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The Kitaev model offers a platform for quantum spin liquids (QSLs) with fractional excitations, itinerant
Majorana fermions and localized fluxes. Since these fractional excitations could be utilized for quantum
computing, how to create, observe, and control them through the spin degree of freedom is a central issue. Here,
we study dynamical spin transport in a wide range of frequencies for the Kitaev-Heisenberg model, by applying
an AC magnetic field to an edge of the system. We find that, in the Kitaev QSL phase, spin polarizations at
the other edge are resonantly induced in a specific spin component, even though the static spin correlations are
vanishingly small. This interedge spin resonance appears around the input frequency over the broad frequency
range. Comparing with the dynamical spin correlations, we clarify that the resonance is governed by the itinerant
Majorana fermions with a broad continuum excitation spectrum, which can propagate over long distances,
although it vanishes for the pure Kitaev model because of accidental degeneracy and requires weak Heisenberg
interactions. We also find that the spin polarizations in the other spin components are weakly induced at an
almost constant frequency close to the excitation gap of the localized fluxes, irrespective of the input frequency.
These results demonstrate that the dynamical spin transport is a powerful probe of the fractional excitations in
the Kitaev QSL. Possible experimental realization of the interedge spin resonance is discussed.
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I. INTRODUCTION

Exotic quasiparticles emerging in solids have attracted
much interest from both fundamental physics and industry
applications. A prominent example is Majorana particles—
charge-neutral spin-1/2 particles that are their own antipar-
ticles [1,2]. While they usually behave as fermions, in some
two-dimensional cases they can be regarded as anyons that
obey neither Fermi-Dirac nor Bose-Einstein statistics. Such
Majorana particles have been intensively studied for applica-
tions to quantum computing by using the anyonic nature [3,4].

The Kitaev model on a honeycomb lattice offers an ideal
platform for realizing the Majorana particles [5]. It is an
exactly solvable model whose ground state is a quantum spin
liquid (QSL). The Kitaev QSL hosts two types of emergent
quasiparticles from the fractionalization of spins: itinerant
Majorana fermions and localized fluxes. These quasiparticles
turn into Abelian anyons when the interactions between spins
are largely anisotropic, or non-Abelian anyons when an ex-
ternal magnetic field is applied in the nearly isotropic cases
[3,5]. The Kitaev model could be realized in Mott insulators
with the strong spin-orbit coupling [6], such as Na2IrO3 [7]
and α-RuCl3 [8]. Detailed comparisons between experimental
results and theoretical calculations have revealed fingerprints
of the Majorana particles in such candidate materials; for
a review, see Ref. [9]. Among them, the discovery of the
half-quantized thermal Hall effect in α-RuCl3 was ground
breaking, providing direct evidence for the Majorana particles
[10–12], while it is still under debate [13–15].

Since the Majorana fermions and the fluxes in the Kitaev
QSL are generated by the fractionalization of spins, they

are quantum entangled and inherently nonlocal. Indeed,
the spatial correlations between the Majorana fermions are
long-range with power-law decay [16,17], although the spin
correlations are short-range and vanish beyond nearest-
neighbor sites [18]. Furthermore, in the presence of defects
or edges, the spin correlations can be long-range due to low-
energy excitations around the defects or edges [16,17,19–21].

By exploiting such nonlocal nature, it was recently shown
that the itinerant Majorana fermions can contribute to long-
range spin transport from an edge of the system [22,23]. The
previous studies have focused only on low-energy properties,
such as the velocity of the spin propagation determined by the
slope of the gapless Majorana dispersion. However, the spin
dynamics in the wider range of frequencies is expected to offer
more important insights into the two types of fractional quasi-
particles with distinct excitation spectra. Such comprehensive
study of nonlocal spin dynamics would also be a crucial step
toward quantum computing, by elucidating how to control
and probe the fractional quasiparticles via the spin degree of
freedom.

In this paper, in order to deepen the understanding of the
relationship between the fractional quasiparticles and the spin
degree of freedom, we study nonlocal spin dynamics in the
Kitaev QSL in the wide frequency range. Applying a local
AC magnetic field to one edge of the system, we investigate
how the spin excitations are excited and propagate to the other
edge. At the edges of the Kitaev model, it is known that local
magnetic fields excite the fluxes accompanied by gapless Ma-
jorana excitations, called the Majorana zero modes [5,16]. In
the present study, we introduce not static but time-dependent
local magnetic fields at one edge and investigate how the
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FIG. 1. Schematic pictures of the Kitaev-Heisenberg model in
Eq. (1) with (a) the armchair edges and (b) the zigzag edges. In
(a) [(b)], we set the periodic and open (open and periodic) boundary
conditions in the horizontal and vertical directions, respectively. The
blue, green, and red bonds represent the x, y, and z bonds for the
Kitaev interaction, respectively. We apply an AC magnetic field
hin (t ) in the [111] direction in spin space at one site on the edge
shown by the yellow circles, and observe spin polarization at a site
on the opposite edge shown by the orange circles; see Eqs. (3), (4),
and (6).

excited spin polarizations propagate through the system. From
the comprehensive analysis of the spin-component depen-
dence and the comparison with the results for magnetically
ordered phases, we show that the dynamical spin transport is a
good probe for both itinerant Majorana fermions and localized
fluxes in the Kitaev QSL. Our results give an insight on the
way of creating and controlling of the fractional excitations
via the spin degree of freedom.

