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Real spectra in one-dimensional single-band non-Hermitian Hamiltonians

Haoyan Chen * and Yi Zhang †

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

(Received 30 March 2023; revised 1 August 2023; accepted 1 August 2023; published 7 September 2023)

In general, the energy spectrum of a non-Hermitian system turns out to be complex, which is not very
satisfactory since the time evolution of eigenstates with complex eigenvalues is either exponentially growing
or decaying. Here, we provide a sufficient and necessary condition of the real spectrum under open boundary
conditions for one-dimensional non-Hermitian tight-binding Hamiltonians. The necessity is directly related to
the fact that the generalized Brillouin zone in one dimension is a closed loop whose origin is in its interior. We
also establish the sufficiency by analytically determining when the preimage of the characteristic polynomial
contains a loop and showing that this loop is just the generalized Brillouin zone itself, using some simple
models first and then general one-band models. We demonstrate our conclusions on various non-Hermitian
model examples with longer-range hopping. Our results indicate that real spectra are more common than one
may have expected in non-Hermitian systems and are helpful for designing non-Hermitian models with real
spectra.
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I. INTRODUCTION

Non-Hermitian Hamiltonians can offer effective descrip-
tions of open systems interacting with the external environ-
ment, such as the localization of metal with impurities [1–3]
and radioactive decay in nuclear reactions [4,5]. Interest-
ingly, non-Hermiticity gives rise to fascinating concepts and
phenomena dramatically different from Hermitian systems
[6–23]. In particular, the energy spectrum of a non-Hermitian
Hamiltonian will generally be complex under the periodic
boundary condition (PBC). When the non-Hermitian winding
number is nonzero [24–26], the non-Hermitian skin effect
occurs; that is, extensive eigenstates become localized at the
system’s boundary under the open boundary condition (OBC),
and the energy spectrum collapses into analytic curves in-
side the region encircled by the periodic boundary spectrum
[27–33]. This sensitivity to boundary conditions leads to the
failure of the conventional bulk-boundary correspondence in
non-Hermitian systems [34–42]. Generally, the energy spec-
trum of a one-dimensional (1D) non-Hermitian system under
the OBC is obtainable via the generalized Brillouin zone
(GBZ) method [24,27,43–47]. However, this method may
become invalid in higher dimensions in the case of open
boundary conditions along more than one direction [28].

Despite its attractive properties, non-Hermiticity breaks
some axioms of quantum mechanics, such as the unitarity of
time evolution required for probability conservation. Thus,
non-Hermitian Hamiltonians are mostly phenomenological
instead of fundamental descriptions of physical systems.
On the other hand, a purely real spectrum, e.g., given
certain symmetries of the Hamiltonian, may recover time
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evolution’s unitarity. In addition, complex spectra in non-
Hermitian systems may lead to ambiguity in the definition of
ground states [48]: the state whose real part of the energy is
minimal, which is conventional and consistent with Hermi-
tian quantum systems, and the state whose imaginary part is
maximal, which grows fastest under time evolution and dom-
inates the long-time behavior of the system. Such ambiguity
disappears for non-Hermitian systems exhibiting real spectra,
which offers a solid foundation for many-body physics in
non-Hermitian systems. For example, the modified harmonic
oscillator Hamiltonian H = p2 + x2(ix)ε is PT symmetric
when ε is real. Then, the eigenvalues are all real if such PT
symmetry is not spontaneously broken, as observed for ε � 0
[49,50]. Non-Hermitian two-dimensional topological insula-
tors can also have real spectra if they preserve a variant of
time-reversal symmetry and the pseudo-Hermiticity condition
[51]. However, it is currently unclear whether non-Hermitian
systems can have real spectra without symmetry constraints
and, if so, what the corresponding conditions are.

Here, we show that real spectra can be achieved in 1D
single-band non-Hermitian systems under the OBC without
symmetry protection: the preimage of the characteristic poly-
nomial on the real axis must contain a closed loop that
encircles the origin (we will call this the loop property for
simplicity in the following). First, we show that the gen-
eralized Brillouin zone for a 1D single-band non-Hermitian
tight-binding Hamiltonian is always a close loop in the com-
plex plane with 0 in its interior [24]. We demonstrate this by
showing that any continuous curve that links the origin and
infinity must intercept the generalized Brillouin zone. This
implies that a single-band GBZ in the complex plane has the
loop property. By definition of the GBZ, we conclude that the
real OBC spectrum requires the preimage of the characteristic
polynomial on the real axis to have the loop property. To
show that the converse statement is also true, we first extend
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the famous Hatano-Nelson model to the complex case. By
directly calculating the eigenvalues [52], we show that the
complex Hatano-Nelson model has a real OBC spectrum if
and only if the multiple of two hopping coefficients is real
and positive. Then we illustrate that this condition and the
loop property of the preimage are identical. Next, we add
next-nearest hopping to the original Hatano-Nelson model.
In this case, we give the condition where the loop property
holds. This is accomplished by establishing the equivalence
to three intersection points of the preimage on the real axis.
Furthermore, we show that under this condition, the GBZ is
just the loop in the preimage of the characteristic polynomial
by tracing the flow of the roots as energy varies. By the
definition of the GBZ, the equivalence between the loop prop-
erty and real OBC spectrum is also established. Finally, we
apply this method to show the equivalence between the loop
property of the preimage and the real spectrum under the OBC
for general 1D single-band non-Hermitian Hamiltonians.

