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Three-dimensional massless topological semimetals exhibit linear energy band crossing points that act as
monopoles of Berry curvature. Here, an alternative class of massless semimetals is introduced, featuring linear
N-fold crossing points each of which acts as a source of a Berry dipole. We construct continuum and lattice
models for such massless multifold Hopf semimetals (MMHSs) with N = 3, 4, 5 bands and study nontrivial
effects of a Berry dipole crossing: (i) A Landau level spectrum that is strongly tunable by the orientation of the
magnetic field relative to the dipole axis. (ii) An anomalous Hall conductivity that is an odd function of the Fermi
level. (iii) Weak-field dissipative magnetoconductivities that resemble the chiral anomaly, chiral magnetic and
magnetochiral effects familiar from a pair of coupled Weyl nodes, but that are even functions of the Fermi level.
By gapping out MMHSs, multiband Hopf insulators with Hopf numbers as high as NHopf = 10 are obtained,
providing a fertile playground to explore delicate topology.
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I. INTRODUCTION

Three-dimensional (3D) massless topological semimetals
[1,2] are materials with energy band crossing points that act
as sources or sinks of Berry curvature [3–6], so-called Berry
monopoles [Fig. 1(a)].

The simplest example is a Weyl semimetal, with linear two-
band crossings described by a Hamiltonian HW(q) = γ q · σ,
where γ = ± is the chirality, q = (qx, qy, qz ) the momentum
measured from the crossing point, and σ a vector of Pauli ma-
trices. A Berry monopole of a Weyl semimetal is characterized
by a Berry curvature of the form

�α (q) = Cα

q
2|q|3 , (1)

where �α = (�α,yz,�α,zx,�α,xy) is to be understood as a
pseudovector formed from the three inequivalent components
of the Berry curvature tensor in momentum space, α = ±
labels the two bands involved in the crossing, and Cα = −γα

is the Chern number measuring the quantized flux of Berry
curvature (monopole charge).

Berry monopoles always come in pairs [Fig. 1(a)], which
is a manifestation of the Nielsen-Ninomiya theorem [7]. Each
pair can be viewed as forming a dipole d0 in the Brillouin
zone; this dipole lies at the heart of various exotic phenomena
such as Fermi arcs, anomalous Hall effect, and chiral anomaly
[1,2].

Any linear two-band (N = 2) crossing in 3D is described
by a Hamiltonian of the Weyl form HW(q) and thus represents
a Berry monopole. A common belief is that any linear multi-
band (N > 2) crossing also represents a Berry monopole.
Indeed, Berry monopoles (1), with high Chern numbers Cα ,
are known to arise from linear multiband crossings that
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are governed by a generalized Weyl Hamiltonian, that is, a
pseudospin Hamiltonian Hs(q) = γ q · S [8,9]; here S is the
(2s + 1)-dimensional matrix representation of a pseudospin
and α = −2s, ..., 2s. The Weyl Hamiltonian is recovered in
the special case s = 1/2.

The purpose of this paper is to draw attention to the ex-
istence of other linear multiband crossings (e.g., massless
multifold semimetals), which are not of the Berry monopole
type. In particular, we propose massless multifold Hopf
semimetals (MMHSs), a class of semimetals with linear mul-
tifold crossing points [Figs. 1(c)–1(e)] each of which carries a
dipolar Berry curvature

�α (q) = κα (d · q)
q

|q|4 . (2)

In contrast to the extended dipole d0 of a Weyl semimetal,
Eq. (2) describes a point-like (or singular) Berry dipole d that
resides at a single band crossing point [Fig. 1(b)], with d rep-
resenting an anisotropy axis but not a distance in momentum
space.

Note that singular Berry dipoles have previously been en-
countered in the literature, namely (i) when merging a pair
of Weyl nodes (d0 → 0) and (ii) at topological phase tran-
sitions between two-band Hopf insulators [10,11]. However,
both scenarios fundamentally differ from the MMHSs in-
troduced here in two aspects. First, for MMHSs the Berry
dipoles emerge from linear band crossings, while they involve
quadratic band touchings in both known cases (i) and (ii).
Second, the dipole charge κα in Eq. (2), which is an integer for
each band α, is symmetric with respect to zero energy for the
MMHSs, κα = κ−α , and thus the Berry curvature has the im-
portant property �α = �−α . In stark contrast, since the Berry
curvature of all bands must sum to zero, one has �α = −�−α

for both known cases (i) and (ii), and more generally for any
two-band system or any Berry monopole crossing (1).
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FIG. 1. (a) Known topological semimetals are based on linear
band crossings each of which is a Berry monopole (left). Those ap-
pear in monopole-antimonopole pairs (right). (b) Massless multifold
Hopf semimetals are based on linear band crossings each of which is
a Berry dipole. [(c)–(e)] Energy spectrum and Berry dipole charges
of the continuum models (4a)–(4c).

Our paper addresses three main points. First, it shows
that linear multiband crossings can carry peculiar quantum
geometric structures beyond Berry monopoles. We will only
discuss the Berry dipole case (2) in detail, but even Berry
quadrupoles or Berry octupoles are possible if enough bands
cross simultaneously (see Appendix A for examples).

Second, due to the Berry dipoles, MMHSs have physical
properties very different from those of known topolog-
ical semimetals, despite the same low-energy spectrum.
These differences are thus purely rooted in the quan-
tum geometric structure of the Bloch states. In particular,
we show that Landau levels, anomalous Hall effect, and
magnetoconductivity—all of which have been extensively
studied in Weyl semimetals—exhibit distinct signatures of the
Berry dipole (2), and it is clear that this extends to a host of
other observables.

Third, we justify the choice of the term “Hopf semimetals”.
Indeed, we demonstrate that our semimetals are closely re-
lated to the family of Hopf insulators, a peculiar class of band
insulators with a so-called delicate topology [12]. To establish
this link, we propose simple lattice models for multiband
Hopf insulators (MHIs) [13] and show that MMHSs appear
at their topological phase transitions. This extends various
recent results [10,11] regarding the phase transitions of Hopf
insulators to the N > 2 case, and provides an alternative class
of simple lattice models for studying the physics of delicate
topological insulators.

The remainder of the paper is organized as follows. In
Sec. II we first propose minimal continuum models for
MMHSs and describe their symmetries. We then discuss the
peculiar properties of the MMHS models under a magnetic
field, in particular focusing on Landau levels, anomalous Hall
effect, and semiclassical magnetotransport. In Sec. III we
propose various simple tight-binding models for MMHSs that
recover the continuum models in the vicinity of multifold
crossing points. These lattice models may feature one or sev-
eral Berry dipole crossings in the Brillouin zone. We also
comment on how the physics of the continuum models ex-
tends to the lattice scenario. The relation between (multiband)
Hopf semimetals and Hopf insulators will be explained in
Sec. IV, followed by conclusions and a discussion of possible
perspectives in Sec. V.

TABLE I. Coefficients cα , κα , and ωα determining the energy
spectrum, Berry curvature, and orbital magnetic moment of the
MMHS continuum models, respectively. Each coefficient is listed
from the lowest to the highest band.

Threefold HS (4a) Fourfold HS (4b) Fivefold HS (4c)

cα −1, 0, 1 −a, −b, b, a −√
2, −1, 0, 1,

√
2

κα −1, 2, −1 −1, 1, 1, −1 −3, 1, 4, 1, −3
ωα 1, 0, −1 a, −b, b, −a

√
2, 3, 0, −3, −√

2

A number of appendices provide supplemental material.
Appendices A and B contain examples for extensions of the
MMHS continuum models. Appendices C and D address the
Landau levels of MMHSs, from both an exact quantum ap-
proach and an original semiclassical approach. Appendices E
and F provide details on the Boltzmann theory of magne-
totransport and its application to MMHS systems. Finally,
Appendices G and H address properties of the multiband Hopf
insulators.

II. CONTINUUM MODELS FOR MASSLESS MULTIFOLD
HOPF SEMIMETALS

A. Description of the continuum models

We start by introducing continuum models H ξ
N (q) for

massless Hopf semimetals, with ξ = ± representing a valley
index. They are constructed to have a linear isotropic energy
spectrum

Eα (q) = cα|q| (3)

that consists of cones and flat bands [Figs. 1(c)–1(e)] with
band velocities cα . We emphasize that this energy spectrum
is identical to that of a pseudospin system Hs(q); however,
the models are constructed to possess a quantum geometry
governed by Eq. (2) instead of Eq. (1).

For a three-, four-, and fivefold Hopf semimetal, we con-
sider the models

H ξ
3 (q) =

(
0 Qξ

3(
Qξ

3

)†
02

)
, Qξ

3 = (
qξ

− −iqz

)
, (4a)

H ξ
4 (q) =

(
02 Qξ

4(
Qξ

4

)†
02

)
, Qξ

4 =
(

aqξ
− iaqz

ibqz bqξ
+

)
, (4b)

H ξ

5 (q) =
(

03 Qξ

5(
Qξ

5

)†
02

)
, Qξ

5 =

⎛
⎜⎝

0 i
√

2qz

iqz qξ
+√

2qξ
+ 0

⎞
⎟⎠, (4c)

respectively, where qξ
± ≡ ξqx ± iqy, and a, b are real parame-

ters such that a > b > 0. By computing the energy spectrum
the band velocities are easily obtained, as summarized in
Table I.

Note that the terms ∼qξ
± are familiar from graphene and

Weyl semimetals, and the terms ∼qz provide a third direction
fixing the dipole axis as d = (0, 0, ξ ). While we will only
consider systems with this fixed dipole axis in the remainder
of this paper, we emphasize that it is also possible to construct
models with a tunable d vector, see Appendix B.
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The Berry curvature of the multiband systems (4) is con-
veniently computed using eigenprojectors [14], and we find it
to be of the form (2) with dipole charges κα as summarized
in Table I and visualized in Figs. 1(c)–1(e). Interestingly,
as a consequence of the symmetry property �α = �−α , or
equivalently κα = κ−α , large dipole charges are carried by the
flat bands.

The models (4) have two important symmetries, linked to
the dipole charges and the dipole axis, respectively. Namely,
first, a chiral symmetry

S−1H ξ
N (q)S = −H ξ

N (q) (5)

with a diagonal matrix S and S2 = 1. Second, an axial rota-
tion symmetry

[Ld + �d , H ξ
N (q)] = 0, (6)

with Ld = d · L the projection of the angular momentum op-
erator L = −i(q × ∇q)1 onto the Berry dipole axis, and with
�d a diagonal matrix acting as an effective spin projection
[15].

These two symmetries determine general properties of
the physical responses studied in the following. They are
expected to be very different from the responses of a pseu-
dospin system Hs(q) with Berry monopole, as the latter has
a charge-conjugation parity (CP) symmetry C−1Hs(q)C =
−H∗

s (q) with C = exp(iπSy) instead of a chiral symmetry,
and a full rotation symmetry [L + S, Hs(q)] = 0 instead of
an axial one.

B. Physical properties of the continuum models

We now illustrate the impact of the Berry dipole on Landau
levels, anomalous Hall conductivity, and magnetoconductiv-
ity. We first consider these effects for a single multifold
crossing described by a continuum model H ξ

N (q), cf. Eq. (4).
Below, we will present tight-binding models for MMHSs
(with one or more Berry dipoles in the Brillouin zone) and
discuss these effects on the lattice.

1. Landau levels

Consider Eq. (4) for a strong magnetic field

B = BB̂, (7)

where B̂ = (0, sin θ, cos θ ) without loss of generality due to
the axial rotation symmetry (6). The LLs form a 1D disper-
sion in terms of the conserved momentum q0 = B̂ · q, and
are particle-hole symmetric due to the fact that the magnetic
field does not break the chiral symmetry (5) of the zero-field
Hamiltonian.

The exact Landau levels (LLs) for a threefold crossing (4a)
are given by

εn,ξ
α = cα

√
2eB

(
n + 1 − καξ cos θ

2

)
+ q2

0, (8)

with cα = 0,±1 and n ∈ {0, 1, ...} the LL index (see
Appendix C for details of the calculation). As expected, the
flat band is maintained under the magnetic field. More im-
portantly, the dispersive bands carry a clear signature of the
Berry dipole’s charge (κα) and orientation (ξ cos θ ≡ B̂ · d).

