiVi, where ν1 is the number
of nearest-neighbor bonds and so on. Thus the energy of
the “plaquette state” a is Ea = 4V1 + 2V2, while that of the
“diamond” n is En = 4V2 + 2V3. In the absence of repulsive
interactions all these lattice animals have negative energy for
short-range attraction and are therefore stable with respect
to configurations of well separated particles. However, they
are unstable with respect to the addition of particles, leading

to phase separation. Indeed, for a large droplet the energy
per particle is roughly 2(V1 + V2 + V3 + 2V4), which is lower
than that of any cluster in Fig. 1 for V1 < 0, V2 < 0 and
V3 = V4 = 0. We will always assume V1 to be the dominant at-
tractive coupling, V1 < V2 < 0. In this case the plaquette state
a has the lowest energy among all four-particle configurations
for V3 � 0, V4 � 0. Its stability with respect to aggregation
requires repulsive interactions of a certain strength, namely
V3 + 2V4 > −( 1

2V1 + 3
4V2). We characterize the interaction by

a single parameter V > 0 and for most of the following anal-
ysis choose the couplings

V1 = − 2
3V, V2 = − 1

3V, V3 = 1
2V, V4 = 1

4V. (7)

These “canonical couplings” guarantee the stability of the
plaquette state a with respect to both deformation and aggre-
gation. The ratio between V1 and V2 is furthermore consistent
with the scenario discussed in Sec. II B.

Characteristic configurations for arbitrary density and
nonzero temperatures can be readily obtained using Monte
Carlo sampling. For a given number of particles, a Monte
Carlo step consists in moving a randomly chosen particle from
an occupied to an empty site, with a probability defined by the
METROPOLIS algorithm. Two typical snapshots at low temper-
ature are shown in Fig. 2, one for the canonical parameters of
Eq. (7), the other for pure attraction. For canonical parameters
the plaquettes clearly dominate, while phase separation occurs
for pure attraction.

III. QUANTUM STATES

We now turn to the quantum problem of four spinless
fermions on the square lattice. To describe the four-particle
quantum states, we proceed in close analogy to the classifi-
cation of single-particle wave functions in a periodic poten-
tial. Both point-group and translational symmetries will be
used.

A. Point-group symmetry

The square lattice has the point-group symmetry D4. The
eight elements of this group correspond to the covering op-
erations of a square, namely, the identity (e), three rotations
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(a)

(b)

FIG. 2. Monte Carlo snapshots for 200 particles on 40×40 sites
at low temperature, kBT = 0.1V , and for periodic boundary con-
ditions. The parametrization (7) was used in (a), while (b) shows
a snapshot for purely attractive couplings (V1 = − 2

3V,V2 = − 1
3V ,

V3 = V4 = 0).

about the axis through the center perpendicular to the square,
one by π/2 (r+), one by −π/2 (r−), one by π (rπ ), and four
reflections, one with respect to the x axis (σx), one with respect
to the y axis (σy), one with respect to the up-going diago-
nal (σd ), and one with respect to the down-going diagonal
(σ ′

d ).
These transformations on the square lattice (and similarly

in the Brillouin zone) induce unitary transformations in the
Hilbert space through the rule

cn → cgn, (8)

where g is any element of D4. We will use the same notation
for the transformations on the square lattice as for those in the
Hilbert space.

The group has five conjugacy classes, namely C1 = {e},
C2 = {r+, r−}, C3 = {rπ }, C4 = {σx, σy}, C5 = {σd , σ

′
d}.

Hence there exist five inequivalent irreducible represen-
tations, four one-dimensional (A1, A2, B1, B2) and one
two-dimensional (E ). The character table is given in Table I.

A reducible representation � with characters χ (Cj ) can be
decomposed into irreducible representations using relations

TABLE I. Character table of the symmetry group D4.

C1 C2 C3 C4 C5

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

from group theory, namely,

χ (Cj ) =
5∑

k=1

ak χ (k)(Cj ),

8ak =
5∑

j=1

n j χ (Cj ) χ (k)∗(Cj ), (9)

where n j is the number of elements in the class Cj and k
numbers the different irreducible representations. The decom-
position is then specified by the formula

� = a1A1 ⊕ a2A2 ⊕ a3B1 ⊕ a4B2 ⊕ a5E . (10)

The fixed point of the point-group operations on the square
lattice can be a site or the center of a plaquette.

B. Quantum lattice animals

The states

|n1, n2, n3, n4〉 := c†
n1

c†
n2

c†
n3

c†
n4

|0〉, (11)

with distinct sites n1, . . . , n4, yield a natural basis for fermion
quartets on the square lattice. However, if only relatively
compact configurations are relevant, such as those of Fig. 1,
other labels than the locations of the individual particles are
more useful, for instance the species S (S = a, b, c, . . . for
the lattice animals of Fig. 1), the center of mass, and the
orientation of the quartets.

As a first example, we consider the plaquette state (the
structure a in Fig. 1)

|an〉 := |n, n + i, n + i + j, n + j〉, (12)

where i and j are unit vectors in the x and y directions, respec-
tively. The natural fixed point of the point-group operations is
the center of the plaquette. In this case the state |an〉 remains
invariant under the application of e, rπ , σx, σy and changes
sign for r±, σd , σ ′

d . Therefore |an〉 transforms according to
the irreducible representation B1 (see Table I).

We now consider a generic state, i.e., a species S with a
well-defined location n and without any particular symmetry
(such as S = d, e, g in Fig. 1). In this case, there are eight
different states |S
n〉, 
 = 1, . . . , 8, linked to each other by the
point-group transformations. There are L different locations
n and 8 different orientations 
, therefore the states |S
n〉
define an 8L-dimensional subspace for a fixed species S. As
shown in Appendix A, the action of group operations on some
arbitrarily chosen initial state (11) yields a reducible eight-
dimensional representation � with decomposition

� = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E . (13)
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TABLE II. Irreducible representations of some symmetric quar-
tets. The species are labeled as in Fig. 1. The point-group operations
have been defined relative to the natural quartet centers.

Species Decomposition

a B1

c A2 ⊕ B2 ⊕ E
f A2 ⊕ B1 ⊕ E
l A1 ⊕ B1 ⊕ E
n B2

Often it is advantageous to label the states according to the ir-
reducible representations �, |S
n〉 → |S�n〉 (transformation
(A2)).

The list of Fig. 1 contains also symmetric examples. For
instance, the structures c and l are symmetric with respect
to a reflection about the y axis, while f and i are symmetric
with respect to a reflection about the up-going diagonal. In
these cases, there are only four different states related to
each other by rotations and reflections. These states generate
four-dimensional representations, which are decomposed into
irreducible representations as shown in Table II. The table
also contains the two fully symmetric clusters a and n, which
generate one-dimensional representations.

