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Starting from the recently proposed dynamical exchange-correlation field framework, the equation of motion
of the diagonal part of the many-electron Green function is derived, from which the spectral function can be
obtained. The resulting equation of motion takes the form of the continuity equation of charge and current
densities in electrodynamics with a source. An unknown quantity in this equation is the divergence of the
temporal current density, corresponding to the kinetic energy. A procedure à la Kohn-Sham scheme is then
proposed, in which the difference between the kinetic potential of the interacting system and the noninteracting
Kohn-Sham system is shifted into the exchange-correlation field. The task of finding a good approximation for
the exchange-correlation field should be greatly simplified since only the diagonal part is needed. A formal
solution to the continuity equation provides an explicit expression for calculating the spectral function, given an
approximate exchange-correlation field.
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I. INTRODUCTION

The total spectral function of a many-electron system,
hereafter referred to simply as the spectral function, is given
by the trace of the Green function. This implies that to cal-
culate the spectral function only the diagonal components
of the Green function are required. Although for solids, the
momentum-resolved spectral function contains more detailed
information about the electronic structure of the system, it of-
ten suffices for many purposes to know the integrated spectral
function. It is therefore an attractive proposition to determine
the spectral function from the diagonal part of the Green
function since it is presumably much simpler to calculate than
the full Green function. A relevant work along this direction
is the work by Gatti et al. [1] who proposed using an effective
potential, local in space but energy dependent, from which the
spectral function can be calculated directly. It is quite feasible
that for a given system an effective potential that reproduces
the exact diagonal part of the Green function exists. It is, how-
ever, not evident how to construct such an effective potential.
Another work of relevance is that of Savrasov and Kotliar
[2], who introduced the concept of spectral density-functional
theory. In their work, the key variable is given by the local
Green function rather than the electron density.

In this paper a different approach is taken. Starting from
the recently derived equation of motion of the Green function
within the dynamical exchange-correlation field framework
[3,4], the equation of motion for the diagonal part of the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

Green function, referred to as temporal density, is obtained.
The derivation takes advantage of the fact that the exchange-
correlation field acts locally on the Green function. It should
be noted that a similar derivation cannot be carried out in a
natural way within the self-energy formalism. The resulting
equation has the form of the continuity equation of charge
and current densities in electrodynamics with a source/sink
term. An unknown quantity in the equation is the diver-
gence of the temporal current density, which is associated
with the kinetic energy. By defining the divergence of the
temporal current density of the Kohn-Sham system and trans-
ferring the difference in kinetic energy between the interacting
system and the noninteracting Kohn-Sham system into the
exchange-correlation field, a formally exact continuity equa-
tion for the diagonal part of the Green function is obtained.
For practical calculations, a local-density approximation for
the modified exchange-correlation field based on the homo-
geneous electron gas is proposed. An example from a model
of the interacting electron gas is considered to illustrate the
exchange-correlation field and the kinetic potential.

The paper continues with a theory section, where the conti-
nuity equation is derived, followed by an illustration from the
model electron gas. It closes with a summary and conclusions.

II. THEORY

A. The exchange-correlation field framework

The zero-temperature time-ordered Green function in equi-
librium is defined as [5]

iG(rt, r′t ′) = 〈T [ψ̂ (rt )ψ̂†(r′t ′)]〉, (1)

where r = (r,σ ) is a combined label of space and spin vari-
ables, ψ̂ (rt ) is the field operator in the Heisenberg picture,
T is the time-ordering symbol, and the expectation value is
taken with respect to the ground state. The many-electron
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Hamiltonian defining the Heisenberg operator is given by

Ĥ =
∫

dr ψ̂†(r)h0(r)ψ̂ (r)

+ 1

2

∫
drdr′ ψ̂†(r)ψ̂†(r′)v(r − r′)ψ̂ (r′)ψ̂ (r), (2)

where h0 = − 1
2∇2 + Vext (r), v(r − r′) = 1/|r − r′|, and∫

dr = ∑
σ

∫
d3r. Vext (r) is the external potential arising from

the nuclei and other externally applied fields. Atomic unit is
used throughout, in which the Bohr radius a0, the electron
mass me, the electronic charge e, and h̄ are set to unity.