FIG. 2. (a) LL spectrum (8) for ξ = + for three different θ , in
units of the inverse magnetic length 1/lB ≡ √

eB. It can be tuned
from gapped to gapless by rotating B. (b) LLs (9) for ξ = +, a/2 =
b = 1. They are gapless for any θ . (c) LLs (10) for ξ = +. They
behave similarly to the three-band case.

As a consequence, the LL spectrum strongly depends on the
magnetic field direction: it is gapped for B �� d, and gapless
for B �� d, see Fig. 2(a). We should like to emphasize that
this tunability is a pure quantum geometric effect. Indeed,
the magnetic field couples to the eigenstates of the Hopf
semimetal and thus unveils the Berry dipole via the magnetic
energy levels; in contrast, the existence of the Berry dipole is
invisible in the fully isotropic zero-field energy spectrum.

Similarly, we find the exact LLs for a fourfold crossing
(4b),

εn,ξ
α = α1

√
η+ + η− + α2

√
(η+ − η−)2 + ν2,

η± = c2
±
2

[
2eB

(
n + 1 − κ±ξ cos θ

2

)
+ q2

0

]
,

(9)

where n ∈ {0, 1, ...}. Here we use a band index tuple α =
(α1, α2) to capture the four families of Landau bands, with
α1 = ± and α2 = ±; c+ = a and c− = b are the band veloci-
ties of the two cones of the zero-field spectrum, and κ± = ∓1
the corresponding dipole charges; moreover, ν = c+c−e(B ×
d)x = abeBξ sin θ . Again, the Berry dipole (2) explicitly ap-
pears and the LLs can be tuned by rotating B, see Fig. 2(b).
The precise character of this tunability, however, is now quite
different, in particular the LL spectrum remains gapless for
any orientation of B.
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Finally, the LLs of the fivefold crossing (4c) are given by

εn,ξ
α = α1

√
η+ + η− + α2

√
(η+ − η−)2 + ν̃2,

η± = c2
±
2

[
2eB

(
n + 1 − κ±ξ cos θ

2

)
+ q2

0

]
,

(10)

where n ∈ {1, 2, ...}. Now we have α1 = 0,± and α2 = ±.
The band velocities of the two cones are c+ = √

2 and c− = 1,
the corresponding dipole charges are κ+ = −3 and κ− = 1,
and ν̃ = 2

√
3(B × d)x = 2

√
3ξeB sin θ . This five-band spec-

trum behaves similarly to the three-band spectrum (8), notably
it can be tuned from gapped to gapless by rotating the mag-
netic field relative to the Berry dipole direction, see Fig. 2(c).

To contextualize these results, it is useful to compare to
the LL spectrum of several known systems with “Dirac-like”
band crossings. First, there is clearly a big difference with the
LLs of pseudospin-s systems Hs(q), which are independent of
the magnetic field orientation B̂ due to full rotation symme-
try. Moreover, for a pseudospin-like crossing, the topological
character of the Berry monopole (1) is reflected in the LL
spectrum via the existence of chiral LLs. These are modes
connecting two families of LLs with different band index α.
The number of chiral LLs is directly determined by the Chern
number Cα , see for example Ref. [8] for the pseudospin-1
case, and Refs. [9,16] for the case of general s. Also, for a
pseudospin-s crossing with integer s, the flat band of the zero-
field spectrum is destroyed since B breaks the CP symmetry.

There is also a big difference with the LLs of Dirac
fermions [17]. Since the Dirac Hamiltonian has full rotation
symmetry, the LLs are independent of B̂. However, in contrast
to pseudospin fermions, Dirac fermions feature chiral symme-
try and thus the Landau level spectrum remains particle-hole
symmetric. Indeed, if we allow the case a = b (which we have
so far excluded) in the model (4b), then this model becomes a
Dirac semimetal HD(q) = q · � with anticommuting matrices
�x,y,z. Accordingly, in the limit a = b we recover from Eq. (9)
the famous LL spectrum of Dirac fermions εn

± = ±(2eBn +
q2

0 )1/2, established a long time ago by Rabi [18].
Finally, one can also compare the LLs (8)–(10) of the Hopf

semimetals to those of an extended Berry dipole d0 formed
from two Weyl nodes (or more generally two Berry monopole
crossings in a chiral multifold semimetal). The latter obvi-
ously depend on the direction of B̂ since the dipole axis d0

induces an anisotropy [19]. However, this dependence is quite
distinct from the one of Eqs. (8)–(10), in particular due to
the broken particle-hole symmetry of the spectrum and the
presence of connected chiral LLs originating from the two
valleys.

As a physical consequence of these differences, one can
expect that quantum oscillations (de Haas-van Alphen or
Shubnikov-de Haas effects) in a system with band crossings
of Berry dipole type should be fundamentally different from
those encountered in systems with Berry monopole crossings,
in particular regarding the angular dependence of the oscilla-
tion frequency.

To close this discussion on the LLs of the Hopf semimet-
als (4), we emphasize that some useful insight can also be
obtained from a semiclassical analysis. Indeed, aside from the
quantum approach described above, it is possible to establish

Eq. (8) using Onsager’s semiclassical quantization condition
[20]. More precisely, one needs to employ an extended On-
sager condition that takes into account intraband corrections
due to Berry curvature and orbital magnetic moment [21–25].
More importantly, the semiclassical approach helps to un-
derstand the origin of the terms ν ∼ |B × d| in Eq. (9) and
ν̃ ∼ |B × d| in Eq. (10). These terms remain unexplained in
the quantum approach but find an intuitive semiclassical inter-
pretation in terms of interband coupling between degenerate
orbits. Such coupling arises whenever a constant energy curve
intersects more than one band, as is unavoidable for a zero-
field spectrum consisting of two or more cones. For more de-
tails, see Appendix D, where we develop an original approach
to semiclassical Landau quantization of degenerate orbits.

2. Anomalous Hall effect and magnetotransport

Consider now a multifold crossing (4) in the presence
of weak electric and magnetic fields E and B. We adopt
a standard approach to describe the linear response of the
system, by solving the semiclassical Boltzmann equation in
the relaxation time (τ ) approximation to first order in E and B
[26]. This approach is reviewed in detail in Appendix E.

Taking into account important corrections due to Berry
curvature and orbital magnetic moment [27], and working
at zero temperature, we find several nontrivial effects (see
Appendix F for a derivation):

(i) At zeroth order in B, a single multifold crossing point
described by a Hamiltonian of the form (4) causes a nondissi-
pative anomalous Hall (AH) current

jAH = σAHE × d, (11)

which is orthogonal both to the electric field and the Berry
dipole direction. This is intuitively understood as a conse-
quence of the Berry dipole acting as a dual magnetic field
in momentum space. Indeed, the form of the current (11) is
reminiscent of the anomalous Hall current jW

AH = σ W
AHE × d0

that is known to be created by an extended Berry dipole
consisting of a pair of coupled Weyl nodes [28–30]; here d0

may represent the distance between Weyl nodes or a tilt.
Importantly, however, the current (11) is opposite to jW

AH in
parity: σAH is odd in the Fermi level EF , that is, σAH(EF ) =
−σAH(−EF ), while σ W

AH is an even function of EF . This
striking property predicted by the continuum models will be
confirmed by a numerical lattice calculation below and is visu-
alized in Fig. 3. It can be understood as a direct consequence
of the different symmetries of the Berry curvature (�α = �−α

for a MMHS vs �α = −�−α for a Weyl semimetal), as dis-
cussed in detail in Appendix F.

(ii) At first order in B, a single multifold crossing point de-
scribed by a Hamiltonian of the form (4) causes a dissipative
quantum geometric current

jgeo(B) = A1(E · B)d + A2(E · d)B + A3(B · d)E. (12)

This current is absent if the electric field, magnetic field, and
Berry dipole direction form an orthogonal tripod, but nonvan-
ishing for any other configuration.

The explicit expressions for the coefficients Ai (i = 1, 2, 3)
in units of A0 ≡ −e3τ/(12π2) are as follows (see Appendix F
for a derivation): Ai = A0 for the continuum model (4a) de-
scribing a threefold Hopf semimetal; similarly Ai = A0(a − b)
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FIG. 3. (a) Anomalous Hall conductivity for lattice models
hN (k) [cf. Eq. (19)] of massless multifold Hopf semimetals. The
parameter �0 = −3 is chosen such as to ensure the existence of
a single Berry dipole at the � point, described by a continuum
Hamiltonian (4). The odd parity of the AH conductivity is due to
the property κα = κ−α of the geometric charges of this Berry dipole.
(b) Typical anomalous Hall conductivity for lattice models of chiral
topological semimetals with a single pair of Berry monopoles [cf.
Eq. (F4)]. The even parity is due to the property Cα = −C−α of the
Chern number associated to each Berry monopole.

for model (4b); and A1,2 = (21
√

2 − 17)A0/5, A3 = (23 +√
2)A0/5 for model (4c). As we can see, these coefficients

are independent of the Fermi level EF . This is of course not
true on the lattice, but it implies that the magnetoconductivity
can be expected to be an even function of EF . Indeed, as
for the anomalous Hall current above, this parity property
can be readily understood from general symmetry arguments,
more precisely from the combined effect of a particle-hole
symmetric spectrum and a Berry curvature �α = �−α . See
Appendix F for a short proof.

Again, let us compare the current (12) to that caused by
an extended Berry dipole d0 formed from a pair of Berry
monopoles. As a matter of fact, it is well known that a pair of
coupled Weyl nodes gives rise to a current jCA ∼ (E · B)d0,
which is attributed to the chiral anomaly [31–33]. Moreover,
it gives rise to a current jCME ∼ δε B, where δε is an energy
difference between the valleys. This is known as the chiral
magnetic effect [32,34–36]. Finally, a pair of Weyl nodes ex-
hibits a current jMCE ∼ (B · d0)E, known as the magnetochiral
effect [37,38]. Similar kinds of currents exist for pairs of pseu-
dospin crossings with s > 1/2. The three current contributions
jCA, jCME, and jMCE are odd functions of EF , essentially due

FIG. 4. Valley-Hopf semimetals (topological Hopf semimetals)
have an even (odd) number of linear multifold crossings with Berry
dipole.

to the Berry curvature property �α = −�−α . Again a short
proof is provided in Appendix F.

In summary, each term of the linear magnetocurrent (12)
caused by a point-like Berry dipole crossing (4) has a counter-
part in the response of an extended Berry dipole formed from
two topological monopoles. However, just like for the anoma-
lous Hall effect, the currents in both systems have opposite
parity as a function of the filling.

III. TIGHT-BINDING MODELS FOR MASSLESS
MULTIFOLD HOPF SEMIMETALS

A. Description of the lattice models

We now demonstrate how the continuum models discussed
above can be obtained as the low-energy limit of lattice
models. In particular, we introduce two different classes of
tight-binding models for massless multifold Hopf semimetals,
both of which recover Eq. (4) in the vicinity of high-symmetry
points of the Brillouin zone.

The first class consists of semimetals that have an even
number of crossing points with Berry dipole in the Brillouin
zone. The crossings can be arranged in pairs ξ = ±, with
opposite dipole orientation in each valley [Fig. 4(a)]. These
systems will be called valley-Hopf semimetals. The second
class comprises semimetals with an odd number of Berry
dipole crossings in the Brillouin zone. These systems will be
called topological Hopf semimetals for reasons that will be-
come clear in Sec. IV. We first present a selection of examples
for the two classes, and then describe their physical properties.

1. Valley-Hopf semimetals

Among lattice models with an even number of Berry dipole
crossings, we can further distinguish between models hN (k)
with preserved time-reversal symmetry and models h̃N (k)
with broken time-reversal symmetry.

Valley-Hopf semimetals with time-reversal symmetry. As
examples for this kind of lattice models we choose Bloch
Hamiltonians of the form

hN (k) =
(

0 QN

Q†
N 0

)
, (13)

where

Q3 = (wk − i sin kz ),

Q4 =
(

awk ia sin kz

ib sin kz bw∗
k

)
,

Q5 =

⎛
⎜⎝ 0 i

√
2 sin kz

i sin kz w∗
k√

2w∗
k 0

⎞
⎟⎠. (14)
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FIG. 5. Tight-binding models for threefold, fourfold, and fivefold valley-Hopf semimetals (a)–(c) with time-reversal symmetry on a 3D
hexagonal lattice. Links are nonzero hoppings of the tight-binding Hamiltonian (13). (d)–(f) with broken time-reversal symmetry on a 3D
tetragonal lattice, as given by the tight-binding Hamiltonian (16).

