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Energy transport across two interacting quantum baths without quasiparticles
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Energy transport in quantum many-body systems with well defined quasiparticles has recently attracted
interest across different fields, including out of equilibrium conformal field theories, one-dimensional quantum
lattice models, and holographic matter. Here we study energy transport between two interacting quantum baths
without quasiparticles made by two Sachdev-Ye-Kitaev (SYK) models at temperatures TL �= TR and connected
by a Fermi-liquid system. We obtain an exact expression for the nonequilibrium energy current, valid in the
limit of large bath and system size and for any system-bath coupling V . We show that the peculiar criticality of
the SYK baths has direct consequences on the thermal conductance, which above a temperature T ∗(V ) ∼ V 4 is
parametrically enhanced with respect to the linear-T behavior expected in systems with quasiparticles. Interest-
ingly, below T ∗(V ) the linear thermal conductance behavior is restored, yet transport is not due to quasiparticles.
Rather the system gets strongly renormalized by the bath and becomes non-Fermi liquid and maximally chaotic.
Finally, we discuss the full nonequilibrium energy current and show that its form is compatible with the structure
J = �(TL ) − �(TR ), with �(T ) ∼ T γ and power law crossing over from γ = 3/2 to γ = 2 below T ∗.
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I. INTRODUCTION

Nonequilibrium heat and energy transport phenomena in
strongly interacting quantum matter are attracting interest
across condensed matter, atomic physics, statistical mechanics
and high-energy physics. From one side new experimental
platforms to explore quantum heat transport in mesoscopic
systems [1], ultracold atomic gases [2], or strongly corre-
lated quantum materials [3,4] have raised new interest on this
topic. In parallel, fresh theoretical understanding on quantum
many-body systems far from equilibrium has brought forward
new results on energy transport and surprising universalities
[5,6]. A well established paradigm concerns systems in which
energy transport is due to well defined quasiparticles such
as mesoscopic systems made by ballistic channels, leading
to the quantum of thermal conductance recently measured
experimentally [7]. For one-dimensional integrable quantum
many-body systems, where quasiparticles scatter elastically,
several results have been obtained concerning linear response
energy transport, both in quantum lattice models [8] and in
Luttinger liquids [9,10] as well as on the full nonequilibrium
energy current [11–14]. The latter was found to display a uni-
versal form, predicted by out of equilibrium conformal field
theories and related to the Stefan-Boltzmann law [5,15,16].
Deviations due to irrelevant operators have been also actively
discussed [12,17].

The general transport behavior of strongly coupled quan-
tum matter which lacks any quasiparticle is on the other hand
much less understood. The Sachdev-Ye-Kitaev (SYK) model
[18–20] has emerged in recent years as paradigmatic model
for non-Fermi liquids (NFLs) [21–25], featuring a peculiar
criticality associated to an emergent conformal invariance
and which leads to maximal chaos [26,27]. Understanding
transport properties of models in the SYK family and their
crossover to more conventional Fermi liquid (FL) behavior

can open new windows in our understanding of exotic phases
of matter such as planckian metals [24,28].

In this paper, we study the nonequilibrium energy trans-
port between two maximally chaotic reservoirs, described by
the SYK model, in equilibrium at different temperatures and
connected by tunnel coupling to a FL quantum dot. We note
that in the literature the interest has been focused on the study
of energy transport and thermal conductivity of SYK-like
systems coupled to FL contacts (leads) [29–31] or in arrays of
SYK dots [21,29,32–34]. Here instead we discuss the role of
interactions and maximal chaos in the reservoirs and compare
it to the case in which well defined quasiparticles are present
both in the system and in the environments. We note that
conventional quantum transport settings involve environments
which are described as a collection of harmonic excitations
or quasiparticles. Our focus here is therefore to understand
the consequences for energy transport of a quantum bath that
lacks any coherent quasiparticle excitation and is described
by an SYK model, as a simple solvable realization of a NFL.
We expect our results therefore to not apply to other interact-
ing quantum baths for which the low-energy description of
physical degrees of freedom remains FL, even though these
excitations fractionalize into partons which are described by
SYK-like models [35].

To attack this problem, we derive an exact formula for
the energy current through the system which takes the form
of a generalized Meir-Wingreen formula [36] for interacting
reservoirs. We discuss the linear transport regime and show
how the NFL nature of the bath leaves clear fingerprints in the
thermal conductance, which is parametrically enhanced by a
weak coupling V to the SYK environment and at low tempera-
ture crosses over to a linear temperature scaling. Interestingly
we show that the system at low temperature is not a FL,
despite the linear thermal conductance, but rather is strongly
renormalized by the SYK quantum bath, leading to anomalous
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FIG. 1. Sketch of the setup: two SYK models in equilibrium at
different temperatures TL �= TR are connected through a Fermi liquid
dot with random all to all couplings.

spectral function and maximal chaos. Furthermore, we com-
pute the full out of equilibrium energy current and provide
evidence that it takes the form J = �(TL ) − �(TR), with
�(T ) = T γ and a power-law exponent crossing over from
γ = 3/2 to γ = 2, as the temperature goes below a crossover
scale T ∗(V ) ∼ V 4.

The manuscript is organized as follows. In Sec. II, we in-
troduce the SYK thermal transport setup focus of this chapter.
In Sec. III, we derive the exact formula for the energy current
through the system in terms of Green’s functions. We use this
formula to discuss linear transport in Sec. IV and nonlinear
effects in Sec. V. Finally, in Sec. VI, we draw our conclusions.