Since the Hamiltonian is time independent, the Green
function depends only on the time difference t − t ′ and it
is convenient to set t ′ = 0. The equation of motion of the
Green function in the dynamical exchange-correlation (xc)
field framework is given by [3]

[i∂t − h(r) − Vxc(r, r′; t )]G(r, r′; t ) = δ(r − r′)δ(t ), (3)

where

h(r) = − 1
2∇2 + VMF(r), VMF = Vext + VH. (4)

VMF is the mean field consisting of the external field Vext

and the Hartree field VH. The exchange-correlation field has
a simple physical interpretation as the Coulomb potential of
the exchange-correlation hole ρxc:

Vxc(r, r′; t ) =
∫

dr′′v(r − r′′)ρxc(r, r′, r′′; t ). (5)

As in Slater’s static exchange hole, the exchange-correlation
hole fulfils a sum rule∫

d3r′′ρxc(r, r′, r′′; t ) = −δσσ ′′θ (−t ) (6)

and an exact constraint

ρxc(r, r′, r′′ = r; t ) = −ρ(r) (7)

for any r, r′, and t . ρ(r) is the ground-state electron density. It
can also be shown [6] that the exchange-correlation hole can
be expressed as the linear response of the logarithmic of G:

ρxc(1, 2, 3) = i
δ

δϕ(3)
ln G(1, 2), (8)

where 1 = (r1t1), etc., and ϕ is a time-dependent probing
field.

Comparison with the equation of motion in the con-
ventional self-energy approach yields a formal relationship
between the exchange-correlation field Vxc and the self-energy
	:

Vxc(r, r′; t ) = 1

G(r, r′; t )

∫
dr′′dt ′

× 	(r, r′′; t − t ′)G(r′′, r′; t ′). (9)

This relation provides a means for calculating Vxc when an
approximate self-energy is known.

A prominent feature that distinguishes the exchange-
correlation field from the self-energy is its local character.
Unlike the self-energy, it acts on the Green function locally
in both space and time so that the equation of motion of the
Green function is equivalent to the Schrödinger equation. The

Green function can be propagated pointwise in time since
G(t + δt ) at an infinitesimal time later can be calculated from
G(t ) without knowledge of its previous values at earlier times.
In other words, in contrast to the self-energy approach, the
equation of motion has no memory.

B. Temporal density

The temporal density proportional to the diagonal part of
the Green function is defined as

ρ(r, t ) = −iG(r, r; t ). (10)

For t = 0− the temporal density reduces to the electron den-
sity

ρ(r, 0−) = −iG(r, r; 0−) = ρ(r). (11)

When ρ(r, t ) is integrated over r and Fourier transformed in t ,
it yields the spectral function or density of states

ρ(ω) = 1

�

∫
dr

∫
dt eiωtρ(r, t ). (12)

The temporal density is not the same as the time-dependent
density associated with density fluctuations upon addition of a
hole or an electron. For example, for electron addition (t > 0)
at r, the latter is the density corresponding to the time-evolved
state

|�(r, t )〉 = e−it Ĥ ψ̂†(r)|�0〉, (13)

yielding

ρfluc(r, t ) = 〈�(r, t )|ρ̂(r)|�(r, t )〉
= 〈�0|ψ̂ (r)eitĤ ρ̂(r)e−it Ĥ ψ̂†(r)|�0〉, (14)

which is real and different from the temporal density, which is
given by (for t > 0)

ρ(r, t ) = −〈�0|ψ̂ (rt )ψ̂†(r)|�0〉
= −eitE0〈�0|ψ̂ (r)e−it Ĥ ψ̂†(r)|�0〉. (15)

The temporal density is complex and proportional to the prob-
ability amplitude that a hole or an electron created at r is
annihilated at the same position at a later time t . Hence the
nomenclature “temporal density.” The temporal density is also
different from the time-dependent density in time-dependent
density-functional theory [7,8], which describes the dynamics
of the density upon application of an external time-dependent
field.

Considering the equation of motion for the Green function
in Eq. (3) for r′ = r, t �= 0 and defining

Vxc(r, t ) = Vxc(r, r; t ), (16)

one finds

[i∂t − VMF(r) − Vxc(r, t )]ρ(r, t ) − i

2
∇2G(r, r′; t )|r′=r = 0.