II. GENERALIZED BRILLOUIN ZONE IN 1D
NON-HERMITIAN SYSTEMS

A. Generalized Brillouin zone

We begin by reviewing the non-Bloch theory and the gen-
eralized Brillouin zone for 1D non-Hermitian systems. The
Hamiltonian of a single-band non-Hermitian tight-binding
model in one dimension can be written as

H =
∑
m,n

tm−nc†
mcn =

∑
k

∑
l

tl e
−ikl c†

kck ≡
∑

k

H (k)c†
kck,

(1)

where the Hamiltonian in the momentum space is

H (k) =
q∑

n=−p

tneikn (2)

and p (q) denotes the maximum hopping range to the left
(right). For example, the Hatano-Nelson model with only
nearest-neighbor hopping has p = q = 1. To obtain the en-
ergy spectrum under the OBC in the thermodynamic limit
(namely, lattice size N → ∞), we analytically extend the
momentum k from the real axis to the complex plane and
define β := eik . In this case, the trajectory of β will vary from
the conventional Brillouin zone, i.e., the unit circle [27,28].
Therefore, the Hamiltonian H (k) will become a characteristic
polynomial a(β ):

a(β ) := H (eik → β ) =
q∑

n=−p

tnβ
n, (3)

where we assume p and q are positive integers and a−p

and aq are both nonzero. Solving the characteristic equa-
tion det[H (β ) − E ] = 0 for arbitrary E ∈ C, we then obtain
p + q roots βi(E ), i = 1, 2, . . . , p + q. We arrange these roots
according to their norms [46],

|β1(E )| � |β2(E )| � |β3(E )| � · · · � |βp+q(E )|, (4)

and E belongs to the open boundary energy spectrum
σ (HOBC) if and only if

|βp(E )| = |βp+1(E )|. (5)

The generalized Brillouin zone is constituted by βp(E )
and βp+1(E ), which satisfy Eq. (5) [24,45,46]. For Hermitian
systems, the generalized Brillouin zone obtained this way is
just the conventional Brillouin zone |β| = 1.

B. The Hatano-Nelson model

One of the simplest examples of the non-Hermitian Hamil-
tonian is the Hatano-Nelson model [1]:

H1 =
∑

i

(tl c
†
i+1ci + trc†

i−1ci ). (6)

We assume tl , tr > 0 for simplicity. The corresponding char-
acteristic equation is given by

a1(β ) = tlβ
−1 + trβ = E , (7)

whose two roots β± satisfy

β+ + β− = E

tr
, β+β− = tl

tr
. (8)

From |β+| = |β−|, we obtain

|β+| = |β−| =
√∣∣∣ tl

tr

∣∣∣ := r. (9)

Let β+ = reiθ and β− = reiθ ′
; then,

θ + θ ′ = 0, E = 2
√

tl tr cos θ, θ ∈ [0, π ]. (10)

In contrast to the complex PBC spectrum EPBC = tl e−ik +
treik that forms an ellipse in the complex plane, the OBC
spectrum flattens into a line on the real axis.

C. Spectra under different boundary conditions

The significant difference between PBC and OBC spectra
indicates that non-Hermitian systems may be highly sensitive
to boundary conditions. In fact, if we impose a semi-infinite
boundary condition (SIBC) on a 1D non-Hermitian lattice,
then E belongs to the SIBC spectrum σSIBC(H ) if and only if
E belongs to the PBC spectrum σPBC(H ) or its non-Hermitian
winding number w(E ) �= 0, where [53]

w(E ) =
∫ 2π

0

dk

2π i

d

dk
ln det[H (k) − E ]. (11)

Namely, the SIBC spectrum is just the PBC spectrum together
with the region it encloses that has a nonzero winding number
[25]. It is also obvious that the OBC spectrum is contained in
the SIBC spectrum,

σOBC(H ) ⊂ σSIBC(H ), (12)

because the OBC is given by the SIBC together with an addi-
tional boundary condition at the other end [25]. A less obvious
conclusion is that the winding number of the OBC spectrum
is always zero [24,25]. That means the OBC spectrum cannot
contain a circular or elliptical structure—it must collapse into
some curves inside the region enclosed by the PBC spectrum.
The relations of the energy spectra under different boundary
conditions are shown in Fig. 1(a).

The unusual behavior of the non-Hermitian spectrum un-
der different boundary conditions demonstrates that adding
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FIG. 1. (a) Energy spectrum for the Hatano-Nelson model under
the PBC (red), SIBC (gray), and OBC (blue). (b) Eigenvalues for
the Hatano-Nelson model (tl = 0.5, tr = 1) under the PBC, OBC,
and a particular boundary condition with 0.01c†

Lc1 + 0.01c†
1cL and

various lattice sizes N = 10, 30, 100. (c) The amplitude distributions
for three randomly chosen eigenstates of the Hatano-Nelson model
(tl = 0.5, tr = 1, L = 40) under the OBC illustrate their decay away
from the boundary, while the eigenstates under the PBC are still
Bloch states. (d) The conventional Brillouin zone of the Hermitian
systems and the generalized Brillouin zone of the non-Hermitian
Hatano-Nelson model with tl = 0.5 and tr = 1.

a small boundary perturbation term to a non-Hermitian sys-
tem under the OBC can dramatically change its spectrum
as long as the lattice size N is large enough (see Fig. 1(b)
and Ref. [37]). This can be seen from the ε pseudospectrum
[47,54–56], which is defined as the set of spectra of the Hamil-
tonian plus a perturbed matrix whose two-norm is bounded by
ε:

σε (H ) =
⋃

||η||�ε

σ (H + η). (13)

Indeed, for an open boundary non-Hermitian Hamiltonian
with lattice size N , the following formula holds [47,56]:

lim
ε→0

lim
N→∞

σε

(
H (L)

OBC

) = σSIBC(H ), (14)

which explains that the OBC spectrum is unstable against any
small boundary additional terms in the thermodynamic limit
for the Hatano-Nelson model [37].

