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Accurate and efficient structure factors in ultrasoft pseudopotential
and projector augmented wave DFT
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Structure factors obtained from diffraction experiments are one of the most important quantities for character-
izing the electronic and structural properties of materials. Methods for calculating this quantity from plane-wave
density functional theory (DFT) codes are typically prohibitively expensive to perform, requiring the electron
density to be constructed and evaluated on dense real-space grids. Making use of the projector functions found in
both the Vanderbilt ultrasoft pseudopotential and projector augmented wave methods, we implement an approach
to calculate structure factors that avoids the use of a dense grid by separating the rapidly changing contributions
to the electron density and treating them on logarithmic radial grids. This approach is successfully validated
against structure factors obtained from all-electron DFT and experiment for three prototype systems, allowing
structure factors to be obtained at all-electron accuracy at a fraction of the cost of previous approaches for
plane-wave DFT.
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I. INTRODUCTION

The structure factor (SF) is a fundamentally important
quantity in the physical and biological sciences. Experimental
SFs have become the principal tool for characterizing the
geometrical structure (e.g., atomic positions and elements)
of a range of crystalline matter, from simple materials [1]
to complex biomolecules [2]. Beyond structural information,
the (x-ray) SFs are the Fourier coefficients of the electron
density (ED), n(r), and allow for its reconstruction through
an inverse Fourier transform [3]. The ED contains a wealth of
information, as established by the Hohenberg-Kohn theorems
[4], which states that the ground-state electronic properties of
a system are a unique functional of the ground-state ED. Re-
constructed EDs have been used to investigate the properties
of a range of materials, from the anisotropic elastic constants
of Al [5] to the electronic origins of high-temperature cuprate
superconductors [6,7].

Accurate SFs calculated from first-principles methods, par-
ticularly density functional theory (DFT), are necessary for
the above applications of SFs. For example, SFs computed
from DFT have been used to augment experimental SFs to
allow full reconstruction of the ED. By themselves, SFs ob-
tained from x-ray [7–9], γ -ray [10–12], or electron-diffraction
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[13–16] experiments can only provide a finite set of SFs, intro-
ducing Fourier series truncation errors to the reconstructed ED
[17] if used alone. Many of these diffraction experiments are
also incapable of obtaining the phase of the complex SFs in
noncentrosymmetric crystals—the phase problem [18]. DFT
helps to alleviate these problems as it can generate many
SFs to augment those that are not provided by experiments
while also providing phase information. The SFs from DFT
are also used to assess the quality of experimental diffraction
techniques. For example, extinction effects [19,20] and the
x-ray source [21] can affect measurements in x-ray diffraction
experiments. In electron diffraction, material preparation [22]
and instrument distortions [23] can serve as potential error
sources.

Likewise, high-precision SFs from experiments can also
help validate the approximations used in DFT [14,24–26].
Based upon the Hohenberg-Kohn theorems, practical DFT
calculations attempt to approximate the exact energy func-
tional, which is unknown, to the ED through density
functional approximations (DFAs). There is a whole “zoo”
[27] of available DFAs, with no systematic manner to deter-
mine their accuracy. There has been some evidence [28] to
show that modern DFT may be giving improved energetic
descriptions of (atomic) systems at the cost of a worse ED.
This has motivated increased interest in benchmarking the ED
of DFAs, with high-precision SFs obtained from diffraction
being one of the few experiments that can achieve this.

Beyond just accuracy, it is also highly desirable that SFs
can be obtained from DFT efficiently without incurring heavy
computational burden or time to allow for more complex
systems to be tackled. Unfortunately, current approaches to
calculate the SF from DFT methods are not efficient, requiring
a high computational cost. The SF calculation is a postpro-
cessing step that converts the ED taken from either all-electron
(AE) or plane-wave pseudopotential (PP) DFT methods. AE
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DFT approaches treat all the electrons in the system explicitly,
enabling highly accurate calculations. They are commonly
used to compute SFs as these approaches typically decompose
the ED into angular components near the nuclei, making sub-
sequent SF calculations easier to perform. However, obtaining
the ED comes at significant computational cost due to the
∼O(N3) [29] scaling of DFT with number of electrons N . The
inclusion of a pseudopotential [30] in PP DFT decreases the
computational cost for obtaining the ED from DFT as only
valence electrons need to be treated. However, the resulting
ED only includes the contributions from the valence electrons
and has been smoothed (pseudized) near the core.

