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Magnetic and singlet phases in the three-dimensional periodic Anderson Model
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Heavy-fermion materials are compounds in which localized f orbitals hybridize with delocalized d ones,
leading to quasiparticles with large renormalized masses. The presence of strongly correlated f electrons at the
Fermi level may also lead to long-range order, such as magnetism, or unconventional superconductivity. From
a theoretical point of view, the “standard model” for heavy-fermion compounds is the periodic Anderson model
(PAM). Despite being extensively scrutinized, its thermodynamic properties in three-dimensional (3D) lattices
have not been carefully addressed by unbiased methodologies. Here we investigate the 3D PAM employing
state-of-the-art finite-temperature auxiliary-field quantum Monte Carlo simulations. We present the behavior
of the kinetic energy, the entropy, the specific heat, and the double occupancy as functions of the temperature
and the hybridization strength. From these quantities, and by the analysis of the spin-spin correlation functions,
we investigate the occurrence of magnetic phase transitions at finite temperatures, and we determine the phase
diagram of the model, including the behavior of the Néel temperature as a function of the external parameters.
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I. INTRODUCTION

Real-space quantum Monte Carlo (QMC) studies of itin-
erant electron and electron-phonon models, such as the
Hubbard, Holstein, Su-Schrieffer-Heeger (SSH), and periodic
Anderson Hamiltonians, have often focused on one and two
dimensions [1–4]. In the case of the Hubbard model, this
choice is partly driven by direct implications in quasi-two-
dimensional compounds, e.g., layered geometries relevant to
cuprate materials and d-wave superconductivity [5]. Simi-
larly, other two-dimensional (2D) materials and lattices, such
as graphene and transition metal dichalcogenides, may ex-
hibit interesting topological properties or long-range-ordered
phases [6,7]. However, the choice of lower dimensional lat-
tices is also a practical one: with the system sizes limited
to O(102–103) sites, reliable finite-size scaling analysis be-
comes challenging in three-dimensional (3D) geometries.
Unfortunately, due to the Mermin-Wagner theorem, a lower
dimension may also lead to restrictions for the occurrence of
long-range-ordered phases. This is the case of Hubbard-like
models, which at half-filling any possible long-range anti-
ferromagnetic phase should occur only at zero temperature
[8]. Studies within dynamical mean-field theory (DMFT), dy-
namical cluster approximation, or diagrammatic Monte Carlo
avoid this issue, while introducing other approximations or
limitations.

A significant exception is the great numerical effort de-
voted to investigating the 3D (cubic) Hubbard [9–12] model,
the 3D (cubic) Holstein [13] model, and the 3D (cubic per-
ovskite) SSH model [14] within QMC simulations. These
studies have established quantitatively the dependence of their
critical temperatures at half-filling—TN (Néel) for the Hub-
bard model and Tcdw (CDW) for the Holstein model. Such
a difficult task is alleviated by the increasing computational

resources, with parallelization protocols, as well as the de-
velopment of new methodologies (e.g., machine learning or
Langevin accelerations). Although this leap to 3D geometries
is a significant accomplishment, so far it has been carried out
mostly for single-band models.

As a paradigm for two-band systems, the periodic Ander-
son model (PAM) considers the interplay of localized and
itinerant fermions. Unlike the half-filled 3D Hubbard model,
where one has a ground state antiferromagnetic phase even
for Uf /t → 0, in the PAM there is a finite critical ratio of
interband to conduction electron hybridization V/t , separating
antiferromagnetic and singlet phases at T = 0. Thus, one has
a substantially more rich phase diagram. The Fermi surface
of the cubic lattice with nearest-neighbor hoppings exhibits
perfect nesting at half-filling, for q = (π, π π ). Such a char-
acteristic leads to instabilities for this wave vector, which, in
turn, may favor an insulating antiferromagnetic state at small
hybridizations.