The organization of this paper is as follows. In Sec. II, we
introduce the model and the setup used in this study, with
the details of real-time evolution and the definitions of static
and dynamical spin correlations. In Sec. III A, we show the
phase diagram and the static spin correlations in our model
with edges. In Sec. III B, we show how an AC local magnetic
field at the edge induces the spin polarization at the opposite
edge of the system in the ferromagnetic phase, the Kitaev
QSL, and the stripy phase. In Sec. III C, we analyze the results
in comparison with the dynamical spin correlations between
edges, and discuss the origin of the interedge dynamical spin
transport. Section IV is devoted to a summary.

II. MODEL AND METHOD

In this paper, we employ the Kitaev-Heisenberg model,
whose Hamiltonian is given by

ĤKH = K
∑

ν

∑
〈i, j〉ν

Ŝν
i Ŝν

j + J
∑
〈i, j〉

Ŝi · Ŝ j, (1)

where Ŝν
i denotes the νth component of the spin-1/2 opera-

tor at the ith site: Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ). The first term represents

the bond-dependent Ising-type interaction, called the Ki-
taev interaction, where 〈i, j〉ν represents the nearest-neighbor
ν(= x, y, z) bonds on the honeycomb lattice, and the second
term represents the spin-isotropic Heisenberg interaction for
all the nearest-neighbor bonds; see Fig. 1. Following the
previous studies [7,24], we parametrize the two coupling

constants as

(K, J ) = (
sin α, 1

2 cos α
)
. (2)

Note that the amplitudes of interactions are halved compared
to the previous ones so that |K| = 1 in the pure Kitaev cases
with α = π/2 and 3π/2. In the following, we focus on the
range of π � α � 7π/4 where the Kitaev interaction is fer-
romagnetic. In this region, the bulk system with the periodic
boundary conditions shows three phases in the ground state
[24]: the ferromagnetic phase for π � α � 1.40π , the Kitaev
QSL phase for 1.40π � α � 1.58π , and the stripy phase for
1.58π � α � 1.81π .

To study spin correlations and dynamics on the edges,
we consider the model in Eq. (1) on a strip with the open
boundary condition in one direction and the periodic boundary
condition in the other. There are two types of such strips. One
has the so-called armchair type edges on the open bound-
aries, and the other has the so-called zigzag edges. Figure 1
displays these two types for 24-site clusters used in the fol-
lowing calculations. For both clusters, we examine how a
time-dependent local magnetic field on one edge induces spin
polarization at the other edge. Specifically, we apply an AC
magnetic field in the [111] direction in spin space at the iinth
site on the edge (shown by the yellow circle in Fig. 1) as

Ĥ(t ) = ĤKH + hin(t ) · Ŝiin , (3)

with

hin(t ) = hec cos (�t ), (4)

where h is the amplitude of the AC field, ec = (1, 1, 1)/
√

3,
and � = 2π/T is the frequency of the AC field (T represents
the oscillation period). We take the magnetic field along the
[111] direction since it coupled to all spin components. For
this Hamiltonian, we solve the time-dependent Schrödinger
equation given by

i
d|�(t )〉

dt
= Ĥ(t )|�(t )〉, (5)

starting from the initial condition of |�(t = 0)〉 = |�GS〉,
where |�GS〉 is the normalized ground state of ĤKH. The spin
polarization on the opposite edge is calculated as

Sν
iout

(t ) = 〈�(t )|Ŝν
iout

|�(t )〉, (6)

where iout denotes the site on the other edge directly opposite
to the iinth site (shown by the orange circle in Fig. 1). In the
following calculations, we take h = 0.05 in Eq. (4) and solve
Eq. (5) by using H� [25]; we discretize the time with �t =
0.05, which is small enough to preserve the unitarity of real-
time evolution.