II. SYK THERMAL TRANSPORT SETUP

We consider the transport setup represented in Fig. 1 where
two sets of M randomly interacting Majorana fermions ψα

a
(a = 1, . . . , M, α = L, R) described by the SYK4 model in
equilibrium at temperatures TL, TR, are suddenly connected
by an island made of N noninteracting Majorana fermions χi

(i = 1, . . . , N) with random hoppings, described by the SYK2

model. The total Hamiltonian is

H =
∑

α=L,R

Hα
4 + HS +

∑
α=L,R

HSα, (1)

where Hα
4 with α = L/R describes the left/right SYK4 reser-

voirs with Hamiltonian

Hα
4 = − 1

4!

M∑
a,b,c,d=1

Jabcd ψα
a ψα

b ψα
c ψα

d . (2)

Here HS describes the island of noninteracting Majorana
fermions with SYK2 Hamiltonian

HS = i

2

N∑
i, j=1

�i j χiχ j (3)

and the remaining terms describe a linear coupling between
reservoir and island

HSα = i
N∑

i=1

M∑
a=1

Via χiψ
α
a . (4)

The couplings entering the Hamiltonian, Jabcd , �i j,Via are all
independent Gaussian random variables with zero mean and
variance respectively J2

abcd = 3!J2

M3 , V 2
ia = V 2

M , and �2
i j = �2

N .
We consider the two reservoirs to be identical and equally
coupled to the system and set JL = JR = J and VL = VR = V
in the following. We emphasize that the choice of HS to
be noninteracting is made for the sake of highlighting the
transport anomalies due to the interacting and maximally
chaotic reservoirs, but can be relaxed as we will discuss
later on.

Finally, we will compare this transport setting to the more
conventional case of FL reservoirs described by the SYK2

model,

Hα
2 = i

2

M∑
a,b=1

Jab ψα
a ψα

b , (5)

coupled to the same system Hamiltonian (3) through the
linear term in Eq. (4). As before, the coupling entering the
SYK2 reservoirs are all independent Gaussian random vari-

ables with zero mean and variance respectively J2
ab = J2

2
M , with

J2 = JL = JR = J playing the role of unit of energy in the
following. In this setting with FL baths, one expects ballis-
tic energy transport due to quasiparticles, as we will indeed
show later. We note that in the literature related models have
appeared discussing the effect of coupling one (or multiple)
noninteracting bath to the SYK4 model and also studying
transport [37–41].

The model introduced in this section, for both SYK2 and
SYK4 types of baths, is exactly solvable using Keldysh tech-
niques in the limit N, M → ∞ at fixed p ≡ N/M. Here we
will focus on the energy transport, namely on the stationary
state current that sets at long times through the two reservoirs
when TL �= TR.

Keldysh formalism and Schwinger-Dyson equations

In this section, we use Keldysh formalism to derive
the exact Schwinger-Dyson equations for the single-particle
Green’s functions of system and baths in the large N, M
limit. We write down the partition function on the closed-time
Keldysh contour Z = ∫

D[χ,ψL, ψR]eiS[χ,ψL,ψR] with the
action S[χ,ψL, ψR]

S[χ,ψL, ψR] =
∫ +∞

−∞

∑
s=±

s

⎧⎨
⎩ i

2

N∑
i, j=1

χ s
i (t )∂tχ

s
i (t ) + i

2

M∑
i, j=1

∑
α=L,R

ψα,s
a (t )∂tψ

α,s
b (t ) − i

2

N∑
i, j=1

�i j χ
s
i χ

s
i

− i
qB
2

qB!

M∑
a1,··· ,aqB =1

∑
α=L,R

Ja1,··· ,aqB
ψα,s

a1
· · · ψα,s

aqB
− i θ (t )

N∑
i=1

M∑
a=1

∑
α=L,R

Via χ s
i ψ

α,s
a

⎫⎬
⎭. (6)

Here s = ± denotes the upper and lower branches of the closed-time contour and α = L, R the bath fermions. To obtain a
more compact notation able to describe at once both types of environments (SYK2 and SYK4) we have introduced the parameter
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qB = 2, 4 for the SYK2 and SYK4 reservoirs, respectively. After averaging the partition function over the disorder we can rewrite
the action in terms of the bilocal fields

Gss′
S (t1, t2) = − i

N

N∑
i=1

〈
χ s

i (t1)χ s′
i (t2)

〉

≡
(

GT
S (t, t ′) G<

S (t, t ′)

G>
S (t, t ′) GT̃

S (t, t ′)

)
ss′

(7)

Gss′
α (t1, t2) = − i

M

M∑
a=1

〈
ψα,s

a (t1)ψα,s′
a (t2)

〉

≡
(

GT
α (t, t ′) G<

α (t, t ′)

G>
α (t, t ′) GT̃

α (t, t ′)

)
ss′

α = L, R, (8)

which describe the single-particle Green’s functions of Majorana fields for the system and the bath respectively, and with the
corresponding Lagrange multipliers


ss′
S (t1, t2) =

(

T

S (t, t ′) −
<
S (t, t ′)

−
>
S (t, t ′) 
T̃

S (t, t ′)

)
ss′

,


ss′
α (t1, t2) =

(

T

α (t, t ′) −
<
α (t, t ′)