However, its quantitative critical boundaries have not been
determined by unbiased methodologies at the present mo-
ment. Early attempts to describe the properties of the 3D
PAM by QMC were performed in Refs. [15–17], in which the
behavior of the spin-spin correlation functions was examined
for different values of V/t and Uf /t , but for small lattices and
without a finite-size scaling analysis. The main goal of this
paper is to bridge this gap by extending work on real-space
QMC in three dimensions to the PAM and comparing it with
the well-known 2D case.

As the standard model for heavy-fermion compounds, the
study of the 3D PAM is a significant step towards understand-
ing the thermodynamic properties of these materials [18].
In particular, the application of pressure changes the con-
duction electron bandwidth W = 12 t and the hybridization
V between localized and conduction bands (with a lesser
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effect on on-site repulsion). These changes affect the na-
ture of both high- and low-temperature responses, from the
transition temperatures to transport properties. Identifying
these energy scales is crucial since, given a density-functional
theory parametrization of W and V , our phase transitions
can be used for quantitative benchmarking of heavy-fermion
properties—such as the cerium volume collapse transition
[19]. The present paper is organized as follows. In Sec. II we
present the periodic Anderson model and highlight the main
features of the QMC method together with the quantities of
interest. Our results are presented in Sec. III, and the main
conclusions are summarized in Sec. IV.

II. MODEL AND METHOD

The PAM Hamiltonian reads

Ĥ = − t
∑
〈i,j〉,σ

(d†
iσ djσ + H.c.) − V

∑
i,σ

(d†
iσ fiσ + H.c.)

− μ
∑
i,σ,α

nα
iσ + Uf

∑
i

(
n f

i↑ − 1

2

)(
n f

i↓ − 1

2

)
, (1)

where the sums run over a three-dimensional simple cubic
lattice, with 〈i, j〉 denoting nearest-neighbor sites, and α = d
or f . The first term on the right-hand side of Eq. (1) corre-
sponds to the hopping of conduction d electrons, while the last
one describes the Coulomb repulsion on localized f orbitals.
The hybridization between these two orbitals is given by an
on-site interorbital hopping V , the chemical potential, and
the f -electron site energy μ = E f = 0, and both bands are
individually half-filled. Hereafter, we set the energy scale as
being units of the hopping integral t and we define Uf /t = 6.

We investigate the thermodynamic properties of the 3D
PAM by performing finite-temperature auxiliary-field QMC
simulations, namely, determinant QMC [20–22]. The DQMC
method is an unbiased technique commonly used to inves-
tigate tight-binding Hamiltonians: it maps a d-dimensional
interacting system to a noninteracting (d + 1)-dimensional
one, with the additional imaginary-time coordinate
0 � τ � β, where β is the inverse temperature. Within this
approach, one separates the one-body (K̂) and two-body (P̂)
pieces in the partition function by using the Trotter-Suzuki
decomposition, i.e., by defining β = Lτ�τ , with Lτ being
the number of imaginary-time slices and �τ being the
discretization grid. Then,

Z = Tre−βĤ = Tr
[(

e−�τ (K̂+P̂))Lτ
]

≈ Tr
[
e−�τK̂e−�τP̂e−�τK̂e−�τP̂ · · · ], (2)

with an error proportional to (�τ )2, but being exact in the
limit �τ → 0. The resulting partition function is rewritten
in quadratic (single-body) form through a discrete Hubbard-
Stratonovich transformation (HST) on the two-body terms,
e−�τP̂ . This HST introduces discrete auxiliary fields with
components on each of the space and imaginary-time lattice
coordinates, which are sampled by Monte Carlo techniques.
In this work we choose �τ = 0.1, so that the error from
the Trotter-Suzuki decomposition is less than, or compa-
rable to, statistical errors from the Monte Carlo sampling.
More details about the method are discussed in Refs. [23–25]

and references therein. Although DQMC is unbiased, its
low-temperature application is restricted to systems with
particle-hole or other symmetries, owing to the minus-sign
problem [26–28]. For this reason, our focus is on half-filling,
μ = 0, where the sign problem is absent.