In addition to the real-time dynamics of the spin polariza-
tion, we calculate the static and dynamical spin correlations
between the two edges for the ground state |�GS〉, which are
defined by

Cνν
edge = 〈�GS|Ŝν

iin Ŝν
iout

|�GS〉 (7)

and

Cνν
edge(ω) = 1

2π

∫ ∞

−∞
〈�GS|δŜν

iin (t )δŜν
iout

|�GS〉eiωt dt, (8)
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respectively, where δŜν
i = Ŝν

i − 〈�GS|Ŝν
i |�GS〉 and δŜν

iin
(t ) =

eiĤKHtδŜν
iin

e−iĤKHt . Note that in Eq. (8), we consider corre-
lations between the deviations from the expectation values
for the ground state to subtract the elastic components in
the presence of magnetic ordering. In the actual calculations
of Eq. (8), we employ the following formula in the spectral
representation:

Cνν
edge(ω) = − 1

4π
Im[〈
+|(EGS − ĤKH + ω + iη)−1|
+〉

− 〈
−|(EGS − ĤKH + ω + iη)−1|
−〉], (9)

where |
±〉 = (δŜν
iin

± δŜν
iout

)|�GS〉, EGS is the ground-state
energy, and η is an infinitesimal positive constant; we take
η = 0.05 in the following calculations. We calculate Eq. (9)
using the continued-fraction expansion based on the Lanczos
method.

In the calculations of Eqs. (7) and (9), we apply a weak
static magnetic field to all the spins at the edge on the iinth
side with hs = 0.005ec to lift the ground-state degeneracy in
the ferromagnetic Heisenberg model with α = π and the pure
Kitaev model with α = 3π/2 (see Appendix A). For the other
cases, the ground state is not degenerate, but we apply the
same weak field for comparison.

III. RESULTS

A. Phase diagram and static spin correlations

Before going into the spin dynamics, we discuss the ground
states of the clusters with edges shown in Fig. 1. Figures 2(a)
and 2(b) show the α dependences of the second derivative of
the ground-state energy for the systems with the armchair and
zigzag edges, respectively. The two peaks at α = αc1 and α =
αc2 indicate phase transitions between the Kitaev QSL and
the magnetically ordered phases. Figures 2(c) and 2(d) display
the static interedge spin correlations defined by Eq. (7). From
these data, we identify three different phases: the ferromag-
netic phase with a positive spin correlation for α < αc1, the
Kitaev QSL with almost zero correlation for αc1 < α < αc2,
and the stripy phase with a negative (positive) correlation for
the system with the armchair (zigzag) edges for α > αc2. The
antiferromagnetic and ferromagnetic spin correlations in the
stripy phase are understood from the schematic pictures in
Figs. 2(e) and 2(f), respectively. We note that in the ferromag-
netic and stripy phases the spin correlations are dominant in
a specific spin component Sz due to the presence of edges,
except for α = π where the ground state is degenerate in the
absence of the weak magnetic field hs.

Our phase diagrams obtained for the clusters with edges
are nearly identical to that for the same size cluster under
the periodic boundary conditions [24]. For the system with
the armchair (zigzag) edges, we find that the phase boundary
between the ferromagnetic and Kitaev QSL phases is at αc1 �
1.41π (1.49π ) and that between the Kitaev QSL and stripy
phases is at αc2 � 1.57π (1.65π ). These estimates are close to
those for the clusters with the periodic boundary conditions,
αc1 � 1.40π and αc2 � 1.58π [24]. This indicates that the
bulk properties are not much affected by the introduction of
edges even for clusters of this size. In the following sections,
we will compute the spin dynamics in the three phases: For

(e) armchair (f) zigzag

iin iout

iin

iout

FIG. 2. α dependences of the second derivative of the ground-
state energy for the systems with (a) the armchair edges and (b) the
zigzag edges. Corresponding static interedge spin correlations are
plotted in (c) and (d). (e) and (f) show the schematic pictures of the
stripy order in the case of armchair and zigzag edges, respectively.

the ferromagnetic, Kitaev QSL, and stripy phases, we take
α = 1.25π , 1.52π , and 1.67π , respectively, for both cases of
the armchair and zigzag edges.

Let us comment on the symmetry of the two clusters
in Fig. 1. In the bulk system of the Kitaev-Heisenberg
model, there is a four-sublattice transformation which does
not change the form of the Hamiltonian with replacing K
and J by K + J and −J , respectively [24]. This transfor-
mation leads to the relation between the phase boundaries
as tan αc2 = − tan αc1 − 1. In the system with the armchair
edges, the relation holds for our estimates of αc1 and αc2, since
the cluster respects the four-sublattice symmetry. In contrast,
in the case of the zigzag edges, the symmetry is lost, and αc1

and αc2 do not satisfy the relation.

B. Real-time spin dynamics

We now turn to discuss how the spin at the edge is po-
larized when the AC magnetic field is applied to the spin at
the other edge. Below, we present the results for the systems
with armchair and zigzag edges in Secs. III B 1 and III B 2,
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FIG. 3. Time evolution of the spin polarization Sν
iout

(t ) in Eq. (6) for the system with armchair edges in [(a)–(c)] the ferromagnetic phase
at α/π = 1.25, [(d)–(f)] the Kitaev QSL phase at α/π = 1.52, and [(g)–(i)] the stripy phase at α/π = 1.67: [(a), (d), and (g)] ν = x, [(b), (e),
and (h)] ν = y, and [(c), (f), and (i)] ν = z. The data for the input oscillation periods T = 10, 20, 40, 60, and 80 are shown. The insets display
the corresponding Fourier transformed spin polarizations in Eq. (10). The vertical dashed lines denote the frequencies corresponding to the
values of T , ω = � = 2π/T .

respectively, and discuss the interedge spin resonance in the
Kitaev QSL in Sec. III B 3.

