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Formation energies of silicon self-interstitials using periodic coupled cluster theory
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We present a study of the self-interstitial point defect formation energies in silicon using a range of quantum
chemical theories, including the coupled cluster (CC) method within a periodic supercell approach. We study
the formation energies of the X, T, H, and C3V self-interstitials and the vacancy V. Our results are compared to
findings obtained using different ab initio methods published in the literature and partly to experimental data. In
order to achieve computational results that are converged with respect to the system size and basis set, we employ
the recently proposed finite-size error corrections and basis set incompleteness error corrections. Our coupled
cluster with singles, doubles, and perturbative triples [CCSD(T)] calculations yield an order of stability of the X,
H, and T self-interstitials, which agrees both with quantum Monte Carlo results and with predictions obtained
using the random-phase approximation as well as using screened hybrid functionals. Compared to quantum
Monte Carlo results with backflow corrections, the CCSD(T) formation energies of X and H are only slightly
larger by about 100 meV. However, in the case of the T self-interstitial, we find significant disagreement with
all other theoretical predictions. Compared to quantum Monte Carlo calculations, CCSD(T) overestimates the
formation energy of the T self-interstitial by 1.2 eV. Although this can partly be attributed to strong correlation
effects, more accurate electronic structure theories are needed to understand these findings.
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I. INTRODUCTION

After more than 60 years of sophisticated silicon de-
vice production, one might think that all the details of this
material are fully understood, especially knowing that the
manufacturing of today’s nanometer-sized transistors requires
near-atomic accuracy. However, as a direct result of this
miniaturization, the accidental creation of a single trapping
center can be large enough to alter the electronic properties of
the sample, making this issue the most feared phenomenon in
the industry [1].

To better understand the influence of single isolated vacan-
cies and interstitials, they have to be produced experimentally.
This can be achieved with 1–3 MeV electron irradiation per-
formed at cryogenic temperatures. The identification of these
centers is possible through characterization techniques like
electron paramagnetic spectroscopy, which is capable of tar-
geting the atomic distortion triggered by the form of the
localized electronic density [2,3]. Infrared optical absorption
and deep-level transient spectroscopy can also be used to
identify center-induced states within the semiconductor gap
[4–6]. The availability of experimental data motivated the
development of simple theoretical models geared towards
quantitatively reproducing the basic features of these defects.
Furthermore, the rapid growth in computational resources
made it possible to perform ab initio calculations to model
and understand their properties thoroughly on an atomistic
level.

Point defects, such as vacancies, interstitials, and anti-site
defects, are the only thermodynamically stable defects at finite
temperatures [7]. The presence of point defects often controls
the kinetics of the material and can therefore fundamen-
tally alter its electronic, optical, and mechanical properties.

This makes the understanding of point defects technologically
important for a wide range of applications such as doping
of semiconductors [8–11], production of quantum devices
[12,13], and controlling the transition temperature of shape
memory alloys [14].

Of all materials, silicon is one of the most important for
industrial use and plays a crucial role in a wide variety of
devices, e.g., advanced electronic devices, power devices,
solar cells, and microelectronic systems. In all these applica-
tions, Czochralski and floating zone silicon single crystals are
used (except in some solar cells) [15]. The diffusion charac-
teristics and thermodynamics of silicon self-interstitials and
vacancies dominate the doping and annealing processes for
electronics applications [9,10]. However, the understanding of
self-diffusion in silicon remains incomplete despite decades of
research [8,11,12,16–34]. Questions regarding the role of the
self-interstitials and the vacancy in the self-diffusion remain.
One of the remaining questions, which needs to be addressed
using quantum mechanical methods, is the formation energy
of the silicon self-interstitials and vacancy. The most widely
used method in this regard is density functional theory (DFT),
which replaces the complicated many-body electron inter-
actions with quasiparticles interacting via an exchange and
correlation functional. Exchange and correlation functionals
based on the local density approximation (LDA), general gra-
dient approximation, and hybrid functionals predict formation
energies in the range of 2–4.5 eV [21]. Green’s function based
methods, such as the GW approximation, are expected to
yield more accurate results and predict formation energies
of about 4.5 eV [18]. A low-scaling implementation of the
random-phase approximation reported formation energies on
a similar scale [35]. Quantum Monte Carlo (QMC) provides
another computationally more expensive alternative to DFT
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and is among the most accurate electronic structure methods
available. Several groups have calculated the formation en-
ergies using QMC [34,36]. In this work, we focus only on
the former [34] because it employs a Slater-Jastrow-backflow
wave function, which changes the formation energies
substantially.