−
>
α (t, t ′) 
T̃

α (t, t ′)

)
ss′

. (9)

After integrating over the fermions χ , ψL and ψR we get an effective action Seff written only in terms of the fields G and 


Seff [G, 
] = − i
N

2
Tr ln

[−i Ĝ−1
0,S + i
̂S

] − i
M

2
Tr ln

[−iĜ−1
0,L + i
̂L

] − i
M

2
Tr ln

[−iĜ−1
0,R + i
̂R

]
+ i

N

2

∫
dt dt ′ ∑

ss′
ss′

(
−�2

2
Gss′

S (t, t ′)2 + Gss′
S (t, t ′)
ss′

S (t, t ′)
)

+ i
M

2

∫
dt dt ′ ∑

α=L,R

∑
ss′

ss′
(

iqB
J2

qB
Gss′

α (t, t ′)qB + Gss′
α (t, t ′)
ss′

α (t, t ′)
)

− i
N

2

∫
dt dt ′ ∑

α=L,R

∑
ss′

ss′ θ (t )θ (t ′)V 2
α Gss′

S (t, t ′) Gss′
α (t, t ′). (10)

The saddle point of the action Seff in the large N, M limit gives
us the Schwinger-Dyson equations[

Ĝ−1
0 − 
̂S

] ◦ ĜS = 1,
[
Ĝ−1

0 − 
̂L,R
] ◦ ĜL,R = 1, (11)

where the symbol ◦ stands for time convolution

A ◦ B =
∫ +∞

−∞
dtA(t1, t )B(t, t2)

and the self-energies read


ss′
S (t, t ′) = ss′�2Gss′

S (t, t ′) + ss′V 2
R θ (t )θ (t ′) Gss′

R (t, t ′)

+ ss′V 2
L θ (t )θ (t ′) Gss′

L (t, t ′), (12)


ss′
L,R(t, t ′) = −iqB ss′J2Gss′

L,R(t, t ′)qB−1

+ p ss′V 2
L,R θ (t )θ (t ′) Gss′

S (t, t ′), (13)

where [Ĝ−1
0 ]ss′

(t, t ′) = isδss′δ(t − t ′)∂t is the free Majorana
Green’s function and we have introduced the ratio p = N/M.
We note that in general the baths Green’s functions are cou-
pled to the system’s one due to the term in Eq. (13) which

describes the feedback of the system on the environment
and which vanishes in the limit of infinite bath p → 0. As
we are going to discuss in the next section, this feedback is
crucial in order to generate a finite contribution to the energy
current between the interacting baths. Rather than working in
the s, s′ = ± basis it is convenient to introduce the retarded,
advanced and Keldysh Green’s functions

GR
S (t, t ′) = θ (t − t ′)(G>

S (t, t ′) − G<
S (t, t ′)), (14)

GA
S (t, t ′) = θ (t ′ − t )(G<

S (t, t ′) − G>
S (t, t ′)), (15)

GK
S (t, t ′) = G>

S (t, t ′) + G<
S (t, t ′), (16)

and likewise for the self-energies. We can perform a rotation
to the retarded, advanced and Keldysh basis by multiplying
the Dyson equation (11) on the left and on the right by the
unitary matrix U

U = 1√
2

(
1 1
1 −1

)
, (17)
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which gives⎛
⎝ 0

[
GA

0

]−1 − 
A[
GR

0

]−1 − 
R −
K

⎞
⎠ ◦

(
GK GR

GA 0

)
= 1 (18)

from which we can read out the three Dyson equations on GR
S ,

GA
S and GK

S ([
GR

0

]−1 − 
R
) ◦ GR = 1, (19)([

GA
0

]−1 − 
A
) ◦ GA = 1, (20)([

GR
0

]−1 − 
R
) ◦ GK = 
K ◦ GA. (21)

Finally, it can be shown that the first Dyson equation (11) can
be recast into a more convenient form known as the Kadanoff-
Baym equations

i∂t1 G>,<
S (t1, t2) = (


R
S ◦ G>,<

S + 
>,<
S ◦ GA

S

)
, (22)

−i∂t2 G>,<
S (t1, t2) = (

GR
S ◦ 
>,<

S + G>,<
S ◦ 
A

S

)
, (23)

and likewise for the left and right baths.

III. FORMULA FOR THE ENERGY CURRENT

Despite our model is fully interacting, the exact solvablity
of the SYK4 model allows us to obtain an exact formula for
the energy current flowing from one reservoir to the other.
In particular, using Keldysh techniques, we can compute the
current Jα = Ėα (t ) = i〈[H, Hα]〉(t ) from the lead α = L, R,

where 〈· · · 〉 is the average over the Keldysh action while the
overline represents average over all disordered couplings. To
this extent, we first evaluate the rate of energy flow across the
left bath

JL ≡ ĖL = d

dt
〈HL(t )〉. (24)

We can proceed in two ways, either taking the time deriva-
tive first and then average over disorder, or do it in the opposite
order. Both ways lead to the same result. We chose to take the
disorder average first and compute EL(t ). In Keldysh formal-
ism, the expectation value of an operator O can be obtained
by introducing a generating functional Z[η]

〈O(t )〉 = i

2
lim
η→0

δZ[η]