In order to examine signatures for the formation of local
moments and antiferromagnetic long-range order, we first in-
vestigate the thermodynamic properties, namely, the internal
energy and specific heat per site,

e(T ) = 1

N
〈Ĥ〉, (3)

c(T ) = 1

N

d〈Ĥ〉
dT

, (4)

respectively. We also investigate the magnetic properties by
performing calculations of the antiferromagnetic spin struc-
ture factor, defined as the Fourier transform of the spin-spin
correlation functions for f orbitals,

S f f (q) = 1

3N

∑
i,j

eiq·(ri−r j )〈�S f i · �S f j〉, (5)

with q = (π, π, π ). For singlet formation, we examine a cor-
relator function:

Cfd = 1

3N

∑
i

〈�S f i · �Sdi〉. (6)

Here, we define the fermionic spin operators as �S f i =
( f †

↑i f †
↓i) �σ ( f↑i

f↓i
), with �σ being the Pauli spin matrices, while

the 1/3 factor in Eqs. (5) and (6) is for the average value along
one spin component.

We extract the critical behavior by means of the antiferro-
magnetic correlation ratio

Rc(L) = 1 − S f f (q + δq)

S f f (q)
, (7)

with |δq| = 2π
L . This is a renormalization-group invariant ob-

servable, in which the crossing points for different lattice sizes
provide the critical points [29,30].

In addition to these equal-time correlation functions, we
also calculate appropriate unequal-time quantities, including
the magnetic susceptibility

χ (q) = χdd (q) + 2χdf (q) + χ f f (q), (8)

with

χαγ (q) = 1

3N

∑
i,j

∫ β

0
dτ 〈�Sα,j(τ ) · �Sγ ,i(0)〉eiq·(ri−r j ), (9)

(α, γ = d or f ), where we examine the uniform and staggered
cases q = (0, 0, 0) and (π, π, π ), respectively.

Finally, we also evaluate nuclear magnetic resonance
(NMR) quantities, such as the time relaxation rate for the f
electrons. For the low-frequency limit of the dynamic suscep-
tibility, it is defined as (see, e.g., Ref. [31])

T −1
1, f f = γ 2kBT lim

ω→0

∑
q

A2(q)
χ ′′

f f (q, γ )

h̄ω
, (10)
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where A2(q) is the square of the Fourier transform of the
hyperfine interaction, and γ is the gyromagnetic ratio. The
latter is related to the nuclear magnetic moment by γ h̄ =
gμN

√
I (I + 1), with μN being the nuclear magneton, g the

nuclear g factor, and I the nuclear spin. T1, f f quantifies a char-
acteristic time in which a component of the nuclear spin (of a
given f orbital) reaches equilibrium after an external perturba-
tion (magnetic field pulse). It is a dynamical (real-frequency)
quantity whose numerical evaluation usually requires an ana-
lytic continuation of the imaginary-time DQMC data. Instead,
we follow Ref. [32], which performs an approximation of this
procedure, leading to

1

T1T
= 1

π2T 2

�

N

∑
i

〈S f ,i(τ = β/2)S f ,i(0)〉, (11)

where � ∝ γ 2A2 sets the energy.

III. RESULTS

A. Thermodynamic properties

We start our analysis by discussing the thermodynamic
properties of the system—unless otherwise indicated, the fol-
lowing results are obtained for a 6×6×6 lattice (i.e., 216
sites with two orbitals per site). First, we investigate the
internal energy, Eq. (3), displayed as a function of T/t in
Fig. 1(a). The derivative of the internal energy with respect
to the temperature yields the specific heat, Eq. (4), whose
behavior should indicate the occurrence of phase transitions.
Figure 1(b) displays c (T ) for V/t = 1.4, exhibiting a two-
peak structure. Since numerical differentiation for a few data
points is usually noisy, one may perform a nonlinear fit of
the QMC energy points and differentiate the fitted curve, as
shown by the dashed line in Fig. 1(b). Here we define such a
fit on an exponential basis [33], by the function efit (T ) = a0 +∑M

n=1 anexp (−βn�), with a cutoff in M (fixing M � 10 is
enough). The agreement indicates the robustness of the fitting
approach, which we repeat for other values of hybridization
V/t , whose results are shown in Fig. 1(c).