(17)

One may define the temporal current density for each r′

j(r, r′; t ) = − 1
2∇G(r, r′; t ), (18)
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and the equation of motion for t �= 0 becomes

∂tρ(r, t ) + ∇ · j(r, t ) = S(r, t ), (19)

in which

∇ · j(r, t ) = ∇ · j(r, r′; t )|r′=r = − 1
2∇2G(r, r′; t )|r′=r

(20)

and

S(r, t ) = −i[VMF(r) + Vxc(r, t )]ρ(r, t ). (21)

More explicitly, G(r, r′; t ) can be expanded in a complete set
of orbitals {ϕi}:

G(r, r′; t ) =
∑

i j

ϕi(r)Gi j (t )ϕ∗
j (r′), (22)

and the divergence of the temporal current density for a given
r is given by

∇ · j(r, t ) = −1

2

∑
i

∇2ϕi(r)ψ∗
i (r, t ), (23)

where

ψ∗
i (r, t ) =

∑
j

Gi j (t )ϕ∗
j (r). (24)

The equation of motion can be interpreted as a continuity
equation with a source/sink term S on the right-hand side.
Since the divergence of the temporal current density is the
curvature of the Green function at r′ = r, only knowledge of
the diagonal components G(r, r; t ), and the neighboring points
along the diagonal G(r ± δr, r; t ), is needed. Substantially
much less information than that of the full Green function
is required to calculate the spectral function. There is no
auxiliary system invoked in this derivation and all quantities
are well defined and their existence is guaranteed.

C. Practical scheme

The continuity equation can be rewritten as

i∂t ln ρ(r, t ) = VMF(r) + Vxc(r, t ) + VK(r, t ), (25)

where VK is termed the kinetic potential

VK(r, t ) = −i
∇ · j(r, t )

ρ(r, t )
. (26)

The formal solution is given by

ρ(r, t ) = ρ(r, 0±) exp [−iVMF(r)t]

× exp

{
−i

∫ t

0
dt ′[Vxc(r, t ′) + VK(r, t ′)]

}
. (27)

Assuming that a good approximation for Vxc is known, the
remaining input required to solve for the temporal density is
the divergence of the temporal current density, which is asso-
ciated with the kinetic energy. The kinetic energy is known to
be very difficult to approximate with an explicit functional of
the electron density.

To construct a practical scheme for calculating the tem-
poral density, one may follow the Kohn-Sham scheme of

density-functional theory [9–12] by defining VK according
to

VK = −i

{∇ · j
ρ

− ∇ · jKS

ρKS

}
= VK − V KS

K , (28)

where ρKS and jKS are, respectively, the temporal density and
the temporal current density obtained from the Kohn-Sham
Green function. VK is the difference in kinetic potential
between the interacting system and the noninteracting Kohn-
Sham system. The continuity equation becomes

∂tρ(r, t ) + ∇ · jKS(r, t )

ρKS(r, t )
ρ(r, t ) = S̃(r, t ), (29)

where

S̃(r, t ) = −i[VMF(r) + Ṽxc(r, t )]ρ(r, t ), (30)

Ṽxc = Vxc + VK. (31)

Alternatively, the equation of motion for the temporal den-
sity can be written as

i∂t ln ρ(r, t ) = VMF(r) + Ṽxc(r, t ) + V KS
K (r, t ). (32)

The formal solution is given by

ρ(r, t ) = ρ(r, 0±) exp [−iVMF(r)t]

× exp

{
−i

∫ t

0
dt ′[Ṽxc(r, t ′) + V KS

K (r, t ′)
]}

. (33)

This procedure is analogous to the Kohn-Sham scheme
[9–12] in which the difference in kinetic energy between the
interacting system and the auxiliary noninteracting system is
shifted into the exchange-correlation energy. Here, the differ-
ence between the kinetic potentials of the interacting system
and the noninteracting Kohn-Sham system is incorporated
into the exchange-correlation field. It should, however, be em-
phasized that Eq. (29) describes the equation of motion of the
true interacting temporal density. The Kohn-Sham temporal
density and current density are only used as a means of taking
into account part of the interacting kinetic potential. Unlike
the Kohn-Sham scheme of density-functional theory, there is
no auxiliary system introduced.