Structures without a well-defined center are special. As an
example we consider the case b of Fig. 1. We can arbitrarily
put such a species somewhere on the lattice, take one of the
internal sites as its center and generate seven other states by
applying rotations and reflections with respect to this center.
Naively, we would expect to obtain 8L independent states in
this way. However, it is easy to see that there are only 4L
different states of this species, by noticing that there are two
linearly independent states for each nearest-neighbor bond.
With 2L such bonds we arrive at 4L states. The point is that
states produced by the application of symmetry operations
on neighboring sites can be identical. Still considering the
lattice animal b in Fig. 1, one notices that a π -rotation around
one of the middle sites reproduces the orientation but not
the location, which is shifted by one lattice constant. Thus
this species has a symmetry involving both a rotation and a
translation, as in nonsymmorphic crystals. In the following,
structures with a well defined location (at a site or at the
center of a plaquette) will be called symmorphic, while those
with an ambiguous location will be named nonsymmorphic. If
we include all sites and all orientations of a nonsymmorphic
species we obtain an overcomplete set of states. There are two
ways of solving this problem. Either one could choose only
the sites of one sublattice, say sublattice A for which nx + ny

is even, as centers, or reduce the number of orientations at
each site by a factor of 2. We will use mostly the second
procedure, which is detailed in Appendix A.

C. Bloch states of lattice animals

The states |S
n〉 introduced above are orthogonal for sym-
morphic structures,

〈S
n|S′
′n′〉 = δS,S′δ
,
′δn,n′ (14)

and thus are the analog of Wannier states for a particle in a
periodic potential. The corresponding Bloch states

|S
k〉 = 1√
L

∑
n

e−ik·n|S
n〉, (15)

with k vectors in the Brillouin zone, are also orthogonal,

〈S
k|S′
′k′〉 = δS,S′δ
,
′δk,k′ . (16)

For nonsymmorphic structures, the situation is similar to
that of molecular-orbital theory in quantum chemistry, where
one faces the problem of nonorthogonality of atomic wave
functions for neighboring atoms [48]. Here, we simply reduce
the overcomplete basis, as mentioned above and worked out
in Appendix A. For instance, in the case of species b we
limit ourselves to four orientations 
, or to four irreducible
representations � if these are used as labels.

D. Momentum space

The states described above are useful if only a small “zoo”
of lattice animals is required, i.e., if the interaction term Hint

dominates and only clusters with low classical energies have
to be retained. In the opposite limit with dominant kinetic en-
ergy H0, the important states are the lowest eigenstates of H0.
In this case it is natural to use the momentum representation,

ck = 1√
L

∑
n

e−ik·ncn, (17)

together with periodic boundary conditions, i.e.,

k = (μp, νp), p = 2π

Lx
, −Lx

2
< μ, ν � Lx

2
. (18)

In this representation the hopping term is diagonal,

H0 =
∑

k

εkc†
kck, (19)

with the tight-binding spectrum

εk = −2t (cos kx + cos ky), (20)

while the interaction is given by

Hint = 1

2L

∑
k1,k2,q

V (q) c†
k1

c†
k2

ck2+qck1−q, (21)

with the momentum-dependent coupling

V (q) =
∑

n

e−iq·nV (n)

= 2V1(cos qx + cos qy) + 4V2 cos qx cos qy

+ 2V3(cos 2qx + cos 2qy) + 4V4(cos qx cos 2qy

+ cos 2qx cos qy). (22)

The point-group operations in position space induce corre-
sponding transformations in momentum space. For a center at
the site (0, 0), we find

gck = 1√
L

∑
n′

e−i(gk)·n′
cn′ = cgk, (23)
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α
ky

kx

β
ky

kx

γ
ky

kx

η
ky

kx

θ
ky

kx

φ
ky

kx

FIG. 3. Ground state of H0 (α) and first excited states (β to φ) in k space.

where the invariance of the scalar product has been used,
k · (g−1n′) = (gk) · n′. (For other centers, additional phase
factors are produced.)

The four-particle eigenstates of H0 are

|k1, k2, k3, k4〉 := c†
k1

c†
k2

c†
k3

c†
k4

|0〉, (24)

where all wave vectors are distinct. Those with the lowest
eigenvalue have wave vectors k1 = 0 and k2, k3, k4 chosen
among (p, 0), (−p, 0), (0, p) and (0,−p). This can be done
in four different ways, for instance as in the structure α of
Fig. 3. The application of π/2 rotations yields the three other
orientations. One obtains a four-dimensional representation �,
exactly as for the species c of Fig. 1, with the same decompo-
sition as in Table II, namely,

� = A2 ⊕ B2 ⊕ E . (25)

The state (24) is an eigenstate of the crystal momentum

P :=
∑

k

kc†
kck (26)

with eigenvalue k1 + k2 + k3 + k4. It is worthwhile to men-
tion that the Bloch states for the lattice animals (15) are
not eigenstates of P with eigenvalue k, but superpositions of
momentum eigenstates with eigenvalues k + K, where K are
reciprocal lattice vectors.

IV. WEAK COUPLING

For weak interactions, V 	 t , the momentum eigenstates
(24) are expected to provide a useful starting point for cal-
culating the low-energy states of the Hamiltonian. In a first
step, we limit ourselves to the reduced subspace defined by
Fig. 3 and perform analytical calculations. In a second step,
we present results from Exact Diagonalization for an 8×8
lattice. Both methods yield a fourfold degenerate ground state,
in agreement with the symmetry arguments.

A. Hartree-Fock

To calculate the energy spectrum using perturbation theory
(or variational methods) for weak coupling we need the matrix
elements

〈k′
1, k′

2, k′
3, k′

4|Hint|k1, k2, k3, k4〉. (27)

It is straightforward to establish some simple rules, using
both translational and D4 symmetries together with Wick’s
theorem.

(1) The matrix element (27) vanishes if
∑

i ki 
= ∑
i k′

i +
K, where K is any reciprocal lattice vector, or if the two states
belong to two different irreducible representations of D4.

(2) Diagonal matrix elements are equal if the states are
related by a symmetry transformation g ∈ D4, i.e.,

〈�|Hint|�〉 = 〈g�|Hint|g�〉. (28)

(3) Off-diagonal matrix elements 〈�|Hint|� ′〉 vanish ex-
cept if |�〉 and |� ′〉 have two or four common wave vectors.

We now apply these rules to the eigenstates of H0 with the
two lowest eigenvalues. These states are illustrated in Fig. 3.
The lowest level at

E0 = −2t (5 + 3 cos p) (29)

(where p = 2π
Lx

) is fourfold degenerate (species α), while the
next higher eigenvalue

E1 = −8t (1 + cos p) (30)

has 25 eigenstates (species β to φ). The representations gener-
ated by these states are detailed in Table III. The total crystal
momenta P of the different species are all different except
for those labeled by θ and φ, for which P vanishes. But
the decompositions of the representations generated in these
two cases do not contain any common element. Therefore,
according to rule 1, all the matrix elements between states
belonging to different species vanish and we can consider
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TABLE III. Crystal momenta, number of states and irreducible
representations generated by the low-lying four-particle eigenstates
of H0. The labels α to φ refer to the different structures shown in
Fig. 3.

Species |P| States Decomposition

α p 4 A2 ⊕ B2 ⊕ E

β
√

8p 4 A2 ⊕ B1 ⊕ E
γ 2p 8 A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E

η
√

2p 8 A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E
θ 0 4 A2 ⊕ B1 ⊕ E
φ 0 1 B2

each one independently to determine the first-order correc-
tions to the energies. The corrections are proportional to 1

L ,
and thus vanish in the thermodynamic limit. This is of course
expected because in this limit we have a (four-particle) scat-
tering problem, where the energy is asymptotically that of
independent particles. Explicit expressions are presented in
Appendix B.