Here wk ≡ 2
3

∑
j exp(ik · δ j ), where δ1,2 = 1

2 (±√
3, 1, 0) and

δ3 = (0,−1, 0). The Hamiltonians (13) represent nearest-
neighbor tight-binding models on a hexagonal Bravais lattice,
with Bravais vectors a1 = √

3x̂, a2 = 1
2 (

√
3x̂ + 3ŷ), a3 = 2ẑ.

Indeed, the models describe 2D honeycomb layers (as in
graphene), stacked in a particular way along the ẑ direction,
as visualized in Figs. 5(a)–5(c). The tight-binding models
have the following nearest-neighbor hoppings in real space.
The three-band model h3(k) has isotropic hoppings tAB = 2/3
in the A-B planes and alternating hoppings tAC = ±1/2 along
the A-C direction, see Fig. 5(a). The four-band model h4(k)
has isotropic hoppings tAC = 2a/3 and tBD = 2b/3 in the A-C
and B-D planes, respectively, as well as alternating hoppings
tAD = ±a/2 and tBC = ±b/2 in the perpendicular direction,
see Fig. 5(b). Finally, the five-band model h5(k) has isotropic
hoppings tBE = 2/3 and tCD = 2

√
2/3, as well as alternating

hoppings tBD = ±1/2 and tAE = ±1/
√

2 along the vertical
direction, see Fig. 5(c).

The band structure of the models hN (k) is given by

εα (k) = 2
3 cα

√
f (kx, ky) + 9

4 sin2 kz. (15)

It is particle-hole symmetric due to an obvious chiral
symmetry (5) of the Bloch Hamiltonian, and the coeffi-
cients cα are the same as for the continuum models (4),
see Table I. The function f (kx, ky) = 3 + 2 cos(

√
3kx ) +

4 cos(
√

3kx/2) cos(3ky/2) describing in-plane hopping is ex-
actly the same as for graphene [39].

Since, for all models hN (k), the Bravais period is doubled
along the ẑ direction, such that the Brillouin zone extends from
kz = −π/2 to kz = π/2, it is clear that nodal points in the
spectrum (15) can appear only in the kz = 0 plane. Indeed,
the hexagonal Brillouin zone contains one N-fold nodal point
at the K (ξ = +) and one at the K’ (ξ = −) valley, with

coordinates Kξ = −ξ 4π

3
√

3
(1, 0). These nodal points are de-

scribed exactly by the continuum models (4) at low energy,
as can be easily seen by noting that wk → ξqx − iqy around
these points. Thus, there is a Berry dipole pointing up in the
K valley and one pointing down in the K’ valley.

Valley-Hopf semimetals without time-reversal symmetry. As
examples for this class of lattice models we consider Bloch
Hamiltonians of the form

h̃N (k) =
(

0 Q̃N

Q̃†
N 0

)
, (16)

where

Q̃3 = (s− − i sin kz ),

Q̃4 =
(

as− ia sin kz

ib sin kz bs+

)
,

Q̃5 =

⎛
⎜⎝ 0 i

√
2 sin kz

i sin kz s+√
2s+ 0

⎞
⎟⎠. (17)

Here we use shorthand notations s± ≡ sin kx ± i sin ky. The
Hamiltonians h̃N (k) represent nearest-neighbor tight-binding
models on a tetragonal Bravais lattice, with Bravais vectors
a1 = x̂ + ŷ, a2 = x̂ − ŷ, and a3 = 2ẑ. Indeed, the models de-
scribe 2D square layers stacked in a particular way along the ẑ
direction, as shown in Figs. 5(d)–5(f). Note that the five-band
model has two types of orbitals (A and C) located at the same
site.

The three-band model h̃3(k) has alternating hoppings
tAB = ±i/2 (tAB = ±1/2) in the x̂ direction (ŷ direction)
within the A-B plane and alternating hoppings tAC = ±1/2
along the A-C direction, see Fig. 5(d). Similarly, the model
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h̃4(k) has alternating hoppings tAC = ±ia/2 (tAC = ±a/2) in
the x̂ direction (ŷ direction) within the A-C plane, alternat-
ing hoppings tBD = ±ib/2 (tBD = ±b/2) in the x̂ direction
(ŷ direction) within the B-D plane, and alternating hoppings
tAD = ±a/2 and tBC = ±b/2 in the perpendicular direction,
see Fig. 5(e). Finally, the five-band model h̃5(k) has alternat-
ing hoppings tBE = ±i/2 (tBE = ±1/2) in the x̂ direction (ŷ
direction) within the B-E plane, alternating hoppings tCD =
±i/

√
2 (tCD = ±1/

√
2) in the x̂ direction (ŷ direction) within

the C-D plane, as well as alternating hoppings tAE = ±1/
√

2
and tBD = ±1/2 along the vertical direction, see Fig. 5(f).

The corresponding band structure of the models h̃N (k) is
given by

εα (k) = cα

√
sin2 kx + sin2 ky + sin2 kz, (18)

which is again particle-hole symmetric due to a chiral sym-
metry, and where the band velocities cα are the same as for
the continuum models (4), see Table I. Again nodal points
can appear only in the kz = 0 plane. Indeed, the tetragonal
Brillouin zone contains two N-fold nodal points, namely one
located at the � point (ξ = +) and one at the M point (ξ = −),
where k� = 0 and kM = (π, 0, 0). It is straightforward to
see that the low-energy theory around these points is exactly
described by the continuum models (4).

2. Topological Hopf semimetals

We now come to a second class of MMHSs, characterized
by an odd number of Berry dipoles in the Brillouin zone. As
examples for such topological Hopf semimetals, we consider
Bloch Hamiltonians of the form

hN (k) =
(

0 QN

Q
†
N 0

)
, (19)

where

Q3 = (s− g�0 ),

Q4 =
(

as− −ag�0

bg∗
�0

bs+

)
,

Q5 =

⎛
⎜⎝ 0

√
2g∗

�0

g∗
�0

s+√
2s+ 0

⎞
⎟⎠. (20)

Here we use again s± = sin kx ± i sin ky and

g�0 ≡ �0 + cos kx + cos ky + e−ikz , (21)

where �0 is a real parameter. These Hamiltonians are diffi-
cult to realize as pure hopping models with only one orbital
per site; however, since they contain only terms ∼ sin ki or
∼ cos ki they may be constructed assuming a simple cubic
Bravais lattice with N orbitals per site and appropriate cou-
plings, see Fig. 6.

For example, the three-band semimetal h3(k) is character-
ized by the following hoppings in real space. Orbitals A are
coupled to orbitals B by imaginary nearest-neighbor hoppings
±i/2 along the x̂ direction and real nearest-neighbor hoppings
±1/2 along the ŷ direction, as visualized in Fig. 7(a). Orbitals
A and C are coupled by hoppings 1/2 along the x̂ and ŷ

FIG. 6. [(a)–(c)] Tight-binding models for threefold, fourfold,
and fivefold topological Hopf semimetals can be constructed on a
multiorbital cubic lattice, with hoppings as given by the tight-binding
Hamiltonian (19). The same lattice structure allows to realize the
tight-binding models (23) for multiband Hopf insulators.

directions [left panel of Fig. 7(b)], as well as alternating hop-
pings 0, 1/2 along the ẑ direction and an on-site hopping �0

[right panel of Fig. 7(b)]. Orbitals B and C are uncoupled,
which is the reason for the chiral symmetry of the Bloch
Hamiltonian. In a similar way, one can use Eq. (20) to read
off the precise hopping structure for the four- and five-band
semimetals h4(k) and h5(k).

The Hamiltonians hN (k) have an energy spectrum

εα (k) = cα

√√√√∑
i

sin2 ki +
(

�0 +
∑

i

cos ki

)2

, (22)

where again a chiral symmetry is evident, the sum runs over
i = x, y, z, and the coefficients cα are as in Table I. This
spectrum becomes gapless only for �0 = ±1,±3. For the
moment, since we are interested in the semimetallic phase, we
only allow the parameter �0 to take one of these four discrete
values.

We now show that as desired, the semimetals that are
obtained for different values of �0 are all described by
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FIG. 7. Real-space hopping structure giving rise to the Bloch
Hamiltonian h3(k) for a threefold topological Hopf semimetal [and
similarly to the Bloch Hamiltonian hHopf

3 (k) for a three-band Hopf
insulator]. Solid lines correspond to hoppings 1, dashed lines to
hoppings −1, and lines with arrows to hoppings i (in units of 1/2).
(a) Coupling between orbitals A and B. (b) Coupling between or-
bitals A and C.

continuum Hamiltonians of the form (4) at low energy.
Namely, for �0 = −3, there is a single N-fold crossing at the
� point of the cubic Brillouin zone, described by a low-energy
theory H+

N (q), corresponding to a Berry dipole pointing up.
Similarly, for �0 = 3, there is a single N-fold crossing
at the R point, kR = (π, π, π ), described by a continuum
Hamiltonian −H+

N (q), and thus corresponding to a Berry
dipole pointing down. For �0 = −1, there are three N-fold
crossings at the inequivalent X points: kX1 = (π, 0, 0),
kX2 = (0, π, 0), kX3 = (0, 0, π ). They are described by
HN,X1(q) = H+

N (−qx, qy, qz ), HN,X2(q) = H+
N (qx,−qy, qz ),

and HN,X3(q) = H+
N (qx, qy,−qz ), respectively, thus

corresponding to Berry dipoles pointing down, down, and up.
Finally, for �0 = 1, there are three N-fold crossings at the M
points: kM1 = (0, π, π ), kM2 = (π, 0, π ), kM3 = (π, π, 0).
They are described by HN,Mi(q) = −HN,Xi(q), thus
corresponding to Berry dipoles pointing up, up, and down.
The four types of high-symmetry points mentioned here (�,
R, X, M) will play an important role below when we discuss
topological phase transitions of multiband Hopf insulators.

B. Physical properties of the lattice models

For a Fermi level close to the nodal points, the physical
properties of the semimetallic lattice models (13), (16), and
(19) are simply obtained by summing the continuum results,
as obtained in Sec. II B, over all valleys.

It is then clear that both the anomalous Hall current jAH,
see Eq. (11), and the magnetocurrent jgeo, see Eq. (12), cancel
for a valley-Hopf semimetal, since there is an even number of
crossings with opposite Berry dipoles, cf. Fig. 4(a). However,
anomalous Hall and magnetocurrents are nontrivial for the
topological Hopf semimetals (19), since there is one net Berry
dipole in the Brillouin zone. To confirm this, we have numer-
ically calculated the anomalous Hall conductivity of hN (k)
for parameters such that a single Berry dipole crossing exists
at the � point, as shown in Fig. 3(a). The numerical results
confirm the previous claim that jAH is odd in EF . A similar
lattice calculation (not shown) confirms the existence of weak-
field magnetocurrents jgeo for a topological Hopf semimetal
(19), which are even in EF . For details of the calculation, see
Appendix F.

Despite the fact that the anomalous Hall conductivity and
magnetoconductivity cancel for the valley-Hopf semimetals,
it is possible to conceive of other ways to unveil the presence
of the Berry dipoles in these systems. For example, consider
the lattice model h3(k) [shown in Fig. 5(a)], and assume the
presence of a strong magnetic field (7). For θ = 0, we know
from Fig. 2(a) that the Landau level spectrum at the K valley
(ξ = +) will be gapped out, while the Landau level spectrum
at the K’ valley (ξ = −) will be gapless. For θ = π , the
situation is reversed. Flipping the magnetic field thus provides
a means to completely switch the valley polarization of dis-
persive states in an energy window EF ∈ [−eB, eB] around
the highly degenerate flat band. This effect is purely due to
the Berry dipole. A similar effect exists for the lattice model
h5(k). From a more general perspective, it appears promising
to study optical and magneto-optical responses of the valley-
Hopf semimetals [40].

IV. RELATION TO MULTIBAND HOPF INSULATORS

In this section we connect the semimetals introduced above
to the theory of Hopf insulators. The concept of a two-band
Hopf insulator is by now well known [41–43], and some
suggestions for its experimental realization have appeared
[44–47]. Moreover, a formal generalization of the Hopf in-
sulator to the multiband (N > 2) case was achieved very
recently by Lapierre et al. [13]. We now propose concrete
lattice models for such multiband Hopf insulators (MHIs).

