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Phase diagram of the ionic Hubbard model with density-dependent hopping
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We obtain the quantum phase diagram of the ionic Hubbard model including electron-hole symmetric density-
dependent hopping. The boundaries of the phases are determined by crossings of excited levels with particular
discrete symmetries, which coincide with jumps of charge and spin Berry phases with a topological meaning.
Reducing the magnitude of the hopping terms that do not change the total number of singly occupied sites with
respect to the other one, the region of the phase diagram occupied by the fully gapped spontaneously dimerized
insulator (which separates the band insulating and Mott insulating phases) is enlarged, particularly for small
values of the alternating on-site energy. This result might be relevant for experiments in cold atoms in which
topological charge pumping is observed when alternation in the hopping is included.
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I. INTRODUCTION

Ultracold quantum gases provide a versatile platform as
universal quantum simulators of many-body problems [1].
Cold atoms as well as other platforms have been used to study
quantized topological charge pumping in driven systems [2].
A time-dependent adiabatic evolution in a closed cycle in a
certain space of parameters constitutes a Thouless pump, in
which a quantized amount of charge or spin is transported,
which is topologically protected [3,4]. The study of Thouless
pumps combines various exciting aspects of modern physics,
including topological phases, quantum mechanics, metrology
[5], and quantum information processing.

Simulating the noninteracting Rice-Mele model [6] with
ultracold atoms, quantized charge pumping has been achieved
for bosons [7] and fermions [8]. For the fermionic interact-
ing Rice-Mele model, charge pumping has also been studied
theoretically [9] using a pump cycle centered at the origin
of a two-dimensional parameter space [(δ,�) explained in
Sec. II]. In the case of weak enough interaction, the pump cy-
cle encloses two symmetrically located singularities resulting
in a pumping of two charges, one for each spin. Notably, the
interaction induces an effective repulsion of the singularities
while keeping their positions symmetrically disposed. As a
consequence, increasing the interaction results in a movement
of the singularities towards the frontier of the closed path
and when a critical value of the interaction is reached, they
are expelled outside from it leading to an abrupt decrease
of the quantized charge pumped per cycle from two to zero.
This behavior has been recently experimentally observed in
an optical lattice [10].

The interacting version of the model (described in detail
in Sec. II) is particularly interesting because it also permits
the transport of one single charge in the cycle. This has been

explored theoretically (including also spin pumping) [11]. To
pump one charge per cycle, a closed path is chosen with its
center outside the origin of the parameter space and enclosing
one singularity in the trajectory. Therefore, the interaction is
used to split the degeneracy of the singularities at the origin
in the noninteracting model and permits one to select only
one of both inside the loop. Remarkably, this half of the usual
Thouless pumping has been recently achieved in a dynamical
superlattice of fermionic atoms [12].

A feature of the phase diagram for interacting fermionic
models is that it includes regions of the parameter space in
which the spin gap vanishes. If in an experimental setup the
closed path traverses the spin gapless region, the adiabatic
charge pumping results in a challenge for the experiment,
because traversing a gapless region with finite velocity nec-
essarily induces transitions from the ground state to excited
states.

The goal of this work is to study to what extent the
region of the phase diagram occupied by the fully gapped
phase can be enlarged. To do so, we study the ionic Hubbard
model (IHM), which is a general prototype for the interacting
Rice-Mele one, with a density-dependent hopping (DDH). In
order to solve the model, we use the method of crossings of
excited energy levels based on conformal field theory [13–17],
already used in Ref. [18] for the standard IHM. For this model
including DDH, the method also coincides with that of jumps
of charge and spin Berry phases used in Ref. [19].

The paper is organized as follows. In Sec. II we explain the
model and its different phases as the parameters are changed.
Furthermore, we provide a description of the Thouless pump
and the different types of cycles in the parameter space. More-
over, this section gives a detailed explanation that motivates
the inclusion of DDH for enlarging the spin gapless region of
the phase diagram. In Sec. III we briefly explain the method of
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crossings of excited energy levels for solving the model. The
resulting phase diagram is contained in Sec. IV. Section V
contains a summary and discussion.

II. MODEL AND THOULESS PUMP

The interacting Rice-Mele model including density-
dependent hopping has the form

H =
∑

jσ

[−1 + δ (−1) j](c†
jσ c j+1σ + H.c.)