D. Local-density approximation and nearsightedness

The problem of calculating the spectral function amounts
to finding a good approximation for Ṽxc, which should be
simpler compared with the full exchange-correlation field that
depends on two position variables. Ṽxc(n, t ) can be calculated
for the homogeneous electron gas (HEG) as a function of
the electron density n within, e.g., the GW approximation
[13–15] or better approximations such as the cumulant ex-
pansion [16–21], and applied to real inhomogeneous systems
within the local-density approximation (LDA)

Ṽ LDA
xc (r, t ) = Ṽ HEG

xc (ρ(r), t ). (34)

To justify the use of the local-density approximation, it is
instructive to return to the original concept of Slater’s effective
local exchange potential [22], which arises as the Coulomb
potential of the exchange hole. Due to the sum rule that the
exchange role must integrate to −1 and the constraint that the
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exchange hole associated with a given electron is equal to the
negative of the density ρ(r) at the position of the electron,
Slater argued that the exchange hole can be approximated by
a uniform charge density enclosed in a sphere of radius r0 such
that

4π

3
r3

0ρ(r) = 1. (35)

Since the Coulomb potential at the center of the uniformly
charged sphere is proportional to 1/r0, the exchange potential
is then proportional to ρ1/3(r), which leads to the local-
density approximation. As pointed out later by Slater [23],
this reasoning is based on the exact properties of the exchange
hole and does not rely on the homogeneous electron gas.
There is no assumption for the density to be slowly varying or
close to being homogeneous. Slater’s argument also applies to
the exchange-correlation field since the associated exchange-
correlation hole fulfils the same sum rule and exact constraint
as for the exchange hole. This provides a justification for
employing the local-density approximation for the dynamical
exchange-correlation field.

The dependence of the exchange potential on the local
density at the position of the electron in question may be seen
as an example of Kohn’s concept of nearsightedness [24–26].
A recent study by Wetherell et al. [27] on a one-dimensional
double well offers an illustration of the nearsightedness of the
effective orbital-dependent local exchange potential defined
as

V eff
x,m(r) = 1

φm(r)

∫
dr′ F (r, r′)φm(r′), (36)

where F (r, r′) is the Fock exchange operator and φm is an
orbital. It is shown that this potential, which is the Coulomb
potential of the exchange hole associated with an electron
occupying orbital φm, is significant only in the region where
the orbital is located and cancels the Hartree potential, which
represents the spurious self-interaction. In contrast, the exact
Kohn-Sham potential, which is orbital independent, contains
a step at the interface of the two wells, deviating from the
principle of nearsightedness.

The exchange-correlation field in Eq. (9) can be regarded
as a generalization of the effective local exchange-potential
in Eq. (36). Thus, G(r, r′; t ) is the time-dependent ana-
log of φm(r) with r′ playing the role of the orbital index
m. Indeed, Vxc(r, r′ : t ) is the Coulomb potential of the
exchange-correlation hole ρxc(r, r′, r′′; t ) as expressed in
Eq. (5). In contrast to the Kohn-Sham exchange-correlation
potential, which is an auxiliary effective potential felt by
all the electrons in the system and associated with the
noninteracting Kohn-Sham Green function, the dynamical
exchange-correlation field in the present formalism depends
on the position of the electron or hole introduced into the
system. Moreover, although it is a constructed quantity, it
is associated with the true rather than an auxiliary Green
function.

The validity of the local-density approximation is less ev-
ident for VK, which is the difference in the kinetic potential
of the true and the Kohn-Sham systems. Unlike the exchange-
correlation field, there is no known relationship between the
exchange-correlation hole and the kinetic potential. Slater’s

argument for the local exchange potential, which does not
rely on the homogeneous electron gas, cannot be readily car-
ried over to the kinetic potential. However, since the relevant
quantity is the difference in the kinetic potential between the
true and the Kohn-Sham systems, the error may be less severe
compared with the error of the individual kinetic potential.

III. EXAMPLES

Two examples, the noninteracting homogeneous electron
gas and a model for the interacting homogeneous electron
gas, are considered to verify that the equation of motion for
the temporal density reproduces the correct results. The model
also provides illustrations for how the two essential quantities
in the proposed formalism, namely, the exchange-correlation
field and the kinetic potential, may look like in real systems.
The given examples are not intended as a means of investi-
gating how to construct reliable approximations for the two
quantities.