In PP DFT, the projector augmented wave (PAW) method
can provide all-electron properties by adding a compensating
augmentation charge (to restore the valence nodes) and adding
the frozen (atomic) core ED. Beyond its original derivation
[31,32] for energies, forces, and the ED, the PAW method has
also been derived for other key properties such as electron-
phonon interactions [33,34], optical [35–38], NMR [39,40],
and x-ray absorption spectra [41–43], etc. Typically, applying
the PAW method comes at little additional costs for its added
accuracy because quantities that change rapidly are calculated
on radial grids around each atom, while smoother quantities
are calculated on a real-space grid. However, current ap-
proaches of calculating the SF from PAW DFT are expensive
because the entire AE total ED is reconstructed on a real-space
fast Fourier transform (FFT) grid. This FFT grid has to be
very dense (several orders of magnitude denser than default)
to have sufficient spatial resolution to accurately capture the
rapid oscillations of the AE total ED near the nucleus. As a
result, the calculations require a large amount of memory and
time, with several studies explicitly highlighting the difficulty
with converging the total ED to a sufficient precision due to
computational limitations [26,44].

In this paper, we derive expressions to calculate the x-ray
structure factor for the PAW method that can also be used in
the closely related Vanderbilt ultrasoft pseudopotential [45]
method. As such, the developments here are expected to be ap-
plicable for virtually all plane-wave PP DFT codes. The major
contribution of this implementation is that rapidly changing
contributions to the ED are treated separately on radial grids
around each atom now. Thus, the FFT grid does not need to be
increased beyond its default size, allowing for high computa-
tional efficiency. The SFs calculated with this implementation
are shown to be highly accurate, as validated against AE DFT
and experiment for a range of materials. These comparisons
demonstrate that accurate SFs and EDs require appropriately
reconstructing both the augmentation charge and frozen core
charge densities, necessitating the developments in this work.

II. THE AE ELECTRON DENSITY

This section details how the AE ED is obtained from PP
DFT calculations using the Vanderbilt ultrasoft pseudopo-
tential and PAW methods. The theory is applicable for both
methods, so unless otherwise stated, PAW DFT will be used
to denote both methods hereafter.

In PAW DFT, the AE wave function ψn(r) for each of the
n valence (Kohn-Sham) orbitals can be reconstructed from its
corresponding pseudized (PS) wave function ψ̃n(r) through a

linear transformation [31]:

ψn(r) = ψ̃n(r) +
∑
R ju

[
φ j

u

(
r j

R

) − φ̃ j
u

(
r j

R

)] 〈
p̃ j

u

∣∣ψ̃n
〉
. (1)

Within this expression, φ
j
u (r j

R ) and φ̃
j
u (r j

R ) are the AE and PS
partial waves, respectively, for each atom j in the unit cell,
with the projectors 〈p̃ j

u| designed to be dual to the PS partial
waves: 〈p̃ j

u|φ̃ j′
u′ 〉 = δ j j′δuu′ . The AE partial waves are a set of

wave functions obtained from the corresponding reference
atom [46], where u is the composite index for the angular
momentum quantum numbers l, m as well as an index k to
label partial waves constructed at different reference energies
[31]. The vectors

r j
R = r − r j − R (2)

are used to denote the spatial dependence of the partial waves
and projectors to emphasize that these functions are atom
centered. These equations assume a periodic material, where
R is the (infinite) set of lattice vectors and r j denotes the
position of atom j in the unit cell. Computationally, the partial
waves and projectors can be expressed as a radial function
(stored on logarithmic radial grids) multiplied by a spherical
harmonic:

φu(r) = Rlk (r)Ylm(r̂), (3)

with the PS partial waves differing from the AE partial waves
only within a cutoff rl

c, where its radial component has been
pseudized. The reconstructed wave function in Eq. (1) re-
quires only a limited set of partial waves to match a full AE
DFT calculation [47].

