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Perturbed periodic lattices: Sharp crossover between effective-mass-like
states and Wannier-Stark-like ladders
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The concept of Wannier-Stark ladders, describing the equally spaced spectrum of a tightly bound particle in
a constant electric field, is generalized to account for arbitrary slowly varying potentials. It is shown that an
abrupt transition exists that separates Wannier-Stark-like from effective-mass-like behavior when the depth of
the perturbation becomes equal to the width of the band of extended states. For potentials bounded from below,
the spectrum bifurcates above the critical energy while the wavefunctions detach from the effective-mass region
and split into two pieces.
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The effective-mass approximation (EMA) allows one to
replace the response of a particle in a periodic potential to
a slowly varying external perturbation with that of a particle
possessing an effective mass, which is determined by the
curvature of a band. In particular for semiconductors and con-
ventional semimetals [1,2], the EMA significantly simplifies
the calculation of a wide range of material properties, includ-
ing exciton binding energies [3,4], cyclotron resonance [5],
donor and acceptor levels [2], and carrier mobilities [6].

Fundamentally different that the EMA, Wannier-Stark
(WS) ladders [7,8] are approximate solutions to the quantum
problem of a particle subjected to both a periodic lattice poten-
tial and a constant electric field. The existence of a ladder of
equally spaced energy levels is intimately related to the phe-
nomenon of Bloch oscillations [9], which have been observed
in, e.g., semiconductor superlattices [10] and accelerated op-
tical lattices [11–13]. More recently, it has been shown that
these oscillations play a central role in the generation of high
harmonics in solids [14,15].

Even though the EMA and the occurrence of WS lad-
ders [16] are well-established concepts, the relationship
between these two models is far from clear and, to some
extent, the reason why the electric-field spectrum cannot be
explained using the EMA is a bit puzzling. Here, we ex-
tend the notion of spectral ladders to encompass arbitrary
potentials. Our analysis demonstrates that the simplest tight-
binding model contains both ladders and EMA-like states,
and reveals the existence of a sharp boundary separating the
two approximations. The existence of a boundary sets clear
limits to the validity of the EMA and of its consistency with
the tight-binding formalism, a topic that has been extensively
discussed in the literature in the context of interface boundary
conditions [17] and the spectrum of impurity states [18].

For both the EMA and WS ladders to be applicable, it is
essential that the perturbation be weak enough to disregard
interband transitions [19]. We take this into account right
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from the beginning by considering the one-band tight-binding
Hamiltonian

Ĥ = −t
N−1∑
p=1

(|p〉〈p + 1| + |p + 1〉〈p|) + w

N∑
p=1

G(p)|p〉〈p|,

(1)
which describes a single particle in a lattice of N sites. Here,
|p〉 denotes the state with the particle at site p, with 〈i| j〉 = δi j,

t > 0 is the nearest-neighbor hopping, w > 0 is a constant,
and G(p) is a slowly varying function of the site index. In
the following, we assume that the external potential has a
single minimum at p = p0 and, without loss of generality, that
G(p0) = −1. The eigenfunctions of Ĥ are of the form

� =
∑

p

�p|p〉, (2)

where the coefficients �p satisfy the secular equation

[−E + wG(p)]�p = t (�p−1 + �p+1). (3)

For w = 0, the solutions for periodic boundary conditions
are the extended states �p = ei2πmp/(N−1)/

√
N with Em =

−2t cos[2πm/(N − 1)]; m = 1, ... , N .
The EMA assumes that the coefficients do not vary much

across neighboring cells. This allows for the treatment of
the site index as a continuous variable—that is, p becomes
ξ = x/a, where x is the space coordinate and a is the lattice
parameter. Adding −2t�p to both sides of Eq. (3), the right-
hand side can be written as ≈ td2�/dξ 2. Thus, the expression
becomes

−t
d2�

dξ 2
+ [wG(ξ ) − 2t]� = E�, (4)

which is the Schrödinger equation of a particle of effective
mass 1/2t in the potential wG(ξ ) − 2t . Highlighting the im-
portance of the assumption that G is slowly varying, it should
be noted that this does not necessarily ensure the same for
�p. Hence, the validity of the EMA relies on the expectation
that Eq. (4) has solutions that exhibit slow variation. Let
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α−1 � 1 be the characteristic scale of G. Near the minimum
at, say, ξ = ξ0, G ≈ −1 + α2(ξ − ξ0)2. Using results for the
harmonic oscillator, and ignoring factors of order one, the
scale for � is thus � ∼ (t/α2w)0.25

, which has to be large for
the EMA to apply. As discussed later, this is a necessary but
insufficient condition for its validity.