A. Noninteracting homogeneous electron gas

As a simple example, consider the noninteracting homoge-
neous electron gas whose Green function is given by

iG0(R; t ) = 1

�

∑
k>kF

eik·Re−iεktθ (t )

− 1

�

∑
k�kF

eik·Re−iεktθ (−t ), (37)

where εk = 1
2 k2, kF is the Fermi wave vector, and � is the

space volume.
For a noninteracting electron gas Vxc = 0 and Vext is a uni-

form positive background so that VMF = Vext + VH = 0. Since
the system is uniform, only the case of R = 0 is needed. The
temporal density per spin is given by

ρ0(t < 0) = 1

�

∑
k�kF

e−iεkt

= 1

2π2

∫ kF

0
dk k2e−itk2/2 (38)

and the kinetic energy corresponding to the temporal current
density is given by

∇ · j0(r, t ) = −1

2
∇2G0(R; t < 0)|R=0

= i

�

∑
k�kF

k2

2
e−iεkt

= i

4π2

∫ kF

0
dk k4e−itk2/2, (39)

where

k3
F = 3π2n0, ρ0(0) = 1

2 n0, (40)

and n0 is the density of the homogeneous electron gas. Since
for the noninteracting electron gas S = 0, the continuity equa-
tion in Eq. (19) is indeed fulfilled.
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B. A model Green function for the interacting electron gas

To illustrate and study the behavior of the exchange-
correlation field and the kinetic potential, a physically
motivated model for the Green function of the interacting
electron gas is considered. This model was proposed in a
previous article [6] and given by the following:

G(R, t < 0) = i

�

∑
k�kF

(C1 + C2)eik·R, (41)

G(R, t > 0) = − i

�

∑
k>kF

(D1 + D2)eik·R, (42)

where

C1 = Ze−iEkt , (43)

C2 = (1 − Z )e−i(Ek−ωp )t , (44)

D1 = Ze−iEkt , (45)

D2 = (1 − Z )e−i(Ek+ωp )t , (46)

where Ek is the quasiparticle energy, Zk is the quasiparti-
cle renormalization factor, and ωk is the plasmon energy.
For simplicity, Zk and ωk are assumed to be independent
of k and Ek is taken to be a renormalized free-electron gas
dispersion

Zk = Z, ωk = ωp, Ek = αεk = α

2
k2. (47)

For an electron gas of density n0 the plasmon energy is given
by

ωp =
√

4πn0. (48)

In Fig. 1, the hole spectral function of the model for
rs = 4 is compared with that of the noninteracting electron
gas. The model essentially accounts for the quasiparticle band
narrowing and the transfer of the quasiparticle weight to the
plasmon satellite, located at one plasmon energy below the
quasiparticle band. For simplicity, only one plasmon is taken
into account and there is no weight arising from states above
the Fermi level. The Fermi level of the interacting model
has been adjusted to coincide with that of the noninteracting
one.

For t �= 0, the exchange-correlation field can be obtained
from the equation of motion

Vxc(R, t ) = 1

G(R, t )
[i∂t − h(R)]G(R, t ). (49)

Since

h(R) exp (ik · R) = k2

2
exp (ik · R), (50)

one finds for t < 0

[i∂t − h(R)]G(R, t < 0) = i

�

∑
k�kF

(A1 + A2)eik·R, (51)

where

A1 = Z (Ek − εk )e−iEkt , (52)

-0.4 -0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FIG. 1. The hole spectral functions of the model interacting elec-
tron gas (blue) and the noninteracting electron gas (red), labeled ρ0.
The Fermi level is at the zero of the energy, indicated by a vertical
line. The peak at around ω = −0.25 is the plasmon satellite, located
at one plasmon energy below the main quasiparticle peak. The model
corresponds to rs = 4, giving a plasmon frequency ωp = 0.217. A
quasiparticle renormalization factor Z = 0.7, a band-narrowing α =
0.8, and a broadening η = 0.005 have been used.