Because our procedure is similar to the Hartree-Fock ap-
proximation, we will use the label HF for these results.

B. Exact Diagonalization

To determine the energy spectrum for arbitrary coupling
strength, we use exact diagonalization (ED). The Hamilto-
nian (1) has been implemented for four particles on a 8×8
square lattice, using periodic boundary conditions. The
Hilbert space of all possible configurations |φi〉 has dimension
NH = 635 376. The corresponding matrix representation is
brought to a tridiagonal form using the Lanczos algorithm
[49] and diagonalized with state-of-the-art parallel routines
providing a subset of eigenvectors |� (n)〉 up to a user-defined
tolerance (10−15). Each eigenvector is explicitly stored as a
superposition over the basis states via the complex coefficients
α

(n)
i ,

|� (n)〉 =
NH∑
i=1

α
(n)
i |φi〉, (31)

which allows us to evaluate arbitrary operators O =
c†

nc†
m . . . cm′cn′ that conserve the number of particles.
Figure 4 shows the ED results and compares them with per-

turbation theory (Hartree-Fock). In this way we can attribute
the low-lying energy levels to the species of Fig. 3. We no-
tice that the evolution of the spectrum approximately follows
the predictions of perturbation theory for V < t . However, the
behavior changes markedly for V > 2t , where several levels
merge into a narrow band, which eventually becomes the
dominant low-energy feature.

For V � t , the ground state |�0〉 is dominated by the
α species and the states generated by applying π

2 rotations
are linearly independent. This, together with the symmetry
Hg|�0〉 = gH |�0〉, is the reason why the ground state is four-
fold degenerate.

FIG. 4. Low-energy eigenvalues as functions of the coupling
strength V . The values of the interaction parameters V1, . . . ,V4 have
been chosen according to Eq. (7). ED results are shown in the left
panel and compared to the HF results (red lines) in the right panel.

V. STRONG COUPLING

We now turn to the opposite limit of dominant interactions.
We expect to find a ground state which resembles the classical
quartet of Sec. II C. Quantum fluctuations have two effects.
On the one hand, they lead to a spreading of the wave function,
on the other hand, they restore the translational invariance by
delocalizing the quartet as a whole. We use both a variational
approach, where these two effects are treated in two steps,
and exact diagonalization, where the bound quartet state cor-
responds to a narrow band well separated from the rest of the
energy spectrum. The comparison of the two methods shows
that the variational wave function represents the ground state
very well in the region where the four particles are bound.

A. Variational ansatz

We use a variational ansatz which has been introduced in
the framework of the large-U Hubbard model [50] and ap-
plied to a Hamiltonian for spinless fermions with long-range
Coulomb interaction to describe the melting of the “general-
ized Wigner crystal” [51]. In the present context, the ansatz is
defined as

|�n〉 = eκT |an〉, (32)

where |an〉 is the plaquette state (12), T is the hopping opera-
tor (3), and the variational parameter κ controls the spreading
of the wave function. The evaluation of the expectation value

E (κ ) = 〈�n|H |�n〉
〈�n|�n〉 (33)

is carried out explicitly in Appendix C. The expectation value
of the hopping operator is given by the simple formula

〈�n|T |�n〉
〈�n|�n〉 = −16τ1

τ0 − τ2

τ 2
0 − τ 2

1

, (34)

where

τν := 1

Lx

∑
kx

e4κ cos kx cosν kx, ν = 0, 1, 2. (35)
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FIG. 5. Variational energy as a function of κ for the coupling
parameters (7) with t

V = 0.1, 0.3 and 0.5 (top to bottom). Black
lines show data for the thermodynamic limit and red lines are results
obtained for Lx = 8. The dashed lines represent the corresponding
ground state energies of H0.

The expectation value of the interaction, Eq. (C20), is a (com-
plicated) function of one-dimensional amplitudes

fnα
= 1

Lα

∑
kα

e2κ cos kα cos kαnα, α = x, y. (36)

This dimensional reduction facilitates greatly the compu-
tations, especially in the thermodynamic limit, where fn

decreases exponentially with |n| for κ > 0, so that only a lim-
ited number of these amplitudes is required. For small lattices,
it is advantageous to use the representation in momentum
space, Eq. (C23).

Figure 5 shows E (κ ) for different values of t . For t =
0.1V , a global minimum occurs at a very small value of κ .
A minimum is again found for t = 0.3V , but it is only local
and the global minimum has jumped to κ = ∞. For t = 0.5V ,
no minimum is obtained for finite values of κ . The curves for
Lx = 8 and Lx = ∞ are almost on top of each other for κ < 1,
but differ appreciably for κ  1. For κ → ∞ and Lx = ∞,
the energy tends to E0 = −16t , the lowest eigenvalue of H0.
However, as shown in Appendix C, for a finite lattice the state
reached asymptotically, the “fully projected” state, is a super-
position of the structures β, γ , η of Fig. 3, of B1 symmetry
and with energy E1 > E0.

The minimization of E (κ ) yields the variational ground
state energy shown in Fig. 6. For very small values of t ,
the bound quartet state has lower energy than the scattering
state, while the latter is stabilized above a critical value tc ≈
0.220 V , where a first-order transition due to level crossing
occurs.

The role of κ in the spreading of the wave function is
neatly illustrated by the density, which is given by the simple
expression (for details see Appendix C 2)

〈�|c†
ncn|�〉

〈�|�〉 = 1(
τ 2

0 − τ 2
1

)2

[
τ0

(
f 2
nx

+ f 2
nx−1

) − 2τ1 fnx fnx−1
]

× [
τ0

(
f 2
ny

+ f 2
ny−1

) − 2τ1 fny fny−1
]
. (37)

FIG. 6. Variational ground state energies as functions of t/V for
the coupling parameters (7). Results for the ansatz (32) are shown in
black, with the optimized values of κ given in the inset. Circles mark
the critical value of t , beyond which no local minimum is found. Red
lines represent the Hartree-Fock results of Appendix B.