Returning to Eq. (3), we now consider the limit when the
hopping term can be treated as a perturbation so that, to lowest
order, we have a ladder of eigenenergies E (0)

j = w G( j). We
will denote this limit as the potential-ladder approximation
(PLA). Expanding G around p = j, we get

w[G′( j)(p − j) + . . .]�p = t (�p−1 + �p+1). (5)

If the nonlinear terms in the expansion can be ignored, that
is, if |G′| � √|(t/w)G′′|, this equation has the exact solution

�( j)
p = Jp− j (2η). (6)

where η = t/wG′( j). With the origin at p = j, |�( j)
p | is an

even function that decays exponentially outside the interval
|p− j| � πη. It is obvious that the approximation becomes
exact for the problem of a constant field where the eigenvalue
spectrum is the equally spaced WS ladder [7] and, moreover,
that the validity of the PLA does not depend on the length
scale of G. Because the Bessel function varies rapidly around
p = j, it is also clear that Eq. (6) does not meet the EMA
requirements.

Figure 1 shows a small set of the bound eigenstates
obtained from numerically solving Eq. (3) for the Morse
potential

G(p) = e−2α(p−p0 ) − 2e−α(p−p0 ), (7)

with a minimum at p = p0. The data in the top and bot-
tom insets demonstrate that the eigenfunctions at energies for
which |G′| is large and near the minimum of G are accurately
described, respectively, by the expressions corresponding to
the PLA, Eq. (6), and the EMA, Eq. (4).

In order to understand the general properties of the local-
ized eigenstates with respect to their dependence on the site
index, consider the transfer matrix relating a pair of neighbor-
ing sites to one of its adjacent pairs. From Eq. (3), and using
the fact that G is slowly varying, we get(

�p−2(Ej )

�p−1(Ej )

)
≈

[
a2 − 1 −a

a −1

](
�p(Ej )

�p+1(Ej )

)
, (8)

where a = [−Ej + wG(p)]/t and Ej is a particular
eigenenergy. The eigenvalues of this matrix are
(a2−2 ± a

√
a2−4)/2, and their character determines the

behavior of the jth wavefunction. A real eigenvalue at a
particular site, that is, a site for which |a| � 2, indicates that
the corresponding eigenstate decays or grows exponentially
around the site. If, instead, |a| < 2, the eigenvalue of the
matrix is a complex number of unit modulus, and one expects
the norm of the wavefunction to vary little from one pair to
its neighbors. These considerations indicate that the solutions
to the secular equation, Eq. (3), satisfy the inequality

|−Ej + wG(p)| < 2t, (9)

which defines the region within which the jth wavefunction is
confined. Leaving aside the question of the suitability of the

FIG. 1. Results of calculations for N = 103, α = 0.01, w =
16, p0 = 100, and t = 1. The black curve is the Morse potential,
Eq. (7). The red and blue curves are linear plots of the magni-
tude of the eigenfunctions of relative energies (left to right) E/t =
1.15, –10.7, –17.12, –9.517, and –2.085. Red and blue denote,
respectively, EMA- and PLA-like states. The horizontal gray line
below each wavefunction indicates the region of sites defined by
Eq. (9). Top inset: Comparison between the eigenfunction obtained
numerically from the secular equation (blue circles) and the PLA
expression (black curve), Eq. (6), for the eigenstate with E/t =
–10.105. Bottom inset: Comparison involving the eigenstate of
relative energy E/t = –17.193 (red circles) and the EMA (black
curve), Eq. (4).

EMA and PLA, the previous exact expression must be clearly
obeyed by all the eigenstates, including those for which the
two approximations apply. Not surprisingly, the localization
behavior of the eigenstates depicted in Fig. 1 is in excellent
agreement with the conditions imposed by the inequality.