In the Hopf semimetal Hamiltonian (19), let us replace the
discrete values �0 by a continuous parameter �. We now
claim that the Hamiltonians

hHopf
N (k) ≡ hN (k,� 	= �0) (23)

are nearest-neighbor tight-binding models for MHIs. The
orbital hopping structure of these models is the same as pre-
viously considered for the semimetals (19), see Figs. 6 and 7,
except for the fact that the allowed values of the parameter
�, which describes on-site hopping, are now different. The
corresponding energy spectrum

εα (k) = cα

√√√√∑
i

sin2 ki +
(

� +
∑

i

cos ki

)2

(24)

is comprised of N fully gapped bands (if � 	= �0), where
again the band velocities cα are as listed in Table I.

To confirm that Eq. (23) defines MHIs, we have to proceed
in two steps according to the rules of the topological classi-
fication for MHIs [13]. First, we need to verify that the three
Chern numbers (weak topological invariants)

N Chern
α,i j = 1

2π

∫
T2

dkidk j�α,i j (ki, k j ; kl = const.) (25)

vanish, where i, j ∈ {x, y, z}. This is indeed the case and im-
plies that the homotopy classification of the insulators under
consideration is of type Z. Second, we need to compute the
Hopf number

NHopf = W3[U (k)] =
∫

BZ

d3k

24π2
χ (k) (26)
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FIG. 8. (a) Hopf invariant (26) for the tight-binding models (23).
Topological phase transitions occur for � = �0, where gaps close at
the �, X, M, or R points of the Brillouin zone, see (b). At these
transitions, the semimetals (19) are recovered. Red (blue) colors
denote a positive (negative) sign of the jump δNHopf of the Hopf
number.

as the third winding number W3 of the unitary matrix U (k)
that diagonalizes hHopf

N (k), which can be written as an integral
of the Hopf density

χ (k) ≡ εi jl Tr[ui(k)u j (k)ul (k)] (27)

over the Brillouin zone, with ui(k) ≡ U †(k)∂iU (k) and the
partial derivative ∂i ≡ ∂/∂ki.

From Eq. (26), we find a quantized Hopf number for � 	=
�0, as visualized in Fig. 8 and as derived in more detail in
Appendix G. At the topological phase transitions � = �0, all
N − 1 band gaps that are in general present in the spectrum
(24) close simultaneously at one or three points of the Bril-
louin zone. Clearly, the topological MMHSs (19) are critical
points of the MHIs (23). This is somewhat analogous to how
quadratic band touchings with Berry dipole mediate topo-
logical phase transitions between two-band Hopf insulators
[10,11].

Two remarks are in order. First, the model hHopf
3 (k) is

actually well known as a chiral topological insulator in the
literature [48,49]. It was introduced for constructing fractional
topological phases [50], and we here identify it as a three-band
Hopf insulator. Indeed, it appears that the topological invariant
defined in Eq. (3.7) of Ref. [50] is nothing else than the
Hopf number, however, calculated from a simplified formula
that makes explicit use of the fact that the system has N = 3
bands and chiral symmetry. However, when chiral symmetry
is broken without a gap closing, the topological invariant in
Eq. (3.7) of Ref. [50] should become ill defined. In contrast,
the Hopf number (26) remains well defined and its values
shown in Fig. 8 should remain unchanged.

Second, one may be tempted to analyze the jump δNHopf

of the Hopf number at a topological phase transition by us-
ing a “continuum Hopf number” and summing over all band
crossing points. This appears, however, as a delicate task, see
Appendix G for a more detailed discussion.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have emphasized that linear band crossings
in 3D exhibit rich physical properties if more than two bands
cross simultaneously. In particular, beyond the well-known
Berry monopoles (1), which occur in Weyl semimetals [1]
and chiral multifold semimetals [2], other types of linear band
crossings with a more exotic quantum geometric structure are
possible. We have focused on the case where each crossing

point acts as a Berry dipole (2), which we call massless multi-
fold Hopf semimetals (MMHSs); however, we emphasize that
Berry quadrupoles and Berry octupoles can also exist. Indeed,
preliminary results of Appendix A indicate the possibility to
establish a full hierarchy of Berry multipole crossings.

To study MMHSs, we have introduced several lattice
models, which are characterized by a low-energy theory of
the form (4) that feature linear N-fold crossings with Berry
dipole. Such MMHSs can be distinguished according to
whether they exhibit an even (valley-Hopf semimetal) or odd
(topological Hopf semimetal) number of Berry dipoles in the
Brillouin zone.

From an experimental point of view, it appears possible
that the valley-Hopf semimetals, and in particular the mod-
els (13), which are quite close to the graphene tight-binding
model, may exist in a crystalline setup. To make progress in
this regard, one should conduct a precise symmetry analysis of
the models and check in which materials they might occur. Al-
though the anomalous Hall and magnetoconductivities caused
by each Berry dipole cancel for a valley-Hopf semimetal,
the effect of the Berry dipole is still clearly visible in the
peculiar dependence of the Landau level spectrum on the
magnetic field orientation (Fig. 2). More generally, it would
be interesting to study optical or magneto-optical responses
for which the contributions from the different valleys do not
cancel, and a first step in this direction was made very recently
in Ref. [51].

For the topological massless Hopf semimetals (19) there
are clear signatures of the Berry dipole in the anomalous Hall
current and magnetoconductivity. The fact that these currents
exhibit a parity opposite to those caused by a pair of Weyl
nodes (Fig. 3) might be probed by varying the electron density
close to half filling. Nevertheless, it has to be mentioned that
our models (19) for topological Hopf semimetals are probably
hard to realize in a real crystal. A different possible route
involves artificial systems such as ultracold atoms, photonic
crystals, or superconducting circuits. Indeed, those have been
suggested and used many times to realize semimetallic phases
with two- and multifold crossings [52–60]. Moreover, a so-
called tensor monopole crossing, which is very similar to the
Hamiltonian (4a), was recently observed experimentally using
a transmon in a cavity [61]. In such artificial systems, the
magnetic responses that we focused on in this paper are likely
irrelevant, but similar signatures of the Berry dipole should be
present also in a host of physical responses routinely studied
in artificial systems.

Going beyond the semimetallic case, we introduced the
first concrete lattice models (23) for multiband Hopf insula-
tors (MHIs), which become exactly equivalent to the Hopf
semimetals (19) at topological phase transitions. One consid-
erable advantage of these models is that they require only
nearest-neighbor hoppings, thus avoiding the complicated
second-neighbor hoppings that are necessarily present in any
model for a two-band Hopf insulator [11,41,42]. Due to their
relative simplicity, the MHI models might provide a fertile
platform to test theoretical predictions for the bulk-boundary
correspondence of delicate topological insulators [10,13].

Also for the MHIs an experimental realization would be
desirable, and in this context it is noteworthy that there
is considerable activity regarding the observation of Hopf
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numbers in two-band insulators [44–47]. Such proposals
could potentially be extended to the MHIs (23). Most notably,
for the three-band Hopf insulator hHopf

3 (k) (known as chiral
topological insulator in the literature) there already exists not
only a proposal based on ultracold atoms [48], but also a
claimed experimental realization based on machine learning
analysis of a nitrogen-vacancy center in diamond [49]. In
such experiments, the topological Hopf semimetal (19) may
be reached at critical parameter values corresponding to topo-
logical phase transitions.

To close, we observe that there appear to be interesting
connections between the systems introduced in this paper
and systems of different spatial dimensions. For example,
all multiband Hopf semimetals and Hopf insulators that we
described are, in a sense, 3D analogs of 2D Dirac semimetals
and Chern insulators. Indeed, they all have a 2D counter-
part in Haldane’s model [62], in the sense that the relevant
topological densities (Berry curvature in 2D vs Hopf density
in 3D) and topological numbers (Chern number in 2D vs
Hopf number in 3D) behave very similarly. This analogy is
discussed in more detail in Appendix H. To make such an
analogy more precise and complete, one should systematically
analyze all possible ways to perturb MMHSs and establish the
corresponding phase diagrams, similar to recent work on the
conversion between Weyl points, nodal lines, quadratic Berry
dipole touchings and two-band Hopf insulators [11,43,63,64].
Such an analysis is also important to determine in more detail
the stability of the MMHS band crossings.

Further, the Hamiltonians (4a) and (4b) seem to be related
to 4D semimetals with tensor monopoles [65,66] by dimen-
sional reduction. Given such connections to the 2D Haldane
model as well as to 4D semimetals, it appears very intriguing
to fully develop the corresponding dimensional hierarchies.
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APPENDIX A: MODELS WITH QUADRUPOLAR AND
OCTUPOLAR BERRY CURVATURE

As it turns out, linear multiband crossings even offer the
possibility for quantum geometric structures that go beyond
the Berry dipole. To see this, consider the fivefold crossing

H ξ

5a(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 qξ
+ 0 iqz 0

qξ
− 0 −iqz 0 iqz

0 iqz 0 qξ
− 0

−iqz 0 qξ
+ 0 qξ

+
0 −iqz 0 qξ

− 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A1)

where qξ
± = ξqx ± iqy. The spectrum is exactly the same as

for the five-band model (4c), namely Eα (q) = cα|q|, with
cα = 0,±1,±√

2. However, the Berry curvature takes the
form

�α (q) = κα (q · d)
q

|q|4 + κ≈α (q · d)3 q
|q|6 , (A2)

FIG. 9. A fivefold linear crossing acting as (a) a Berry
quadrupole and (b) a Berry octupole.

where d = (0, 0, ξ ), which corresponds to a dipolar together
with an octupolar term. The octupolar Berry curvature is visu-
alized in Fig. 9(b). The dipole and octupole charges are κα =
1,−3, 4,−3, 1 and κ≈α = −4, 8,−8, 8,−4 from the lowest to
the highest band.

As a second example, consider the fivefold crossing

H ξ

5b(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 qξ
− iqz iqz 0

qξ
+ 0 qξ

+ 0 −iqz

−iqz qξ
− 0 −qξ

+ −iqz

−iqz 0 −qξ
− 0 qξ

−
0 iqz iqz qξ

+ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

The spectrum is again of the form (3) where now cα =
0,±1,±√

3. The Berry curvature takes the exotic form

�α (q) = κ̃αqxqz
q

|q|5 + ξ
≈
κα qyq2

z

q
|q|6 , (A4)

with κ̃α = −√
3, 3, 0,−3,

√
3 from lowest to highest band,

and
≈
κα= −4/3, 4,−16/3, 4,−4/3. This corresponds to a

quadrupolar and an octupolar term. The quadrupolar Berry
curvature is visualized in Fig. 9(a).

Considering these examples, it appears interesting to spec-
ulate that the Berry curvature of any multifold linear crossing
in 3D takes the form of a multipole expansion

�α (q) =
∞∑

n=0

κ (n)
α

n∏
i=1

(q · di )
q

|q|n+3
, (A5)

where κ (n)
α are geometric charges and di are 3D unit vectors.

The allowed terms in Eq. (A5) should be selected depending
on the symmetries and the number N of bands involved in the
crossing. Indeed, we know that for N = 2 only the n = 0 term
in Eq. (A5) is allowed. For N = 3 and N = 4 we know that
the n = 0 term is allowed in the presence of CP symmetry
(e.g., for a pseudospin Hamiltonian with s = 1 or s = 3/2),
whereas the n = 1 term is allowed in the presence of chiral
symmetry [e.g., for the MMHSs (4)]. The examples (A1) and
(A3) show that for N = 5 all terms n = 0, 1, 2, 3 are in princi-
ple possible, depending on the symmetries. For example, the
model (A1) has a chiral symmetry S = diag(1,−1, 1,−1, 1),
which appears to select the terms with odd n.

There are many open questions, such as whether Berry
quadrupoles and octupoles are possible for N < 5, whether
hexadecapoles are possible for N = 5, and so on. Moreover,
very rich physical properties can be expected for such ex-
otic crossings, for example in the Landau level spectrum,

115105-10



MASSLESS MULTIFOLD HOPF SEMIMETALS PHYSICAL REVIEW B 108, 115105 (2023)

anomalous Hall conductivity, et cetera. The possibility to
establish a full hierarchy of Berry multipole crossings thus
appears quite intriguing.