The AE valence ED nval(r) can be given as a sum of two
contributions:

nval(r) = ñval(r) + naug(r). (4)

The first term is the PS valence ED, which is the ED resulting
from the PS (valence) wave functions in Eq. (1):

ñval(r) =
∑

n

fn|ψ̃n(r)|2, (5)

where fn are the occupation numbers. The FFT grid is de-
signed to store this smooth function, with its default size
sufficient to sample and represent it fully. The second term
is the augmentation charge, which restores the PS valence ED
to the AE valence ED, taking the form

naug(r) =
∑

R ju1u2

ρ j
u1u2

Q j
u1u2

(
r j

R

)
. (6)

The augmentation functions Q j
u1u2 (r j

R ) are defined as

Q j
u1u2

(r) = φ j
u1

(r)∗φ j
u2

(r) − φ̃ j
u1

(r)∗φ̃ j
u2

(r), (7)

where u1 and u2 are two sets of u indices, with ρ
j
u1u2 giving

the occupancy of each u1, u2 augmentation function channel
for atom j:

ρ j
u1u2

=
∑

n

fn
〈
ψ̃n

∣∣ p̃ j
u1

〉 〈
p̃ j

u2

∣∣ψ̃n
〉
. (8)

The augmentation function Q j
u1u2 (r) will be localized around

atom j in an “augmentation” region. The two most common
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types of pseudopotentials are the norm-conserving PPs
(NCPs) and ultrasoft PPs (USPs). NCPs are constructed to
preserve the norm of the wave (i.e., the integral of the aug-
mentation functions within the augmentation region is zero
by construction), while USPs relax this condition, requiring
fewer plane waves to describe the PS valence wave functions
at the cost of additional complexity. It is standard practice
when using NCPs to neglect any augmentation to the charge
density during the calculation of the ground state. Following
from Eqs. (3) and (7), Q j

u1u2 (r) can be expressed as the product
of a radial function �R j

u1u2 (r) and two spherical harmonics:

Q j
u1u2

(r) = �R j
u1u2

(r)Y ∗
l1m1

(r̂)Yl2m2 (r̂). (9)

Within the PAW method, the radial functions in the aug-
mentation functions are treated on atom-centered logarithmic
radial support grids [32], with the spherical harmonics treated
analytically, while in the Vanderbilt ultrasoft pseudopotential
approach, these functions are typically pseudized and placed
onto the FFT grid [48]. While this pseudization gives ac-
curate total energies [49], the use of a PS compared to the
AE augmentation charge introduces significant errors in the
calculations of SF, as will be shown in Sec. IV.

The PAW method typically utilizes the frozen core approx-
imation. Under this scheme, the core ED is a superposition of
the core EDs ρ

j
core obtained from isolated atoms:

ncore(r) =
∑
R j

ρ j
core

(∣∣r j
R

∣∣). (10)

These atomic core EDs are spherically symmetric and ob-
tained from solving the radial Kohn-Sham Schrödinger
equation [46] on the logarithmic radial support grids.

Overall, the total AE ED will then be the sum of the PS
valence, augmentation charge, and frozen core EDs:

n(r) = ñval(r) + naug(r) + ncore(r). (11)

III. THE AE STRUCTURE FACTORS

This section details how the AE SFs can be obtained from
the AE ED in PAW DFT codes. The AE SFs F (H) are the
Fourier coefficients of the AE (total) ED:

F (H) = F[n(r)], (12)

where H = ha∗ + kb∗ + lc∗ is the scattering vector cor-
responding to the (hkl ) plane and the crystallographic
convention for the primitive reciprocal lattice vectors a∗, b∗,
and c∗ has been used. Current methods of obtaining the AE
SFs from the AE ED in PAW DFT codes involves construct-
ing the AE ED onto a uniform grid before applying a fast
Fourier transform (FFT). This approach is highly inefficient
because the FFT grid used has to be several orders of mag-
nitude denser than the default (designed for the PS valence
ED only) to accommodate the rapidly varying augmentation
and core charges near the nuclei. As shown in Fig. S1 of the
Supplemental Material [50], this leads to orders of magnitude
increases in time and peak random access memory. The im-
pact of the resulting additional computational burden has been
noted in previous studies [26].

In this section, we propose and derive an approach to
calculate AE SFs efficiently and accurately in the PAW DFT

method. It works by separating the three individual contribu-
tions to the AE total ED from PAW DFT and treating the two
terms that require high spatial resolution near the nuclei: naug

and ncore, on logarithmic radial support grids and analytically
for radial and angular components, respectively. These radial
grids are one-dimensional with a high density of points placed
near the nuclei to achieve high accuracy efficiently.

From the linearity principle of the Fourier transform, the
SF can be separated into three contributions:

F (H) = F̃val(H) + Fcore(H) + Faug(H), (13)

where F̃val(H), Fcore(H), and Faug(H) are the Fourier trans-
forms of ñval(r), ncore(r), and naug(r), respectively. By nature,
ñval(r) is constructed to be fully described on the coarse
(default) FFT grid size. Thus, its Fourier transform can be
computed efficiently using the FFT method, a fundamental
component of all plane-wave DFT codes.