The significant difference between PBC and OBC spectra
also indicates that eigenstates under various boundary con-
ditions may have different behaviors, a phenomenon called
the non-Hermitian skin effect [24–27]. Namely, in the original
Hermitian systems, the eigenstates (except for the edge states)
are Bloch states composed of a plane wave and a periodic
function [57]. However, in non-Hermitian systems under open
boundary conditions, the eigenstates may decay with respect
to the distance from one end of the system, as shown in
Fig. 1(c). In this case, the crystal momentum k takes com-

plex values, and GBZ β ≡ eik differs from the conventional
Brillouin zone—a unit circle. Nevertheless, the GBZ is still a
closed loop, as demonstrated later.

Another aspect of non-Hermitian Hamiltonians’ sensitivity
to the boundary condition lies in their imprecise linear-algebra
numerics when the lattice size N is large [45,58]. Thus, in-
stead of exact diagonalization, we use an algorithm based on
the generalized Brillouin zone theory applicable to univer-
sal single-band 1D tight-binding non-Hermitian Hamiltonians
(see Appendix B).

D. Properties of the GBZ

In general, one can show that for a general single-band
Hamiltonian in Eq. (1), the GBZ is always a closed curve that
encircles the origin of the complex plane [24,59]. In fact, for
an arbitrary continuous curve γ (t ) : [0, 1] → C that connects
z = 0 and z = ∞,

γ (0) = 0, lim
t→1−

|γ (t )| = ∞. (15)

Note that γ (t ) is a solution of the characteristic equation when
E = a(γ (t )):

det[H (eik → β ) − E ] = a(β ) − E = a(β ) − a(γ (t )) = 0.

(16)

Therefore,

γ (t ) ∈ {β1(a(γ (t ))), β2(a(γ (t ))), . . . , βp+q(a(γ (t )))}, (17)

where βi(a(γ (t ))), i = 1, 2, . . . , p + q, are roots of Eq. (16),
which are arranged as in Eq. (4). The first term, a−pβ

−p,
and the last term, aqβ

q, of the characteristic polynomial (3)
indicate that for |E | → ∞ we have

|β1(E )|, |β2(E )|, . . . , |βp(E )| → 0,

|βp+1(E )|, |βp+2(E )|, . . . , |βp+q(E )| → ∞. (18)

When t → 0+, |γ (t )| → 0, and |a(γ (t ))| → ∞, γ (t ) must
appear among the first p roots:

γ (t ) ∈ {β1(a(γ (t ))), β2(a(γ (t ))), . . . , βp(a(γ (t )))}. (19)

On the other hand, when t → 1−, |γ (t )| → ∞, and
|a(γ (t ))| → ∞, γ (t ) appears among the last q roots:

γ (t ) ∈ {βp+1(a(γ (t ))), βp+2(a(γ (t ))), . . . , βp+q(a(γ (t )))}.
(20)

Since γ (t ) is a continuous curve, a critical point t = tc must
exist between these two cases as t goes from 0 to 1. At this
critical point tc ∈ (0, 1), we have

γ (tc) ∈ {βp(a(γ (tc))), βp+1(a(γ (tc)))},
|γ (tc)| = |βp(a(γ (tc)))| = |βp+1(a(γ (tc)))|, (21)

which implies that γ (tc) belongs to the GBZ. Since γ (t ) is
an arbitrary curve connecting 0 and ∞ and since the OBC
spectrum is always connected [60], the GBZ should also be
connected, and we conclude that the GBZ for the 1D single-
band non-Hermitian Hamiltonian in Eq. (1) is a closed loop
with z = 0 in its interior. For example, the GBZ of the Hatano-
Nelson model is given in Eq. (9) and is essentially a circle, as
shown in Fig. 1(d).
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These results imply that if the energy spectrum of a single-
band non-Hermitian Hamiltonian is real under the OBC, the
preimage of R under its characteristic polynomial a, denoted
as a−1(R) and containing the GBZ, must have the loop
property (must contain a loop that encircles 0). Thus, we
have obtained a necessary condition for real spectra in 1D
non-Hermitian systems under OBCs. Here, the preimage is a
mathematical concept; for a given function f : X → Y and a
subset B ⊆ Y , the preimage of B under the function f −1(B) is
the set

f −1(B) = {x ∈ X : f (x) ∈ B}. (22)

Namely, the preimage describes the “inverse” of a function. In
our case, the function refers to the characteristic polynomials
of the non-Hermitian models, and the subset B is the real axis.

Then, one may wonder whether such a condition is suffi-
cient. In the following, we will consider the complex-hopping
Hatano-Nelson model and the Hatano-Nelson model with a
next-nearest-neighbor hopping term and demonstrate the con-
dition’s sufficiency in these two models analytically. Further,
we extend the method for the Hatano-Nelson model with
a next-nearest-neighbor hopping to show the sufficiency in
general 1D single-band non-Hermitian models. We also refer
the reader to Appendix D for additional numerical examples.