APPENDIX B: MODEL WITH TUNABLE BERRY
DIPOLE VECTOR

Consider the continuum model

H3(q, ϕ) =
⎛
⎝ 0 qx + isϕ qz qy − icϕ qz

qx − isϕ qz 0 0
qy + icϕ qz 0 0

⎞
⎠,

where cϕ = cos ϕ, sϕ = sin ϕ, and ϕ is a free parameter. It has
an energy spectrum (3) with cα = 0,±1 and a dipolar Berry
curvature (2) with κα = 2 − 3α2 and d = (cos ϕ, sin ϕ, 0).
Clearly, a lattice realization of this model will involve hopping
amplitudes ∼ sin ϕ and ∼ cos ϕ, and tuning the value of ϕ will
rotate the Berry dipole vector in the x̂-ŷ plane, despite a fixed
lattice geometry. Note that the presence of a tunable Berry
curvature in terms of a parameter that leaves the spectrum
invariant is somewhat reminiscent of the two-dimensional
α − T3 model that allows to interpolate between honeycomb
and dice lattices [67].

APPENDIX C: LANDAU LEVELS OF MMHS
CONTINUUM MODELS

In order to describe the behavior of the electrons modeled
by the MMHS continuum models (4) in the presence of a
strong magnetic field (7), we replace the canonical momentum
q by the gauge-invariant kinetic momentum [68], q → � =
q + eA, with the gauge choice A = Bx(0, cos θ,− sin θ ) for
the electromagnetic vector potential. Note that the momen-
tum along the magnetic field, q0 = B̂ · q = sin θqy + cos θqz,
is conserved. Using the canonical commutation relations
[x j, qk] = iδ jk , one finds [�x,�y] = −i cos θ/l2

B, [�y,�z] =
0, [�z,�x] = −i sin θ/l2

B, where lB ≡ 1/
√

eB is the magnetic
length. It is further convenient to introduce ladder operators
as [69]

d̂ = lB√
2

(�x − i cos θ �y + i sin θ �z ),

d̂† = lB√
2

(�x + i cos θ �y − i sin θ �z ),

(C1)

such that [d̂, d̂†] = 1, which act on number states |n〉 as
d̂† |n〉 = √

n + 1 |n + 1〉 and d̂ |n〉 = √
n |n − 1〉. Reversing

the above relations, we have

�x = 1√
2lB

(d̂ + d̂†),

�y = q0 sin θ + i√
2lB

cos θ (d̂ − d̂†),

�z = q0 cos θ − i√
2lB

sin θ (d̂ − d̂†),

�
ξ
± = ξ�x ± i�y

= 1√
2lB

[(ξ ± cos θ )d̂† + (ξ ∓ cos θ )d̂] ± i sin θ q0.

1. Threefold Hopf semimetal

The LL spectrum of the threefold Hopf semimetal (4a) is
easily computed analytically. Replacing qi → �i, we have

Ĥ ξ
3 =

(
0 Q

Q† 02

)
, Q = (�ξ

− − i�z ). (C2)

Making an ansatz Ĥ ξ
3 �α = εα�α , where εα = αε, α = 0,±,

and �α = (ψα
1 , �α

2 ) with �α
2 a two-component spinor, it fol-

lows

εαψα
1 = Q�α

2 , εα�α
2 = Q†ψα

1 , ε2
αψα

1 = QQ†ψα
1 . (C3)

Using �
ξ
−�

ξ
+ = �2

x + �2
y + ξ cos θ/l2

B and �2 = (2d̂†d̂ +
1)/l2

B + q2
0, one easily finds

QQ† = [
eB(2d̂†d̂ + 1 + ξ cos θ ) + q2

0

]
, (C4)

implying that ψα
1 ∼ |n〉. From the second line of Eq. (C3), one

immediately obtains

εα�α
2 ∼

(
ξ − cos θ i sin θ q0 ξ + cos θ

sin θ i cos θ q0 − sin θ

)

×
⎛
⎝ βn |n − 1〉

|n〉
βn+1 |n + 1〉

⎞
⎠,

where βn = √
eBn/2, and finally the full solution for the LLs

is given by

εn,ξ
α = α

√
2eB

(
n + 1 + ξ cos θ

2

)
+ q2

0, n = 0, 1, 2, ...

with corresponding eigenstates

�n,ξ
α ∼

⎛
⎝ 0 εn,ξ

α 0
ξ − cos θ i sin θ q0 ξ + cos θ

sin θ i cos θ q0 − sin θ

⎞
⎠

×
⎛
⎝ βn |n − 1〉

|n〉
βn+1 |n + 1〉

⎞
⎠.

2. Fourfold Hopf semimetal

We proceed to compute the LL spectrum of the fourfold
Hopf semimetal (4b). Replacing qi → �i, we have

Ĥ ξ
4 =

(
02 Q
Q† 02

)
, Q =

(
a�

ξ
− ia�z

ib�z b�ξ
+

)
. (C5)

We make an ansatz Ĥ ξ
4 �α = εα�α , where εα = α1εα2 with

α1 = ±, α2 = ±, and where �α = (�α
1 , �α

2 ) with �α
1 and �α

2
being two-component spinors. It follows

εα�α
1 = Q�α

2 , εα�α
2 = Q†�α

1 , ε2
α�α

1 = QQ†�α
1 . (C6)

We first focus on the last line. Straightforward computation
yields

QQ† =
(

a2D̂+ ξabeB sin θ

ξabeB sin θ b2D̂−

)
, (C7)

where D̂± ≡ eB(2d̂†d̂ + 1 ± ξ cos θ ) + q2
0, and it is clear that

the spinor �α
1 has to be of the form �α

1 ∼ (uα2 , vα2 ) |n〉, with
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some functions uα2 , vα2 to be determined. Solving the eigen-
value problem(

2ηa ν

ν 2ηb

)(
uα2

vα2

)
= ε2

α

(
uα2

vα2

)
, (C8)

where

ηa = a2

2

[
2eB

(
n + 1 + ξ cos θ

2

)
+ q2

0

]
,

ηb = b2

2

[
2eB

(
n + 1 − ξ cos θ

2

)
+ q2

0

]
,

ν = ξabeB sin θ,

(C9)

leads to

ε2
α = ηa + ηb + α2

√
(ηa − ηb)2 + ν2,

uα2 = ηa − ηb + α2

√
(ηa − ηb)2 + ν2,

vα2 = ν. (C10)

Thus, the complete solution for the LL energies is given by

εn,ξ
α = α1

√
ηa + ηb + α2

√
(ηa − ηb)2 + ν2, n = 0, 1, 2, ...

To determine the corresponding eigenstates one can now turn
to the second line of Eq. (C6), yielding

εα�α
2 ∼

(
a�

ξ
+ −ib�z

−ia�z b�ξ
−

)(
uα2 |n〉
vα2 |n〉

)
.

Thus, the spinor �α
2 has contributions from number states

|n − 1〉, |n〉 as well as |n + 1〉, while the spinor �α
1 has contri-

butions only from |n〉.

3. Fivefold Hopf semimetal

The LL spectrum of the fivefold Hopf semimetal (4c) can
be derived from the Hamiltonian

Ĥ ξ

5 =
(

03 Q
Q† 02

)
, Q =

⎛
⎜⎝

0 i
√

2�z

i�z �
ξ
+√

2�
ξ
+ 0

⎞
⎟⎠. (C11)

We make an ansatz Ĥ ξ

5 �α = εα�α , where εα = α1εα2 , α1 =
0,±, and α2 = ±. The wave function is of the form �α =
(�α

1 , �α
2 ) with �α

1 a three-component and �α
2 a two-

component spinor.
We again have to solve

εα�α
1 = Q�α

2 , εα�α
2 = Q†�α

1 , ε2
α�α

2 = Q†Q�α
2 ,

(C12)

and thus consider first the matrix

Q†Q =
(

2�
ξ
−�

ξ
+ + �2

z −i�z�
ξ
+

(−i�z�
ξ
+)† �

ξ
−�

ξ
+ + 2�2

z

)
, (C13)

whose components are given as follows in terms of ladder
operators:

(Q†Q)11 = eB

2
s2
θ (d̂ )2 + eB

2
s2
θ (d̂†)2 + eB(3 + c2

θ )d̂†d̂

+
√

eB

2
iq0s2θ d̂ −

√
eB

2
iq0s2θ d̂†

+ eB

2
(3 + c2

θ + 4ξcθ ) + (1 + s2
θ )q2

0,

(Q†Q)12 = eB

2
sθ (cθ − ξ )(d̂ )2 + eB

2
sθ (ξ + cθ )(d̂†)2

− eB

2
s2θ d̂†d̂ +

√
eB

2
iq0(c2θ − ξcθ )d̂

−
√

eB

2
iq0(c2θ + ξcθ )d̂†

− eB

2
sθ (ξ + cθ ) + sθcθq2

0,

(Q†Q)22 = −eB

2
s2
θ (d̂ )2 − eB

2
s2
θ (d̂†)2 + eB(2 + s2

θ )d̂†d̂

−
√

eB

2
iq0s2θ d̂ +

√
eB

2
iq0s2θ d̂†

+ eB

2
(2 + s2

θ + 2ξcθ ) + (1 + c2
θ )q2

0,

with shorthand notations cθ = cos θ and sθ = sin θ .
To proceed, we make an ansatz for the spinor �α

2 ,

�α
2 =

(
U
V

)
=
(

u1 |n − 1〉 + u2 |n〉 + u3 |n + 1〉
v1 |n − 1〉 + v2 |n〉 + v3 |n + 1〉

)
.

This state gets projected into the space of number states
N = (|n − 3〉 , ..., |n + 3〉) by the matrix (C13); however, we
will ensure that the coefficients of |n ± 3〉 and |n ± 2〉 in the
product Q†Q�α

2 vanish, such that one obtains a solution for
the last line of Eq. (C12). A lengthy calculation yields

(Q†Q)11U = MT
U NT ,

(Q†Q)12V = MT
V NT ,

where

MU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s2
θβn−1βn−2u1

βn−1[s2θ iq0u1 + s2
θβnu2]

βn[s2θ iq0u2 + s2
θβn+1u3] + eB

[
(3 + c2

θ )
(
n − 1

2

)+ 2ξcθ

]
u1 + (1 + s2

θ )q2
0u1

s2θ iq0[βn+1u3 − βnu1] + eB
[
(3 + c2

θ )
(
n + 1

2

)+ 2ξcθ

]
u2 + (1 + s2

θ )q2
0u2

βn+1[−s2θ iq0u2 + s2
θβnu1] + eB

[
(3 + c2

θ )
(
n + 3

2

)+ 2ξcθ ]u3 + (1 + s2
θ )q2

0u3

βn+2[−s2θ iq0u3 + s2
θβn+1u2]

s2
θβn+2βn+3u3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

115105-12



MASSLESS MULTIFOLD HOPF SEMIMETALS PHYSICAL REVIEW B 108, 115105 (2023)

MV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sθ (cθ − ξ )βn−1βn−2v1

βn−1[(c2θ − ξcθ )iq0v1 + sθ (cθ − ξ )βnv2]

βn[(c2θ − ξcθ )iq0v2 + sθ (cθ − ξ )βn+1v3] − eBsθ

[(
n − 1

2

)
cθ + ξ

2

]
v1 + sθcθq2

0v1

iq0[(c2θ − ξcθ )βn+1v3 − (c2θ + ξcθ )βnv1] − eBsθ

[(
n + 1

2

)
cθ + ξ

2

]
v2 + sθcθq2

0v2

βn+1[−(c2θ + ξcθ )iq0v2 + sθ (cθ + ξ )βnv1] − eBsθ

[(
n + 3

2

)
cθ + ξ

2

]
v3 + sθcθ q2

0v3

βn+2[−(c2θ + ξcθ )iq0v3 + sθ (cθ + ξ )βn+1v2]

sθ (cθ + ξ )βn+2βn+3v3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving the linear system (MT
U + MT

V )NT = ε2
αU , one finds

the LL spectrum

εn,ξ
α = α1

√
η+ + η− + α2

√
(η+ − η−)2 + ν̃2,

η± = c2
±
2

[
2eB

(
n + 1 − κ±ξ cos θ

2

)
+ q2

0

]
,

ν̃ = 2
√

3ξeB sin θ,

where n = 1, 2, 3, ... is the LL index, c± = √
2, 1 are the

band velocities of the two cones, and κ± = −3, 1 are
the corresponding Berry dipole charges. The corresponding
eigenfunctions are very complicated and are not written here
explicitly.