The theory for treating the core and augmentation contribu-
tions to the SF in the next two sections relies on some of the
methods developed for the independent atom model (IAM),
commonly used in crystallography. The IAM is constructed
as a summation of isolated atomic densities ρ j (r) about their
atomic positions:

nIAM(r) =
∑
R j

ρ j
(
r j

R

)
, (14)

and it is possible to show that its SF takes the form [3]

FIAM(H) =
∑

j

f j (H) exp(i2πH · r j ), (15)

where f j (H) is the atomic scattering factor, defined to be the
Fourier transform of the corresponding ρ j (r):

f j (H) =
∫

ρ j (r) exp(i2πH · r)dr. (16)

A. Core contribution

Recalling Eq. (10), the core ED is a summation of atom-
centered densities, much like the IAM. Thus, using the SF
expressions derived for the IAM, the SF contribution from the
core ED takes the form

Fcore(H) =
∑

j

f j
core(H) exp(i2πH · r j ), (17)

where the atomic core scattering factor f j
core(H) is the Fourier

transform of the corresponding ρ
j
core(r):

f j
core(H) =

∫
ρ j

core(|r|) exp(i2πH · r)dr. (18)

As ρcore(|r|) is a spherically symmetric function about the
origin, it is more convenient to use the spherical polar coor-
dinate system. Within this coordinate system, the plane-wave
function can be expanded into complex spherical harmonic
functions [51]:

exp(i2πH · r) = 4π

∞∑
l=0

l∑
m=−l

il jl (2πHr)Yl,m(Ĥ)Y ∗
l,m(r̂),

(19)

115112-3



SHI, NICHOLLS, AND YATES PHYSICAL REVIEW B 108, 115112 (2023)

where jl (r) is the spherical Bessel function of order l . Substi-
tuting Eq. (19) into Eq. (18) would then yield

f j
core(H ) =

∫
ρ j

core(r)4πr2 j0(2πHr)dr, (20)

as only the l = 0 terms persist due to the rotational invariance
of ρ

j
core(r) [and in turn f j

core(H )]. This equation can be eval-
uated on the native logarithmic radial grids for each atom j
within the unit cell and as a result, the core contribution to the
SF no longer needs to be evaluated on the FFT grid.

B. Augmentation contribution

Like the core ED and IAM, the augmentation charge also
consists of a summation of atom-centered functions, so it can
be written to take the form

Faug(H) =
∑

j

exp(i2πH · r j )
∑
u1u2

f j
u1u2

(H), (21)

where

f j
u1u2

(H) = ρ j
u1u2

∫
Q j

u1u2
(r) exp(i2πH · r)dr. (22)

The augmentation charge differs from the core ED in that
these atom-centered functions Q j

u1u2(r) are not spherically
symmetric about the origin, instead being expressed as a
multiple of a radial function and two spherical harmonics
[see Eq. (9)]. The spherical harmonics form a complete set,
so their products can be expressed as an expansion of single
spherical harmonics:

Y ∗
l1m1

(r̂)Yl2m2 (r̂) =
∑

L

Cm1m2
l1l2L YLM (r̂), (23)

where M = −m1 + m2, |l1 − l2| � L � l1 + l2, and Cm1m2
l1l2L are

the Clebsch-Gordan coefficients. The augmentation functions
Q j

u1u2(r) can then be rewritten as

Q j
u1u2(r) = �R j

u1u2
(r)

∑
L

Cm1m2
l1l2L YLM (r̂). (24)

When this new formulation of Q j
u1u2 (r) is substituted into

Eq. (22), f j
u1u2 (H) can be further simplified to

f j
u1u2

(H) = ρ j
u1u2

∑
L

Cm1m2
l1l2L YLM (Ĥ)4π iL

×
∫

jL(2πHr)�R j
u1u2

(r)r2dr, (25)

where the expansion of the plane wave in spherical har-
monics [Eq. (19)] and subsequently the orthonormal prop-
erties of complex spherical harmonics have been used
to arrive at the final expression. Within Eq. (25), the∫

jL(2πHr)�R j
u1u2 (r)r2dr integral can be evaluated to high

precision on the logarithmic radial support grids, while the
angular components are treated analytically using spherical
harmonics, removing the need to evaluate the augmentation
contribution on the FFT grid.

With the method outlined in this section, only the default
FFT grid size has to be used to evaluate converged AE SFs in
PAW DFT since it only houses the PS valence ED, with the
other terms being evaluated efficiently on radial support grids,

resulting in orders of magnitude savings in computational cost
(see Fig. S1 of the Supplemental Material [50]).