III. APPLICATIONS AND ANALYSIS
FOR MODEL EXAMPLES

A. The Hatano-Nelson model with complex hopping

First, we revisit the Hatano-Nelson model in Eq. (6), whose
characteristic polynomial a1(β ) is given in Eq. (7). Under a
similarity transformation [1,2,28,47,61],

U −1
r c†

i Ur = ric†
i , U −1

r ciUr = r−ici, r > 0, (23)

which preserves the energy spectrum of the Hamiltonian in
Eq. (28) under the OBC. Under such a similarity transfor-
mation, also called an imaginary gauge transformation due to
its formality as a gauge transformation c†

i → eiϕi c†
i and ci →

e−iϕi ci with purely imaginary phases ϕi, the Hatano-Nelson
model transforms into

H ′
1 := U −1

r H1Ur =
∑

i

(tl rc†
i+1ci + trr−1c†

i−1ci ). (24)

Now we generalize the Hatano-Nelson model to the com-
plex one where the hopping coefficients are now allowed to be
complex. The energy spectrum of an N-site complex Hatano-
Nelson model under the OBC is equivalent to the eigenvalues
of an N × N tridiagonal matrix:⎛

⎜⎜⎜⎜⎜⎝

0 b
a 0 b

a . . .
. . .

. . .
. . . b
a 0

⎞
⎟⎟⎟⎟⎟⎠, (25)

where a, b ∈ C. As we show in Appendix A, the eigenvalues
of the matrix in Eq. (25) are [52]

λn = 2(ab)
1
2 cos

nπ

N + 1
, n = 1, 2, . . . , N. (26)
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FIG. 2. (a) The maximum imaginary part of the energy spec-
trum of the complex Hatano-Nelson model under the OBC as a
function of tr in the complex plane when tl = 1 indicates that the
energy spectrum is real if and only if tr is real and positive. (b) and
(c) The preimage of the characteristic polynomial a−1

1 (R) (top) for
the Hatano-Nelson model with tl = 1 (b) possesses the loop property
for real hopping tr = 2 and (c) becomes a single curve for complex
hopping tr = 1 + 2i; consistently, the calculated energy eigenvalues
(below) exhibit real and complex OBC spectra, respectively.

Thus, all eigenvalues are real if and only if [arg(a) + arg(b)]
mod 2π = 0, namely, ab > 0.

Without loss of generality, we set hopping tl = 1, which we
can always achieve with a similarity transformation r = t−1

l .
Then, for a complex-valued hopping tr , it is straightforward
to see that the Hatano-Nelson model possesses a real OBC
spectrum if and only if tr is purely real and positive, as shown
in Fig. 2(a). For more general cases, the condition for a real
OBC spectrum is equivalent to tl tr > 0.

Next, we compare such benchmark conditions with our
theoretical criteria. First, we demonstrate the numerical re-
sults of several examples in Fig. 2: when tr > 0, the preimage
a−1

1 (R) contains a loop encircling the origin, and the OBC
spectrum is real, as shown in Fig. 2(b); on the contrary, for
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a complex-valued tr , the preimage will generally become a
single curve and pass through the origin without forming a
loop, and the OBC spectrum is no longer purely real, as in
Fig. 2(c).

More generally, we can also establish the condition tr > 0
for the loop property of the preimage a−1

1 (R) analytically
as follows. For real tr , a−1

1 (R) contains the real axis R and
can self-intersect where the derivative of the characteristic
polynomial is zero:

a′
1(β ) = − 1

β2
+ tr = 0, β ∈ R, (27)

which has two solutions, βc = ±√
tr , when tr > 0 and no real

solution otherwise. Hence, critical points exist if and only if
tr > 0, and there must be either two or zero critical points.
When the preimage contains a loop that encloses the origin, it
has to cross the real axis at least twice and leaves two critical
points on it, which requires tr > 0. On the other hand, when
tr > 0, the asymptotic behavior of a(β ) as β goes to infinity
indicates that any curve in the preimage, with the exception
for the real axis, has to start at one intersection point and
end at another. Namely, together with the complex conjugate
symmetry, the preimage must form a loop that encircles the
origin.

As for a complex tr , the preimage cannot have the loop
property. Otherwise, the loop in a−1

1 (R) must cross the real
axis at least twice, where we will have real points on a−1

1 (R),
leading to a contradiction: because a1(β ) = 1/β + trβ cannot
be real when β ∈ R and tr ∈ C \ R, there cannot be any
real point on a−1

1 (R) except the origin. In fact, the preimage
a−1

1 (R) in the complex tr cases is a single curve that passes
through the origin, as shown in Fig. 2(c).

From the above argument, we have established the equiv-
alence between the condition tr > 0 and the loop property of
the preimage a−1

1 (R). As for the general case where tl �= 1, the
similarity transformation β → r−1β is a combination of scal-
ing and rotation in the complex plane. Since these conformal
mappings preserve angle, the presence or absence of the loop
property in the preimage remains unchanged. Thus, tl tr > 0 is
also an equivalent condition for the loop property of a−1

1 (R).
Since tl tr > 0 is also identical to the real OBC spectrum, we
have proved the equivalence between the loop property of the
preimage and the real OBC spectrum for the models in this
section.