APPENDIX D: SEMICLASSICAL APPROACH TO LANDAU
LEVELS: EXTENDED ONSAGER QUANTIZATION WITH

INTRABAND AND INTERBAND COUPLING

Here we derive the Landau level spectrum of the MMHS
continuum models (4) in the presence of a field (7) using an
alternative method: semiclassical quantization based on a gen-
eralized Onsager condition. We shall find excellent agreement
with the exact quantum mechanical results. More precisely,
we try to recover the exact Landau levels by increasing
the complexity of the semiclassical quantization condition in
three steps: first, using Onsager’s method [20] for a single
closed orbit; second, using Onsager quantization for a single
closed orbit, extended by intraband quantum geometric cor-
rections, which are important in a multiband system [21–25];
finally, we develop an approach to Landau quantization of
degenerate orbits, taking into account also interband matrix
elements of Berry curvature and orbital magnetic moment,
similar in spirit to Ref. [70].

1. Onsager quantization of a single closed orbit

Consider a band dispersion relation Eα (q). Let us de-
note q0 the component of q parallel to the magnetic
field and q⊥ the momentum perpendicular to the mag-
netic field such that q ≡ (qx, qy, qz ) = q0B̂ + q⊥, with q⊥ =
q⊥[cos φ⊥x̂ + sin φ⊥(x̂ × B̂)]. We can then rewrite qx =
q⊥ cos φ⊥, qy = q0 sin θ − q⊥ sin φ⊥ cos θ , qz = q0 cos θ +
q⊥ sin φ⊥ sin θ . Let us assume that for a fixed q0, the constant
energy curve Eα (q⊥, q0) = E defines a closed orbit Oα in
the q⊥ plane. Onsager quantization [20] then corresponds to
postulate that the Landau level energies εn (with LL index n)
are obtained by quantizing the k-space area Sα (εn, q0) of the

orbit Oα according to

Sα (εn, q0)l2
B = 2π (n + γ ) (D1)

with lB = 1/
√

eB the magnetic length and where γ is the
Maslov index of the orbit, in particular for an orbit deformable
to a circle γ = 1/2. Since Sα (E , q0) = 4π2Nα (E , q0), where
Nα (E , q0) = ∫ dq⊥

4π2 �(E − Eα (q⊥, q0)) is equivalent to the ef-
fective 2D zero-field integrated density of states of the band
Eα (q), the previous relation can be rewritten as

Nα (εn, q0) =
(

n + 1

2

)
eB

2π
, (D2)

where now eB/(2π ) is the degeneracy (per unit area) of each
Landau level (note that h̄ = 1).

For a zero-field spectrum of the form Eα (q) = cα|q| =
cα

√
|q⊥|2 + q2

0 one immediately obtains

Nα (E , q0) = 1

4π

(
E2

c2
α

− q2
0

)
, (D3)

from which we deduce

εn = ±|cα|
√

2eB

(
n + 1

2

)
+ q2

0. (D4)

For Weyl or chiral multifold topological semimetals Hs(q),
and also for Hopf semimetals (4), this last expression does
not recover the correct results because it misses quantum
geometric effects.

2. Quantization of a single closed orbit in a multiband system

To linear order in the magnetic field, the modified Onsager
quantization rule (which takes care of intraband effects but
still ignores coupling between degenerate orbits) reads [24,25]

Nα (εn, q0) + M′
α (εn, q0) · B =

(
n + 1

2

)
eB

2π
, (D5)

where M′
α (E , q0) = ∂/∂E Mα (E , q0) with Mα (E , q0) the or-

bital magnetization (for spinless particles) of the band α at
fixed (E , q0). This orbital magnetization may be written as (at
T = 0)

Mα (E , q0) =
∫

dq⊥
4π2

[mα (q) + e(E − Eα (q))�α (q)]

× �(E − Eα (q)),

with mα (q) and �α (q) the intraband contributions of orbital
magnetic moment (OMM) and Berry curvature, respectively.
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More precisely, the Berry curvature pseudovector is given by
�α (q) = (�α,yz,�α,zx,�α,xy ) with [27]

�α,i j = i
∑
β 	=α

〈ψα|HiPβH j − H jPβHi

(Eα − Eβ )2
|ψα〉, (D6)

where H (q) is the Hamiltonian with eigenfunctions |ψα (q)〉
and eigenenergies Eα (q), Pα = |ψα〉〈ψα| is an eigenprojector,
and Hi ≡ ∂H/∂qi. Similarly, the OMM pseudovector is de-
fined as mα (q) = (mα,yz, mα,zx, mα,xy), with

mα,i j = ie

2

∑
β 	=α

〈ψα|HiPβH j − H jPβHi

Eα − Eβ

|ψα〉. (D7)

For our purposes, it is instructive to introduce an alternative
notation that will ensure a seamless transition to the discussion
of interband coupling below:

mα (q) = − e

2

∑
γ 	=α

Aαγ × Vγα,

�α (q) = ∇q × Aαα = i
∑

γ

Aαγ × Aγα. (D8)

Here, Aαγ (q) = i〈ψα|∇q|ψγ 〉 is the Berry connection and
Vαγ = 〈ψα|∇qH (q)|ψγ 〉 is the velocity operator such that
Vαα (q) = ∇qEα . Note that using the identity Vαγ = i(Eα −
Eγ )Aαγ , valid for α 	= γ , one immediately recovers from
Eq. (D8) the textbook formulas (D6) and (D7) for intraband
Berry curvature and OMM.

In particular, for our MMHS continuum models with en-
ergy spectrum (3), these intraband contributions read

mα (q) = e

2
ωα

(q · d)q
|q|3 ,

�α (q) = κα

(q · d)q
|q|4 ,

(D9)

with coefficients as listed in Table I. From these expressions,
using q = q0B̂ + q⊥, one first obtains

mα (q) · B̂ = e

2
ωα

q2
0(d · B̂) + q0(d · q⊥)(|q⊥|2 + q2

0

)3/2 ,

�α (q) · B̂ = κα

q2
0(d · B̂) + q0(d · q⊥)(|q⊥|2 + q2

0

)2 .

Performing the q⊥ integration at fixed (E , q0), the contribu-
tions proportional to (d · q⊥) average to zero and one finds

Mα (E , q0) · B = eB

2π
(d · B̂)

[
κα

2
E +

(
ωα

2cα

− κα

)
cαq0

−
(

ωα

cα

− κα

)
(cαq0)2

2E

]
.

By differentiating with respect to E one finally obtains

M′
α (E , q0) · B = e

2π
(d · B)

[
κα

2
+
(

ωα

cα

− κα

)
(cαq0)2

2E2

]
.

If we ignore the contribution ∼1/E2 then the semiclassical LL
spectrum reads

εn = ±|cα|
√

2eB

(
n + 1

2
− κα

2
ξ cos θ

)
+ q2

0, (D10)

where ξ cos θ = (d · B̂). For N = 3 since ωα/cα − κα = 0
this expression is identical to the exact LL spectrum (8).
For N = 4, despite the fact that ωα/cα − κα = 0 this expres-
sion still fails to recover the exact LL spectrum (9) as it
misses the coupling between degenerate orbits. For N = 5
since ωα/cα − κα 	= 0 it is strictly speaking no longer valid
to ignore the contribution ∼1/E2. A more physical argument
in favor of neglecting this contribution anyway consists in ac-
knowledging that the semiclassical calculation should only be
trustworthy in the large n or large E limit, where 1/E2 � 1.
We adopt this approximation hereafter.

3. Quantization of two degenerate closed orbits in
a multiband system

The previous calculation of the quantity Mα (E , q0) takes
into account only the intraband diagonal element of the or-
bital magnetization. As recently put forward in Ref. [70], for
systems with two (or more) bands exhibiting quasidegenerate
orbits (i.e., orbits degenerate simultaneously in k space and
energy space) it is necessary to also consider off-diagonal (in-
terband) elements of the orbital magnetization. We here adopt
a similar approach and define these interband contributions as

mαβ (q) = − e

4

⎛
⎝∑

γ 	=α

Aαγ × Vγ β −
∑
γ 	=β

Vαγ × Aγ β

⎞
⎠,

�αβ (q) = ∇q × Aαβ = i
∑

γ

Aαγ × Aγ β,

which is a generalization of Eq. (D8) that satisfies mαβ = m∗
βα

and �αβ = �∗
βα .

Considering the MMHS models (4) with N = 4, 5 and ξ =
+, denoting E±(q) > 0 the two bands that are associated to
degenerate electron orbits either in energy or k space, explicit
calculation yields

m+−(q) · B̂

= e

2
ω+−

sin θq2
0 + q0q⊥(i cos φ⊥ − sin φ⊥ cos θ )(|q⊥|2 + q2

0

)3/2 ,

�+−(q) · B̂

= κ+−
sin θq2

0 + q0q⊥(i cos φ⊥ − sin φ⊥ cos θ )(|q⊥|2 + q2
0

)2 ,

where ω+− = ω−+ and κ+− = κ−+ are effective parameters
that play a similar role as their diagonal counterparts ωα, κα .
More quantitatively for N = 4 we obtain ω+− = −(a + b)/4
and κ+− = −1 whereas for N = 5 we find ω+− = −√

2 and
κ+− = (1 + √

2). We now integrate these expressions over
q⊥ on a constant energy contour E = (E+ + E−)/2 = c+−|q|
with c+− = (c+ + c−)/2 at fixed q0. Very similarly to the
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previous intraband calculation we obtain

M+−(E , q0) · B

= eB

2π
sin θ

[
κ+−

2
E +

(
ω+−
2c+−

− κ+−

)
c+−q0

−
(

ω+−
c+−

− κ+−

)
(c+−q0)2

2E

]
,

M′
+−(E , q0) · B

= eB

2π
sin θ

[
κ+−

2
+
(

ω+−
c+−

− κ+−

)
(c+−q0)2

2E2

]
.

The most striking qualitative feature is that this off-diagonal
contribution is proportional to sin θ = |(d × B̂)|, whereas
the diagonal contributions are proportional to cos θ = d · B̂.
Taking this quantitative form of the off-diagonal term, the
modified semiclassical LL quantization rule now takes a 2 × 2
matrix form for the two coupled orbits. More precisely, the
LLs are found as solutions of

det

(
X+ M′

+−(εn, q0) · B
M′

−+(εn, q0) · B X−

)
= 0,

where X± ≡ N±(εn, q0) + M′
±(εn, q0) · B − eB

2π
(n + 1

2 ).
Within the approximation 1/E2 � 1 we only consider
the simplified forms M′

±(εn, q0) · B = eB
2π

κ±
2 cos θ and

M′
+−(εn, q0) · B = eB

2π

κ+−
2 sin θ . Within that simplified scheme

the semiclassical LLs are solutions of

det

(
x+ eBκ+− sin θ

eBκ+− sin θ x−

)
= 0,

where x± ≡ ε2
n/c2

± − [2eB(n + 1
2 − κ±

2 cos θ ) + q2
0]. From

this we finally obtain

εn = ±
√

η+ + η− ±
√

(η+ − η−)2 + η2+−,

η± = c2
±
2

[
2eB

(
n + 1

2
− κ±

2
cos θ

)
+ q2

0

]
,

η+− = c+c−eBκ+− sin θ. (D11)

Repeating the same calculation for ξ = −, we exactly recover
the LLs (9) and (10) if we choose the effective interband
parameters as κ+− = 1 for N = 4 and κ+− = √

6 for N = 5.

APPENDIX E: BOLTZMANN FORMALISM FOR
MULTIBAND SYSTEMS TO LINEAR ORDER IN THE

MAGNETIC FIELD

Here we review semiclassical magnetotransport to first or-
der in the magnetic field. Below we will apply the formalism
to MMHS continuum and lattice models.