× [tAA(1 − n jσ̄ )(1 − n j+1σ̄ ) + tBBn jσ̄ n j+1σ̄

+ tAB(n jσ̄ + n j+1σ̄ − 2n jσ̄ n j+1σ̄ )]

+ �
∑

jσ

(−1) jn jσ + U
∑

j

n j↑n j↓. (1)

The first term is the DDH, which is alternating for δ �= 0.
The amplitude tAA corresponds to the situation in which
only the particle that hops occupies the two nearest-neighbor
sites involved in the hopping. For tAB and tBB the total occu-
pancy is 2 and 3, respectively. In the following we assume
the electron-hole symmetric case tBB = tAA, which is the one
implemented experimentally with cold atoms [20–25]. � is
the alternating on-site energy and U is the on-site Coulomb
repulsion. Our conclusions, and our discussions below on the
effect of the alternation of the hopping δ are the same if δ

affects only the hopping part proportional to tAB, and not the
other two.

Usually the pump cycles are performed in a two-
dimensional space (δ, p) in which both δ and another
parameter p (like � or U ) depend on time and return to the
original value after the cycle. Ideally, in a Thouless pump, a
critical point of degeneracy (a singularity) is surrounded in an
adiabatic time cycle without closing a gap. In the adiabatic
limit, the charge (spin) pumped in the cycle is determined by
the evolution of the charge (spin) Berry phase γc (γs) in the
cycle [11].

For the interacting Rice-Mele model for fixed U , the cycles
which lead to nontrivial charge pumping enclose at least one
of the critical points lying at δ = 0 and � = ±�c (see Fig. 1).
For δ = 0, the interacting Rice-Mele model is equivalent to
the ionic Hubbard model [18,26–34]. It is known that at � =
±�c there is a charge transition in which the topologically
protected charge Berry phase jumps between the values 0 and
π [18], implying a transport of one charge when a time cycle
is performed in the plane (δ,�) enclosing one of the points
(0,±�c) [11,35].

To get insight into the physics of this charge pumping,
consider first the limit t = tαβ → 0 of the IHM (δ = 0). In this
case, clearly for � > �c → U/2, and the half-filled system
of interest, all sites with on-site energies −� are filled and
the rest are empty. The occupancies at each site are therefore
2020... . This corresponds to the band insulating (BI) phase of
the IHM and has a charge Berry phase γc = 0 mod(2π ) [18].
In fact in the limit t → 0, γc = 0 coincides with the phase
of the ground-state expectation value of exp[i(2π/L)	 jx jn j],
where n j is the total occupancy at site j and x j is the
position of this site fixing x1 = 0 [35]. By an elementary
calculation, this phase is seen to correspond to 0 mod(2π ).

FIG. 1. Scheme of two pump cycles that enclose the charge criti-
cal points at � = ±�c. The spin critical points at � = ±�s are also
shown. In the segment δ = 0, −�s � � � �s (dashed line), the spin
gap vanishes.

Similarly, for � < �c the charge distribution is 1111..., with
γc = π mod(2π ), which corresponds to the Mott insulating
(MI) phase. According to the modern theory of polarization,
this change of Berry phase corresponds to the transfer of one
charge of half a unit cell [11,35]. For finite t , a narrow region
of a spontaneously dimerized insulator (SDI) with γc = π

appears between the BI and MI phases [18]. In this phase,
the probability of finding nearest-neighbor singlets is different
in odd and even bonds in the thermodynamic limit, due to
a spontaneous breaking of inversion symmetry in this limit
[26,29,36,37]. Since at δ = 0, γc is protected by inversion
symmetry, the charge transition between the BI and SDI
phases persists at finite t .

For δ �= 0, inversion symmetry is lost and γc varies contin-
uously. This allows quantized charge pumping of one charge
if a circuit like one of those shown in Fig. 1 is followed
[11]. For example, taking the circuit at the bottom, beginning
at δ = 0 and � < −�c, the system is in the BI phase with
γc = 0. Increasing δ, hopping from the odd doubly occupied
sites to the even empty sites at their right (larger j and x j) are
favored and γc increases. Continuing the circuit increasing �

and decreasing δ, the topmost point with δ = 0 and � > −�c

is reached (MI phase since also � > −�s) at which the charge
distribution is homogeneous and γc = π . Continuing the cycle
decreasing δ again hopping to the right is favored, this time
from the even sites to the odd ones, increasing further γc

until finally reaching the initial point with γc = 2π . Therefore
γc changed continuously in the cycle from 0 to 2π , which
corresponds to a transfer of one electron one unit cell to the
right.