B. The Hatano-Nelson model with
next-nearest-neighbor hopping

Next, we consider the Hatano-Nelson model with an addi-
tional next-nearest-neighbor (NNN) hopping:

H2 =
∑

i

(c†
i+1ci + Ac†

i−1ci + Bc†
i−2ci ). (28)

The characteristic polynomial of this Hamiltonian is

a2(β ) = β−1 + Aβ + Bβ2. (29)

Here, we have set the first hopping coefficient to 1 since it can
always be achieved with a similarity transformation. Unless
it is transformable to real hopping under certain similarity

transformations, complex hopping will generally lead to com-
plex OBC spectra, as we saw for the pristine Hatano-Nelson
model in the last section. Therefore, we consider real hopping
A, B ∈ R here afterward.

Like before, the real axis R is included in the image a−1
2 (R)

and may intersect with other parts of the preimage. There
can be only one or three such intersection points, where the
characteristic polynomial takes a vanishing derivative:

da2

dβ
= − 1

β2
+ A + 2Bβ = 0, β ∈ R. (30)

Indeed, we can determine the roots’ conditions for the
real cubic equation a3x3 + a2x2 + a1x + a0 = 0 following its
discriminant � [62]:

� = 18a3a2a1a0 − 4a3
2a0 + a2

2a2
1 − 4a3a3

1 − 27a2
3a2

0, (31)

which suggests the following:
(i) If � > 0, the equation has three distinct real roots.
(ii) If � < 0, the equation has a real root and two complex

roots forming a complex-conjugate pair.
(iii) If � = 0 and a2

2 = 3a3a1, the equation has a real-root
triplet; if � = 0 and a2

2 �= 3a3a1, the equation has a single real
root and a real-root doublet.

Applying these criteria to Eq. (30), we obtain the follow-
ing:

(i) When A3 > 27B2, there are three intersection points.
(ii) When A3 < 27B2, there is only one intersection point.
According to the asymptotic behavior of a2(β ) as β → 0

and ∞, only one curve in a−1
2 (R) passes through 0, and two

curves extend to ∞; it is easy to see that when A3 > 27B2,
there must be a loop C that connects two intersection points. In
addition, one can show that this loop must contain z = 0 in its
interior. The sketch of proof is as follows: using the maximum
modulus principle, one can show that for an analytic function
f on a connected open set U , the imaginary part of f must
achieve its maximum and minimum on the boundary ∂U (see
Appendix C). Let U be the region contained in the loop C.
If z = 0 is not contained in U , then a2 is analytic in U ; its
imaginary part should reach its maximum and minimum on
C. However, according to the definition of a−1

2 (R), Im(a2) is
identically zero on C; thus, Im(a2) vanishes identically on U .
The Cauchy-Riemann equations [63]

∂Re(a2)

∂x
= ∂Im(a2)

∂y
,

∂Im(a2)

∂x
= −∂Re(a2)

∂y
(32)

finally lead to the constant real part of a2 in U , which is im-
possible since a2(β ) is not a constant function. Thus, besides
the real axis, a−1

2 (R) contains a line and a loop (only one line)
when A3 > 27B2 (A3 < 27B2; see Fig. 3).

Next, we show that only when A3 > 27B2 is the corre-
sponding OBC spectrum purely real and thus consistent with
our criteria. Without loss of generality, we assume that B > 0
(as the argument is similar for B < 0) and solve Eq. (30) for
the three intersection points using Cardano’s formula:

βi1 = 1

u + v
,

βi2 =
[
−u + v

2
+ i

√
3

2
(u − v)

]−1

,
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FIG. 3. When the preimage of the characteristic polynomial a−1(R) (top) shows the loop property, the OBC spectrum (bottom) is real;
otherwise, when there is an absence of a loop encircling the origin, the OBC spectrum of the corresponding non-Hermitian Hamiltonian is
complex. The transition happens at A3 = 27B2 for a(β ) = 1/β + Aβ + Bβ2. (a) A = 3, B = 0.5, A3 > 27B2; (b) A = 3, B = 1, A3 = 27B2;
and (c) A = 3, B = 2, A3 < 27B2.

βi3 =
[
−u + v

2
− i

√
3

2
(u − v)

]−1

,

u = 3

√
B +

√
B2 − A3

27
,

v = 3

√
B −

√
B2 − A3

27
, (33)

where we have taken the convention that the square root
yields the branch with a positive imaginary part and the cube
root yields the branch with the largest real part. Under such
a convention, it is straightforward to see that βi3 < βi2 <

0 < βi1. Also, a2(βi3) < a2(βi2) < a2(βi1): since a′
2(β ) > 0

when βi3 < β < βi2, we manifestly have a2(βi3) < a2(βi2);
if a2(βi1) � a2(βi2), then we can plot a2(β ) and find that
some horizontal line y = M can cross a2(β ) more than
three times, which leads to a contradiction and requires
a2(βi2) < a2(βi1).

Based on these preparations, we can trace the roots of
a2(β ) = E as E varies from −∞ to ∞, as summarized in
Fig. 4. We define |β1| � |β2| � |β3| following the definition
in Eq. (4). When E < a2(βi3), β1 is real, and β2 and β3 are
two complex roots on the line l; then at E = a2(βi3), β2 and
β3 merge at the intersection point βi3. When a2(βi3) < E <

a2(βi2), all roots are real; when E = a2(βi2), we have β1 =
β2 = βi2. Finally, when a2(βi2) < E < a2(βi1), β3 is still real,
but β1 and β2 become two complex roots on the loop.