1. Armchair edge

Figure 3 displays the time evolution of spin polarization at
the ioutth site in Eq. (6) for the system with armchair edges
in Fig. 1(a). In the main panels, we show the results for the
period of the oscillating field, T = 10, 20, 40, 60, and 80.

Meanwhile, in the insets, we plot the Fourier transformed
spectra obtained by

Sν (ω) =
∣∣∣∣ 2

tmax

∫ tmax

0
Sν

iout
(t )eiωt dt

∣∣∣∣, (10)

where we take tmax = 500 so that the lowest-energy scale
2π/tmax ∼ 0.013 is well below the excitation energy of the
localized fluxes (∼0.07) in the pure Kitaev model [5].
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We first discuss the results in the ferromagnetic phase
shown in Figs. 3(a)–3(c). In this case, both Sx

iout
(t ) and Sy

iout
(t )

show considerable oscillations, while Sz
iout

(t ) does not. These
behaviors are understood from the spin ordering in the ground
state: As shown in Fig. 2(c), the spins are ferromagnetically
ordered in the z direction, for which fluctuations appear dom-
inantly in the transverse components, Sx

iout
and Sy

iout
, rather than

the longitudinal one Sz
iout

. In the Fourier transformed spectra
shown in the insets, we find that the dominant Sx(ω) and
Sy(ω) always show a peak around ω = � = 2π/T . This result
indicates that the spin polarization is induced dominantly at
the same frequency of the input AC magnetic field.

Next, we turn to the results in the Kitaev QSL phase shown
in Figs. 3(d)–3(f). In contrast to the above ferromagnetic
case, we find that only Sy

iout
(t ) shows considerable oscillations,

while the others do not. This behavior can be understood from
the fractional excitations in the Kitaev QSL as follows. In
the exact solution for the pure Kitaev model, as mentioned
in Sec. I, the spins are fractionalized into itinerant Majorana
fermions and localized fluxes. The former has gapless excita-
tions, while the latter is gapped [5]. The spin excitation is a
composite of these two, and hence gapped. Indeed, the spin
excitations by Ŝx or Ŝz at the iin or ioutth site are gapped since
these spin operators do not commute with the flux operators
defined by products of six spins on the hexagons including
the iin or ioutth site [5]. This suppresses Sx

iout
(t ) and Sz

iout
(t )

in Figs. 3(d) and 3(f), respectively. In contrast, Ŝy at the
iin or ioutth site commutes with the flux operators, since the
hexagons lack the y bond. In addition to the hexagonal fluxes,
in the cluster with the armchair edges, there are additional
flux operators defined only by the edge spins. While Ŝy at the
iin or ioutth site do not commute with these fluxes, the spin
excitations remain gapless because of the degeneracy in the
ground state (see Appendix A). These allow the excitation by
Ŝy

iin
to yield long-range spin propagation via the gapless itiner-

ant quasiparticles and induce Sy
iout

(t ) in Fig. 3(e). Although the
above argument is valid only for the pure Kitaev case, similar
behavior is expected to appear in the Kitaev QSL phase in
the presence of weak Heisenberg interactions. This is the
reason why only Sy

iout
(t ) shows significantly large oscillations

in Figs. 3(d)–3(f).
The resonant behaviors in the Kitaev QSL phase exhibit

the following characteristics. First, while Sy(ω) always shows
a peak around the input frequency � as in the ferromagnetic
case, the peak height does not decrease but rather increases
with ω, as shown in the inset of Fig. 3(e). This characteristic
behavior will be discussed in Sec. III B 3. Second, we note that
a weak Heisenberg interaction is crucial for the long-range
spin propagation since the ground state degeneracy in the
pure Kitaev case with α/π = 1.5 prohibits the propagation,
as we will discuss in detail in Sec. III C. Finally, the above
argument also allows static interedge spin correlation in the y
direction, Cyy

edge, also to develop, but it is almost zero as shown
in Fig. 2(c). This indicates that the interedge spin correlations
in the Kitaev QSL can only be dynamically enhanced.

Lastly, we discuss the results in the stripy phase shown in
Figs. 3(g)–3(i). In this case, the results are similar to the ferro-
magnetic case in Figs. 3(a)–3(c). The reason is common: As
shown in Fig. 2(c), the spins are antiferromagnetically ordered

in the z direction in this stripy phase, and hence, the transverse
components Sx

iout
(t ) and Sy

iout
(t ) are induced dominantly at the

input frequency.