The coupled cluster (CC) method is a systematically
improvable many-electron theory which is widely used in
molecular quantum chemistry, where it achieves high accu-
racy in the prediction of reaction energies for a wide range
of systems. While being an efficient method for calculating
small- to medium-sized molecules, single-reference CC meth-
ods have never been used to calculate the formation energies
of silicon self-interstitials and the vacancy in diamond cubic
crystal silicon. Only over the past few years have compu-
tationally efficient implementations of periodic CC methods
become available to study such systems [37–40]. Moreover,
recent developments in embedding approaches also make it
possible to study such local phenomena using CC methods
[41–49]. The goal of this work is to calculate the forma-
tion energies of the silicon self-interstitials and vacancy at
the level of coupled cluster singles doubles and perturbative
triples [CCSD(T)] theory and compare them to experimen-
tal data [8,27–29,33] and reference data from the literature
[18,21,34,35].

II. THEORY AND METHODS

A. Hartree-Fock and CC theory

In Hartree-Fock (HF) theory, the many-body wave func-
tion is approximated by a single Slater determinant, and
the energy is optimized with respect to variations of the
spin orbitals used to construct the Slater determinant. The
Slater determinant constructed from these spin orbitals is the
HF ground state wave function |0〉 and can be interpreted
as a new vacuum from which particle-hole pair excitations
are created and annihilated in the context of quantum field
theory. Building on one-body theories such as HF, CC the-
ory employs an exponential ansatz acting on a single Slater
determinant.

|�CC〉 = eT̂ |0〉, (1)

T̂ =
∑

i,a

ta
i â†

aâi + 1

4

∑
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tab
i j â†

aâ†
bâ j âi + · · · . (2)

Herein, the indices i, j and a, b refer to particle (unoccupied)
and hole (occupied) states, respectively. By projecting onto
the excited Slater determinants, one obtains a set of coupled
nonlinear equations that can be solved for the amplitudes t a

i ,
t ab
i j , etc., using iterative methods. For practical calculations,

the cluster operator T̂ has to be truncated, usually to single and
double excitations. While including the full triple excitation
manifold is computationally too expensive, an estimate of the
connected triples contribution can be calculated noniteratively
using an expression reminiscent of many-body perturbation
theory. This method is referred to as CCSD(T) theory [50].
A more detailed description of CC methods can be found in
Refs. [51,52].

B. Basis set and finite-size error correction

All practical post-Hartree-Fock calculations of real mate-
rials employ a finite number of particle states also referred
to as virtual orbitals Nv. The truncation of the virtual orbital
basis set introduces the basis set incompleteness error (BSIE).
The BSIE vanishes very slowly in the limit of Nv → ∞. This
observation is not surprising since the leading order basis set
error originates from the so-called electron-electron cusp con-
ditions [53], which are, in real space, a short-range electronic
correlation phenomenon. Explicitly correlated methods help
reduce the finite basis set error substantially [54,55]. These
methods, as well as their application to periodic systems,
have already been discussed extensively elsewhere [56–58]. In
order to treat the BSIE we use a pair-specific cusp correction
for CC theory [59]. This scheme is based on frozen natural
orbitals and diagrammatically decomposed contributions to
the electronic correlation energy, which dominates the BSIE.
To partly account for the BSIE of the T contribution to the
CCSD(T) correlation energy, we rescale the T contribution us-
ing the ratio of the CCSD correlation energy with and without
the BSIE correction discussed above.