B. Linear spreading

For hopping parameters which do not destabilize the bound
quartet, the variational parameter κ is very small, κ � 0.11.
Therefore we can use a simplified ansatz by expanding
Eq. (32) to first order in κ ,

|�n〉 = (1 + κT )|an〉. (38)

A useful concept is that of sublattice parity, which we define
as

Ps := e
iπ
2

∑
n (−1)nx+ny c†

ncn . (39)

The square lattice consists of two sublattices, one with
even, the other with odd values of nx + ny. For states
|n1, n2, n3, n4〉, Ps = +1 if an even number of occupied sites
n1, . . . , n4 belongs to either sublattice, otherwise Ps = −1.
Therefore Ps = 1 for clusters a, b, e, f , g, . . ., and Ps = −1 for
clusters c, d , h, ... of Fig. 1. The application of the operator T
changes the sublattice parity, hence 〈an|T k|an〉 vanishes if k
is odd, and we get

〈�n|�n〉 = 1 + κ2〈an|T 2|an〉,
〈�n|T |�n〉 = 2κ〈an|T 2|an〉. (40)

It is obvious from Fig. 1 that the application of T to the
plaquette state yields states of the species h, and indeed one
finds

T |an〉 =
√

8|hB1n〉, (41)

where we have used the notation of Eq. (A2), and therefore

〈�n|�n〉 = 1 + 8κ2, 〈�n|T |�n〉 = 16κ. (42)

The states |an〉, |hB1n〉 are eigenstates of Hint with eigenval-
ues

Ea = 4V1 + 2V2, (43)

Eh = 2V1 + 2V2 + V3 + V4. (44)
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Collecting the various terms, we arrive at the variational en-
ergy

E (κ ) = Eh + Ea − Eh − 16κt

1 + 8κ2
. (45)

Its extrema are at

κ = 1

16t
(Ea − Eh ±

√
(Ea − Eh)2 + 32 t2) (46)

with values

E = 1
2 (Ea + Eh ∓

√
(Ea − Eh)2 + 32t2). (47)

For the ground state and a small enough hopping parame-
ter, t 	 Eh − Ea, Eqs. (46) and (47) simplify to

κ ≈ t

Eh − Ea
, E ≈ Ea − 8t2

Eh − Ea
. (48)

This is the amplitude for spreading the four-particle wave
function to neighboring sites of the plaquette.

An alternative route to Eq. (47) would be to diagonalize
H in the subspace spanned by the two states |an〉, |hB1n〉. In
fact, this yields a 2×2 matrix with eigenvalues as in Eq. (47).

C. Quartet band

So far, we have considered spatially localized four-particle
states, which break the translational symmetry. To restore this
symmetry, we now turn to the Bloch states (15). All matrix
elements 〈S
k|T |S
′k′〉 vanish (because each species S has
a definite sublattice parity, which is changed by the hop-
ping operator). Therefore we need superpositions of different
species to obtain a nonzero kinetic energy. The linear ansatz
(38) includes species a and h, but still the matrix element of
T between two such states located on different sites n 
= n′
vanishes. In fact, we need four hopping operators to move a
plaquette state from a site n to a neighboring site n′.

The lattice animals of Fig. 1 have been generated by ap-
plying T and T 2 to the plaquette state and T to both |b
n〉
and |c
n〉. Choosing all these states as a basis, we obtain a
100×100 Bloch matrix. Its diagonalization yields a rich band
structure, of which only the low-energy part is expected to
yield a good approximation for small t . At higher energies,
lattice animals not included in our basis become relevant, such
as separated pairs or singly ionized quartets.

The evolution of the lowest energy bands with increasing
t is illustrated in Fig. 7. The lowest band is a renormalized
plaquette state. Its eigenvalue depends weakly on the wave
vector, as illustrated in Fig. 8. The nearly perfect agreement
with a tight-binding dispersion (red dashed line) can be at-
tributed to the fact that the matrix elements of the Wannier
states of our basis, 〈SB1n|T |S′B1n′〉, are only nonzero for
nearest-neighbor sites n, n′ (and for species S, S′ with differ-
ent sublattice parities). The minimum of this band is at k = 0.
The corresponding eigenstate has B1 symmetry, as the bare
plaquette state, and is nondegenerate. Figure 8 shows that the
energy gain due to hopping comes mostly from spreading and
much less from delocalization.

ED yields translationally invariant energy eigenstates. The
results shown in Fig. 9, obtained for a Lx = Ly = 8 lat-
tice, confirm that a very narrow band, well separated from
higher-energy states, emerges from the classical energy Ea and

0.00 0.05 0.10 0.15 0.20 0.25 0.30

t/V

−3.8

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

E
/V

FIG. 7. Energy spectrum for the restricted set of lattice animals
and canonical coupling parameters (7).

Γ X M Γ

−0.100

−0.098

−0.096

−0.094

−0.092

−0.090

−0.088
E

/V

−3.4

FIG. 8. Lowest eigenvalue of the Bloch matrix (solid line) for
t = 0.2V and canonical coupling parameters, Eq. (7), along a
specific path in the Brillouin zone. The dashed line is a tight-
binding fit with an effective nearest-neighbor hopping parameter
teff ≈ 0.00129V .

FIG. 9. ED spectrum for strong coupling, calculated on a
Lx = Ly = 8 lattice (black lines). The inset shows the effective quartet
hopping parameter teff determined from the broadening of the low-
energy band. The red lines show the variational results for the center
and width of the quartet band.
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FIG. 10. Density profile of the ground state wave function for two hopping amplitudes in the strong-coupling regime. The left panel is for
t/V = 0.1 and the right panel for t/V = 0.22. A small seed potential on the central plaquette is used to localize the quartet.

broadens with increasing t . The effective hopping parameter
teff describing this broadening, defined as 1/8 of the measured
bandwidth, increases rapidly as a function of the bare hopping
parameter t , as shown in the inset.

The red lines in the main panel and inset of Fig. 9 show that
the energy and width of the quartet band are well described by
the variational treatment.

D. Density profile

In the translation invariant ED ground state, the quartet
structure manifests itself only in the density correlation func-
tions, but not in the density profile. To directly visualize the
quartet, we add a small seed potential of O(10−4) on four
sites of a plaquette. This seed is comparable to teff and lo-
calizes the fermions in the vicinity of the four selected sites.
In Fig. 10, we plot the resulting density profile for t/V = 0.1
(left panel) and 0.22 (right panel). For the smaller hopping,
the wave function is clearly localized on the four sites of the
plaquette, consistent with the classical picture, while for the
larger hopping, the weight is spread over several sites. The
true ground state without seed is a superposition of such more
or less localized four-fermion states.

VI. TRANSITION

In the previous sections, we analyzed the ground state of
the four-fermion system in the weak and strong coupling limit.
An interesting finding is that both the ED and variational
calculations predict different ground state degeneracies and
different symmetries in the two limits, namely, a fourfold
degenerate ground state with a decomposition A2 ⊗ B2 ⊗ E
for V 	 t and a nondegenerate ground state transforming
according to B1 for t 	 V . The symmetry argument implies
that these two solutions cannot be continuously connected.
This result for quartets is in stark contrast to the situation
for electron pairs, where the BCS-BEC crossover (e.g., in the
attractive Hubbard model) describes a continuous evolution
from extended to localized pairs.

In Fig. 11, we plot the ground state energy as a function
of t/V , together with the spreading X̄ of the quartet (for Lx =
Ly = 8). This spreading is defined as the expectation value of
the operator

X =
∑
m,n

|m − n|nmnn. (49)

As can be seen in the figure, X̄ exhibits a jump around t/V =
0.26, which is the value where the ground state changes from
B1 to A2 ⊗ B2 ⊗ E symmetry in the ED calculation. These
results demonstrate the existence of a first-order transition
from a quartet bound state to a state of four unbound particles.

We also show in Fig. 11 the ground state energies obtained
from variational and Hartree-Fock calculations (red lines).
These predict a transition in a similar range of t/V and illus-
trate how the ciritical point is affected by finite-size effects.