Since we have real hopping in Eq. (28), a−1
2 (R) is guar-

anteed to possess a reflection symmetry with respect to the
real axis. By tracing the roots, we have found that as long as
a2(βi2) < E < a2(βi1), β1 and β2 lie in the upper and lower
halves of the loop, respectively, satisfying |β1| = |β2|, the
GBZ condition in Eq. (5). Thus, the loop in the preimage is
a part of the GBZ.

If there are other parts of the GBZ, they must connect to
this loop, like in Fig. 2(b) in Ref. [45], as the GBZ is con-
nected. There will be intersection points on the GBZ leading
to discontinuities in the derivative of this loop. However, we
can rule out such possibilities, as the loop has a continuous
derivative when A3 > 27B2. Using Im[a2(β = x + iy)] = 0,
we derive the loop’s algebraic expression:

(x2 + y2)(A + 2Bx) = 1, βi2 < x < βi1, (34)

whose derivative is

dy

dx
= −2Ax + 2B(3x2 + y2)

y(2A + 4Bx)
, (35)

which is apparently continuous and becomes infinite only at
the intersection points.

Hence, we conclude that when A3 > 27B2, the loop in
a−1

2 (R) is just the GBZ itself, and thus, the OBC spectrum of
the corresponding non-Hermitian Hamiltonian must be real.
In the Hatano-Nelson model with an additional NNN hopping,
the loop property for the preimage of the characteristic poly-
nomial is also identical to the real OBC spectrum.
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FIG. 4. The evolution of the three roots |β1| � |β2| � |β3| of 1/β + β + 0.16β2 = E as E goes from −∞ to ∞. The arrows denote the
flow of these roots as E increases: (a) E = −4, (b) E = −1.85, (c) E = −1.7, (d) E = 1, and (e) E = 3. Points A, B, and C correspond to
intersection points βi3, βi2, and βi1, respectively.

C. General 1D single-band models

In previous sections, we showed the consistency of our
criteria for the Hatano-Nelson model with either complex
hopping or an additional NNN term analytically. Here, we
argue that our criteria apply to general 1D single-band
models with longer-range hopping: in the following, we
show that if the preimage a−1(R) of the characteristic
polynomial a(β ) has the loop property, the OBC spec-
trum of the corresponding non-Hermitian Hamiltonians is
real.

We consider a point on the upper part of the loop in the
preimage and assume that it is the ith root βi(E ) for some real
energy E . Then, due to the reflection symmetry with respect
to the real axis, there must be another root β j (E ) that satisfies
β j (E ) = β∗

i (E ); thus, |β j (E )| = |βi(E )|. According to the or-
dering of the roots in Eq. (4), we can assign j = i + 1. Since
|βi(E )| � |βi+1(E )|, when E varies from −∞ to ∞, the flow
of βi(E ) follows the trajectory from close to 0 → intersection
point A → the upper part of the loop → intersection point
B → close to 0; βi+1(E ) follows the trajectory from close
to ∞ → intersection point A → the lower part of the loop
→ intersection point B → close to ∞ (see Fig. 5 for an
illustration). Consequently, |βi(E )| → 0, and |βi+1(E )| → ∞
when |E | → ∞. According to Eq. (18), we have i = p, which
means the loop is the trajectory of βp(E ) and βp+1(E ) and
satisfies the GBZ equation |βp(E )| = |βp+1(E )|. In addition,
the loop has a continuous derivative since it is an “inverse”
of a polynomial function. If any other parts of GBZ were
connected to this loop, there would be intersection points
leading to discontinuous derivatives. Following the arguments
in the previous sections, we can conclude that the loop in the
preimage is just the GBZ, which in turn guarantees a real spec-
trum under the OBC for such a non-Hermitian Hamiltonian
in the presence of the loop properties. We also summarize
numerical results that are fully consistent with the criteria for
various non-Hermitian models with longer-range hopping in
Appendix D.

Note that our criteria provide a different perspective on
real spectra of non-Hermitian Hamiltonians without symme-
try constraints. A PT -symmetric non-Hermitian Hamiltonian
also has a real spectrum [49,50], given that such PT sym-
metry is not spontaneously broken by its eigenstates. In
comparison, the non-Hermitian models presented in this work
are not PT symmetric in general.

Let’s take the Hatano-Nelson model as an example. The
PT operator acts as [64]

PT ci(PT )−1 = cN+1−i, (36)

PT c†
i (PT )−1 = c†

N+1−i, (37)

PT i(PT )−1 = −i, (38)

where N is the total number of lattice sites. Consequently, the
action of PT on the Hatano-Nelson model in Eq. (6) results
in

(PT )H1(PT )−1 =
∑

i

(t∗
r c†

i+1ci + t∗
l c†

i−1ci ) = H†
1 , (39)

suggesting that H1 is not PT symmetric unless it is Her-
mitian. Despite the lack of such symmetry constraints, our
study indicates that H1 possesses a real spectrum as long

FIG. 5. The trajectories of the roots move through the loop of
the preimage as E evolves from −∞ to ∞. As |βi(E )| → 0 and
|βi+1(E )| → ∞ when |E | → ∞, we conclude that i = p and the
loop is consistent with the GBZ definition.
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as the condition tl tr > 0 is met. Note that although H1 is
not PT symmetric, it is explicitly PT pseudo-Hermitian, as
shown in Eq. (39). (A pseudo-Hermitian Hamiltonian satisfies
SHS−1 = H† [65,66], which does not count as a systematic
symmetry conventionally.) Such pseudo-Hermiticity is ex-
pected, as a non-Hermitian Hamiltonian with a real spectrum
must be pseudo-Hermitian, as stated in Ref. [65]. Namely,
pseudo-Hermiticity is a necessary condition for the real
spectrum.