δη(t )
, (25)

where Z[η] is the partition function corresponding to the ac-
tion (6) except that we shift the Hamiltonian in the Keldysh
action S[χ,ψL, ψR] by H → H + η(t )O on the upper branch
and by H → H − η(t )O on the lower branch of the time
contour. Averaging over the disorder and following the same
steps as in the derivation of the Schwinger-Dyson equation,
we get

EL(t ) = −M iqB+1 J2

qB

∫ t

−∞
dt ′[G>

L (t, t ′)qB − G<
L (t, t ′)qB ],

(26)

where qB = 2 for the SYK2 bath and qB = 4 for the SYK4

bath. Taking the derivative with respect to time, we obtain

ĖL(t ) = −M iqB+1J2
∫ t

−∞
dt ′[G>

L (t, t ′)qB−1∂t G
>
L (t, t ′)

− G<
L (t, t ′)qB−1∂t G

<
L (t, t ′)]. (27)

Then we use the expression of the self-energy of the bath,
Eq. (13), to get

ĖL(t ) = iM
∫ t

−∞
dt ′[
>

L (t, t ′)∂t G
>
L (t, t ′) − 
<

L (t, t ′)∂t G
<
L (t, t ′)]

− ipMV 2
∫ t

−∞
dt ′[G>

S (t, t ′)∂t G
>
L (t, t ′) − G<

S (t, t ′)∂t G
<
L (t, t ′)]. (28)

Using the Kadanoff-Baym equation for G>,<
L (t, t ′) to replace

∂t G
>,<
L (t, t ′) one can show that the first integral is zero. Thus

the time derivative of the energy of the L bath is

ĖL(t ) =−iNV 2
∫ t

−∞
dt ′[G>

S (t, t ′)∂t G
>
L (t, t ′)

− G<
S (t, t ′)∂t G

<
L (t, t ′)]. (29)

We see therefore that the presence of a finite energy flow from
the bath is an effect of the feedback term between system and
bath encoded in the last term of Eq. (13). Furthermore, notice
that this expression is independent of qB: it takes the same
form for the noninteracting (qB = 2) as well as the interacting
(qB = 4) reservoir.

Now we look at the long time limit. We assume that the
system reaches a nonequilibrium steady state with a finite

energy current and therefore that the two-point functions are
time translational invariant G(t, t ′) = G(t − t ′). Then we can
introduce the Fourier transform of the Green’s functions

G(ω) =
∫

dteiωt G(t ), G(t ) =
∫

dω

2π
e−iωt G(ω). (30)

After some simple manipulations we can rewrite ĖL(t ) as a
single integral over frequencies

JL = −N V 2
∫

dω

2π
ω G<

L (ω)G>
S (ω). (31)

Of course a similar expression is found for JR. The
nonequilibrium energy current between the two reservoirs
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J ≡ (JL − JR)/2 is then given by

J = −NV 2

2

∫
dω

2π
ω (G<

L (ω) − G<
R (ω))G>

S (ω). (32)

Several remarks are in order concerning Eq. (32), which
is one of our main result. First, the expression for the en-
ergy current in Eq. (32) is an exact result in the large N, M
limit, at fixed ratio p = N/M, and it is nonperturbative in the
system-bath coupling V . In this respect the Green’s functions
entering the energy current J are those fully renormalized by
the system-bath interaction (see Appendix). The structure of
Eq. (32) is reminiscent of the Meir-Wingreen formula usually
describing transport between two noninteracting reservoirs
connected by an interacting intermediate region [36]. This
analogy becomes more transparent in the limit p 
 1, cor-
responding to a bath which is parametrically larger than the
system, as we are going to consider here.

With respect to the Meir-Wingreen formula, our result
can account for both noninteracting or fully interacting and
maximally chaotic reservoirs linearly coupled to a central
system. In fact, as the demonstration has shown, it is valid
for any random qB-body interactions of the SYK type in the
reservoirs. Furthermore, the derivation of Eq. (32) did not use
at any step the expression of the self-energy of the central
system, meaning that in fact it still holds if the system interacts
with a general qS-body SYK interaction.

Since we are interested in the regime p 
 1, we can eval-
uate the Green’s functions of system and baths entering the
expression of the energy current at p = 0. This amounts to
disregard the feedback term and consider as self energy of the
baths the expression


>,<
L,R (t, t ′) = −iqB J2G>,<

L,R (t, t ′)qB−1. (33)

Thus we can consider that the ψL,R fermions are isolated
and are not affected by the contact with the small central
system. As an immediate consequence we can safely assume
that the left and right baths are in thermal equilibrium and sat-
isfy the fluctuation-dissipation theorem at temperature TL, TR

respectively

G<
L (ω) = iAL(ω) fL(ω), G<

R (ω) = iAR(ω) fR(ω), (34)

where fL(ω) and fR(ω) are the Fermi-Dirac distributions of
the left and right baths, respectively. Thus we finally arrive at
the expression of the current J

J = − iNV 2

2

∫
dω

2π
ω (AL(ω) fL(ω) − AR(ω) fR(ω))G>

S (ω).

(35)

Lastly, we show in Appendix that G>
S (ω) satisfies a

nonequilibrium FDT-like relation

G>
S (ω) = −iAS (ω) fS (−ω), (36)

where fS (ω) is an average of the left and right Fermi-Dirac
distributions

fS (ω) = fL(ω)AL(ω) + fR(ω)AR(ω)

AL(ω) + AR(ω)
. (37)

Note that if TL = TR = T , fS (ω) reduces to the Fermi-Dirac
distribution feq(ω) at temperature T .