At � = ±�s there is a spin transition in the IHM (δ = 0)
with a jump in the spin Berry phase and a closing of the spin
gap for |�| � �s < �c which signals the transition between
the SDI and the MI phase. The phase diagram (which is
symmetric by a change of sign in �) has been constructed
in Ref. [18] using the method of crossings of excited energy
levels based on conformal field theory [13–17]. The spin gap
opens as |δ|2/3 leading to a dimerized phase for finite δ [11].

As was mentioned in Sec. I, if the spin gap vanishes, the
adiabaticity of the evolution along the cycle is lost. A cycle
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in the plane δ,� that encloses a critical point � = ±�c and
passes far from it, necessarily traverses the MI phase, because
�c and �s are very near each other. This case is illustrated
at the bottom of Fig. 1. Traversing with a finite velocity, a
gapless point produces spin excitations at finite energy, which
in turn lead to charge excitations because of the mixing of both
sectors at finite energy [26,28]. This leads to oscillations in
the charge pumping and loss of quantization with the number
of cycles as determined theoretically [11] and experimentally
[12]. While the addition of a staggered magnetic field or Ising
spin interactions leads to opening of the spin gap and robust
charge pumping [11], these terms are not experimentally fea-
sible at present.

Another possibility is to enlarge the region of the SDI
phase, separating �c and �s and performing a pump cycle
that avoids the MI phase leading to a fully gapped trajectory in
the whole cycle, as shown at the top of Fig. 1. This is in prin-
ciple possible adding the density-dependent hopping. Such a
term in an electron-hole symmetric form has been realized in
cold atoms using Floquet engineering [20–25]. The Hubbard
model with nearest-neighbor hopping dependent on the occu-
pancy of the sites involved (also called correlated hopping)
has been derived and studied as an effective model for the su-
perconducting cuprates [38–40], which leads to enhancement
of superconductivity for certain parameters [41–44]. Some
studies also include nearest-neighbor repulsion [45,46]. In one
dimension, phases with dominating singlet-superconducting
correlations appear for some parameters [47–50]. At half
filling, it has been found that when the hopping term that
changes the number of singly occupied sites [tAB in Eq. (1)]
is larger than the other two, a dimerized phase with a spin gap
is favored [13,19,51,52], which is the desired effect.

In conclusion, the critical points of the pump cycles at
which the Berry phases jump lie on the line δ = 0, because
for δ = 0, the system has inversion symmetry at each site and
as a consequence, the Berry phases can only be either 0 or π

(mod 2π ). In other words, γc/π and γs/π become topological
numbers protected by inversion symmetry [35]. In addition,
the MI phase in which the spin gap vanishes is also restricted
to δ = 0. Then to identify a possible cycle that encloses the
charge critical point with a ground state separated from the
rest of the spectrum in the whole cycle, one can keep δ = 0,
where all ground-state degeneracies lay. This is what we do in
the rest of the work.

III. METHOD OF CROSSINGS
OF EXCITED ENERGY LEVELS

The model in Eq. (1) for δ = 0 becomes the IHM with
electron-hole symmetric DDH. It is interesting to note that
the standard IHM (without DDH) is integrable according to
numerical studies [33] and in fact it can be solved by Bethe
ansatz in some cases [34]. A model with only DDH with
� = 0 can also be solved exactly using the Bethe ansatz for
particular parameters [53].

In this work, in order to calculate the phase diagram of the
model we use the method of crossings of excited energy levels
[13–17]. In one dimension, the dominant correlations at large
distances determine the thermodynamic phase of the system.
In usual cases in which there is no long-range order, one

expects that residual interactions between chains gives rise to
this order according to the prevailing long-distance behavior.
The idea of the method is that the dominant correlations at
large distances correspond to the smallest excitation energies.
The crossings of excited levels in appropriate symmetry sec-
tors therefore correspond to phase transitions. The method
has been used before for similar models [13,18,19]. For our
model, this method and the jumps in the values of the Berry
phases give the same information [18], but the crossings of
appropriate energy levels is simpler and requires less compu-
tational cost.