There are several important features concerning the be-
havior of c (T ) to be emphasized. First, a high-temperature
almost hybridization-independent peak at T/t ∼ 1.45 is evi-
dent, which is due to the formation of local moments [33].
We also find a low-temperature peak, which is pushed to
higher temperatures and decreases in intensity as V/t in-
creases. This low-temperature peak is also seen for the two-
and three-dimensional Hubbard models [11,33,34] and usu-
ally is associated with collective spin-wave excitations. In
particular, for the three-dimensional Hubbard model, this low-
temperature peak position signals the Néel temperature since
the ground state is antiferromagnetic (AFM). For the 3D PAM,
on the other hand, previous calculations for the specific heat
were unable to resolve the low-T peak for values of V/t below
the AFM-singlet quantum critical point [15,16], as we have
done in this paper. As one expects a phase transition from the
antiferromagnetic phase to the singlet phase, the position of
the low-T peak may not uniquely identify the Néel tempera-
ture for the 3D PAM. Therefore, to probe whether the low-T
peaks indicate the presence of long-range spin correlations,
we next investigate the magnetic properties of the system.

(a)

(b)

(c)

FIG. 1. (a) Energy as a function of temperature for different
V/t , and (b) the specific heat as a function of the temperature for
V/t = 1.4. Closed symbols represent data from numerical differen-
tiation of the energy values, whereas the dashed line represents the
differentiation of an exponential fit to the energy [33]. (c) Specific
heat from the fit procedure for the same values of V/t as in panel (a).
All data are for 6×6×6 lattices.

B. Magnetic properties

We proceed to examine the singlet correlator Cf d : a mea-
sure of the on-site spin-spin correlation between an f moment
and the spin of a d electron. We find this quantity is always
negative, pointing to antiferromagnetic coupling and singlet
formation that increases in strength as V/t increases. As dis-
played in Fig. 2(a), Cf d has a rapid increase in modulus around
V/t ≈ 1.3, providing an initial indication of a change into a
singlet phase.

In order to go beyond this rough indication from the sin-
glet correlator, we also analyze the f -orbital AFM structure
factor, Eq. (5), shown in Fig. 2(b). S f f grows rapidly as V/t
decreases from V/t ∼ 2, especially for larger β, indicating
the formation of long-range AFM order on the f orbitals as
the singlet correlations diminish [Fig. 2(a)]. However, after
reaching a maximum at V/t ∼ 1.3, S f f begins falling. Within
the temperatures investigated, the structure factor as a function
of V/t seems approximately symmetric around the maximum
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(a)

(b)

FIG. 2. (a) Singlet correlator and (b) antiferromagnetic structure
factor as functions of the hybridization for different temperatures for
6×6×6 lattices. The inset in panel (b) shows the antiferromagnetic
structure factor as a function of inverse temperature for hybridiza-
tions V/t = 0.9 and V/t = 1.7.

in V/t ≈ 1.3, but this is a high-temperature artifact. By further
examining S f f at lower T , e.g., for V/t = 0.9 and 1.7, as
displayed in the inset of Fig. 2(b), one may notice that the
responses for low and high V are quite different. Specifically,
for V/t = 0.9, S f f while seemingly small, grows very rapidly
as β increases—see the inset of Fig. 2(b). This is in sharp
contrast to the behavior at V/t = 1.7, where S f f saturates
at a small value as the temperature is lowered (increasing
β). This, together with the fact that the singlet correlator is
small for V/t ∼ 0.9 suggests that the low-V/t region still has
AFM order, but that the transition temperature TN is below the
smallest temperature-simulated TN < t/15.