FIG. 11. Ground state-energy E0 and spreading X̄ as a function
of the hopping amplitude for the coupling parameters (7). The black
circles and squares show the ED results for the ground state energy
and X̄ on an Lx = Ly = 8 lattice, while the red lines show Variational
and Hartree-Fock results for the indicated lattice sizes.

115133-10



FERMION QUARTETS ON THE SQUARE LATTICE PHYSICAL REVIEW B 108, 115133 (2023)

FIG. 12. Ground state energy E0 and spreading X̄ as a function of
the hopping amplitude for the model with pure attraction (ED results
for a Lx = Ly = 8 lattice).

VII. INTERMEDIATE PHASE AND HYBRID QUARTET
FOR PURE ATTRACTION

In this section, we analyze the transition from the quartet
ground state to the unbound four fermion state in a model
with pure attraction (parametrization as in Eq. (7), but with
V3 = V4 = 0). This choice of interaction would lead to phase
separation in a many-particle system, but we will show that
the four-particle problem reveals the existence of a peculiar
hybrid quartet ground state at intermediate coupling. A con-
densation of such hybrid quartets, which could be potentially
realized for fine-tuned parameters, may be a possible scenario
for quartet superconductivity.

A. Intermediate phase

In Fig. 12, we plot the ED results for the ground state
energy E0 and quartet spreading X̄ as a function of t/V , for
the model with pure attraction. In contrast to Fig. 11, we now
observe two jumps in X̄ as the hopping parameter increases.
These jumps are associated with kinks in E0, indicative of
level crossings. The symmetry analysis of the intermediate
ground state shows that it transforms according to A2, which
is a different symmetry from that of the strongly bound quar-
tet (B1) and of the unbound fermions (A2 ⊗ B2 ⊗ E ). These
numerical results demonstrate the existence of three distinct
ground states in the model with pure attraction.

B. Hybrid quartet

The X̄ data in Fig. 12 show that the intermediate phase
corresponds to a more extended four-particle object than the
tightly bound quartet, which is dominated by the plaquette
state a in Fig. 1, with some admixture of b. On the other hand,
it is more compact than the unbound four fermion state in the
large hopping regime. An educated guess, which is consistent
with the numerical data, is that the intermediate state is a
hybrid state of lattice animals b and c, as illustrated in Fig. 13.
This bc hybrid with symmetry A2 can be schematically repre-
sented as an extended object with two fermions in the center

FIG. 13. Relevant lattice animals in the intermediate state of
the model with pure attraction, and schematic illustration of the bc
hybrid state (hybrid quartet).

and two delocalized ones on the sides, as shown in the lower
panel of Fig. 13.

These results can be confirmed by diagonalizing the pre-
viously mentioned 100×100 Bloch matrix (Sec. V C). For
small t/V , the ground state has B1 symmetry and is dominated
by the plaquette state a. With increasing t , lattice animal b
acquires weight, so that one could call the ground state an ab
hybrid. At some larger t/V , the symmetry switches from B1

to A2. After this transition, the weight of the a character drops
to zero, and the ground state can indeed be characterized as a
bc hybrid, since most of the weight is contributed by the b and
c animals.

VIII. SPIN

So far, we have limited the discussion to spinless fermions.
While model (1) may be adequate for certain cold-atom sys-
tems, it may not be appropriate for electrons, especially if
magnetic correlations play a role. We therefore add in this
section the spin degrees of freedom and consider Hamiltonian
(1) with the hopping term

T =
∑

〈m,n〉,σ
(c†

mσ cnσ + c†
nσ cmσ ), (50)

where c†
nσ (cnσ ) creates (annihilates) an electron with spin

σ =↑ or ↓ at site n, and with an additional on-site interaction
term

Hint → Hint + UD, (51)

where

D =
∑

m

nm↑nm↓ (52)

is the number of doubly occupied sites. The density appearing
in the nonlocal interactions is now nm := ∑

σ nmσ , where
nmσ = c†

mσ cmσ . The on-site coupling strength will be assumed
to be non-negative, U � 0, and the other couplings Vn will be
chosen as in the spinless case [Eq. (7)].

The addition of spin can make a qualitative difference. For
example, in the weak-coupling limit, there is no two-particle
bound state in the spinless case, even if Ṽ (0) < 0, whereas a
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bound state exists for two fermions with spin for infinitesimal
attraction.

The addition of spin degrees of freedom increases greatly
the number of linearly independent states, to 70 (instead of
1), already for four particles on the four sites of a plaquette
(16 with D = 0, 48 with D = 1 and 6 with D = 2). For t = 0
and nonlocal couplings as in Eq. (7), the plaquette states of
lowest energy are those with D = 0, even for U = 0. They
just correspond to the different configurations of four spins (↑
or ↓) on four sites. A symmetry classification of these states
is presented in Appendix D.

A. Linear spreading and kinetic exchange

In the strong-coupling limit, V  t , we could proceed as
in the spinless case, using either the variational ansatz (32) or
a restricted zoo of lattice animals, as in Sec. V C. However,
in both cases, the analysis turns out to be quite involved.
Therefore we limit ourselves to an adaptation of the linear
ansatz (38).

The hopping term T has now two effects. On the one
hand, it again promotes spreading of the four-particle wave
function. On the other hand, it leads to Anderson’s kinetic
exchange [52]. To deal with both effects independently, we
write T = T1 + T2, where T1 acts only on the sites of the
plaquette (n, n + i, n + i + j, n + j) and T2 contains all the
other terms, in particular those which move particles into and
out of the plaquette.

We use the ansatz

|�〉 := (1 + κ1T1 + κ2T2)|�∞〉, (53)

where |�∞〉 is one of the symmetry-adapted states with
singly-occupied plaquette sites, characterized by S, Sz and
the irreducible representations � of the point group
(Appendix D).

To calculate matrix elements, we notice that T 2
1 is directly

related to the Heisenberg model, namely,

〈�∞|T 2
1 |�∞〉 =

∑
〈i, j〉

〈�∞|(1 − 4Si · S j )|�∞〉, (54)

where i, j are plaquette sites and Si are spin 1
2 operators. The

different values are, according to Eq. (D4),

ν := 〈�∞|T 2
1 |�∞〉 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 S = 2, � = B1

8 S = 1, � = A2

4 S = 1, � = E .

4 S = 0, � = A1

12 S = 0, � = B1

(55)

Moreover, one easily finds 〈�∞|T 2
2 |�∞〉 = 8,

〈�∞|T1T2|�∞〉 = 0. Collecting the various terms we get

〈�|�〉 = 1 + νκ2
1 + 8κ2

2 , (56)

〈�|H0|�〉 = −(2νκ1 + 16κ2)t, (57)

〈�|Hint|�〉 = E∞ + νκ2
1 E1 + 8κ2

2 E2, (58)

where

E∞ = Ea = 4V1 + 2V2, (59)

E1 = U + 3V1 + 2V2, (60)

E2 = Eh = 2V1 + 2V2 + V3 + V4. (61)

For κ 	 1, κ2 	 1 the expectation value of the Hamilto-
nian,

〈�|H |�〉
〈�|�〉 ≈ E∞ − 2νtκ1 + ν(E1 − E∞)κ2

1 − 16tκ2

+ 8(E2 − E∞)κ2
2 , (62)

has a minimum at

κ1 ≈ t

E1 − E∞
= t

U − V1
,

κ2 ≈ t

E2 − E∞
= t

V3 + V4 − 2V1
, (63)

with energy

E ≈ 4V1 + 2V2 − νt2

U − V1
− 8t2

V3 + V4 − 2V1
. (64)

Here the last term is identical to the energy gain from spread-
ing found for spinless fermions (Sec. V B), while the term
proportional to ν comes from kinetic exchange. The lowest
energy state is a spin singlet with B1 symmetry, for which
ν = 12. We notice that an antiferromagnetic exchange is ob-
tained even for U = 0 (provided that E1 < 0) and is therefore
not a unique property of the repulsive Hubbard model.