In terms of jumps in Berry phases, the method can be
understood as follows. As explained in the previous section,
these jumps correspond to changes in the topological sector
of the model which are relevant for charge and spin pumping.
The charge Berry phase is the phase accumulated by the
ground state, using twisted boundary conditions in which the
hopping term at one bond only, is changed by a factor ei
, as

 varies from 0 to 2π . For the spin Berry phase the factor
is ei
 for spin up, and e−i
 for spin down [35]. During the
cycle, for an even number of sites L, the ground-state energy is
minimized when 
 = π (antiperiodic boundary conditions) if
L is a multiple of 4, and 
 = 0 (periodic boundary conditions)
for L even but not a multiple of 4. These boundary condi-
tions are known as closed-shell conditions. The opposite case
corresponds to open-shell boundary conditions at which the
ground state has a maximum as a function of 
. A jump in any
or both Berry phases takes place at parameters for which at
this maximum, the ground state becomes degenerate with an
excited state with opposite value of the Berry phase [18]. Our
method is essentially to identify these crossings separating
both states by their properties under discrete symmetries of
the model at the specific value of 
 where the crossing occurs.

The crossings for both charge and spin transitions are de-
termined using open-shell boundary conditions. The charge
transition is determined by a crossing in the ground state of
the two singlets of lowest energy with opposite parity under
inversion. In the BI phase the ground state is even under
inversion, while it is odd in the other two phases. The spin
transition between SDI and MI phases, is determined by the
crossing of the excited even singlet with lowest energy and
the lowest excited odd triplet, which has less energy in the MI
phase. In the actual calculation we have not evaluated the total
spin S of the states, but used the parity under time reversal (the
singlet is even and the triplet with total spin projection Sz = 0
is odd). All these states have wave vector 0 for � �= 0.

The method is expected to be very accurate. In particular,
for the model with only DDH and on-site repulsion U [Eq. (1)
with � = δ = 0], the phase diagram obtained from jumps
in the Berry phases practically coincides with that obtained
from bosonization at several densities for small values of
U , for which bosonization is expected to be quantitatively
valid [52].

To determine the phase diagram we have set tAB = 1 as the
unit of energy. Then for a given value of tAA and � we have
calculated the values of U that correspond to the charge (Uc)
and spin (Us) transitions using the method of crossings of en-
ergy levels for all even number of sites L in the range 6 � L �
14. The results were extrapolated to L → ∞ using a quadratic
polynomial in 1/L. Examples of the extrapolation are shown
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FIG. 2. Critical values of U for the charge and spin transitions
for tAB = 1, and other parameters indicated inside each figure.

in Fig. 2. The curves fit the data well and the finite-size effects
are in general small, except for the charge transition for small
values of �. In any case, a deviation of the value of Uc for
� = 0.2 for up to 20% is very unlikely from the trend of the
curve and does not modify our conclusions. Calculations with
L = 16 are possible, but they are very time-consuming and
lead to a modification of the extrapolated values of Uc by less
than 1% in the region of interest of small �.

IV. RESULTS

In Fig. 3, we compare the phase diagram of the standard
IHM with that in which the hopping terms that do not alter
the total number of singly occupied sites tAA = tBB is reduced.
For fixed � the system is a BI for low U and a MI for large
U . Both phases are separated by a narrow region of the SDI
phase. Increasing U , the charge transition at U = Uc (with a
jump in γc from 0 to π [18]) corresponds to the change from

FIG. 3. Phase diagram of the IHM with DDH in the �,U plane
for tAB = 1, and two values of tAA = tBB. The region between the full
and dashed lines corresponds to the SDI.

the BI to the SDI, and at the spin transition for U = Us (with
a jump in γc from 0 to π [18]) the SDI changes to the MI.

For � � 3tAB the width of the SDI phase is of the order
of a fraction of tAB. Naturally, keeping the three hopping
terms equal tαβ = t and reducing t , the SDI phase shrinks
and both Uc,Us → 2� for t → 0. It is therefore noticeable
that reducing only tAA = tBB, the extension of the SDI phase is
increased for � > 3tAB and by about 15% for � = 5tAB.