To further understand the magnetic behavior we turn to
the uniform and staggered magnetic susceptibilities, shown in
Figs. 3(a) and 3(b), respectively. For high temperatures, both
uniform and staggered susceptibilities show the expected 1/T
Curie behavior of free spins, while for low temperatures and
small hybridizations (e.g., V/t = 1.2 and 1.3), the uniform
susceptibility χ (0) displays a clear peak, followed by a strong
suppression as T decreases. We recall that, in antiferromag-
netic systems, such a maximum of χ (0) occurs at the Néel
temperature. Here, as our system may exhibit AFM or singlet
phases, and both exhibit a cusp for χ (0), one is not able
to unambiguously identify TN only from the response of the
uniform susceptibility.

As is further discussed later, such a cusp in χ (0) occurs
due to the emergence of the spin-singlet phase and gives the
energy scale for the spin gap formation �s. Such a gap in the

(a)

(b)

FIG. 3. Total uniform susceptibility (a) and staggered suscepti-
bility in the f sites (b) for different values of V/t on 6×6×6 lattices.

spin excitations is clearly noticed when analyzing the stag-
gered susceptibility, χ f f (π, π, π ), displayed in Fig. 3(b). In
the thermodynamic limit, the staggered susceptibility should
diverge at TN , while χ f f (π, π, π ) → 0 in presence of a spin
gap. Indeed, as shown in Fig. 3(b), the susceptibility displays
a fast increase with decreasing T/t for V/t � 1.4, while it is
strongly suppressed for larger hybridizations.

Early DQMC studies of two-dimensional PAM have shown
evidence of a QCP at Vc/t ≈ 1.0, separating an antiferro-
magnetically ordered ground state from a spin singlet [35].
The problem was recently revisited by DQMC and dynamical
vertex approximation analyses, which show a similar value
for the QCP [36,37]. One would expect that some finite-
temperature quantities should reflect the characteristics of the
different low-T phases, even for the 2D case (where the occur-
rence of long-range-ordered AFM phase is forbidden at finite
temperatures). Indeed, this is the case of NMR measurements,
in particular, the spin-lattice relaxation rate, Eq. (10), which
may signal the existence of a spin gap [38]. Previous DQMC
studies of the 2D PAM have shown that, at the critical point
Vc, the 1/T1T is almost constant at low temperatures, while
increasing (reducing) for V < Vc (V > Vc) [39]. Figure 4
displays the behavior of the relaxation rate as a function of
temperature for different values of V/t , for the 3D PAM (linear
size L = 6). Notice that, within the AFM phase (V/t = 1.2
or 1.3) 1/T1T approaches a finite nonzero value as T/t → 0,
consistent with the absence of a spin gap, i.e., the presence of
spin-wave excitations. On the other hand, for larger V , 1/T1T
decreases monotonically when T is lowered, reflecting a
spin-gapped ground state. Interestingly, the change in behav-
ior of 1/T1T occurs around V/t ∼ 1.4, where both results
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FIG. 4. Spin-lattice relaxation rate of the 3D PAM as a function
of temperature, for different hybridizations and 6×6×6 lattices.

from specific heat and susceptibilities support the disappear-
ance of AFM order.