IV. VALIDATION AGAINST AE DFT

To ensure that the approach outlined in Sec. III is accurate,
we have compared the SFs produced via this approach in PAW
DFT against AE DFT calculations for the same DFA for three
prototypical systems.

A. Computational details

The approach was implemented in CASTEP [52], which is
a plane-wave PP DFT code that can use either NCP or USP
for ground-state calculations and the PAW method as a post-
processing approach to calculate properties such as hyperfine
tensors, NMR properties [40], and now SFs (available as of
version 22.1). We refer to AE SFs obtained from using this
full approach (with augmentation charges treated on radial
support grids) as AE-USP or AE-NCP depending on the class
of PP used. To investigate the importance of using the full
valence ED, results will also be presented for what we shall
refer to as the PS-USP and PS-NCP approaches. The PS-NCP
approach uses the pseudized valence ED and the ED from
the core electrons, without any augmentation charge. The
PS-USP also includes the contribution from the pseudized
augmentation charge evaluated on the same FFT grid as the
valence ED. Details of the pseudopotentials used are given in
Sec. S4 of the Supplemental Material [50], with all input pa-
rameters and output files from this work made available online
(see [73,74]).

The AE DFT SF calculations are performed using the
WIEN2K code [53], which uses an augmented plane wave +
local orbital (APW+lo) basis set. Here, the wave function
and ED in a unit cell are partitioned into spherical muf-
fin tins (MTs) around nuclei represented by radial functions
multiplied by spherical harmonics. The remaining interstitial
region is described by plane waves. The rapidly and smoothly
changing contributions to the ED are in the muffin tins and
interstitial regions, respectively, allowing their contributions
to the SF to be treated on appropriate radial and FFT grids.
Beyond the APW+lo basis sets, other basis sets are avail-
able from other AE DFT codes, such as multiwavelets [54]
(in, e.g., MRCHEM [55] and MADNESS [56]) which use
adaptive real-space grids to reach basis set convergence sys-
tematically.

For both AE and PAW DFT calculations, the energy cutoff
(RMTK for AE DFT) and number of k points were varied
to ensure that the SFs were numerically converged to 0.001
(e)lectrons, the limits of experimental accuracy. SFs were
compared for both the LDA and PBE DFAs in three mate-
rials that highlight different bonding and unit cell systems:
diamond Si (covalent), hcp Mg (metallic), and rocksalt MgO
(ionic). In each system, the amplitudes of SFs with scattering
length s = |H|/2 below 1.5 Å−1 were analyzed, removing
any SFs that have equivalent amplitudes due to symmetry
or under Friedel’s law [57]. All forbidden reflections, under
the spherical IAM, were also removed, except for the (222)
reflection in Si as it has a noticeable amplitude due to the
asphericity of the atoms [58]. The R factor is used to assess
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FIG. 1. The difference between APW+lo WIEN2K SF calcula-
tions and those obtained from CASTEP as a function of scattering
vector s for (a) Si, (b) Mg, and (c) MgO. In CASTEP, PAW DFT
calculations were performed employing both USPs and NCPs, with
each either using an all-electron (AE) or pseudized (PS) augmenta-
tion charge. The PBE functional was used.

the accuracy of our calculations relative to a reference and is
defined as

Rref. =
∑

H |F ref.(H) − F calc.(H)|∑
H |F ref.(H)| , (26)

where the reference will be either WIEN2K calculations in this
section or experimental values in the following section.

B. Results and discussion

In Fig. 1, the difference between AE DFT WIEN2K and
PAW DFT CASTEP calculations, using AE or PS augmentation
charges for both USPs and NCPs, were performed for scat-
tering vectors up to 1.5 Å−1 for all three materials systems.

TABLE I. RWIEN2K (%) values for the PAW DFT method employ-
ing either the USP or NCP in combination with either all-electron
(AE) or pseudized (PS) augmentation charges.