A2 = (1 − Z )(Ek − εk − ωp)e−i(Ek−ωp )t . (53)

For t > 0

[i∂t − h(R)]G(R, t > 0) = − i

�

∑
k>kF

(B1 + B2)eik·R, (54)

where

B1 = Z (Ek − εk )e−iEkt , (55)

B2 = (1 − Z )(Ek − εk + ωp)e−i(Ek+ωp )t . (56)

1. The exchange-correlation field and the kinetic potential

Consider the case t < 0. Defining

In =
∫ kF

0
dkk2ne−iαk2t/2, (57)

one obtains
1

�

∑
k�kF

A1 = 1

2π2
Z

α − 1

2
I2, (58)

1

�

∑
k�kF

A2 = 1

2π2
(1 − Z )eiωpt

(
α − 1

2
I2 − ωpI1

)
, (59)

1

�

∑
k�kF

(C1 + C2) = 1

2π2
[Z + (1 − Z )eiωpt ]I1. (60)

Using the above results leads to

[i∂t − h(R)]G(R, t < 0)|R=0 = i

2π2
[a2I2 − a1I1], (61)

G(0, t < 0) = i

2π2
c1I1, (62)
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where

a1 = ωp(1 − Z )eiωpt , (63)

c1 = Z + (1 − Z )eiωpt , (64)

a2 = α − 1

2
c1. (65)

The exchange-correlation field becomes

Vxc(t < 0) = 1

2
(α − 1)

I2

I1
− a1

c1
. (66)

To calculate the difference in the kinetic potentials one
needs

−i∇ · j = 1

�

∑
k�kF

k2

2
(C1 + C2) = 1

4π2
c1I2, (67)

−i∇ · jKS = 1

�

∑
k�kF

k2

2
e−itk2/2 = 1

4π2
I0
2 , (68)

where

I0
n =

∫ kF

0
dkk2ne−ik2t/2. (69)

The temporal densities are given by

ρ0(t < 0) = −iG0(0, t < 0) = 1

2π2
I0
1 , (70)

ρ(t < 0) = −iG(0, t < 0) = 1

2π2
c1I1, (71)

yielding

VK(t < 0) = 1

2

I2

I1
, (72)

V KS
K (t < 0) = 1

2

I0
2

I0
1

. (73)

It is interesting to note that the kinetic potential does not
depend explicitly on the plasmon energy and it is counteracted
by a term proportional to I2/I1 in the exchange-correlation
field:

Vxc + VK = α

2

I2

I1
− a1

c1
. (74)

2. Physical interpretation

The roles of the exchange-correlation field and the kinetic
potential in determining the spectral function may be under-
stood as follows. Using the relation

∂I1

∂t
= − iα

2
I2, (75)

the exchange-correlation field and the kinetic potential can be
rewritten as

Vxc(t < 0) = α − 1

α
i∂t ln I1 − a1

c1
, (76)

and

VK = i

α
∂t ln I1, (77)

FIG. 2. The real part of the exchange-correlation potentials Vxc

(dashed) and Ṽxc (solid) as defined in the text for rs = 3, 4, 5. The
difference VK = Ṽxc − Vxc is shown in Fig. 4.

so that

Vxc + VK = i∂t ln I1 − a1

c1
. (78)

The first term of Vxc + VK when integrated over time from
0 to t is given by

−i
∫ t

0
dt ′i

∂

∂t ′ ln I1 = ln
I1(t )

I1(0)
(79)

and the second is given by

i
∫ t

0
dt ′ a1

c1
= iωp

∫ t

0
dt ′ (1 − Z )eiωpt ′

Z + (1 − Z )eiωpt ′

= ln [Z + (1 − Z )eiωpt ]. (80)

Collecting the above two terms leads to

e−i
∫ t

0 dt ′[Vxc(t ′ )+VK (t ′ )] = [Z + (1 − Z )eiωpt ]
I1(t )

I1(0)
. (81)

Since I1(0) = 2π2ρ(r), the formal solution in Eq. (27) is then

ρ(r, t ) = 1

2π2
[Z + (1 − Z )eiωpt ]I1(t ), (82)

which reproduces the temporal density in Eq. (71).
Some general conclusions may be drawn from the electron

gas model. From the above analysis, there are two essen-
tial terms which determine the temporal density. The first
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FIG. 3. The imaginary part of the exchange-correlation poten-
tials Vxc (dashed) and Ṽxc (solid) as defined in the text for rs = 3, 4, 5.
The difference VK = Ṽxc − Vxc is shown in Fig. 4.