FIG. 2. Linear thermal conductance G(T ) at weak (top) and
strong (bottom) system-bath coupling, for both conventional SYK2

corresponding to qB = 2 and the SYK4 bath corresponding to
qB = 4.

IV. LINEAR ENERGY TRANSPORT

We start our discussion of energy transport from the lin-
ear regime, corresponding to two temperatures differing by
a small amount �T → 0, i.e., TL,R = T ± �T/2. In this case
from Eq. (35), we can obtain the thermal conductance G(T ) ≡
J /�T as

G(T ) = NV 2

2

∫
dω

2π
ω Aeq

S (ω) feq(−ω)
∂

∂T

(
Aeq

B (ω) feq(ω)
)
.

(38)

In this expression, all quantities are evaluated at ther-
mal equilibrium with temperature T . In particular feq(ω) is
the equilibrium Fermi-Dirac distribution while Aeq

B , Aeq
S are the

equilibrium spectral density of the bath and the system cou-
pled to it. These can be obtained numerically by solving the
equilibrium Dyson equation of the reservoirs (see Sec. II), and
using the fact that we can write down a closed form expression
for the system Green’s function given the Green’s function of
the bath (see Appendix A). We note that in the limit p 
 1
that we consider here the system is strongly renormalized
by the baths, which instead are not affected by the feedback
of the system since their size is parametrically larger.

In Fig. 2, we plot the thermal conductance G(T ) as a func-
tion of temperature, for both the SYK2 and the SYK4 baths
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and for two different values of the system-bath coupling V .
We first note that for a FL bath such as SYK2 the conductance
shows a linear scaling with temperature, independently on the
value of V (see the blue curves on the left and right panels
qB = 2). This result is expected for gapless systems with well
defined quasiparticles [1] and can be obtained from Eq. (38)
by considering that in the low-energy limit ω, T 
 J the bath
spectral density is AB(ω) � 2/J and the system spectral den-
sity becomes flat Aeq

S (ω) � 2/�̃ but with a modified coupling
constant [see Eq. (B2) in Appendix], so that we obtain

G(T ) = NV 2

π�̃J

∫
dω

ω2

T 2

e
ω
T(

e− ω
T + 1

)(
e

ω
T + 1

)2

= N
π

6

V 2

�̃J
T, (39)

where we used the integral
∫ ∞
−∞ du u2 eu

(e−u+1)(eu+1)2 = π2

6 .
Putting back the physical dimensions and writing explicitly
h̄ and kB, we get

G(T ) = N
V 2

�̃J

π2k2
B

3h
T = N

V 2

�̃J
GQ (qB = 2) (40)

with GQ = π2k2
B

3h T the quantum of thermal conductance, which
as we recalled above corresponds to ballistic transport, i.e., a
probability of transmission across the channel equal to 1. We
can interpret the factor V 2/(�̃J ) as a typical probability of
transmission of an energy carrier from the left reservoir to the
right reservoir.

We now turn to the interacting SYK4 reservoirs for which,
on the contrary, the thermal conductance G(T ) shows a
nontrivial dependence on the system-bath coupling V . In par-
ticular, as we see in Fig. 2 (red curves on the left and right
panels, for qB = 4), for weak coupling V/J = 0.05 and low-
to-intermediate temperatures the thermal conductance shows
a

√
T scaling, i.e., the NFL nature of the bath and its absence

of coherent quasiparticle excitations leads to an enhanced
thermal conductance with respect to a noninteracting bath of
quasiparticles.

We can understand the origin of this effect by considering
the structure of bath and system spectral functions in the low-
frequency conformal limit ω, T 
 J . In fact we know that for
the SYK4 baths the spectral density is peaked at the origin and
is given by the expression

Aeq
B (ω) = 2

( π

J2

)1/4 1√
2πT

Re

(
�

(
1
4 − iω

2πT

)
�

(
3
4 − iω

2πT

))
. (41)

Using this expression of the spectral density, we can write

∂

∂T

(
Aeq

B (ω) feq(ω)
) = 2

( π

J2

)1/4 1√
2πT

1

T
ψ

(ω

T

)
, (42)

where

ψ (u) = −1

2

1

eu + 1
Re

(
�

(
1
4 − i u

2π

)
�

(
3
4 − i u

2π

))

− u
d

du

[
1

eu + 1
Re

(
�

(
1
4 − i u

2π

)
�

(
3
4 − i u

2π

))]
. (43)

Then the thermal conductance takes the form

G4(T ) = NV 2

2π
T

∫
dω

T

ω

T

ψ
(

ω
T

)
e− ω

T + 1

( π

J2

)1/4 Aeq
S (ω)√
2πT

. (44)

When the tunnel coupling V is weak the spectral density of
the system remains close to the isolated one, at least for not
too low temperatures, and the Dyson equation can be solved
perturbatively in powers of V 2/�2. As the energy current has
an overall V 2 factor we can keep the spectral density of the
system at order 0 in V 2/�2, so Aeq

S � 2/�. Plugging this
ansatz and Eq. (41) in the expression for the conductance, we
get

G(T ) = NI4
V 2

�
√

J

√
T (qB = 4) (45)

with I4 a numerical prefactor given by

I4 =
(

1

4π5

) 1
4
∫ ∞

−∞
du

u

e−u + 1
ψ (u) � 0.36. (46)

Similar scaling have been reported for linear thermal
transport of an SYK4 model coupled to FL baths [30]. We
emphasize here that the anomalous temperature scaling is a
direct consequence of the NFL nature of the two reservoirs,
whose enhanced density of states leads to an increased thermal
conductance as compared to the noninteracting SYK2 case,

i.e., G4
G2

∼
√

J
T � 1.