2. Zigzag edge

Figure 4 displays the results for the system with the zigzag
edges in Fig. 1(b), obtained by the same conditions for the
armchair case. For the ferromagnetic and stripy phases shown
in Figs. 4(a)–4(c) and 4(g)–4(i), respectively, we find similar
tendency to the armchair case: The spin polarizations in the x
and y directions are induced significantly, while that in the z
direction is rather suppressed. This is again understood from
the fact that the ordered moments in each phase appear in the
z direction as shown in Fig. 2(d).

Meanwhile, in the Kitaev QSL phase, as shown in
Figs. 4(d)–4(f), we find that Sz

iout
(t ) shows significant large

oscillations, while Sx
iout

(t ) and Sy
iout

(t ) do not. This can also be
understood from the flux excitations discussed above for the
armchair case. In the current case, the zigzag edges lack the z
bonds, and hence, the Sz components can be excited without
the gapped excitations owing to the ground state degener-
acy; see Appendix A. Interestingly, the amplitude of Sz

iout
(t )

varies nonmonotonically with T and takes the maximum value
around T = 40, as shown in Fig. 4(f). In this case also, we
observe the peaks in Sz(ω) at almost the input frequencies,
as shown in the inset of Fig. 4(f), while the peak heights
show nonmonotonic ω dependence. These features will be
discussed in the next section.

3. Interedge resonance

In Fig. 5, we show � = 2π/T dependences of the max-
imum values of Sν (ω) (ν = x, y, z) within the range of
2/tmax < ω/2π � 0.5, which are represented as Sν (ωpeak ), in
the systems with (a)–(c) the armchair edges and (d)–(f) the
zigzag edges. We also plot the values of ωpeak as functions
of � in each inset. Here, we choose the lower limit as twice
2π/tmax to avoid an artifact near 2π/tmax and the upper limit
to be sufficiently larger than the bandwidth of the dynamical
spin correlation [26].

In both armchair and zigzag cases, Sx(ωpeak ) and Sy(ωpeak )
have large values in the ferromagnetic and stripy phases, while
Sz(ωpeak ) are suppressed, since these phases show the spin or-
derings along the z direction as mentioned above. The values
of Sx(ωpeak ) and Sy(ωpeak ) decrease as � increases. In addi-
tion, we find that the values of ωpeak are close to � as shown
in each inset. These are indications of conventional magnetic
resonances; the spin polarization is induced dominantly at
the input frequency, as long as the magnetic excitations are
available in the frequency range.

In contrast, the interedge spin resonance behaves differ-
ently in the Kitaev QSL phase. First of all, we find that
the dominant polarizations, Sy(ωpeak ) for the armchair case
and Sz(ωpeak ) for the zigzag case, show broad peaks in the
wide frequency range up to � � 1.5, while the latter shows a
sharp peak at a smaller � � 0.2 as well. For both cases, the
relation ωpeak ∼ � holds, except for small � (� � 0.2 for the
armchair case and � � 0.1 for the zigzag case); the deviation
might be due to the finite-size effect. The broad responses with
ωpeak ∼ �, as well as the sharp peak in the zigzag case, can
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FIG. 4. Corresponding plots to Fig. 3 for the system with zigzag edges.

be ascribed to the itinerant Majorana fermions, whose density
of states shows a continuum up to ω = 1.5 [5]. This point will
be further discussed in Sec. III C.

In addition, for the other spin components with suppressed
polarizations, we find that ωpeak is almost constant irrespective
of �.1 This behavior could be explained by the flux gap that

1The data for Sz(ωpeak ) at � = 2π/10 � 0.63 and Sz(ωpeak ) at � =
2π/5 � 1.26 in the armchair case deviate from the constant behavior
and rather close to �. In these cases, we also observe peaks around
the constant values, but the peak heights are slightly smaller than
those around �.

governs the low-energy excitations in these spin components.
We note that the constant values of ωpeak ∼ 0.2 in the armchair
case is larger than the energy of the low-energy coherent peak
at ω ∼ 0.1 in the dynamical spin structure factor of the pure
Kitaev model in the thermodynamic limit [26], but this might
also be due to the finite-size effect.

In the Kitaev QSL, Sx(ωpeak ) is larger than Sz(ωpeak ) in the
armchair case, while Sx(ωpeak ) and Sy(ωpeak ) are almost the
same in the zigzag case. This is understood from the geometry
of the Kitaev bonds in each cluster. In the armchair case,
as shown in Fig. 1(a), the z bonds on which Ŝz components
interact via the Kitaev interaction are along the edges and per-
pendicular to the direction from iin to iout, which may suppress
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FIG. 5. Maximum values of the Fourier transformed spin polarizations Sν (ωpeak ) for the input AC magnetic field with the frequency
� = 2π/T in the systems with [(a)–(c)] the armchair edges and [(d)–(f)] the zigzag edges: [(a) and (d)] ν = x, [(b) and (e)] ν = y, and [(c) and
(f)] ν = z. The insets display � dependences of ωpeak. The gray dashed line shows the relation ωpeak = �.

the interedge spin transport of the z component. Meanwhile,
in the zigzag case shown in Fig. 1(b), both x and y bonds
are along the edges and related with each other by symmetry,
leading to almost the same interedge resonances assisted by
the z bonds connecting them.