As is apparent in Fig. 4, this effect is more dramatic for
� < 0.2tAB. In fact, contrary to the case of equal tαβ = t , there
is a finite spin gap for small U even at � = 0 when tAB >

tAA = tBB. This result has been found before [13,19,51,52]
and can be understood from analytical calculations using
bosonization [51,52] which coincide very well with numerical
calculations [19] for small values of U .

FIG. 4. Same as Fig. 3 in a smaller region of �.
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FIG. 5. Critical values of U at the charge and spin transitions as
a function of tAA = tBB = for tAB = 1 and � = 0.01.

The particular features of the phase diagram for small
�, render it possible to perform time evolutions around
a critical point for the charge transition that transport a
quantized unit of charge per cycle with open charge and
spin gaps in the whole cycle, like the pump cycle shown
at the top of Fig. 1. For example for � = 0.2, tAB = 1,
and tAA = tBB = 0.5, we find Uc = 1.044 and Us = 1.757.
Performing a time-dependent cycle in either plane (δ,�)
or (δ,U ) with the center at the charge critical point (with
δ = 0) and the amplitude in � of about ±0.2 or in U near
±0.5, the cycle never reaches the MI phase and therefore,
the spin gap is always open. One point that should be taken
into account is that the spin transition is of the Kosterlitz-
Thouless type, and therefore the spin gap is exponentially
small in the SDI phase near the transition boundary [19].
Therefore it might be convenient to move the time cycle away
from the MI-SDI boundary, keeping the critical point inside
the cycle.

In the previous figures we have taken tAA = tBB = tAB/2. In
Fig. 5 we show how the values of U at both transitions change
with tAA = tBB for a small value of �. We can see that the
change is more rapid for tAA near tAB and the increase in Us is
already large for tAA/tAB = 3/4.

When tAA/tAB exceeds 1 for a significant amount, Uc

becomes larger than Us giving rise to a new phase in
between. A detailed study of the properties of this phase is
beyond the scope of the present work. For � = 0, studies
with bosonization indicate that this region corresponds to
a Tomonaga-Luttinger liquid (gapless) phase with triplet

superconducting and bond spin-density wave correlations
dominating at large distances [19,51,52]. However, � is
a relevant perturbation that can substantially modify the
physics. In principle, a long-range charge-density wave
is expected that opens a charge gap. However, numerical
studies in the model with � = 0 but adding nearest-neighbor
repulsion V , which also favors a charge-density wave, indicate
that the charge gap still vanishes for small values of V [46].

V. SUMMARY AND DISCUSSION

We have calculated the quantum phase diagram of the ionic
Hubbard model, including electron-hole symmetric density-
dependent hopping, which corresponds to Eq. (1) with δ = 0
and tAA = tBB < tAB, using the method of crossings of excited
energy levels in rings of up to 14 sites.

The model has three phases: the BI, the MI, and a narrow
region of the SDI in between. The BI and SDI are fully gapped
except at the transition points between them at � = ±�c,
which lead to topological singularities at the points (0,±�c)
in the two-dimensional space (δ,�). Therefore an adiabatic
cycle in this space which encloses one of these singularities
leads to a Thouless pumping of one charge per cycle.

Nevertheless, since the region of the SDI is very narrow,
experimental pump cycles with cold atoms that surround only
one of the charge critical points, for which quantized pumping
is observed, usually cross the MI region in which the spin
gap is closed, leading to transition to excited states and loss
of adiabaticity and quantized charge transport after the first
pump cycle [12].

We obtain that a reduction of tAA = tBB with respect to
tAB, increases the region of the phase diagram occupied by
the fully gapped SDI phase, particularly for |�| < tAB and
U < 2tAB. This result is of possible relevance to experiments
similar to the above mentioned. Floquet engineering renders
it possible to achieve the region tAA = tBB < tAB [20–25]. and
therefore enlarge the region of the gapped SDI phase.

To confirm the possibilities of this proposal, it would
be useful to calculate the spin gap and the internal charge
gap between even and odd singlets in the SDI phase. This
would require a study of longer chains using, for example,
density-matrix renormalization group. It would also be useful
to simulate the time dependence in pumping cycles similar
to the ones suggested here, using infinite time-evolving block
decimation.
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