In order to estimate and track the spin-gap �s opening, it is
useful to analyze the unequal-time spin-spin correlation func-
tions C(i, j, τ ) = 〈Sz

j (τ )Sz
i (0)〉. In particular, in the presence

of a spin gap, the asymptotic behavior of the unequal-
time staggered structure factor, C(q, τ ) = 1

N

∑
ri j

e−iqri jC(i =
0, j, τ ), with q = (π, π ), and ri j = i − jr, becomes

lim
τ→∞C(q, τ ) ∝ exp(−�sτ ), (12)

from which one is able to estimate the spin gap by an expo-
nential fitting. From this procedure, we obtain �s as a function
of V/t , and T/t , as exhibited in Fig. 5(a). For large hybridiza-
tion values, we notice that the gap increases with decreasing
temperature, remaining finite at low T . For small hybridiza-
tions, on the other hand, the gap is small and decreases with
decreasing temperature; that is, one has a spin gapless phase,
in line with our previous expectation of AFM order. The
change in such behavior occurs for V/t ≈ 1.5, where the spin
gap is temperature independent. In order to further examine
the gap opening, it is important to analyze �s in the ground
state. To this end, we perform least-squares polynomial fits to
extrapolate �s(V, T ) → �s(V, 0), as shown in Fig. 5(b). In
particular, for Vc/t = 1.45 ± 0.05, we obtain a vanishing gap
at the ground state; i.e., we have a QCP separating an AFM
phase at low hybridization from a (singlet) Kondo phase at
large V/t .

Although we have estimated the location of the QCP, the
Néel temperatures (for V < Vc) are ill-defined by the specific
heat and homogeneous susceptibility behavior. A thorough
probe of TN is provided by a finite-size scaling analysis of the
correlation ratio, Eq. (7), a renormalization-group invariant,
and shown in Fig. 6 as a function of temperature, for differ-
ent hybridizations and system sizes. The crossing of Rc(L)
for different lattice sizes provides the critical temperatures,
which are TN/t � 0.08–0.10 for the range of V/t = 1.1–1.4.
For larger hybridizations, e.g., for V/t = 1.6, no crossing is
expected and thus there is no long-range order. The behavior
for V/t = 1.5 is subtle: the curves become closer as the tem-
perature is lowered, but they do not cross within the range we

(a)

(b)

FIG. 5. The spin gap �s (a) as a function of hybridization for dif-
ferent inverse temperatures and (b) as a function of the temperature
for different hybridizations. The ground-state vanishing gap occurs
for Vc/t = 1.45 ± 0.05.

analyzed. It may indicate that (i) the crossing would occur at
very low T or (ii) the curves may not cross, even at T = 0.
While the former option is possible, the latter is more likely.
We recall that Rc → 1 (for T = 0 and L → ∞) when long-
range order occurs [40]; however, Rc seems to converge for a
smaller value, for V/t = 1.5, which suggests the absence of
magnetism.

Since the correlation ratio shows no abrupt features, the
paramagnetic metallic to antiferromagnetic insulator finite-
temperature phase transition is more likely to be continuous.
However, a remark should be made concerning the quantum
phase transition: as the Néel temperatures do not decrease
close to Vc/t , this may indicate a first-order transition from
the AFM phase to the Kondo singlet one or, at least, a very
sharp continuous transition. Since first-order transitions are
challenging to determine by Monte Carlo methods, the na-
ture of the phase transition that occurs at the ground state
remains an open question for the 3D PAM. By the same
token, for smaller hybridizations, TN will decrease, as pre-
viously discussed in the context of Fig. 2(b). Going to such
low T/t is hard to achieve in three-dimensional geometries.
It is worth noting that this computational limitation also
affects the determination of TN in the 3D single-band Hubbard
model, where TN ∼ te−a

√
t/U is very small at weak coupling

[9,10,12,41–43].
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FIG. 6. Determinant quantum Monte Carlo results for the AF
correlation ratio, as a function of temperature, for different lattice
sizes and hybridizations, at fixed Uf /t = 6. The crossing points
separate the paramagnetic phase and the Néel phases.