IX. CONCLUSIONS

We presented a systematic investigation of (mainly spin-
less) fermion quartets on the square lattice. We introduced a
microscopic model with short-range attractive and medium-
range repulsive interactions and analyzed its four-fermion
ground state using variational calculations, a Hartree-Fock
type treatment and exact diagonalization. For the classifi-
cation and symmetry analysis of the four-particle quantum
states, we introduced a relevant subset of lattice animals both
in real and momentum space, and used the point-group and
translational symmetries.

In the weak-hopping regime, the ground state is a bound
state of four fermions with B1 symmetry, while in the
strong-hopping regime, we identified a state of four unbound
fermions with a decomposition A2 ⊗ B2 ⊗ E . The different
symmetries of the two ground states imply that the weak- and
strong-coupling regime cannot be continuously connected, as
it is the case for example in the attractive Hubbard model,
where the fermion pairs show a BCS-BEC crossover. On the
strong coupling side of the first-order transition, the quartet
bound states form a very narrow band. The kinetic energy of
the quartet originates mainly from spreading, and not from
delocalization, since the motion of the quartet involves a
higher-order hopping process.

While the medium range repulsion is important for pre-
venting phase separation in a many-particle system, we can
study the four-fermion problem also for a purely attractive
system. In this case, both the analytical and exact diagonal-
ization calculations revealed the existence of an intermediate
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phase, with yet another symmetry (A2). The ground state
in the intermediate phase is dominated by so-called hybrid
quartet states, which can be visualized as an electron pair on
neighboring sites, with a delocalized fermion on each side.
The extended nature of these states should lead to an increased
mobility of the hybrid quartets.

In this study, we have not directly addressed the problem
of superconductivity or quartet condensation, but the results
for the single quartet allow us to draw some relevant con-
clusions. In particular, we have shown that in the model with
canonical parameters, the bound quartets are almost localized
(as evidenced by the narrow width of the quartet band). In
the presence of a disorder potential, we can thus expect the
quartets to easily become localized. Even without an external
disorder potential, longer-ranged interactions may produce
fluctuating mean fields, leading to a localization of quartets
and a quartet glass. These observations provide some hints
why quartet superconductivity is very rare in nature.

With fine-tuned model parameters, it may be possible to re-
alize a homogeneous (i.e., nonphase-separated) multifermion
state composed of hybrid quartets. Since the hybrid quartets
are more extended and presumably more mobile, the cooling
of such a state could potentially lead to quartet condensation,
but we leave the investigation of such a possibility as a future
work. Interestingly, other groups studying quartet condensa-
tion found the transition from quartet liquid to single-fermion
liquid to be of first order [53,54]. Furthermore, Ref. [53],
which considered a one-dimensional model with a similar
structure of the interaction as in the present work, also re-
ported an intermediate phase with similarities to the hybrid
quartet state. More investigations are needed to clarify if these
findings are a consequence of our symmetry arguments and
single-quartet results. More generally, the nontrivial internal
structure of the four-fermion bound states (as exemplified by
the hybrid quartet) suggests potentially interesting forms of
symmetry breaking in multifermion systems.

APPENDIX A: CONSTRUCTION OF IRREDUCIBLE
REPRESENTATIONS

1. Asymmetric quartets

Consider an asymmetric quartet state (11), denoted by |1〉.
We generate seven new states by applying r+ and σx with
respect to some center, i.e.,

|2〉 = r+|1〉, |3〉 = r+|2〉, |4〉 = r+|3〉,
|5〉 = σx|1〉, |6〉 = r+|5〉, |7〉 = r+|6〉, |8〉 = r+|7〉.

(A1)

Any transformation of the group D4 can be generated by the
operations σx and r+, thus one obtains an eight-dimensional
representation of the group, with characters χ (C1) = 8,
χ (C2) = χ (C3) = χ (C4) = χ (C5) = 0. Equation (10)
yields the decomposition (13), which corresponds to the
transformation

|�〉 = 1√
8

8∑

=1

s
 |
〉, (A2)

with coefficients s
 listed in Table IV.

TABLE IV. Irreducible representations of a generic species. Here
s = ±1 for the two components of the two-dimensional representa-
tions E , E ′.

� s1 s2 s3 s4 s5 s6 s7 s8

A1 1 1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1 −1 −1
B1 1 −1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1 −1 1
E s 1 −s −1 s 1 −s −1
E’ s 1 −s −1 −s −1 s 1

2. Symmetric quartets

For quartets with a symmetry axis (such as S = c, f , i, . . .
in Fig. 1) only four different states are related by symmetry,
and the first line of Eq. (A1) is sufficient to generate them.
Proceeding as above, we obtain reducible four-dimensional
representations, which are decomposed as in Table II.

3. Nonsymmorphic quartets

The application of Eq. (A1) to the species b of Fig. 1 at
each site n yields an overcomplete set of states |b
n〉. To be
specific, we define

|b1n〉 := |n − i, n, n + i + j, n + j〉. (A3)

A rotation by π around n produces the state

|b3n〉 = |n + i, n, n − i − j, n − j〉, (A4)

which is equal to |b1n − j〉. Other pairs of states are mapped
onto each other in the same way, and one obtains the relations

|b3n〉 = |b1n − j〉,
|b4n〉 = |b2n + i〉,
|b7n〉 = |b5n + j〉,
|b8n〉 = |b6n − i〉.

(A5)

Therefore we can discard the states |b
n〉 with 
 = 3, 4, 7, 8
and obtain a complete orthogonal set of states for the species
b. For Bloch states, Eq. (A5) leads to the relations

|b3k〉 = e−iky |b1k〉,
|b4k〉 = eikx |b2k〉,
|b7k〉 = eiky |b5k〉,
|b8k〉 = e−ikx |b6k〉.

(A6)

There are four linearly independent states for each wave vec-
tor k, for instance, |b1k〉, |b2k〉, |b5k〉 and |b6k〉.

The Bloch states

|S�k〉 = 1√
L

∑
n

e−ik·n|S�n〉 (A7)

115133-13



BAERISWYL, PETOCCHI, AND WERNER PHYSICAL REVIEW B 108, 115133 (2023)

are orthonormal for symmorphic but not for nonsymmorphic
species. For instance, for S = b, we find

|b�k〉 = 1√
8

[
(s1 + e−iky s3)|b1k〉 + (s2 + eikx s4)|b2k〉

+ (s5 + eiky s7)|b5k〉 + (s6 + e−ikx s8)|b6k〉], (A8)

where the coefficients s
 are listed in Table IV. This implies

〈b�k|b�k〉 = 1 ± 1
2 (cos kx + cos ky), (A9)

where the upper and lower signs stand for the one- and two-
dimensional irreducible representations, respectively. More-
over, the states for a given wave vector and different labels
� are not linearly independent, and we can limit ourselves
to four of them, for instance, to the four one-dimensional
irreducible representations, � = A1, A2, B1, B2.