Consider a multiband system with Bloch Hamiltonian
H (k), eigenfunctions |ψα (k)〉, and eigenenergies εα (k). A
typical strategy to address DC magnetotransport proper-
ties of such systems consists in considering the Boltzmann
equation in the (constant) relaxation time approximation,(

∂

∂t
+ ṙ · ∇r + k̇ · ∇k

)
fα (k, r, t )

= − 1

τ
[ fα (k, r, t ) − f eq

α (k, r, t )], (E1)

where r and k are the position and momentum of the semiclas-
sical wave packet in the band α, fα (k, r, t ) is the distribution
function, and f eq

α (k, r, t ) its equilibrium part in the absence of
an electric field. The second and third terms on the left-hand
side of Eq. (E1) describe diffusion and drift of the wave
packet, respectively, while the right-hand side takes account
of scattering with a phenomenological scattering rate 1/τ .

The goal is now to combine the Boltzmann equation with
the semiclassical equations of motion in order to solve for
the distribution function fα (k), and thus to obtain the full
electrical current.

1. Derivation of the linear response electrical current

It is known that the semiclassical equations of motion
entering the Boltzmann equation (E1) should be extended
by terms due to the Berry curvature �α (k) and the orbital
magnetic moment (OMM) mα (k) of the band α [27], see for
example Ref. [37] for a recent discussion. The Berry curvature
pseudovector is given by Eq. (D6) and the OMM by Eq. (D7)
[with q → k]. In the presence of Berry curvature and OMM,
the semiclassical equations of motion read as

ṙ = wα − k̇ × �α, k̇ = −e(E + ṙ × B), (E2)

where e is the electron charge, and wα = vα − ∇k(mα · B) is
the band velocity in the presence of a Zeeman-like energy shift
εα (k) → εα (k) − mα · B, with vα = ∇kεα the band velocity
of the zero-field spectrum. The equations of motion can be
fully decoupled as

(1 + e�α · B)ṙ = wα − e�α × E + e(wα · �α )B,

(1 + e�α · B)k̇ = −eE − ewα × B − e2(E · B)�α.

Now, for a homogeneous system in the steady state, and to
first order in the electric field (linear response regime), the
Boltzmann equation (E1) becomes

e[E + wα × B + e(E · B)�α] · ∇k fα (k)

= (1 + e�α · B)
fα (k) − f eq

α (k)

τ
.

One can now solve for the distribution function fα (k) to obtain
the electrical current as a power series in the magnetic field.

To proceed, it is convenient to rewrite the Boltzmann equa-
tion as

f neq
α (k) = [eτE + e2τ (E · B)�α] · ∇k f eq

α (k),

where f neq
α (k) = fα (k) − f eq

α (k) is the nonequilibrium part of
the distribution function, and f eq

α (k) ≡ f (ε̃α ) is the equilib-
rium part with

f (x) ≡ 1/(1 + exp[β(x − μ)]) (E3)

the Fermi-Dirac distribution function with inverse tempera-
ture β = 1/(kBT ) and chemical potential μ. To first order in
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B, the nonequilibrium part can be obtained as

f neq
α (k) = eτ [1 − e�α · B − eτB · (vα × ∇k )][E + e(E · B)�α] · wα f ′(ε̃α )

= eτ (E · vα ) f ′(εα ) + e2τ [(E · B)(�α · vα ) − (�α · B)(E · vα )] f ′(εα )

− eτ {E · [∇k(mα · B)] f ′(εα ) + (E · vα )(mα · B) f ′′(εα )} − e2τ 2[B · (vα × ∇k )](E · vα ) f ′(εα ).

The electrical current is obtained by integrating over the full phase space using the full distribution function,

j = −e
∑

α

∫
d3k

(2π )3
(1 + e�α · B)ṙ[ f (ε̃α ) + f neq

α (k)]

= −e
∑

α

∫
d3k

(2π )3
[wα − e�α × E + e(vα · �α )B][ f (ε̃α ) + f neq

α (k)].

2. Decomposition of the electrical current

The current j consists of three parts,

j = j0 + jAH + jout. (E4)

The first term j0 is an equilibrium current (typically vanishing) independent of E, which we will not consider here. The second
term jAH describes the (nondissipative) anomalous Hall (AH) current, which requires the presence of an electrical field but is
determined by the equilibrium distribution function; the third term jout is the true out-of-equilibrium current with both dissipative
and nondissipative contributions, determined by the nonequilibrium part of the distribution function. Quantitatively, these two
current contributions are given by

jAH = e2
∑

α

∫
d3k

(2π )3
(�α × E) f (ε̃α ),

jout = −e
∑

α

∫
d3k

(2π )3
[wα + e(vα · �α )B] f neq

α (k).

Let us first focus on jAH. Expanding to linear order in B and introducing an anomalous Hall conductivity tensor as

jAH
i =

∑
j

[
σ AH

i j + σ AH1
i j (B)

]
Ej, (E5)

we have

σ AH
i j = −e2

∑
α

∫
d3k

(2π )3
f (εα )εi jl (�α )l ,

σ AH1
i j (B) = e2

∑
α

∫
d3k

(2π )3
f ′(εα )(mα · B)εi jl (�α )l ,

(E6)

where σ AH
i j is the true anomalous Hall effect (a consequence of the Berry curvature) and σ AH1

i j (B) is a magnetic-field-dependent
quantum geometric correction that also involves the OMM.

Similarly, the out-of-equilibrium conductivity tensor can be defined as

jout
i =

∑
j

σi j (B)Ej, (E7)

with

σi j (B) = σ Drude
i j + σ Lorentz

i j (B) + σ
Berry
i j (B) + σ OMM

i j (B). (E8)

Here σ Drude
i j is the Drude conductivity, σ Lorentz

i j (B) the classical Hall conductivity induced by the Lorentz force, and σ
Berry
i j (B) and

σ OMM
i j (B) are interband contributions induced by Berry curvature and orbital magnetic moment. These tensors take the following

explicit form in terms of band velocity, Berry curvature and OMM:

σ Drude
i j = −e2τ

∑
α

∫
d3k

(2π )3
f ′(εα )(vα )i(vα ) j,

σ Lorentz
i j (B) = e3τ 2

∑
α

∫
d3k

(2π )3
f ′(εα )(vα )i[B · (vα × ∇k )](vα ) j,
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σ
Berry
i j (B) = −e3τ

∑
α

∫
d3k

(2π )3
f ′(εα )

{
(�α · vα )

[
(vα )iB j + (vα ) jBi

]− (�α · B)(vα )i(vα ) j
}
,

σ OMM
i j (B) = e2τ

∑
α

∫
d3k

(2π )3

{
f ′(εα )

[
(vα )i∂ j (mα · B) + (vα ) j∂i(mα · B)

]+ f ′′(εα )(mα · B)(vα )i(vα ) j
}

= e2τ
∑

α

∫
d3k

(2π )3
f ′(εα )

{
1

2

[
(vα )i∂ j (mα · B) + (vα ) j∂i(mα · B)

]− (mα · B)∂ j (vα )i

}
. (E9)

Note that these results for Berry curvature and OMM con-
tributions appear to agree exactly with a microscopic (fully
quantum mechanical) approach, see Eqs. (8) and (12) of
Ref. [71].

APPENDIX F: SEMICLASSICAL MAGNETOTRANSPORT
THEORY FOR MMHS CONTINUUM AND LATTICE

MODELS

We now apply the formalism of Appendix E to MMHS
continuum and lattice models.

1. Application to MMHS continuum models

We now wish to evaluate the conductivity tensors (E6) and
(E9) for the MMHS continuum models (4). More concretely,
we ignore the Drude and Lorentz conductivities, as they de-
pend only on the energy spectrum and are the same as for
a pseudospin-s Hamiltonian Hs(q). We also leave aside the
“magnetic-field-dependent anomalous Hall contribution”, as
it is a higher-order quantum geometric effect that couples
Berry curvature and OMM. The three remaining interesting
contributions are then the true anomalous Hall contribution
σ AH

i j as well as the quantum geometric contributions σ
Berry
i j and

σ OMM
i j .

a. Symmetries of anomalous Hall and quantum
geometric currents

Before evaluating these three contributions explicitly, we
can already infer how they behave as a function of the Fermi
level EF , simply by applying general symmetry considerations
to Eqs. (E6) and (E9).

In particular, for a Weyl semimetal, or in fact for any two-
band system, the Berry curvature has opposite signs in the two
bands, such that the anomalous Hall conductivity of Eq. (E6)
is σ AH

i j ∼ εi jl
∫

d3k[ f (ε+) − f (ε−)](�+)l . If the spectrum is
particle-hole symmetric, ε+ = −ε−, then the AH conductivity
is necessarily even in EF .

We now show that the AH conductivity is odd in EF

for a MMHS. First, for N even, such that there is no flat
band, each pair of bands ±εn contributes an AH conductivity
σ AH

i j,n ∼ εi jl
∫

d3k[ f (εn) + f (−εn)](�n)l , where we have used
that the Berry curvature is symmetric with respect to zero
energy. Rewriting f (εn) + f (−εn) = 1 + gn, where gn is an
odd function of EF , we have

σ AH
i j ∼ εi jl

∫
d3k

N/2∑
n=1

gn(�n)l ,

where we have used
∑N/2

n=1(�n)l = 0. Second, for N odd, such
that there is a flat band, we can conduct a similar procedure to
find

σ AH
i j ∼ εi jl

∫
d3k

⎡
⎣(N−1)/2∑

n=1

(1 + gn)(�n)l + f (0)(�0)l

⎤
⎦

= εi jl

∫
d3k

(N−1)/2∑
n=1

[gn + 1 − 2 f (0)](�n)l ,

where we have used
∑(N−1)/2

n=1 (�n)l = − 1
2 (�0)l . The two

above equations are odd in EF , such that σ AH
i j is odd as

claimed in the main text.
Similar arguments can be applied to σ

Berry
i j and σ OMM

i j in
Eq. (E9). For a particle-hole symmetric two-band system (e.g.,
Weyl semimetal), since the Berry curvature (orbital magnetic
moment) is antisymmetric (symmetric) with respect to zero
energy, both these contributions are ∼( f ′(ε+) − f ′(−ε+)),
i.e., odd functions of EF . In contrast, for the MMHS models,
the Berry curvature (orbital magnetic moment) is symmetric
(antisymmetric) with respect to zero energy, such that σ

Berry
i j

and σ OMM
i j are ∼∑�N/2�

n=1 ( f ′(εn) + f ′(−εn))Fn, that is, even
in EF , as claimed in the main text. Here, Fn is some function
independent of EF , and the flat band for N odd plays no role.

b. Anomalous Hall current

Let us now come to the evaluation of the conductivities (at
zero temperature). For the AH conductivity (E6) we obtain

σ AH
i j = −ξ

e2

6π2

∑
α

κα

∫ qc

0
dq�(EF − cαq)εi jz, (F1)

where we have introduced a momentum cutoff qc to the in-
tegral in order to avoid divergence. This issue is an artefact
of the continuum model and is absent for a lattice model, as
will be shown below. To explicitly compute Eq. (F1), recall
the coefficients cα , κα , and ωα listed in Table I.

Consider first the three-band Hopf semimetal (4a), whose
spectrum is shown in the left column of Fig. 10(a). When
tuning EF , three regions can be distinguished and the AH
conductivity becomes

σ AH
xy = −ξ

e2

6π2

⎧⎨
⎩

0
κ−1(EF + qc)
κ1(EF − qc)

= ξ
e2

6π2

⎧⎨
⎩

0, |EF | > qc

EF + qc, −qc < EF < 0
EF − qc, 0 < EF < qc
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FIG. 10. (a) Schematic energy spectrum of the Hopf semimetal
continuum models H ξ=+

N=3,4,5(q) with Fermi energy EF , momentum
cutoff qc, and band velocities cα indicated. (b) Corresponding anoma-
lous Hall conductivity. For N = 4, we have used band velocities
a = 2, b = 1. For N odd, there is an abrupt sign change at half filling,
with a jump equal to the Berry dipole charge κ0 of the flat band.

where the Berry dipole charges are κ1 = κ−1 = −κ0/2 = −1,
cf. Table I. This conductivity is plotted in Fig. 10(b) and
changes sign abruptly at the flat band, with a jump equal to
the flat band Berry dipole charge κ0 = 2.