Further, we simulate the silicon crystal using a periodic
supercell approach with a finite system size. The employed
finite system introduces the finite-size incompleteness error
(FSIE). It should be noted that many properties, including
the ground state energy, converge slowly with respect to the
system size. This originates from the fact that correlated
wave-function-based theories capture longer-range electronic
correlation effects such as dispersion interaction explicitly.
The coupled cluster correlation energy can be expressed as
an integral over the electronic transition structure factor mul-
tiplied by the Coulomb kernel in reciprocal space. Finite-size
errors partly originate from an incomplete sampling of this
integral in reciprocal space. Here, we employ an interpolation
technique that can be used to evaluate the correlation energy
integral more accurately, reducing the finite-size error. The
technical details are described in Ref. [60].

C. Cell structure

The employed simulation cells of silicon self-interstitials
are obtained by adding one Si atom to the diamond cubic
crystal structure of bulk silicon and relaxing the atomic po-
sitions. The energetically most stable silicon self-interstitial
(X) is one in which two silicon atoms reside symmetrically
shifted from the position previously occupied by one. The two
atoms are oriented parallel to the [110] direction. The second
most favorable self-interstitial (H) is where the additional Si
atom is equidistant to six other atoms, forming a hexagonal
ring. It is worth noting that this configuration is unstable
in DFT with the Perdew-Burke-Ernzerhof (PBE) functional,
where the central atom of the ring is slightly moving away in
a direction orthogonal to the ring (C3V) [18,61]. The last self-
interstitial considered in this work, with the highest energy,
is where the additional Si atom is coordinated equidistantly
to four nearest neighbors, forming a tetrahedron (T). For the
T interstitial, the highest occupied state is threefold degen-
erate but occupied by only two electrons, which potentially
introduces a multireference character. The vacancy is created
by removing one Si atom from the bulk structure. Like the
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T interstitial, it has a threefold degenerate highest occupied
state, occupied by two electrons. The vacancy is known to
undergo a Jahn-Teller distortion to D2d symmetry [62].

All the ion positions of the used structures have been re-
laxed at the DFT level using the PBE exchange and correlation
energy functional [63]. The shape and volume of the cells
are kept fixed during the relaxation procedure. The relaxed
cells can be found in the POSCAR files in the GitHub/Zenodo
repository [64,65].

D. Computational details

All coupled cluster calculations are performed using our
high-performance open-source coupled cluster simulation
code, Coupled Cluster for Solids (CC4S). The preparation
of the necessary reference wave function and the required
intermediates is performed using the Vienna Ab initio Sim-
ulation Package (VASP) [66–68]. For all calculations in VASP

a plane-wave kinetic energy cutoff of Ecut = 400 eV is used.
The employed smearing parameter is σ = 10−4 eV, and a
convergence criterion of �E = 10−6 eV is used. All other
numerical parameters are left unchanged from their default
values. The HF calculations are performed using VASP and the
structures described in Sec. II C. The HF calculations are done
using a �-centered 7 × 7 × 7 k-point mesh. All post-HF cal-
culations sample the first Brillouin zone using only a single k
point. Further, we need to write out all unoccupied HF orbitals
since in CC theory we approximate the many-electron wave
function using excited Slater determinants, constructed of oc-
cupied and unoccupied HF orbitals. In VASP this is achieved
by setting the number of virtual orbitals to be written out
(through the NBANDS flag) to the maximum number of plane
waves in the basis set, which is specified by the energy cut of
Ecut. The convergence of the coupled cluster singles doubles
(CCSD) electron correlation energy is very slow when using
canonical HF orbitals. A much faster convergence to the com-
plete basis set limit is achieved using natural orbitals. In VASP