The parametrically large enhancement in the thermal con-
ductance does not however survive up to strong system-bath
couplings, as we see in Fig. 2 (bottom panel, for qB = 4)
where for V/J = 0.5 the thermal conductance crosses over
to a linear temperature scaling. To see how this comes about
we note that for larger couplings V the spectral function of
the system becomes dressed by the NFL bath and develops a
dip at small frequency [42]. In particular at zero temperature
it scales like ∝ √

ω, a behavior reminiscent of the zero-bias
anomaly in one-dimensional disordered interacting conduc-
tors [43–45]. In the limit V � V ∗(T ) ≡ (�2JT )1/4, which
also defines a low-temperature scale T ∗(V ), we can obtain
an analytic expression for the system spectral function (see
Appendix) which reads

Aeq
S (ω) = 1

V 2

(J2

π

)1/4√
2πT Re

(
�

(
3
4 − iω

2πT

)
�

(
1
4 − iω

2πT

))
. (47)

The suppressed spectral density of the system renormalized
by our NFL bath leads to a suppression of thermal conduc-
tance and restores a linear temperature scaling, as it would be
for the FL leads

G(T ) = I ′
4NT ∼ NGQ(T ) (qB = 4) (48)

with I ′
4 a numerical prefactor which is

I ′
4 = 1

2π

∫ ∞

−∞
du

u

e−u + 1
Re

(
�

(
3
4 − i u

2π

)
�

(
1
4 − i u

2π

)
ψ (u) � 0.16.

(49)

This similarity is however only superficial, as energy trans-
port in this regime is not due to quasiparticles. The linear
T scaling arises in fact from a subtle cancellation between
the enhanced spectral density of the SYK4 baths and the
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FIG. 3. Transport phase diagram as a function of temperature
T and system-bath coupling V . Above the crossover temperature
T ∗(V ) = V 4/(�2J ), the thermal conductance G(T ) is enhanced for
the SYK4 bath through the

√
T scaling, while at low temperatures or

strong-coupling the linear behavior is restored.

suppressed density of state of the system and reminds other
situations in which violation of a FL scaling leads to a thermal
conductance linear in temperature [46]. To further appreciate
the physics behind this result it is interesting to comment on
the relation between transport and chaos in our system. In
fact the calculation of the out-of-time-order correlators for the
model in Eq. (1) in the large N, M limit shows [37] that below
T ∗(V ), when the system is dressed by the SYK bath and the
thermal conductance is linear, the Lyapunov exponent satu-
rates the bound on chaos. In other words, the phase at strong
coupling and low-temperature provides an example where
transport is suppressed by the anomalous spectral properties
of the bath while chaos is enhanced, pointing towards different
mechanisms controlling these two processes. We emphasize
that while chaos estimators such as Lyapunov exponents are
not straightforward to access experimentally, the renormaliza-
tion of the system density of states due to the coupling to a
NFL bath, that we have discussed above can be considered
as a smoking gun of this phase that distinguishes it from the
case of a FL quasiparticle bath, despite the same scaling of the
thermal conductance.

We summarize the linear transport regime of our model in
Fig. 3. We note that the crossover scale T ∗(V ) is strongly de-
pendent on system-bath coupling and controls also the regime
of validity of Eq. (45), setting a low-temperature scale below
which the

√
T scaling crosses over to the linear one. Yet at

weak coupling V this scale is parametrically small [corre-
sponding to a temperature T ∗ ∼ 10−5 for the parameters in
Eq. (45)] leaving a broad range of temperatures where the
enhanced conductance is visible.

V. NONLINEAR ENERGY TRANSPORT

Finally, we discuss the full nonequilibrium energy current
J as a function of the two temperatures TL, TR and beyond the
linear response regime.

We first look at the qB = 2 case corresponding to noninter-
acting reservoirs with well-defined quasiparticles, for which

we can proceed analytically. In this case, the spectral densities
of the reservoirs are independent of temperature so AL(ω) =
AR(ω) = A2(ω) with A2(ω) the SYK2 semi-circle spectral
density. Also, the distribution function of the system reduces
to fS (ω) = ( fL(ω) + fR(ω))/2. Thus the energy current can
be rewritten as

J =−NV 2

4

∫
dω

2π
ω ( fL(ω) − fR(ω))

× ( fL(−ω) + fR(−ω))A2(ω)AS (ω). (50)

The Fermi-Dirac distribution varies from 0 to 1 on an
interval of the order of the temperature around ω = 0, so
fL(ω) − fR(ω) is nonzero only on an interval of width
max(TL, TR) around ω = 0. Therefore, in the low temperature
limit TL, TR 
 �, J , we can use the low energy expressions of
the bath spectral density A2(ω) � 2/J and of the system spec-
tral density AS (ω) � 2/�̃, where �̃ is a renormalized hopping
which accounts for the coupling between the system and the
two reservoirs (see Appendix). Making a change of variable
ω → −ω in the integral and using f (−ω) = 1 − f (ω), the
energy current becomes

J = −N
V 2

�̃J

∫
dω

2π
ω ( fL(ω)2 − fR(ω)2). (51)

By splitting the two integrals we see that the energy current
takes the functional form J = �(TL ) − �(TR), with �(T ) ∼
T 2 at low temperatures T 
 J , both at weak and strong
coupling V . This result resembles the one obtained in out of
equilibrium CFT [5,16] mentioned above.