We now show that the assumption that the external
potential has a minimum leads to the bifurcation of the wave-
function beyond a certain threshold energy EC so that for
E � EC and E > EC, the eigenstates are, respectively, EMA-
like and PLA-like. By PLA-like, we mean states like the blue
ones in Fig. 1, for which the probability to find the particle
in a neighborhood of the minimum is exponentially small,
while by EMA-like, we refer to wavefunctions like the red
one, with a high probability of finding the particle in the
vicinity of p = p0. Using G(p0) = −1 and Eq. (9), it follows
that EMA-like states exist for −(w + 2t ) < E < −w + 2t
and, therefore, that EC = −w + 2t . As shown in Fig. 1, the
wavefunctions of eigenenergies above the threshold detach
from the minimum and break up into two nondegenerate and
distinct branches, one with most of the weight on the left side
and the other one on the right side of the minimum. Con-
currently, quantum tunneling leads to the spatial splitting of
all the PLA-like eigenstates, which reemerge on the opposite
side of the potential minimum, near the site where G ≈ Ej/w

(this is not readily apparent in the linear scale of the figure).
It should be emphasized that these findings are not restricted
to the Morse potential exclusively, but extend to arbitrary
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FIG. 2. Eigenenergies near the EMA-PLA crossing calculated
for N = 103, α = 0.01, w = 16, p0 = 100, and t = 1. The two
branches of the spectrum are represented by diamonds and circles.
A different level ordering was used to allow for a comparison be-
tween the two solutions above EC and the Morse potential (blue
curve); for this reason, only one of them connects smoothly with
the single solution below the critical energy. The red curve is the
free-particle expression for the eigenenergies, Eq. (10). Inset: 
E
is the energy difference between two consecutive eigenenergies for
the branch labeled with circles; the blue curve is for the Morse
potential, Eq. (10). Vertical lines depict the EMA-PLA boundary at
E = −w + 2t and the PLA-continuum boundary at E = −2t . The
continuum is in the region −2t < E < 2t, and the overall spectrum
extends from −(w + 2t ) to 2t .

perturbations with a single minimum. In the particular case
where the external potential is even with respect to p = p0, the
PLA-like eigenstates are nearly degenerate combinations of
the form χ (p0−p) ± χ (p − p0) that are localized on sites at
both sides of the minimum. If, in addition, limp→∞ G(p) = 0,

the necessary condition for the existence of PLA-like eigen-
states is w > 4t because the onset of the continuum is at
E = −2t . It is also important to note that, even in the case
where � ∼ (t/α2w)0.25 � 1, the EMA is no longer valid for
w > 4t .

Figure 2 reveals that the eigenenergy spectrum displays
a bifurcating pattern similar to that of the wavefunctions.
Below EC, the data show a single branch that, at low energies,
converges toward the expression for the EMA free-particle
eigenvalues [20],

En = −w

[
1 −

√
α2t

w

(
n + 1

2

)]2

, (10)

represented by the red curve. Above the critical energy, there
are two branches (diamonds and circles) that are very well
described by the PLA, that is, Ej = w G( j) (blue curve). The
transition between the two regimes manifests itself as a dip in
the data of the inset, which shows the difference between two
consecutive eigenvalues. Also note the dip at the boundary
with the continuum at E = −2t .

In conclusion, we have shown that bound eigenstates of
the tight-binding model divide into two qualitatively distinct
sets that resemble EMA states at energies close to the mini-
mum of the external potential and PLA states above a critical
energy that sharply separates the two groups. The existence of
PLA-like states requires that (i) the depth of the potential be
larger than the width of the band [21,22], and that (ii) effects
of interband transitions can be ignored (as in the case of a con-
stant electric field, interband coupling is expected to convert
the PLA-like states into resonances with lifetimes determined
by the strength of interband tunneling [23]). While the obser-
vation of such states and, more importantly, the EMA-to-PLA
transition are challenging in bulk materials due to their wide
bandwidths, the effective narrow widths that can be attained in
artificial systems like semiconductor superlattices [16], two-
dimensional heterostructures [24], optical lattices [11–13],
and twisted graphene [25,26] provide promising avenues for
their discovery.
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