approximate natural orbitals can be calculated as described in
Eq. (2) in Ref. [69]. After calculating all natural orbitals, a
subset of them is chosen for the CC4S calculations. For the
coupled cluster theory calculations, we choose the number
of unoccupied natural orbitals per occupied orbital to be 5,
10, 15, 20, 25, and 30. Additionally, for the basis set cor-
rection algorithm described in Sec. II B and in the references
therein, the second-order Møller-Plesset perturbation theory
(MP2) pair energies are needed. For this purpose, there are
two algorithms available in VASP [70,71]. In our case, we use a
16-atom cell for the bulk with 32 occupied orbitals; therefore,
the MP2 algorithm from Ref. [71] is more efficient. In the case
of more than 50 occupied orbitals, a different algorithm based
on Laplace transformed MP2 might be faster and less memory
consuming [70]. Note that the basis set correction algorithm
uses a focal-point approach, and from now on, the basis set
correction is also referred to as the focal-point correction
(FPC). With these preparations done, VASP can provide all
necessary files needed for the CCSD(T) calculation with the
finite-size and basis set error correction computed by CC4S.
It is worth noting that the CCSD calculation in CC4S con-
verges much faster when we use the direct inversion of the
iterative subspace mixer instead of the default linear mixer.

FIG. 1. The formation energy as a function of the number of k
points used in the Hartree-Fock calculation for all self-interstitials.
A �-centered cubic k-point mesh was used with Nk × Nk × Nk grid
points.

The described workflow with all files necessary to reproduce
the calculations can be found on GitHub or Zenodo [64,65].

After studying the BSIE, we chose our number of virtual
orbitals per occupied orbital to be 10 and repeated all calcu-
lations with 10 randomly chosen k-point shifts in order to get
a twist average estimate of the CCSD(T) correlation energies.
The ratio of virtual orbitals to occupied orbitals is the same
for all structures.

All calculations are performed using 16 compute nodes,
each equipped with 384 GB main memory.

Further, we calculate the formation energies at the DFT
level of theory, utilizing the Heyd–Scuseria–Ernzerhof (HSE)
exchange correlation functional with up to 5 × 5 × 5 k points
(converged within 10–20 meV), as shown in Table II below.

III. RESULTS

We now discuss the formation energies of the silicon self-
interstitial structures described in Sec. II C at the CCSD(T)
level of theory. We use 16 atom cells for the pristine bulk
crystal with periodic boundary conditions; the interstitial cells
have 17 atoms, while the vacancy has 15 atoms. The HF en-
ergies, CCSD, CCSD(T), and finite-size and basis set energy
corrections can be found in Table I of the Supplemental Ma-
terial [72]. The formation energy is calculated by subtracting
the energy of the bulk cell from the energy of the interstitial
cell scaled to the same number of atoms:

EF = Eint − Nint

Nbulk
Ebulk. (3)

We first discuss the convergence of the HF energy contribution
to the formation energies. Figure 1 shows the convergence of
the HF formation energies with respect to the size of the k-
point mesh used in the HF calculation. We used a �-centered
cubic k-point mesh with up to 7 × 7 × 7 grid points. Using
only one k point gives qualitatively and quantitatively wrong
formation energies. With a k-point mesh size of 5 × 5 × 5, the
formation energies are already well converged, and increas-
ing the k-point grid size further to 7 × 7 × 7 increases the
formation energies of X, H, and C3V by less than 8.5 meV,
while T and V increase by 29 and 19 meV. We now discuss
the convergence of the correlation energy contributions to the
formation energies with respect to the number of virtual or-
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FIG. 2. CCSD formation energy of the X interstitial as a function
of the number of orbitals per occupied orbital with and without the
basis set correction scheme (FPC). A �-centered cubic mesh was
used.