IV. CONCLUSION AND DISCUSSION

In summary, we have provided a sufficient and necessary
condition for real spectra of 1D single-band non-Hermitian
systems under the OBC: the preimage of the non-Hermitian
Hamiltonian’s characteristic polynomial on R contains a
closed loop with the origin inside. The condition’s necessity
is straightforward to establish, as 1D GBZ must be a closed
loop with the origin inside. Then, we put forward analytical
proofs and numerical results to establish the condition’s suffi-
ciency. For the Hatano-Nelson model with complex hopping,
we obtained the energy spectrum analytically and showed that
the condition for a real OBC spectrum and the condition for
the loop property of the preimage of the characteristic poly-
nomial on R are equivalent: the multiple of the two hopping
coefficients should be real and positive. Similarly, we de-
rived analytical conditions for the real OBC spectrum and the
loop property of the preimage for the Hatano-Nelson model
with additional NNN hopping and established their corre-
spondence. We provide numerical results for model examples
with higher-order characteristic polynomials in Appendix D.
Finally, we gave an argument for the condition’s sufficiency
in general 1D single-band models, thus providing a different
perspective of real spectra in non-Hermitian systems without
symmetry constraints.

Our results help in the search for and design of 1D non-
Hermitian systems with real spectra and indicate that even
without symmetry constraints, a wide range of non-Hermitian
systems can achieve real spectra under OBCs. Our criteria also
avoid direct calculations of the energy spectra and eigenstates,
the typical bottleneck and source of accumulated error in
non-Hermitian systems, especially for large system sizes.
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APPENDIX A: THE OBC SPECTRUM OF THE COMPLEX
HATANO-NELSON MODEL

As shown in the main text, we need to find the eigenvalues
of the matrix in Eq. (25) for a, b ∈ C to obtain the OBC
spectrum of the complex Hatano-Nelson model [52]. Let λ

be an eigenvalue of Eq. (25) and v = (v1, v2, . . . , vN )T be
the corresponding eigenvector; then the eigenvalue equation

leads to

−λv1 + bv2 = 0,

av1 − λv2 + bv3 = 0,

av2 − λv3 + bv4 = 0,

...

avN−2 − λvN−1 + bvN = 0,

avN−1 − λvN = 0.

By defining v0 = vN+1 = 0 as the boundary condition, we
can establish for the above equations the following solution:

vi = C1xi
1 + C2xi

2, (A1)

where C1 and C2 are complex constants and x1 and x2 are the
two roots of the equation

a − λx + bx2 = 0, (A2)

which also gives x1x2 = a

b
and x1 + x2 = λ/b.

In turn, the boundary condition v0 = vN+1 = 0 imposes

0 = C1 + C2,

0 = C1xN+1
1 + C2xN+1

2 ,

which requires (x1

x2

)N+1
= 1, (A3)

x1

x2
= ei2πn/(N+1), n = 1, 2, . . . , N. (A4)

Putting together Eqs. (A2) and (A4), we obtain

x1 =
(a

b

) 1
2
eiπn/(N+1),

x2 =
(a

b

) 1
2
e−iπn/(N+1), (A5)

which yield the eigenvalues λ = b(x1 + x2) of the matrix in
Eq. (25):

λn = 2(ab)
1
2 cos

nπ

N + 1
, n = 1, 2, . . . , N. (A6)

Note that we have implicitly assumed that two roots of
Eq. (A2) are not equal in establishing the solution in Eq. (A1).
Otherwise, Eq. (A1) would be

vi = (C1 + C2i)xi; (A7)

a solution will not hold in this case, as vi = (C1 + C2i)xi

yields only the trivial solution C1 = C2 = 0 under the bound-
ary condition v0 = vN+1 = 0.

APPENDIX B: ALGORITHM FOR COMPUTING THE OBC
SPECTRUM OF A GENERAL SINGLE-BAND

NON-HERMITIAN SYSTEM

To compute the OBC spectrum and eigenstates, one can
directly diagonalize the non-Hermitian matrix. However, such
eigenvalue problems’ results are highly susceptible to accu-
mulated numerical errors as the non-Hermitian model’s lattice
size N becomes large and may be inaccurate. Here, we employ
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an algorithm valid for a general single-band non-Hermitian
Hamiltonian based on the GBZ theory [67]. We seek all values
of E = a(β ) = ∑q

n=−p anβ
n that satisfy |βp(E )| = |βp+1(E )|.

We assume that

βp = β0eiφl , βp+1 = β0e−iφl , (B1)

where φl = lπ/(M + 1), l = 1, 2, . . . , M, and M is the num-
ber of points on the energy spectrum. We set M = 10 000,
which is sufficient for all intents and purposes throughout this
work.