We conclude by comparing the energy scales of our re-
sults with those from the literature. Early QMC attempts to
investigate the three-dimensional PAM were performed in
Refs. [15–17], providing hints that such an AFM long-range
order requires very low temperatures to be achieved. By “low-
temperature” we mean by comparison with the 3D Hubbard
model [11,44,45], whose maximum of the Néel temperature
is TN/t ≈ 0.33 and occurs at Uf /t ≈ 8. Here, we provide TN

for the 3D PAM, showing that these energy scales are indeed
much lower than those from the Hubbard model [46]. This dif-
ference is expected due to the weak indirect coupling between
f electrons mediated by conduction ones—first addressed by
DMFT studies [47]. In view of this, it is expected that the
value of Vc/t should change for different values of Uf , but the
maxima of TN should keep values similar to those presented
for Uf /t = 6.

C. Transport properties

In the ground state, the AFM and singlet phases are both
insulators. However, at finite temperatures, a crossover from
a metallic to an insulating behavior should occur at an ap-
propriate energy scale. Therefore, as a complementary study,
we also probe such a crossover as the temperature is lowered,
showing that its features can be identified from the behavior
of thermodynamic quantities [48].

We first examine the c electrons’ kinetic energy per
particle,

〈K〉 = − t

N

〈 ∑
〈i,j〉,σ

(d†
i,σ dj,σ + H.c.)

〉
, (13)

FIG. 7. Kinetic energy K as a function of temperature for differ-
ent values of V/t for 6×6×6 lattices. The inset shows K as a function
of T/t for V/t = 1.4 and two different values of imaginary-time
discretization: �τ = 0.05 (squares) and �τ = 0.10 (triangles).

whose behavior is presented in Fig. 7 as a function of tempera-
ture, for different values of hybridization. For all hybridization
values, the following behavior is noticed: at high tempera-
tures, 〈K〉 is reduced as temperature is lowered, reaching a
minimum for a given energy scale Tmin(〈K〉) and, therefore,
increasing as T → 0 when T < Tmin(〈K〉). The sign change in
∂〈K〉
∂T , from positive to negative, is consistent with an evolution

from metallic to insulator behavior, respectively [48]. For a
metallic system, the kinetic energy should reduce as the tem-
perature is lowered (∂〈K〉/∂T > 0); however, when a charge
gap opens, the higher-energy states are less likely populated,
which may cease the decreasing of 〈K〉, or even increase it
(∂〈K〉/∂T < 0), as exhibited in Fig. 7. In order to emphasize
the absence of imaginary-time discretization errors, the inset
in Fig. 7 shows the kinetic energy per particle for V/t = 1.4
as a function of temperature for two different values of �τ ,
from which is clear that our choice of �τ does not affect the
results of 〈K〉.

Notice that, while this result suggests an insulator for T <

Tmin(〈K〉), it contrasts with our expectation for the behavior of
the homogeneous susceptibility in Fig. 3. When both charge
and spin gaps are opened (e.g., for band insulators), we must
have ∂χ (0)/∂T > 0 below temperatures that lead to the in-
sulating state. That is, the positive derivative indicates that
the spin gap is reducing its size due to thermal fluctuations,
facilitating the spin response to external fields. However, as
shown in Fig. 3, such behavior occurs at Tmax(χ ) �= Tmin(〈K〉):
there is a large region where ∂

∂T χ (0) � 0, consistent with a
Pauli metal for d electrons + local moment Curie behavior for

f electrons, while ( ∂〈K〉
∂T < 0), suggesting an insulator. Such

an unconventional insulating phase is related to non-Fermi
liquid behavior for this region [48], and here is defined as a
bad metal phase.