bitals. Let us note that the HF formation energy contributions
are independent of the virtual orbital basis set size. The MP2
calculations employ the complete virtual orbital basis set de-
fined by the kinetic energy cutoff of the plane wave basis set.
Furthermore the MP2 correlation energies are automatically
extrapolated to the complete basis set limit using a procedure
explained in Ref. [70]. For the post-MP2 correlation energy
calculations, we employ approximate natural orbitals as vir-
tual orbitals and seek to converge the correlation energies
explicitly by increasing the number of virtual orbitals. We find
that this approach allows for an effective cancellation between
basis set incompleteness errors of correlation energies for
different systems when taking their differences. Furthermore,
we add a basis set incompleteness error correction described
in Ref. [59] to accelerate the convergence of the CCSD cor-
relation energy. The effect of the basis set correction on the
formation energy is highlighted in Fig. 2, which depicts the
formation energy retrieved as a function of the number of
virtual orbitals per occupied orbital for the X interstitial. Our
results indicate that between 10 and 20 virtual orbitals per
occupied orbital suffice to achieve converged formation en-
ergies with and without the basis set correction, respectively.
The remaining basis set incompleteness error is caused by
fluctuations on the scale of about 10 meV, which is smaller
than the expected accuracy of the employed theories. Figure 3
shows the convergence of the CCSD(T) formation energies
of all self-interstitials with respect to the number of natural
orbitals, including the finite-size and basis set corrections.
Note that the basis set correction behaves similarly for all
self-interstitials. From Fig. 3, we see that Nv/Nocc = 10 is
already accurate enough to assume convergence within chem-
ical accuracy (≈43 meV).

With Nv/Nocc = 10, we repeat all calculations at 10 ran-
dom k points in order to obtain a twist-averaged estimate of
the correlation energy contribution to the formation energies.
This approach reduces finite-size errors in CC calcula-
tions that originate from single-particle effects [39]. The
energy corrections for the twist averaging can be found
in Tables II–VII in the Supplemental Material. Using 10
random k points, our standard deviation from the average
CCSD(T) energy is in decreasing order for EF(T) = 227 meV,
EF(V) = 101 meV, EF(X) = 80 meV, EF(C3V) = 73 meV,
and EF(H) = 51 meV. After twist averaging, the formation

FIG. 3. CCSD(T) formation energies as a function of the number
of virtual orbitals per occupied orbital for all self-interstitials include
finite-size and basis set corrections.

energies of V, T, and X increase by 818 , 367, and 239 meV.
However, the formation energies of the C3V and H interstitials
decrease by 85 and 44 meV, indicating that it is important to
account for this contribution. The �-point formation energies
are shown in Table I, while the twist-averaged formation en-
ergies are shown in Table II for X, H, and T and in Tables III
and VII in the Supplemental Material for V and C3V.

Further, we calculate the formation energies at the DFT
level of theory, utilizing the Heyd-Scuseria-Ernzerhof (HSE)
exchange correlation functional again in Table I. The HF
energies, CCSD, CCSD(T), and finite-size and basis set en-
ergy corrections can be found in Table I in the Supplemental
Material.

Next, we briefly discuss the effect of the FSIE correction
based on the structure factor interpolation, which accounts
for two-electron finite-size errors. Table I summarizes the
computed CCSD formation energies with and without the cor-
responding finite-size correction, denoted as CCSD-FS and
CCSD, respectively. It is not surprising that this correction
is significant and on the scale of about 0.5 eV. However,
based on previous results reported in Ref. [39], we expect
that the employed finite-size correction will suffice for the
16/17-atom cells to achieve chemical accuracy in the conver-
gence of the computed formation energies with respect to the
employed system size. Furthermore, it can be concluded from
the comparison between CCSD-FS and CCSD in Table I that
the computed finite-size correction is already well converged
using Nv/Nocc = 10. Note that the finite-size correction can
currently be applied only to the CCSD calculation. The T
contribution to the formation energies is significantly smaller
than the CCSD correlation energy contribution, which makes
it plausible to neglect the finite-size correction to the T con-
tribution. We emphasize that our finite-size correction scheme
corrects for the incomplete sampling of the integral over the
electronic transition structure factor, as described in Sec. II B.
The finite-size error stemming from the interactions of the
defects through the periodicity of the crystal remains and can
be addressed only by increasing the cell size significantly,
which is, for now, out of our computational reach.

Table I also includes results for the vacancy formation
energy. We note that these calculations employ only a 15-atom
cell. Due to the small supercell size, the system does not
undergo a Jahn-Teller distortion [62], which can be observed
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TABLE I. CCSD and CCSD(T) formation energies of the silicon self-interstitials and the vacancy with and without the basis set and
finite-size corrections as a function of the unoccupied to occupied orbital ratio Nv/Nocc at the � point. FPC and FS denote that the basis set and
finite-size corrections are included. All energies are in eV.