AE-USP PS-USP AE-NCP PS-NCP

LDA 0.05 0.56 0.04 1.03
Si

PBE 0.04 0.57 0.04 0.99

LDA 0.04 3.75 0.02 0.29
Mg

PBE 0.03 3.66 0.02 0.28

LDA 0.05 3.26 0.08 2.01
MgO

PBE 0.05 3.19 0.08 1.98

These plots were for the PBE DFA as we found that the
LDA mirrored the plots (see Fig. S2 of the Supplemental
Material [50]), suggesting that the differences arise due to the
particular pseudization schemes for the pseudopotentials and
augmentation charge, which is independent of DFA. For the
two monoatomic systems, we see that in the s range of 0.25–
1.25 Å−1, there is a systematic underestimation of the SFs
for PAW DFT methods that utilize a PS augmentation charge
(e.g., PS-NCP and PS-USP). This underestimation arises be-
cause these high Fourier components are removed when the
oscillating valence ED is made smooth. The magnitude of this
underestimation depends on the exact pseudization schemes
employed for the pseudopotentials and augmentation charge
(for USP) around each atom. Beyond 1.1 Å−1, the SF contri-
butions from the PS valence ED and PS augmentation charge
become less than 0.01e, so that the SF behavior becomes a
reflection of the core ED used by the pseudopotential.

Regardless of the pseudopotential, the deviations result-
ing from a PS augmentation charge are completely removed
when the AE augmentation charge is used. The RWIEN2K

(in Table I) lowers by at least an order of magnitude for all
studied systems from a RWIEN2K of 0.28–3.75% for PS-USP
and PS-NCP to a RWIEN2K of 0.02–0.08% for AE-USP and
AE-NCP. The errors of AE-USP and AE-NCP with respect
to the APW+lo WIEN2K SF values are small enough that they
are of the same order as the experimental errors that can arise
in high-quality x-ray diffraction experiments. Thus, SFs from
AE-USP and AE-NCP (but not PS-USP or PS-NCP) can be
used to compare against experiments, as we have done in
Sec. V. In addition, we have also compared the real-space
electron density between AE-USP and AE-DFT, finding neg-
ligible difference, as shown in Sec. S3 of the Supplemental
Material [50].

MgO is the only system studied here that contains more
than one type of atomic species. For the PS-NCP calculation,
there are two observed behaviors in the SFs, with the (hkl )
reflections where h, k, l are all odd overestimating the SFs,
while those with h, k, l all even underestimating the SFs. This
contrasting behavior arises because these two sets arise from
different types of reflections. Using Eq. (20) for an IAM,
the structure factors where h, k, l are all odd take the form
4( fMg − fO), arising from a scattering difference between its
ions [3] while those that are all even arise from a construc-
tive summation, 4( fMg + fO). Thus, the SFs with odd h, k, l
become sensitive to the specific pseudopotentials of the two
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atoms, and may overestimate if one pseudopotential underes-
timates its scattering factor more strongly than the other.

V. COMPARISON AGAINST EXPERIMENT

Ultimately, the aim of computing AE SFs from DFT is to
use it together with experimental SFs, either to augment the
(limited) experimental SFs for better ED reconstructions or to
validate the approximations in both experiments and DFT. In
this section, we will showcase the strength of our approach
for the latter application of AE SFs by comparing DFT with
two different DFAs and pseudopotentials against experiment,
revealing key insights into the effects of these approximations
on the accuracy of the ED.

A. Computational details

X-ray SFs obtained from diffraction experiments are in-
fluenced by the thermal vibrations of the atoms within the
crystal [57], tending to reduce the intensity of the diffracted
beams. Comparison of (static) SFs obtained from DFT re-
quires incorporation of these thermal effects to allow for direct
comparison, or alternatively, removal of the thermal effects
from experimental numbers.

To a good approximation, the SF is the Fourier transform
of the thermally averaged ED 〈n(r)〉. Within the IAM, thermal
effects can be incorporated into the static SF by multiplying
each atomic scattering factor f j (H) in Eq. (16) by an isotropic
harmonic temperature factor Tj (H):

F (H) =
∑

j

exp(i2πH · r j ) f j (H)Tj (H), (27)

where

Tj (H) = exp(−Bj |H|2/4). (28)

The Debye-Waller (DW) factor Bj for atom j can be obtained
from either fitting of the static SF to experimental SFs [59,60]
or using ab initio phonon dispersion curves [61]. The deriva-
tion of the temperature factor makes two key assumptions: (i)
the nuclei vibrate isotropically about their equilibrium posi-
tions and (ii) the atomic densities follow the nuclear motion
perfectly. The second assumption requires that the crystal ED
can be divided into a summation of atom-centered density
terms.