term in Eq. (78) yields I1(t ) which when Fourier transformed
results in the main quasiparticle peak whereas the second
term −a1/c1 is responsible for the spectral weight redistribu-
tion between the quasiparticle and the plasmon excitations.
The kinetic potential in Eq. (77) by itself would generate
I1/α

1 (t ) which yields a wrong quasiparticle bandwidth. A cor-
responding term in Vxc partially cancels the kinetic potential to
give the correct bandwidth. Analogous to the self-energy, the
exchange-correlation field has a twofold role of renormalizing
the quasiparticle bandwidth and transferring weight from the
quasiparticle to the satellite (plasmon).

C. Results

Atomic units are used throughout. A quasiparticle renor-
malization factor Z = 0.7, a band-narrowing parameter α =
0.8, and a broadening η = 0.005 have been used for all values
of rs.

From the model Green function, the exchange-correlation
fields can be extracted as detailed in the theory section. The
results are shown in Figs. 2 and 3 for the real and imaginary
parts of Vxc and Ṽxc. The former exhibits a more distinct peri-
odicity whereas the latter appears to have a less well-defined
periodicity. This can be understood from Fig. 4, which shows
the difference between Ṽxc and Vxc. This difference, which is
also the difference in kinetic potential between the interacting
system and the noninteracting Kohn-Sham system, has a beat
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FIG. 4. The real part (solid) and the imaginary part (dashed) of
the kinetic potential difference VK = VK − V KS

K for rs = 3, 4, 5.

pattern which decreases in magnitude as −t increases. The
price of approximating the interacting kinetic potential by that
of the Kohn-Sham system and transferring the difference into
the exchange-correlation field is a more irregular behavior of
the latter.

In Fig. 5 the kinetic potentials of the interacting system
and the noninteracting Kohn-Sham system are shown, both
displaying well-defined oscillations. The interacting kinetic
potential mimics the behavior of the Kohn-Sham kinetic po-
tential but with a shifted phase, which appears to be time
dependent. This suggests that rather than approximating the
interacting kinetic potential by that of the Kohn-Sham system
and shifting the difference into the exchange-correlation field,
it could be more favorable to model directly the interacting
kinetic potential by the Kohn-Sham one but with a time-
dependent shifted phase. The phase shift between the two
kinetic potentials increases as the density is lowered, indi-
cating that at high density the Kohn-Sham kinetic potential
better approximates the interacting kinetic potential. This is as
anticipated as correlations are expected to be less important as
the density increases.

There is a general trend of the exchange-correlation field
and the kinetic potential as functions of rs. The smaller rs

or the higher the density the more oscillatory the quantities
become. This is understandable since the oscillatory behav-
ior of the exchange-correlation field is determined to a large
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FIG. 5. The real (black) and imaginary (blue) parts of the kinetic
potentials VK (solid) and V KS

K (dashed) as defined in the text for
rs = 3, 4, 5.

extent by the plasmon energy, which increases with the den-
sity. The kinetic potential, on the other hand, does not follow
the same oscillatory behavior of the exchange-correlation field
since it does not depend explicitly on the plasmon energy, as
can be seen in Eq. (73). In the case of the kinetic potential,
it is the Fermi wavevector that determines the oscillatory
behavior, which increases as the density increases or as rs

decreases.

IV. SUMMARY AND CONCLUSIONS

The continuity equation for the temporal density has
been derived, starting from the recently proposed dynamical
exchange-correlation field framework. The divergence of the
temporal current density, which is an unknown quantity in this
equation, is approximated by that of the Kohn-Sham system
and the difference is transferred into the exchange-correlation
field. There remains the task of finding a good approximation
for the exchange-correlation field, which should be substan-
tially simplified since only the diagonal part is needed. If a
good approximation for the exchange-correlation field can be
constructed, the spectral function can be readily calculated
from an explicit solution to the continuity equation. A model
Green function of the interacting electron gas is used to illus-
trate the key quantities in the proposed formulation.
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