The situation is richer for SYK4 baths, as we see in Fig. 4
where we plot the energy current J as a function of TL,
for different values of TR and for weak (upper panel) and
strong (lower panel) system-bath coupling V . In both cases,
we see that the effect of changing TR is to induce a rigid
shift of the current, suggesting that a functional form of the
type J = �(TL ) − �(TR) is still compatible with the data.
In the inset, we show that indeed all the curves collapse on
a single one once we compensate for the vertical shit. This
result is non trivial since the spectral function of the system is
strongly renormalized by the bath and acquires a rich temper-
ature dependence. Here, we ca not use the picture of thermal
quasi-particles emitted by the two sources to explain this
functional form. As we show in the insets of Fig. 4, for weak
system-bath coupling, we find �(T ) = T 3/2, a power-law be-
havior which, while compatible with the thermal conductance
discussed earlier, extends for a temperature range well above
the linear regime implying a modified Stefan-Boltzmann scal-
ing. For large system-bath coupling on the other hand, or for
low enough average temperature (TL + TR)/2, we see from
the inset in the bottom panel that the conventional scaling is
recovered �(T ) = T 2, which in this context however does not
signal the presence of well-defined quasiparticles.

VI. CONCLUSIONS

In this work, we studied the energy transport between two
strongly interacting quantum baths described by the maxi-
mally chaotic SYK4 model, coupled through an SYK2 system.
In particular we have focused on understanding how the
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FIG. 4. Nonlinear energy current J as a function of TL and
different TR for weak (top) and strong (bottom) couplings.

absence of quasiparticles in the bath affects the energy trans-
port, both in the linear and nonlinear regimes.

We have obtained an exact formula for the energy current
in this setting, which is valid in the large N, M limit at fixed
ratio and arbitrary system-bath coupling. We have shown
that the quantum-critical nature of the SYK baths has direct
consequences on energy transport. The thermal conductance
shows a

√
T scaling above a temperature T ∗ and crosses over

to a linear-T behavior at low temperatures, even though the
system becomes non-Fermi liquid and maximal chaotic due
to the coupling with the bath. We show that the full nonequi-
librium energy current takes the form J = �(TL ) − �(TR),
with �(T ) ∼ T γ and a power-law exponent γ crossing over
from γ = 3/2 to γ = 2 below T ∗. Future directions include
considering the charged SYK model to discuss thermoelecric-
ity and the full counting statistics of energy current.
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APPENDIX A: FORMAL SOLUTION OF DYSON
EQUATION FOR SYSTEM GREEN’S FUNCTION

In this Appendix, we show how to get an exact expression
of G>

S (ω) in terms of the left and right baths Green’s functions.
We assume that the system is in a stationary state, possibly
nonequilibrium, and that two-point functions are time transla-
tional invariant. In particular, the greater/lesser self-energy of
the system is


>,<
S (t ) = �2 G>,<

S (t ) + V 2
L G>,<

L (t ) + V 2
R G>,<

R (t ). (A1)

Here 
>,<
S is a linear function of the Green’s functions, so

the retarded self-energy 
R
S (t ) = θ (t )(
>

S (t ) − 
<
S (t )) takes

exactly the same form


R
S (t ) = �2GR

S (t ) + V 2
L GR

L (t ) + V 2
R GR

R(t ). (A2)

Taking the Fourier transform of this equation and plugging

R

S (ω) into the Dyson equation GR
S (ω)−1 = ω − 
R

S (ω), we
arrive at the quadratic equation on GR

S (ω)

�2GR
S (ω)2 − [

ω − V 2
L GR

L (ω) − V 2
R GR

R(ω)
]
GR

S (ω) + 1 = 0.

(A3)

The solution to this equation is

GR
S (ω) = 1

2�2
[ω − SR(ω) − δ(ω)], (A4)

where we called SR(ω) ≡ V 2
L GR

L (ω) + V 2
R GR

R(ω) and δ(ω) =
x(ω) + iy(ω) is given by

x = sign(ω − ReSR(ω))

√
1

2
(
√

B2 + C2 + B),

y =
√

1

2
(
√

B2 + C2 − B), (A5)

where

B = ω2 − 4�2 − 2ωReSR(ω) + Re2SR(ω) − Im2SR(ω),
(A6)

C = −2ωImSR(ω) + 2ReSR(ω)ImSR(ω). (A7)

We continue by deriving an expression for the Keldysh
Green’s function of the system. We write equation (21) in
Fourier space and use equation (A1) to get an expression of

K

S (ω) = 
>
S (ω) + 
<

S (ω)

GK
S (ω) = GR

S (ω)
K
S (ω)GA

S (ω),


K
S (ω) = �2GK

S (ω) + V 2
L GK

L (ω) + V 2
R GK

R (ω). (A8)

Combining these two equations, we get

GK
S (ω) = GR

S (ω)GA
S (ω)

1 − �2GR
S (ω)GA

S (ω)

(
V 2

L GK
L (ω) + V 2

R GK
R (ω)