To further emphasize this bad metallic phase, we also in-
vestigate the dc conductivity,

σdc = β2

π
�xx(q = 0, τ = β/2), (14)
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FIG. 8. dc conductivity as a function of the temperature, for
different values of V/t and 6×6×6 lattices.

in which

�xx(q, τ ) = 〈 jx(q, τ ) jx(−q, 0)〉, (15)

with jx(q, τ ) being the Fourier transform of

jx(i, τ ) = eτH

[
it

∑
σ

(d†
i+xσ diσ − d†

iσ di+xσ
)

]
e−τH (16)

(see, e.g., Refs. [49–51]). The behavior of σdc as a function of
temperature is displayed in Fig. 8, which shows σdc → 0 as
T → 0 for all V/t , consistent with an insulating phase ground
state for the entire range of hybridizations. However, this
insulating feature—i.e., ∂σdc

∂T > 0—changes depending on the
temperature, with σdc exhibiting a maximum at Tmax(σdc ). In-
terestingly, the values of Tmax(σdc ) are consistent with Tmin(〈K〉),
both signaling a crossover into a bad metallic phase.

IV. CONCLUSIONS

In this work, we have investigated the thermodynamic,
magnetic, and transport properties of the three-dimensional
periodic Anderson model through unbiased DQMC simula-
tions. For the thermodynamic properties, we examined the
specific heat for different hybridizations. We find a broad,
high-temperature peak that is independent of V/t , while the
low-T peak, on the other hand, is strongly V dependent. This
low-T peak is associated with the emergence of the AFM
phase for V < Vc. However, it does not give precise informa-
tion about the singlet phase for V > Vc [52].

To get more quantitative insight into the singlet formation,
we investigated the AFM structure factor and the correlator
function for different V/t and temperatures. In particular, the
AFM structure factor pointed out the energy scale for the
quantum critical point. This quantum phase transition between
an AFM state and a singlet state was obtained by analyzing
the spin gap, the NMR time relaxation rate, and the staggered
magnetic susceptibility, which agree with Vc/t = 1.45 ± 0.05.
The Néel temperature within the AFM phase was probed by
the antiferromagnetic correlation ratio and lies in the range
T/t � 0.08–0.10 for all V/t investigated. Finally, by inves-
tigating the transport properties, we find out that there is
a region in which the system behaves as a bad metal; i.e.,
it presents insulator features for the kinetic energy (namely,

FIG. 9. Energy scales for the three-dimensional periodic An-
derson model for different values of V/t ; the curves and color
maps are guides to the eye. For comparison, the Néel temperature
TN of the 3D Hubbard model, when plotted versus on-site inter-
action Uf /t , exhibits a broad maximum with TN/t ∼ 0.3 in the
range 6 � Uf /t � 10.

∂〈K〉
∂T < 0), while keeping metallic ones for the homogeneous

susceptibility (namely, ∂χ

∂T � 0—a Pauli metal for d electrons
+ local moment Curie behavior for f ones).

In summary, our work presents detailed finite-temperature
results for the three-dimensional periodic Anderson model in
a simple cubic lattice, allowing the quantitative determina-
tion of different energy scales. Our key findings are given
in Fig. 9, which presents these energy scales and the result-
ing finite-temperature phase diagram. In particular, we show
(i) the quantum critical point, QCP; (ii) the temperature of
the maxima for the homogeneous susceptibility, χ (0)max; (iii)
the minima for the d electrons’ hopping energy, Kmin; (iv)
the temperature of the maxima of the conductivity σmax; (v)
the low-temperature-specific heat peak position, c(T )max; and
finally (vi) the Néel temperatures TN obtained from a finite-
size scaling analysis. Knowing precise values for these energy
scales at half-filling is an essential step towards examining
other more complex facets of this model which emerge with
doping, including the occurrence of d-wave superconduc-
tivity due to frustration effects [53] or the enhancement of
magnetism due to depletion [54–56]. Indeed, Fig. 9 provides
detailed data for the PAM across an interesting part of its
phase diagram encompassing the AFM-singlet QCP, which
may help guide future theoretical and experimental work on
heavy-fermion materials. Other interesting questions, includ-
ing the formation of the heavy-fermion state and how large
V/t may affect the high-T specific heat peak (and, conse-
quently, the local moment formation), will be investigated in
the near future.
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