C. Comparison with dynamical spin correlations

Let us discuss the characteristic interedge spin resonances
in comparison with the dynamical interedge spin correlations
Cνν

edge(ω) defined in Eq. (8). Figure 6 displays Cνν
edge(ω) for the

armchair and zigzag cases while varying α. In the following,
we show that Cνν

edge(ω) explains well the intensities and �

dependences of the induced spin polarizations in Fig. 5.
In the system with armchair edges, Cxx

edge(ω) and Cyy
edge(ω)

show considerable intensities over the broad ω range, whereas
Czz

edge(ω) is almost zero except for the low-ω weights near
the phase boundaries at α = αc1 and αc2. In the ferromag-
netic phase for α � αc1 and the stripy phase for α � αc2, this
is again consistent with the fact that the spin moments are
ordered along the z direction. A striking difference between

Cxx
edge(ω) and Cyy

edge(ω) appears in the Kitaev QSL phase for
αc1 � α � αc2; Cyy

edge(ω) has large spectral weights over the
broad ω range, while Cxx

edge(ω) is almost zero. Notably, the
intensity of Cyy

edge(ω) is stronger than those in the ferromag-
netic and stripy phases, while it vanishes for the pure Kitaev
case at α/π = 1.5 because of the degeneracy in the ground
state (see Appendix B). This strong Cyy

edge(ω) explains well the
broad response in Sy(ωpeak ) found in Fig. 5(b). In addition,
we note that Cxx

edge(ω) has weak intensities at low ω ∼ 0.1, as
shown in Fig. 6(a). This also explains well the small peak in
Sx(ωpeak ) found in Fig. 5(a).

Meanwhile, in the system with zigzag edges, Cνν
edge(ω) in

the ferromagnetic and stripy phases behave qualitatively sim-
ilarly to those in the armchair case. In the Kitaev QSL phase,
however, strong intensity appears in Czz

edge(ω) over the broad ω

range, while Cxx
edge(ω) and Cyy

edge(ω) are almost absent. Again,
this explains well the broad response in Sz(ωpeak ) found in
Fig. 5(f). Furthermore, the sharp peak at ω ∼ 0.2 in Fig. 5(f)
is also consistent with the strong intensity of Czz

edge(ω) in
Fig. 6(f).
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FIG. 6. Dynamical interedge spin correlations Cνν
edge(ω) [Eq. (8)]

for [(a), (c), and (e)] the armchair edge and [(b), (d), and (f)] the
zigzag edge: [(a) and (b)] ν = x, [(c) and (d)] ν = y, and [(e) and (f)]
ν = z.

The interedge resonances in the broad ω range in the
Kitaev QSL phase are mediated by the itinerant Majorana
fermions whose excitation spectrum has a continuum in the
broad energy range. This is explicitly shown by calculating
the dynamical spin correlations for the pure Kitaev model
at α/π = 1.5 by using the Majorana representation, which
we denote CMaj

edge(ω); see Appendix B for the details of the

calculations. Figure 7 shows the results of CMaj
edge(ω) in com-

parison with Cyy
edge(ω) and Czz

edge(ω) around α/π = 1.5. Note
that here we compare their absolute values since the overall
sign of CMaj

edge(ω) in Eq. (B3) is not well defined. We find that
the broad responses of Cyy

edge(ω) and Czz
edge(ω) in the vicinity

of α/π = 1.5 appear in the same energy range of CMaj
edge(ω)

with showing similar ω dependences. This indicates that the
broad responses in the Kitaev QSL phase are dominated by
the itinerant Majorana excitations.

While our results are limited to the small clusters, we
expect that the interedge resonances appear also in larger
systems since the itinerant Majorana fermions propagate over
long distances in the Kitaev QSL. This is demonstrated by cal-
culating |CMaj

edge(ω)| while changing the system width. Figure 8

shows the maximum intensity of |CMaj
edge(ω)| as a function of

the number of the unit cells in the direction perpendicular to
the edges, L⊥. We find that the dynamical correlations decay
slowly: The zigzag case roughly obeys ∝ 1/L⊥, while the
armchair case shows crossover from ∝ 1/L⊥ to ∝ 1/L3

⊥. The
results appear to be consistent with the Majorana-mediated

FIG. 7. Comparison between (a) |CMaj
edge(ω)| calculated by

Eq. (B3) for the pure Kitaev model at α/π = 1.5 and (b) an enlarged
plot of |Cyy

edge(ω)| around α/π = 1.5 for the system with the armchair
edges. [(c) and (d)] The corresponding plots for the zigzag case,
where |Czz

edge(ω)| is plotted in (d).

spin correlations [17,22]. Thus we believe that, when
dominated by the itinerant Majorana fermions, the interedge
dynamical spin correlations become long-range in real space,
even in the presence of weak Heisenberg interactions [27–29].