)

= AS (ω)

V 2
L AL(ω) + V 2

R AR(ω)

(
V 2

L GK
L (ω) + V 2

R GK
R (ω)

)
,

(A9)
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FIG. 5. Spectral functions of the system renormalized by the bath. For the three plots � = JL = JR = 1, TL = 0.05, and TR = 0.03
(a) Noninteracting SYK2 reservoirs qB = 2. The black dashed line is the low energy conformal solution (B2). Here VL = VR = 1. (b) Strongly
interacting SYK4 reservoirs for VL = VR = 1. In this case, T ∗ � 1 � TL, TR and the conformal solution (B3) correclty reproduces the low
energy behavior (dotted black line). (c) Strongly interacting SYK4 reservoirs for VL = VR = 0.1. Now T ∗ � 10−4 
 TL, TR and one must use
the pertubative expansion (B5) to find the low energy behavior of As(ω) (dotted gray line).

where in the second line, we used the two Dyson equation GR,A
S (ω)−1 = ω − 
R,A

S (ω) to rewrite the first factor. Assuming that
the two baths satisfy FDT

GK
L (ω) = −iAL(ω) tanh

(
βLω

2

)
, (A10)

GK
R (ω) = −iAR(ω) tanh

(
βRω

2

)
, (A11)

we arrive at

GK
S (ω) = −iAS (ω)

V 2
L AL(ω) tanh

(
βLω

2

) + V 2
R AR(ω) tanh

(
βRω

2

)
V 2

L AL(ω) + V 2
R AR(ω)

. (A12)

From this we finally get for the lesser component G>
S (ω) =

(GK
S (ω) − iAS (ω))/2

G>
S (ω) = −iAS (ω) fS (−ω),

fS (ω) = fL(ω)AL(ω) + fR(ω)AR(ω)

AL(ω) + AR(ω)
, (A13)

where we assumed VL = VR = V for simplicity. This form of
G>

S (ω) reminds of FDT and indeed in the case where JL =
JR = J and TL = TR = T , fS (ω) reduces to the Fermi-Dirac
distribution feq(ω) at temperature T . This suggests to interpret
fS (ω) as the steady-state distribution of the system coupled to
the reservoirs. Notice that in the case of the noninteracting
SYK2 reservoirs, AL(ω) = AR(ω) (assuming JL = JR) and fS

is simply

fS (ω) = fL(ω) + fR(ω)

2
, qB = 2. (A14)

APPENDIX B: ANALYTIC EXPRESSION FOR SYSTEM
GREEN’S FUNCTIONS IN THE CONFORMAL LIMIT

In this Appendix, we obtain an analytic expression for the
system Green’s functions in the low-energy conformal limit,
using the well known conformal expressions for the SYK2

and SYK4 baths. We start from the former, i.e., qB = 2, and
neglect in Eq. (A3) the term ω in the low-energy limit. We
also replace GR

L (ω) and GR
R(ω) by their conformal expressions

GR
L (ω) � −i/JL and GR

R(ω) � −i/JR which yields

�2GR
S (ω)2 − i

(
V 2

L

JL
+ V 2

R

JR

)
GR

S (ω) + 1 = 0. (B1)

The solution to this equation is GR
S (ω) = − i

�̃
with

�̃ = �√
1 + ( V 2

L
2�JL

+ V 2
R

2�JR

)2 − ( V 2
L

2�JL
+ V 2

R
2�JR

) . (B2)

As we see from this result, the effect of the SYK2 baths is just
to dress the coupling constant of the SYK2 χ fermions. This
is consistent with the fact that with our Hamiltonian VL and
VR are marginal perturbations with respect to the SYK2 fixed
point. Thus the scaling dimension of the χ fermions remains
�χ = 1/2, see Fig. 5.

We now consider the SYK4 baths and, as done before, we
neglect the term ω in the Dyson equation (A3). Besides, now
with the SYK4 baths, VL and VR are relevant perturbations
with respect to the SYK2 fixed point and the χ fermions
acquire the scaling dimension �χ = 3/4. Thus, to find the low
energy behavior of GR

S (ω), we can try to neglect also the term
�2GR

S (ω) in the Dyson equation and we get

GR
S (ω) = −1

V 2
L GR

L (ω) + V 2
R GR

R(ω)
. (B3)
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We recall that in the conformal limit GR
L,R(ω) are given by

GR
L,R(ω) = −i

(
π

J2
L,R

)1/4 1√
2πTL,R

�
(

1
4 − i ω

2πTL,R

)
�

(
3
4 − i ω

2πTL,R

) . (B4)

This solution for GR
S (ω) can only hold if V 2

L GR
L (ω) +

V 2
R GR

R(ω) � �2GR
S (ω). In the simple case where JL = JR = J ,

VL = VR = V , and TL = TR = T , this imposes the condition
V � V ∗(T ) ≡ ( J �2T )1/4 or equivalently T 
 T ∗ =
V 4/( �2 J ). If T ∗ 
 T 
 J , we can estimate GR

S (ω)

by treating the term in V 2 as a small perturbation with
respect to the pure SYK2 solution and we get to first
order in V 2/�2

GR
S (ω) = − i

�
− V 2

L GR
L (ω) + V 2

R GR
R(ω)

2�2
, T ∗ 
 T 
 J.

(B5)

which compares well with the numerical solution, see Fig. 5.
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