Since we have

E = a(βp) =
q∑

n=−p

anβ
n
0 einφl , (B2a)

E = a(βp+1) =
q∑

n=−p

anβ
n
0 e−inφl , (B2b)

we obtain an equation for β0:

q∑
k=−p

anβ
n
0 sin

nlπ

M + 1
= 0. (B3)

We can compute the OBC spectrum for each l in
1, 2, . . . , M with the following algorithmic steps:

(i) Solve Eq. (B3) and obtain p + q roots β0.
(ii) For each β0 obtained above, check whether βa = β0eiφl

and βb = β0e−iφl are βp and βp+1. This is accomplished as
follows:

(iia) Insert β0 into Eq. (B2a) or Eq. (B2b) to obtain E ,
substitute this E back into E = ∑q

n=−p anβ
n, and solve this

equation to determine the remaining (p + q − 2) roots.
(iib) If |βa| = |βb| = |βp| = |βp+1|, then E is on the OBC

spectrum; otherwise, E is not on the OBC spectrum. Return
to (iia) until all β0 have been checked.

(iii) Return to step (i) for the next l until l = M.

APPENDIX C: SOME THEOREMS OF COMPLEX
ANALYSIS

The maximum modulus principle states [63] the following:
Theorem 1. Let U be an open region of C; f is an analytic

function on U . If z0 ∈ U is the maximum point for | f |, that
is, | f (z0)| � | f (z)| for all z ∈ U , then f is constant on U .
Namely, | f | achieves its maximum only on the boundary ∂U .

Proof. Choose δ > 0 so that the disk D(z0, δ) ⊂ U .
Choose 0 < r < δ and then use the Cauchy integral formula:

f (z0) = 1

2π i

∫
|z−z0|=r

f (z)

z − z0
dz. (C1)

Rewrite the above formula in terms of the parametrization z =
z0 + reiθ , 0 � θ � 2π :

f (z0) = 1

2π i

∫ 2π

0

f (z0 + reiθ )

reiθ
ireiθdθ

= 1

2π

∫ 2π

0
f (z0 + reiθ )dθ. (C2)

The definition of z0 implies that

| f (z0)| � 1

2π

∫ 2π

0
| f (z0 + reiθ )|dθ

� 1

2π

∫ 2π

0
| f (z0)|dθ = | f (z0)| (C3)

since | f (z0 + reiθ )| � | f (z0)| ∀ θ .
Then Eq. (C3) indicates that | f (z0 + reiθ )| = | f (z0)| for all

θ and 0 < r < δ. This means that f (z) is locally constant near
z = z0. Then apply the following theorem [63]:

Theorem 2. Identity theorem. Let � be an open region of
C. If f and g are analytic on � and {z ∈ � : f (z) = g(z)} has
a limit point in �, then f ≡ g in �.

f (z) is globally constant on U . �
Applying the maximum modulus principle to e−i f (z) and

ei f (z) respectively, we obtain the following theorem:
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FIG. 6. The preimage a−1(R) (top) and the OBC spectrum (bottom) for the single-band non-Hermitian tight-binding Hamiltonian H3 in
Eq. (D1) with the characteristic polynomial a3(β ) = α3β

−2 + 3β−1 + 3.2β + β2 + 0.5β3 and various values of the hopping coefficient α3:
(a) α3 = 0.4, (b) α3 = 0.5, (c) α3 = 0.628, (d) α3 = 0.7, and (e) α3 = 0.8.
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FIG. 7. The preimage a−1(R) (top) and the OBC spectrum (bottom) for the single-band non-Hermitian tight-binding Hamiltonian H4 in
Eq. (D1) with the characteristic polynomial a4(β ) = β−1 + 1.5β + 0.3β2 + 0.2β3 + α4β

4 and various values of the hopping coefficient α4:
(a) α4 = −0.3, (b) α4 = −0.1, (c) α4 = 0.1, (d) α4 = 0.3, and (e) α4 = 0.6.

Theorem 3. Let U be an open region of C; f is an analytic
function on U . Then Im( f ) achieves both its maximum and
minimum on the boundary ∂U .

APPENDIX D: NUMERICAL RESULTS

In the main text, we analyzed the complex Hatano-Nelson
model (p = 1, q = 1) and the Hatano-Nelson model with
next-nearest-neighbor hopping (p = 1, q = 2) in an analytical
manner. We also numerically examined more complicated
one-band non-Hermitian models with higher values of p and
q and found that the equivalence between the loop property of
the preimage and real OBC spectrum holds in general cases.

For example, we demonstrate the numerical results of two
models,

H3 =
∑

n

(α3c†
n+2 + 3c†

n+1 + 3.2c†
n−1 + c†

n−2 + 0.5c†
n−3)cn,

H4 =
∑

n

(c†
n+1 + 1.5c†

n−1 + 0.3c†
n−2 + 0.2c†

n−3 + α4c†
n−4)cn,

(D1)

whose characteristic polynomials are

a3(β ) = α3β
−2 + 3β−1 + 3.2β + β2 + 0.5β3, (D2)

a4(β ) = β−1 + 1.5β + 0.3β2 + 0.2β3 + α4β
4, (D3)

and (p, q) = (2, 3) and (1, 4), respectively.
We summarize typical results in Figs. 6 and 7: whether

the preimage a−1
i (β ) has the loop property or not is entirely

consistent with the corresponding OBC spectrum being purely
real or retaining complex branches, as we vary the hopping
coefficients α3 and α4. These results are consistent with our
conclusions in the main text.
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