APPENDIX B: ENERGY EIGENVALUES
FOR WEAK COUPLING

In this Appendix, we diagonalize the Hamiltonian in the
29-dimensional subspace illustrated in Fig. 3. H0 is diagonal
with eigenvalues (29) and (30). The diagonal matrix elements
of Hint for |�〉 = |k1, k2, k3, k4〉 are

L 〈�|Hint|�〉 = 6V (0) −
∑
i< j

V (ki − k j ). (B1)

It is convenient to introduce the notation Ṽi := V (qi ), where
q0 = 0, q1 is the difference between two neighboring wave
vectors, q2 that between second neighbors and so on, in
close analogy to the definition of the coupling constants
V1, . . . ,V4 on the square lattice. With this notation we can
write

∑
i< j V (ki − k j ) = ∑

i νiṼi, where ν1 is the number of
“nearest-neighbor bonds” in Fig. 3, and so on. We get

L 〈�|Hint|�〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6Ṽ0 − 3Ṽ1 − 2Ṽ2 − Ṽ3, α

6Ṽ0 − 4Ṽ1 − 2Ṽ2, β

6Ṽ0 − 3Ṽ1 − 2Ṽ2 − Ṽ4, γ

6Ṽ0 − 3Ṽ1 − Ṽ2 − Ṽ3 − Ṽ4, η

6Ṽ0 − 2Ṽ1 − 2Ṽ2 − 2Ṽ4, θ

6Ṽ0 − 4Ṽ2 − 2Ṽ3, φ

. (B2)

For generic coupling parameters, all these expressions have
different values. This is all we need for calculating the first-
order corrections to the energy for the single state φ of Fig. 3.
It is also sufficient for the four lowest-energy states α, which
differ in their crystal momenta, so that the off-diagonal matrix
elements vanish. The same is true for the states β. This yields
the energy eigenvalues

Eα = E0 + 1

L
(6Ṽ0 − 3Ṽ1 − 2Ṽ2 − Ṽ3), (B3)

Eβ = E1 + 2

L
(3Ṽ0 − 2Ṽ1 − Ṽ2), (B4)

Eφ = E1 + 2

L
(3Ṽ0 − 2Ṽ2 − Ṽ3). (B5)

The explicit expressions for the couplings in momentum
space as functions of the “lattice constant” p = 2π

Lx
are

Ṽ0 = 4(V1 + V2 + V3 + 2V4),

Ṽ1 = 2[V1+V3 + (V1 + 2V2+2V4) cos p + (V3 + 2V4) cos 2p],

Ṽ2 = 2[V2 + 2V1 cos p + (V2+2V3) cos 2p+4V4 cos p cos 2p],

Ṽ3 = 2[V1 + V3 + (V1 + 2V2 + 2V4) cos 2p

+ (V3 + 2V4) cos 4p],

Ṽ4 = 2[V4 + V1 cos p + (V1 + V3) cos 2p + (V3 + V4) cos 4p

+ 2V2 cos 2p cos p + 2V4 cos 4p cos p]. (B6)

We turn now to the cases where off-diagonal matrix ele-
ments are involved, namely between states with two common
wave vectors and with the same total momentum,

L 〈k1, k2, k3, k4|Hint|k1, k2, k′
3, k′

4〉
= V (k3 − k′

3) − V (k3 − k′
4). (B7)

The structure γ of Fig. 3 represents four pairs of states with
momenta (±2p, 0), (0,±2p). The pairs can be treated inde-
pendently and we are left with four identical 2×2 matrices
with off-diagonal matrix elements

L 〈�|Hint|� ′〉 = Ṽ1 − Ṽ3. (B8)

Therefore the originally eightfold degenerate level is split into
two fourfold degenerate levels with energies

Eγ = E1 + 1

L
(6Ṽ0 − 3Ṽ1 − 2Ṽ2 − Ṽ4 ± Ṽ1 ∓ Ṽ3). (B9)

We can proceed in the same way for the structure η, but it
turns out that in this case the off-diagonal matrix elements
vanish and the eightfold degeneracy is not lifted. This is not a
consequence of symmetry, therefore the degeneracy may well
be lifted in higher-order perturbation theory. To first order, we
get

Eη = E1 + 1

L
(6Ṽ0 − 3Ṽ1 − Ṽ2 − Ṽ3 − Ṽ4). (B10)

Finally, we look at the four states of structure θ , which all
have zero momentum. It is easy to see that two “neighbor-
ing states” linked through a π/2 rotation have two common
wave vectors, with matrix element (B8). On the other hand,
“opposite states” related by a π rotation have only the wave
vector k = 0 in common, so that the matrix element between
these states vanishes. This leads to a symmetric 4×4 matrix h
with off-diagonal matrix elements as in Eq. (B8), except for
h13, h24, which vanish. The eigenvalues are

Eθ = E1 + 2

L
×

{
3Ṽ0 − Ṽ1 − Ṽ2 − Ṽ4, twice

3Ṽ0 − Ṽ1 − Ṽ2 − Ṽ4 ± Ṽ1 ∓ Ṽ3
. (B11)

APPENDIX C: EXPECTATION VALUES
FOR THE ANSATZ (32)

Here we show how to evaluate the various expectation
values for the ansatz (32), with the plaquette state (12) located
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at n = 0. In Fourier space, our ansatz reads

|�〉= 1

L2

∑
k1,...,k4

e−(κ/t )(εk1 +···+εk4 )e−i(k2x+k3x+k3y+k4y ) c†
k1

. . . c†
k4

|0〉.

(C1)

1. Norm and hopping term

The representation (C1) is convenient for calculating the
norm. Using Wick’s theorem, we get

〈�|�〉 = (s0 − s2)2
[
(s0 + s2)2 − 4s2

1

]
, (C2)

where

s0 := 1

L

∑
k

e−2(κ/t )εk , (C3)

s1 := 1

L

∑
k

e−2(κ/t )εk cos kx, (C4)

s2 := 1

L

∑
k

e−2(κ/t )εk cos kx cos ky. (C5)

For the expectation value of the hopping term, we also need

s3 := 1

L

∑
k

e−2(κ/t )εk cos2 kx, (C6)

s4 := 1

L

∑
k

e−2(κ/t )εk cos2 kx cos ky. (C7)

We obtain
〈�|H0|�〉

〈�|�〉

= −8t

{
s1 − s4

s0 − s2
+ (s0 + s2)(s1 + s4) − 2s1(s2 + s3)

(s0 + s2)2 − 4s2
1

}
.