Within PAW DFT, the second assumption can be applied
to the core and augmentation charges, but not the PS valence
ED, since it is “delocalized” and cannot be assigned to any
one atom. For monoatomic systems, this problem is trivial
because the temperature factor can be applied to the static
structure factor as a whole, but it cannot be performed for
systems with more than one atomic species. Likewise, this
problem also manifests in the APW+lo AE DFT approach
of WIEN2K, where its MTs are localized but the interstitial
regions are not. Prior studies using the APW+lo codes have
overcome this problem by applying the average DW factor
of the atomic species, the average method, to the interstitial
region [14,62]; this approximation is sufficient because the
interstitial region makes up a small proportion of the total
ED. The valence electrons in PAW DFT make up a more
significant contribution to the total ED compared to the in-

TABLE II. Rexpt. (%) values for the APW+lo AE DFT method
and the PAW DFT method employing either the USP or NCP in
combination with either AE or PS augmentation charges.

APW+lo AE-USP PS-USP AE-NCP PS-NCP

LDA 0.24 0.20 0.71 0.25 1.52
Si

PBE 0.13 0.13 0.57 0.14 1.33

LDA 0.48 0.45 2.17 0.53 0.86
Mg

PBE 0.36 0.34 2.03 0.42 0.74

LDA 0.34 0.32 1.43 0.32 0.58
MgO

PBE 0.32 0.30 1.26 0.35 0.53

terstitial region in APW+lo AE DFT (see Table S1 of the
Supplemental Material [50]), such that it may be inaccurate to
use an average DW factor. Hence, in this study, we will instead
use the Hirshfeld partitioning [63] scheme (see Sec. S5 of
the Supplemental Material [50]) to divide the valence electron
density into atom-centered densities. This approach is found
to give a small improvement over the average method in terms
of Rexpt. across all functionals and pseudopotentials tested for
MgO (see Table S2 of the Supplemental Material [50]). It is
expected to give even larger improvements in systems with a
large disparity in valence electrons or DW factors where it can
account for the relative contributions of the different species.

The SFs with thermal vibrations included through the
above scheme was compared to experimental SF for the same
three systems as the previous section: Mg [25], Si [24], and
MgO [14]. Experimental details can be found in their respec-
tive references. Thermal effects had already been removed
from the structure factors provided by the experimental study
on Mg, so we did not apply a Debye-Waller factor to this sys-
tem. Compared to theoretical SFs computed from DFT, only
a small number of SFs (particularly for Mg and MgO) were
available from experiment and only these were compared in
the subsequent analysis. To be consistent with the prior exper-
imental and theoretical literature on Si, we will compare the
“effective” atomic scattering factor of this system. Its relation
to the structure factor is given by

f (H) = f (hkl ) = F (hkl )

8 cos
[

π
4 (h + k + l )

] . (29)

This equation was derived for the spherical IAM, which
predicts the (222) reflection to be forbidden. However, both
DFT and experiment predict noticeable intensity in this re-
flection due to the asphericity of the ED, so it was included
as well, with its atomic scattering factor defined as f (222) =
F (222)/8 to give the relative contribution from each atom of
the conventional unit cell [24].

B. Results and discussion

Table II evaluates Rexpt. for Si, Mg, and MgO from
APW+lo WIEN2K and PAW CASTEP calculations. We have
compared PAW results incorporating either AE or PS aug-
mentation charges. For both USPs and NCPs, the use of PS
augmentation charges leads to an Rexpt. that can be three to
five times larger than the AE DFT results. This large Rexpt.

is particularly caused by a systematic underestimation of
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FIG. 2. (a) The difference between experimental atomic scattering factors and those obtained from AE-USP CASTEP as a function of
scattering vector s for Si for both the LDA and the PBE density functional approximations (DFAs). (b) The total difference between the
atomic scattering factors of the PBE and LDA DFAs and the separation of this difference into its core and valence (including augmentation)
contributions.

high Fourier components (see Fig. S4 of the Supplemental
Material [50]). When the AE augmentation charge is used, the
resulting Rexpt. are all within 0.06% of the AE DFT results,
with the USPs generally performing better than their NCP
counterparts. In fact, the USPs even appear to be better than
AE DFT by up to 0.04% in Rexpt. across the three systems
and two DFAs. However, this improvement is not statistically
significant because each experimentally determined SF has an
associated error in its value, which we found to propagate to
an error of around ±0.05% in the Rexpt. for Si.