Combining these results with the almost constant behaviors
of ωpeak irrespective of � for the other suppressed components
in Fig. 5, we conclude that the interedge spin resonances in the
Kitaev QSL are good probes of two types of fractional exci-
tations, itinerant Majorana fermions and localized fluxes. The
resonance in the spin component which does not excite the
fluxes on hexagons leads to broad responses with ωpeak ∼ �,
as found in Figs. 5(b) and 5(f). This is a clear indication of
the itinerant Majorana excitations. Meanwhile, the responses
in the other spin components appear around a small constant

FIG. 8. Maximum of |CMaj
edge(ω)| as a function of the number of

the unit cells in the direction perpendicular to the edges, L⊥. The
data are calculated for the clusters with the numbers of the unit cell
along the edge, L‖ = 4 and 3, for the armchair and zigzag cases,
respectively; the result for the smallest L⊥ in each case corresponds
to that in Figs. 7(a) and 7(c).
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ωpeak. This is an indication of the gapped flux excitations. We
emphasize that weak Heisenberg interactions are essential for
the interedge spin resonances since all Cνν

edge(ω) vanish for the
pure Kitaev model because of the ground-state degeneracy
(see Appendix B).

IV. SUMMARY

In summary, we have studied how an AC local magnetic
field at an edge of the system induces spin polarizations
at the opposite edge in the Kitaev-Heisenberg model with
ferromagnetic Kitaev interactions by using the exact diago-
nalization. We found that in the Kitaev QSL phase the spin
polarizations are resonantly induced in a particular spin com-
ponent depending on the form of edges, in stark contrast to
the magnetically ordered phases where conventional magnetic
resonances appear in the transverse spin components. The spin
resonance in the Kitaev QSL shows the following peculiar
features, stemming from the fractionalization of spin degree
of freedom into two types of fractional excitations, itinerant
Majorana fermions and localized fluxes: (i) It appears dom-
inantly in the spin component which does not excite flux
excitations, (ii) the dominant resonance appears in a broad
range of frequency, reflecting the continuum of Majorana
excitations, (iii) it is accompanied by subdominant resonances
in the other spin components at a small constant frequency
corresponding to the flux excitation gap, (iv) both resonances
vanish in the exact Kitaev QSL because of the ground-state
degeneracy and require weak Heisenberg interactions, and (v)
they are induced only dynamically, despite the vanishingly
small static spin correlations. These results elucidate that the
nonlocal spin dynamics in the wide frequency range contains
information on both two types of fractional excitations in the
Kitaev QSL, which cannot be captured by the spin transport in
the low-energy limit in the previous studies [22,23]. While our
calculations were done for small size clusters, the interedge
resonance is expected to be observed in larger systems, since
it is mediated by itinerant Majorana excitations that propagate
over long distances. These results indicate that the interedge
dynamical spin resonance is useful for probing the two types
of fractional excitations in the Kitaev QSL, which are usually
difficult to observe only from static physical quantities.

A straightforward experiment would be implemented by
using a scanning tunneling microscope (STM) tip with mag-
netic atoms or the atomic force microscopy (AFM) to apply
an AC magnetic field at the edge and measure the spin po-
larization at the opposite edge. This could be performed, for
example, for a thin flake of a candidate material α-RuCl3.
Similar experiments would be possible in interface or het-
erostructure of a Kitaev magnet and a ferromagnetic material,
where the AC magnetic field can be applied to the edge
spins by the ferromagnetic resonance. Careful analysis of the
dynamics in each spin component and its dependence on the
edge structure would pave the way for creating and controlling
the fractional excitations in the Kitaev QSL through the spin
degree of freedom.
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APPENDIX A: DEGENERACY IN THE PURE KITAEV
MODEL WITH EDGES

In this Appendix, we show that the ground state of the
pure Kitaev model with α = 3π/2 has the degeneracy in both
cases of the armchair and the zigzag edges. In the pure Kitaev
model, one can define the flux operator Ŵp by a product
of six spins for each hexagon p, which commutes with the
Hamiltonian [5]. We show the examples in Fig. 9; note that
Ŵp in (a) [(b)] commutes with Ŝy

iin
(Ŝz

iin
), since the hexagon

lacks the y (z) bond at the iinth site, as discussed in Sec. III B 1
(III B 2). In addition to the six-spin flux operators, at the edges
of the system there are additional flux operators defined only
by the edge spins. For instance, the flux operators including
the output site are given by