Similarly, for the four-band Hopf semimetal (4b), see
Fig. 10(a), four regions can be distinguished as a function of
EF . We find

σ AH
xy = −ξ

e2

6π2

⎧⎪⎪⎨
⎪⎪⎩

0
κ−a(EF /a + qc)
EF (κ−a/a + κ−b/b)
κa(EF /a − qc)

= ξ
e2

6π2

⎧⎪⎪⎨
⎪⎪⎩

0, |EF | > aqc

EF /a + qc, −aqc < EF < −bqc

EF (1/a − 1/b), −bqc < EF < bqc

EF /a − qc, bqc < EF < aqc

with Berry dipole charges κ±a = −1, κ±b = 1. This conduc-
tivity is plotted in Fig. 10(b).

Finally, for the five-band Hopf semimetal (4c), five regions
can be distinguished, with conductivities

σ AH
xy = −ξ

e2

6π2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

κ−√
2(EF /

√
2 + qc)

EF (κ−√
2/

√
2 + κ−1) + (κ0/2)qc

EF (κ√
2/

√
2 + κ1) − (κ0/2)qc

κ√
2(EF /

√
2 − qc)

= ξ
e2

6π2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, |EF | >
√

2qc

3(EF /
√

2 + qc), −√
2qc < EF < −qc

EF (3/
√

2 − 1) + 2qc, −qc < EF < 0

EF (3/
√

2 − 1) − 2qc, 0 < EF < qc

3(EF /
√

2 − qc), qc < EF <
√

2qc

where κ±√
2 = −3, κ±1 = 1, and κ0 = 4, cf. Table I. This is

also plotted in Fig. 10(b). Again, the jump of the conductivity
at half filling is equal to the flat-band Berry dipole charge.

The anomalous Hall conductivity clearly shows three main
features: it is of opposite sign for opposite Berry dipole
orientation ξ , its amplitude explicitly depends on the Berry
dipole charges κα , and it is odd in EF as anticipated from
the above symmetry considerations. For all continuum mod-
els, we may therefore write the general anomalous Hall
current jAH with components jAH

i = ∑
j σ

AH
i j E j in the form

(11), where σAH(EF ) = −σAH(−EF ). Note that we used d =
(0, 0, ξ ).

c. Dissipative quantum geometric current

Beyond the AH effect, we also consider the dissipative
quantum geometric current jgeo with components

jgeo
i =

∑
j

[
σ

Berry
i j (B) + σ OMM

i j (B)
]
Ej, (F2)

cf. Eq. (E9). At zero temperature, the tensors take the form

σ
Berry
i j (B) = ξ

e3τ

30π2

⎛
⎝∑

cα>0

καcα

⎞
⎠
⎛
⎝−Bz 0 4Bx

0 −Bz 4By

4Bx 4By 7Bz

⎞
⎠,

σ OMM
i j (B) = ξ

e3τ

60π2

⎛
⎝∑

cα>0

ωα

⎞
⎠
⎛
⎝ 7Bz 0 −3Bx

0 7Bz −3By

−3Bx −3By Bz

⎞
⎠,

where the coefficients are again listed in Table I. For the
threefold HS (4a), we get

σ
Berry
i j (B) + σ OMM

i j (B) = −ξ
e3τ

12π2

⎛
⎝Bz 0 Bx

0 Bz By

Bx By 3Bz

⎞
⎠,

which corresponds to

jgeo = − e3τ

12π2
[(E · B)d + (E · d)B + (B · d)E], (F3)

where we used d = (0, 0, ξ ). A similar calculation for the
four- and fivefold HSs yields the general result (12).

2. Comparison to lattice calculations

In the case of the AH conductivity, some doubts may arise
as to the validity of the continuum treatment, which requires
using a cutoff. To avoid this issue it is instructive to consider
the AH conductivity on the lattice.

In particular, let us consider the topological MMHS lattice
models hN (k) defined in the main text [see Eq. (19)] for
�0 = −3, where a single nodal point in the Brillouin zone
exists at the � point. Computing the Berry curvature of these
models, one can numerically calculate the AH conductivity at
zero temperature from Eq. (E6). The resulting conductivity
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σ AH
xy (EF ) is plotted in Fig. 3(a). Its qualitative behavior is

exactly like predicted from the continuum theory and from
general symmetry arguments above: it is odd in EF and its
global sign is determined by the direction of the Berry dipole
at the � point.

For comparison and for completeness, we also numerically
compute the AH conductivity for a lattice model featuring a
pair of Weyl nodes. In particular, we take the model [30]

hW(k) = [m(2 − cos kx − cos ky) + 2tz(cos kz − cos k0)]σ1

+ 2tx sin kxσ2 + 2ty sin kyσ3, (F4)

which describes a Weyl semimetal with a pair of nodes at
kW = ±(0, 0, k0). Taking (arbitrary) parameters m = 2, ti =
1, and k0 = π/2, one obtains the anomalous Hall conductivity
shown in Fig. 3(b). As expected from symmetry arguments,
it is even in EF . The same calculation can be repeated for
multifold chiral topological semimetals simply upon replacing
σ → S in the model (F4), and the results (for s = 1 and
s = 3/2) are also shown in Fig. 3(b).

Finally, we have also conducted numerical calculations of
the geometric current jgeo on the lattice (not shown). They
confirm that jgeo is even in EF for the MMHS models (19),
while it is odd in EF for the Weyl semimetal (F4), as claimed
in the main text and as expected by symmetry.

APPENDIX G: HOPF DENSITY AND HOPF NUMBER

1. Calculation of the lattice Hopf number

Here we compute the Hopf number (26) for the insulators
(23). When computing the Hopf density (27), it is important
to note that this density is gauge dependent; however, the
integral (26) is gauge invariant under the condition that the
weak invariants (25) vanish.

For the N = 3 and N = 4 case, using a convenient gauge
choice we find a Hopf density

χ (k) = 12

ε4
(cxcy + cycz + czcx + �cxcycz ), (G1)

where ci = cos ki and si = sin ki. From numerical integration
one obtains

NHopf =
⎧⎨
⎩

0 |�| > 3
1 1 < |�| < 3
−2 0 < |�| < 1

, (G2)

as shown in Fig. 8(a). For the N = 5 model the Hopf density
is more involved; for our gauge choice we have

χ (k) = 12

ε4

{−cxcy + 2cxcz + 2cycz − 2
(
c2

x + c2
y

)
− (cxc2y + cyc2x )cz + 2(cx − cy)sxsysz

+ �[cxcycz − (cxc2y + cyc2x ) − 3(cx + cy)]

−2�2cxcy
}
.

This leads to higher Hopf numbers,

NHopf =
⎧⎨
⎩

0 |�| > 3
5 1 < |�| < 3
−10 0 < |�| < 1

, (G3)

as also shown in Fig. 8(a).

2. Hopf number from a continuum approach

One may be tempted to study the jump δNHopf at the
topological phase transitions shown in Fig. 8 in terms of the
continuum limit Hν (q) of the models (23) around gap-closing
momenta kν , where ν ∈ {�, X, M, R}. In particular, one may
try to define a continuum Hopf number as

NHopf
ν (�ν ) = 1

24π2

∫
R3

d3q χ (q),

χ (q) ≡ εi jkTr[ui(q)u j (q)uk (q)],

= 3Tr

[
A · (∇ × A) − 2i

3
A · (A × A)

]
,

which can be viewed as a multiband generalization of a for-
mula for a “continuum Hopf number” proposed for two-band
systems in Ref. [11]. Here, we have �� = � + 3, �R = � −
3, �X = � + 1, and �M = � − 1. Moreover, A = A(q) =
(Ax(q),Ay(q),Az(q)) is a vector formed from N × N non-
Abelian Berry connection matrices with matrix elements
Ai,αβ (q) = i〈ψα (q)|∂iψβ (q)〉.

We may then aim to compute the jump δNHopf of the Hopf
number at a topological phase transition as the difference
between the continuum Hopf numbers on both sides of the
transition, summed over all points where the gap closes,

δNHopf =
∑

ν

[
NHopf

ν (�ν > 0) − NHopf
ν (�ν < 0)

]
.

This sum consists of one term for the transitions at � and
R, and of three terms for the transitions at X and M. For a
convenient gauge choice, we indeed find that the jumps shown
in Fig. 8(a) can be predicted from the continuum approach
described here. However, the utility of this approach remains
inconclusive, given that the continuum Hopf numbers NHopf

ν

are gauge dependent and should be treated with care.

APPENDIX H: HOPF-HALDANE ANALOGY

We here observe that the MMHSs and MHIs presented in
this paper can be viewed as a family of 3D systems that is quite
analogous to the family of 2D Dirac semimetals and Chern
insulators.

Valley-Dirac semimetal vs valley-Hopf semimetal. Consider
a 2D Dirac semimetal such as graphene [39]. In fact, to be
precise, graphene is an example for a valley-Dirac semimetal,
because it has an even number of linear nodal points in the
Brillouin zone, with “opposite” quantum geometric properties
in the two valleys. More precisely, the Berry curvature van-
ishes everywhere in the Brillouin zone except for singularities
at the two nodal points [72],

�α,xy(k) ∼ ξδ(k − Kξ ). (H1)

Accordingly, the Berry phase computed as a line integral
around these points is given by φα ∼ ξπ .

In a very similar way, the 3D valley-Hopf semimetals (13)
and (16) have two linear nodal points with opposite quantum
geometry. To be more precise, the Hopf density vanishes
everywhere in the Brillouin zone, except for singularities at
these nodal points,

χ (k) ∼ ξδ(k − kν ), (H2)
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FIG. 11. Analogy between 2D Dirac semimetals (2D Chern in-
sulators) and 3D Hopf semimetals (3D Hopf insulators), based on
the number of linear nodal points and the properties of the relevant
topological densities (Berry curvature vs Hopf density).

where kν ∈ {K+, K−} for the model (13) based on hexagonal
layers and kν ∈ {k�, kM} for the model (16) based on square
layers. Additionally, the Berry dipoles have opposite orienta-
tion in the two valleys, d = (0, 0, ξ ). The analogy between
these two kinds of semimetals is visualized in the first row of
Fig. 11.

Topological Dirac semimetal vs topological Hopf
semimetal. Second, consider the topological phase transition
lines in Haldane’s model [62]. We may call the semimetallic
phase along these lines a Haldane semimetal. The Haldane
semimetal is an example for a 2D topological Dirac
semimetal, as it exists at the transition between two insulators
with different Chern number. The Haldane semimetal has
only a single nodal point in the Brillouin zone [73]. The Berry
curvature is peaked at this nodal point, but also nonzero in
other regions of the Brillouin zone.

In a very similar way, the 3D topological Hopf semimetals
(19) exist at the transition between two insulators with differ-
ent Hopf number. They have an odd number of nodal points
in the Brillouin zone. The corresponding Hopf density (for
N = 3, 4) is given by

χ (k) = 12

ε4
(cxcy + cycz + czcx + �0cxcycz ), (H3)

as obtained from Eq. (G1), where �0 ∈ {±1,±3}. It is peaked
at the nodal points but also nonzero away from them. The
analogy is again visualized in the second row of Fig. 11.

Valley-Chern insulator vs valley-Hopf insulator. Third, con-
sider Semenoff’s model [74], which we may view as an
example for a 2D valley-Chern insulator. It has a Berry cur-
vature, which is nonzero in each valley [72], but distributed
such that the Chern number vanishes. By analogy, we may
write down a model for a 3D valley-Hopf insulator as

hv-Hopf
N (k) =

(
0 Qv-Hopf

N(
Qv-Hopf

N

)†
0

)
, (H4)

where the matrices Qv-Hopf
N are obtained from Eq. (23) upon

deleting the cosine terms, for example Qv-Hopf
3 = (s− � −

i sin kz ). We then find a Hopf density

χN=3,4(k) = 12

ε4
�cxcycz, χN=5(k) = 60

ε4
�cxcycz,

where ε2 = s2
x + s2

y + s2
z + �2. It is nonzero throughout the

Brillouin zone but topologically trivial in the sense that the
Hopf number vanishes. This analogy is visualized in the third
row of Fig. 11.

Chern insulator vs Hopf insulator. Finally, a 2D Chern
insulator such as Haldane’s insulator [62] has a nontrivial
Berry curvature that produces a nonzero Chern number. In the
same way, the 3D Hopf insulators (23) have a nontrivial Hopf
density, cf. Eq. (G1), which produces a nonzero Hopf number.
This is visualized in the last row of Fig. 11.
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