In Fig. 2(a), the difference in atomic scattering factors
for Si between experiment and the AE-USP method from
CASTEP is plotted for LDA and PBE. We have focused on
Si specifically because there are many available experimental
SFs that have been consolidated to high precision from mul-
tiple studies. In general, both LDA and PBE underestimates
the SFs in the range of s = 0.4–0.8 Å−1. The improved Rexpt.

for PBE arises within the 0.4–0.6 Å−1 region, where its un-
derestimation of experimental SFs is less, agreeing with the
observations of Zuo et al. [24].

Compared to APW+lo DFT, where a large portion of the
valence electrons is treated in the MT spheres, our approach
makes it simple [see Eq. (13)] to obtain the core and valence
(PS valence and AE augmentation charge) contributions to the
SF; the difference in these two contributions between PBE
and LDA is plotted for Si in Fig. 2(b). Below 0.4 Å−1, the
valence electrons significantly contribute to the differences
in the total scattering factors, but this effect becomes small
beyond 0.4 Å−1, which arises because the valence electrons
contribute less than 2% to the total scattering factor at that
point (see Fig. S5 of the Supplemental Material [50]). Thus,
the marked improvement in the 0.4–0.6 Å−1 region of PBE
over LDA arises predominantly from a better description of
the core electrons. This core ED makes up the frozen core in
PAW DFT, which, in turn, determines the corresponding pseu-
dopotentials. As it is difficult to construct pseudopotentials
for more sophisticated DFAs such as hybrid functionals [64],

the GGA pseudopotential is commonly used instead. Our ob-
servations demonstrate that this uncontrolled approximation
will make it problematic to compare the ED or SFs of such
DFAs since they share the same frozen core ED as the less
sophisticated DFA used to generate the pseudopotential, so
any analysis will not reflect improvements in the core ED.

VI. CONNECTION TO ELECTRON MICROSCOPY
AND THE ELECTRON-SCATTERING FACTOR

In recent years, electron microscopy techniques such as
ptychography and scanning transmission electron microscopy
have advanced rapidly [65]. The higher accuracy has meant
that the commonly used IAM is insufficient, requiring DFT
to provide quantitative agreement between simulated mi-
croscopy images and experiment.

Simulating electron microscopy images requires the elec-
trostatic potential to be constructed [66]. For PP DFT, it is
important that contributions from the core and augmentation
charges are incorporated into the electrostatic potential, and
several strategies have been devised in recent years. For ex-
ample, Borghardt et al. [67] incorporated a correction in the
electrostatic potential near atomic cores from atomic PP and
AE DFT calculations whilst Naginey et al. [68,69] incorpo-
rated a pseudized augmentation charge and frozen core. Both
these approaches cannot account for core polarization, which
Susi et al. [70,71] were able to overcome by utilizing the
PAW method to reconstruct the total electrostatic potential in a
real-space grid; this required converging the electrostatic and
DFT grids alongside further approximations.

X-ray structure factors share a formal relationship with
the electron-scattering factor, the Fourier transform of the
electrostatic potential, via the Mott-Bethe formula [72]. Thus,
in principle, the structure factors produced by our approach
can be converted to electron-scattering factors at negligible
computational cost and should account for core-polarization
effects whilst requiring no grids to converge.
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VII. CONCLUSION AND OUTLOOK

We have proposed an efficient approach to obtaining accu-
rate x-ray SFs for the Vanderbilt ultrasoft pseudopotential and
projector augmented wave methods within DFT. Compared to
prior approaches, involving constructing the total ED on a uni-
form regular grid, this approach circumvents such a need by
evaluating the core and augmentation charges on logarithmic
radial support grids, significantly reducing the calculation cost
and time. This approach was implemented in CASTEP 22.1 and
used to study three systems: Si, Mg, and MgO.

Comparison of the SFs to all-electron DFT has shown
that it is capable of achieving all-electron accuracy if an
all-electron augmentation charge is used for both norm-
conserving and ultrasoft pseudopotentials. Further compar-
isons to experimental SFs has highlighted the ability of this
approach to understand the deficiencies in the different DFAs
of DFT. In particular, we have found that the differences in
frozen core density, often considered unimportant, provide a
non-negligible contribution to the SF accuracy of the DFA.

We note that whilst this work has focused on simple
solids, the computational efficiency afforded by the devel-
oped approach allows for the treatment of larger systems
than ever before, such as proteins, defects, surfaces, or
molecular crystals and large porous systems. Additionally, its
implementation into a PP DFT code means that these systems
can be studied with more sophisticated functionals as well.

The data that supports the findings of this study are avail-
able within the paper and its Supplemental Material. The input
and output files associated with this study and all analysis can
be found on GitHub [73] and Colab [74].
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