Ŵ 4
out = 24Ŝz

0Ŝy
1Ŝx

2Ŝz
3, Ŵ 2

out = 22Ŝx
0Ŝy

7, (A1)

for the armchair case, and

Ŵ 3a
out = 23Ŝx

0Ŝz
1Ŝy

2, Ŵ 3b
out = 23Ŝy

0Ŝz
5Ŝx

4, (A2)

for the zigzag case; see Fig. 9. Since these flux operators
Ŵ q (q = 4, 2, 3a, and 3b) commute with the Hamiltonian at
α = 3π/2, the ground state |�GS〉 is the eigenstate of the flux
operators as

Ŵ q
out|�GS〉 = W |�GS〉, (A3)

where the eigenvalue W takes +1 or −1. Meanwhile, all the
eigenstates of the Hamiltonian can be taken to be real since
the Kitaev Hamiltonian does not include the complex matrix

FIG. 9. Schematic pictures of the flux operators for (a) the arm-
chair edges and (b) the zigzag edges. The numbers denote the sites
used for the definitions of the fluxes in Eqs. (A1) and (A2). We
show examples of the six-spin flux operator Ŵp, four-spin (Ŵ 4) and
two-spin flux operators (Ŵ 2) and the three-spin flux operators (Ŵ 3a

and Ŵ 3b). We also show the interedge correlations of the localized
Majorana particles (uν

iin iout
) by the purple lines. In (a), we represent

the z bonds where uν
i j takes −1 with red dashed lines. See Ap-

pendix B for uν
iin iout

and uν
i j .
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elements in the conventional basis set composed of the eigen-
states of Ŝz

i . Therefore, if the ground state |�GS〉 is unique, we
obtain 〈�GS|Ŵ q

out|�GS〉 = 0 since Ŵ q
out is the pure imaginary

operator including a single Ŝy
i . This contradicts with Eq. (A3),

meaning that the assumption of a unique ground state is incor-
rect. Hence, the ground state of the pure Kitaev model with the
armchair and the zigzag edges must be degenerate. For the 24-
site clusters shown in Fig. 1, we numerically confirm that the
ground state has eightfold (fourfold) degeneracy for the clus-
ters with the armchair (zigzag) edges. We note that the num-
bers of the degenerate states can be accounted for by the num-
bers of independent flux-type operators traversing the system
from one edge to the other and those consisting of edge spins.

APPENDIX B: DYNAMICAL SPIN CORRELATIONS
IN THE PURE KITAEV MODEL

In this Appendix, we describe the method to calculate
the dynamical spin correlations for the pure Kitaev model in
Figs. 7(a) and 7(c). We adopt the Majorana representation of
the Hamiltonian in Eq. (1) at α = 3π/2, which is given by [5]

ĤK = 1

4

∑
〈i, j〉ν

uν
i j iĉiĉ j, (B1)

where the spin operator is represented as Ŝν
i = i

2 b̂ν
i ĉi by

introducing four Majorana fermions {ĉi, b̂x
i , b̂y

i , b̂z
i }. Here,

uν
i j = 〈�GS|ûν

i j |�GS〉 = 〈�GS|ib̂ν
i b̂ν

j |�GS〉; ûν
i j commutes with

the Hamiltonian and uν
i j takes ±1.

In this Majorana representation, the interedge dynamical
spin correlation is given by

〈�GS|Ŝν
iin (t )Ŝν

iout
|�GS〉 = − 1

4 uν
iiniout

〈�GS|iĉiin (t )ĉiout |�GS〉,
(B2)

where ν = y and z for the armchair and zigzag case, respec-
tively, and uν

iiniout
is defined for the unpaired b̂ν

iin
and b̂ν

iout
on the

edges as uν
iiniout

= 〈�GS|ib̂ν
iin

b̂ν
iout

|�GS〉 (see Fig. 9). The corre-
lations for the other spin components vanish. By substituting
Eq. (B2) to Eq. (8), we obtain the dynamical spin correlation
between the edges in the Majorana representation as

CMaj
edge(ω) = −uν

iiniout

8π

∫ ∞

−∞
〈�GS|iĉiin (t )ĉiout |�GS〉eiωt dt, (B3)

where the time-dependent operator is defined by ĤK in which
uν

i j are chosen to realize the flux-free ground state |�0〉: We
take all uν

i j = +1 for the zigzag case, while we flip uν
i j to

−1 on the z bonds in one column for the armchair case as
shown in Fig. 9(a). In both cases, however, the sign of CMaj

edge(ω)
is indefinite due to the factor of uν

iiniout
; we plot the absolute

value |CMaj
edge(ω)| in Figs. 7 and 8, which corresponds to setting

uν
iiniout

= −1 in Eq. (B3). Note that Eq. (B3) besides this factor
corresponds to the propagator of the Majorana fermions ĉi.
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