HF/MP2 Nv/Nocc CCSD CCSD(T) CCSD-FS CCSD-FPC CCSD-FS-FPC CCSD(T)-FS-FPC

C3V 5 6.659 5.981 6.149 6.334 5.824 5.001
8.502 10 6.484 5.753 6.012 6.343 5.871 5.083
4.408 15 6.374 5.614 5.907 6.305 5.837 5.044

20 6.347 5.577 5.880 6.317 5.850 5.059
25 6.330 5.556 5.864 6.288 5.822 5.031
30 6.315 5.537 5.849 6.308 5.843 5.053

X 5 5.864 5.094 5.285 5.646 5.067 4.142
7.930 10 5.776 4.982 5.254 5.670 5.148 4.296
3.780 15 5.686 4.866 5.169 5.657 5.141 4.289

20 5.677 4.853 5.162 5.666 5.150 4.305
25 5.669 4.842 5.155 5.666 5.152 4.311
30 5.663 4.831 5.150 5.671 5.158 4.313

T 5 7.857 7.051 7.238 7.435 6.816 5.833
9.954 10 7.628 6.764 7.055 7.455 6.882 5.949
5.355 15 7.531 6.641 6.964 7.469 6.902 5.974

20 7.511 6.611 6.944 7.447 6.880 5.952
25 7.489 6.584 6.923 7.458 6.892 5.968
30 7.476 6.565 6.910 7.456 6.890 5.964

H 5 6.358 5.717 5.877 5.986 5.504 4.722
8.162 10 6.231 5.538 5.783 6.053 5.605 4.854
4.212 15 6.132 5.413 5.689 6.058 5.615 4.864

20 6.103 5.376 5.661 6.046 5.604 4.854
25 6.090 5.360 5.649 6.075 5.635 4.890
30 6.075 5.341 5.634 6.056 5.616 4.869

V 5 5.291 4.866 4.820 4.999 4.528 3.993
5.554 10 5.034 4.546 4.573 4.952 4.492 3.961
4.305 15 4.960 4.443 4.500 4.942 4.483 3.942

20 4.942 4.413 4.484 4.925 4.467 3.921
25 4.926 4.394 4.470 4.928 4.472 3.928
30 4.919 4.380 4.462 4.928 4.472 3.924

for larger cells and which significantly changes the formation
energy. Therefore, we note that these results are meaningful
only as benchmarks for other theories employing identical
geometries and cannot be compared to experiment. Our best
estimates of the formation energies at the level of HF, CCSD,
and CCSD(T) including all corrections discussed above are
compared to values from the literature and experiment in
Table II. We see that the formation energies calculated with
LDA and PBE are small (3–4 eV) and close to each other for
all self-interstitials, with a difference of 80–160 meV. Yet the
order of stability is not the same; for LDA the most stable
self-interstitial is X, then H and T. For PBE T has a lower
energy than H. Incorporating a portion of the exact exchange
correlation energy in the HSE functional increases the for-
mation energies and their differences to 200 meV between
X and H and 70 meV between H and T with the order of
stability of X, H, and T. The random-phase approximation
(RPA) predicts the same order of stability with a difference
between X and H of 180 meV, while the difference between H
and T is 80 meV. Increasing the cell size to 216 atoms changes
the differences significantly to 130 and 600 meV, still with the
same order of stability. Note that the 16-atom cell structures
used for the RPA and PBE calculations from Ref. [35] are