(C8)

At first sight, it appears that we have to evaluate two-
dimensional integrals to compute these expectation values.
Fortunately, this is not the case, because the expressions
sα, α = 0, . . . , 4, are simple products of one-dimensional in-
tegrals, thanks to the additivity of the tight-binding spectrum,
namely,

s0 = τ 2
0 , s1 = τ0τ1, s2 = τ 2

1 , s3 = τ0τ2, s4 = τ1τ2,

(C9)

where

τ0 := 1

Lx

∑
kx

e4κ cos kx , (C10)

τ1 := 1

Lx

∑
kx

e4κ cos kx cos kx, (C11)

τ2 := 1

Lx

∑
kx

e4κ cos kx cos2 kx. (C12)

This yields the simple expression

〈�|�〉 = (
τ 2

0 − τ 2
1

)4
(C13)

for the norm and Eq. (34) for the kinetic energy.

2. Density

The expectation value of the density involves the “Green
functions”

gn = 〈0|cneκT c†
0|0〉 = 1

L

∑
k

e−(κ/t )εk eik·n. (C14)

We find

〈�|c†
ncn|�〉 = (

τ 2
0 − τ 2

1

)2[
τ 2

0

(
g2

n + g2
n−i + g2

n−j + g2
n−i−j

)
− 2τ0τ1

(
gngn−i + gngn−j + gn−ign−i−j

+ gn−jgn−i−j
) + 2τ 2

1

(
gngn−i−j + gn−ign−j

)]
.

(C15)

The calculation of gn is greatly simplified thanks to a dimen-
sional reduction similar to that encountered in Appendix C 1,
namely,

gn = fnx fny , (C16)

where

fnα
= 1

Lα

∑
kα

e2κ cos kα cos kαnα, α = x, y. (C17)

Equations (C13), (C15), and (C16) yield Eq. (37).

3. Interaction

The calculation of the interaction energy is more compli-
cated. It involves the quantities

Gαβ
n,m := gn−aα

gm−aβ
− gn−aβ

gm−aα
, (C18)

where gn is defined by Eq. (C14) and the vectors aα, α =
1, . . . , 4, are the locations of the electrons in the classical
reference state, i.e.,

a1 = 0, a2 = i, a3 = i + j, a4 = j. (C19)

The result is

〈�|Hint|�〉
〈�|�〉 = 1(

τ 2
0 − τ 2

1

)3

∑
n,m

Vn,m

{
1

2
τ 2

0

[(
G12

nm

)2 + (
G14

nm

)2 + (
G23

nm

)2 + (
G34

nm

)2] + 1

2

(
τ 2

0 + τ 2
1

)[(
G13

nm

)2 + (
G24

nm

)2]
+ τ 2

1

(
G14

nmG23
nm − G12

nmG34
nm

) + τ0τ1
[(

G12
nm − G34

nm

)(
G24

nm − G13
nm

) − (
G14

nm + G23
nm

)(
G13

nm + G24
nm

)]}
. (C20)

To compute this expression, we take again advantage of the dimensional reduction (C16).
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The expression (C20) is convenient if the amplitudes fn decrease rapidly with n. This is the case for κ � 1. For larger κ it is
preferable to transform Eq. (C20) to momentum space, using the relation∑

n,m

Vn,mGαβ
nmGγ δ

nm = 1

L3

∑
q,k,k′

V (q) e−(κ/t )(εk+εk′ +εk+q+εk′−q ) fαβ (k, k′) fγ δ (−k − q,−k′ + q), (C21)

where

fαβ (k, k′) := e−i(k·aα+k′ ·aβ ) − e−i(k·aβ+k′ ·aα ). (C22)

To proceed, we apply the shifts k → k − q
2 , k′ → k′ + q

2 and use symmetries, such as q → −q, k ↔ k′. With this, we find

〈�|Hint|�〉
〈�|�〉 = 2(

τ 2
0 − τ 2

1

)3

1

L

∑
q

V (q)

{
− τ 2

0

[
v2(qx )u2(qy) + u2(qx )v2(qy)

]
− (

τ 2
0 + 3τ 2

1

)
v2(qx )v2(qy) + u2(qx )

[
τ 2

0 u2(qy) + τ 2
1 v2(qy)

]
cos qx

+ u2(qy)
[
τ 2

0 u2(qx ) + τ 2
1 v2(qx )

]
cos qy + (

τ 2
0 + τ 2

1

)
u2(qx )u2(qy) cos qx cos qy

+ 4τ0τ1v(qx )v(qy)

[
u(qx )v(qy) cos

qx

2
+ v(qx )u(qy) cos

qy

2

]
− 4τ0τ1u(qx )u(qy)

[
u(qx )v(qy) cos qx cos

qy

2
+ v(qx )u(qy) cos

qx

2
cos qy

]}
, (C23)

where (α = x, y)

u(qα ) := 1

Lα

∑
kα

e4κ cos qα
2 cos kα ,

v(qα ) := 1

Lα

∑
kα

e4κ cos qα
2 cos kα cos kα. (C24)

For periodic boundary conditions, the wave vectors q are
given by

q = 2π

Lx
(νx, νy) (C25)

with integers να in the range − Lx
2 < να � Lx

2 . Due to the
momentum shifts by ± q

2 , the wave vectors kα in the sums
(C24) are “even” or “odd,” depending on q,

kα = π

Lx

{
2μα, if να is even,

(2μα + 1), if να is odd.
(C26)

The integers μα can again be chosen in the range − Lx
2 < μα �

Lx
2 because all terms in Eq. (C23) are 2π -periodic.

APPENDIX D: SPIN STATES ON THE PLAQUETTE

Here we classify the 16 different spin configurations on the
plaquette in terms of the total spin (S, Sz) and the irreducible
representations � of the point group, using the notation

|σ1σ2σ3σ4〉 := c†
nσ1

c†
n+iσ2

c†
n+i+jσ3

c†
n+jσ4

|0〉. (D1)

There are five states with S = 2, 9 with S = 1 and 2 with
S = 0. Those with Sz = S, written as |S�〉, are

|2B1〉 = |↑↑↑↑〉,

|1A2〉 = 1

2
(|↓↑↑↑〉 − |↑↓↑↑〉 + |↑↑↓↑〉 − |↑↑↑↓〉),

|1E〉± = 1

2
(|↓↑↑↑〉 ∓ |↑↓↑↑〉 − |↑↑↓↑〉 ± |↑↑↑↓〉),

|0A1〉 = 1

2
(|↓↓↑↑〉 − |↓↑↑↓〉 + |↑↑↓↓〉 − |↑↓↓↑〉),

|0B1〉 = 1

2
√

3
(2|↑↓↑↓〉 + 2|↓↑↓↑〉 − |↓↓↑↑〉 − |↓↑↑↓〉

− |↑↑↓↓〉 − |↑↓↓↑〉), (D2)

where the subscript ± distinguishes the two E -states accord-
ing to the eigenvalues ±1 of the reflection operator σx.

The states (D2) are eigenstates of the Heisenberg Hamilto-
nian

H = J
∑
〈i, j〉

(
Si · S j − 1

4

)
(D3)

with eigenvalues

E =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 S = 2, � = B1

−2J S = 1, � = A2

−J S = 1, � = E
−J S = 0, � = A1

−3J S = 0, � = B1

. (D4)

The ground state is a singlet, and transforms according to the
irreducible representation B1.
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