identical to ours. G0W0 for 16-atom cells predicts that H is
more stable than X, while their difference is only 60 meV. In
QMC, using 16-atom cells without a backflow correction, X
and H are nearly degenerate, while the difference from T is
300 meV. Including the backflow correction gives the order
of stability as X, H, and T with clear differences of 300 and
400 meV. We now turn to the wave function methods em-
ployed in this work. The formation energies calculated with
HF are much larger than the ones calculated with the other
theories presented. While the order of stability is in agree-
ment with the corrected QMC calculations, their difference is
232 and 1792 meV. Expanding the correlation space further
to CCSD and CCSD(T) theory, including the basis set and
finite-size correction, lowers the formation energies by 2.8–
2.6 eV and another 811–749 meV. Their relative difference
also changes to 264 and 1568 meV for CCSD theory and 275
and 1506 meV for CCSD(T) theory. Our estimated CCSD(T)
formation energies are in good agreement with extrapolated
QMC calculations [34] employing a Slater-Jastrow-backflow
correction for the X and H interstitials. However, we have a
discrepancy of 1.2 eV for the T interstitial. This could stem
from the fact that in DFT the energetically highest occupied
orbitals are threefold degenerate while being occupied by
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TABLE II. Computed and converged HF, CCSD, CCSD(T), and HSE formation energies, including all reported corrections in this work
compared to QMC [34], RPA [35], PBE [35], LDA [18,21], and G0W0 [18] from the literature and also experimental data [8,27–29,33]. All
results have been obtained for the 16/17-atom cells except RPA (216), which employed 216/217-atom cells.

Cell HF CCSD CCSD(T) QMC QMC (nobf) G0W0 RPA RPA (216) HSE PBE LDA Expt.

X 7.930 5.295 4.535 4.4 4.9 4.46 4.27 4.2 4.17 3.56 3.29
T 9.954 7.127 6.316 5.1 5.2 4.53 4.93 4.44 3.66 3.56
H 8.162 5.559 4.810 4.7 4.9 4.4 4.45 4.33 4.37 3.74 3.4 4.2–4.7

two electrons. It may be an indication that a multireference
treatment is needed. Our CCSD(T) formation energy for the
H interstitial is within reasonable agreement with experiment,
being 110 meV above the experimental upper bound.

IV. CONCLUSION AND SUMMARY

In this paper, we calculated the formation energies of the
silicon self-interstitials and the vacancy in a periodic supercell
at the CCSD(T) level of theory. We used correction schemes
tailored to CC theory to reduce the BSIE and the FSIE. Our
results were compared to data from the literature and experi-
ment, including LDA, PBE, HSE, RPA, G0W0, and QMC.

In general, DFT using the LDA and PBE functionals fails
to differentiate the structures, resulting in small energy differ-
ences between the self-interstitials while also underestimating
the formation energies. Additionally, HF overestimates the
formation energies. The HSE functional offers a compro-
mise, and its formation energies are in good agreement with
the much more expensive and accurate QMC calculations.
The QMC formation energies of the two most stable self-
interstitials, X and H, are nearly degenerate. This degeneracy
is lifted by employing the Slater-Jastrow-backflow trial wave
function [34].

Our CCSD(T) formation energies are in good agreement
with QMC calculations employing a Slater-Jastrow-backflow
wave function for the X and H interstitials. The CCSD(T)
formation energy for the H interstitial is within reasonable
agreement with experimental data, being 110 meV above the
upper bound. However, the CCSD(T) formation energy of the
T interstitial is 1.2 eV higher than in the QMC calculations.
Since in DFT the highest occupied orbital of the T interstitial

is threefold degenerate but occupied by only two electrons,
we suppose a multireference approach may be necessary. We
stress that none of the discussed methods is expected to work
for strongly correlated systems. DFT-based approaches under-
estimate the formation energy of strongly correlated defects
due to the introduction of partly filled orbitals that reduce
the self-interaction error. QMC techniques require multide-
terminant trial wave functions for strongly correlated systems
to reduce the error from the fixed-node approximations, and
RPA is expected to inherit some of the DFT errors for the
treatment of strongly correlated systems. Therefore, we have
to conclude that more sophisticated theories will be needed in
future studies to fully resolve the observed discrepancy for the
formation energy of the T interstitial.

Although wedemonstrated that basis set convergence can
be achieved efficiently at the level of CCSD(T) theory using
recently presented methods, the treatment of finite-size errors
is still challenging, and relatively large defect concentrations
had to be employed. However, we note that recently devel-
oped embedding methods will allow us to investigate much
lower defect concentrations in a computationally efficient
manner [48].
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