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Classification of fermionic topological orders from congruence representations
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Two-dimensional topologically ordered states such as fractional quantum Hall fluids host anyonic excitations,
which are relevant for realizing fault-tolerant topological quantum computers. Classification and characterization
of topological orders have been intensely pursued in both the condensed matter and mathematics literature. These
topological orders can be bosonic or fermionic depending on whether the system hosts fundamental fermionic
excitations or not. In particular, emergent topological orders in usual solid state systems are fermionic topological
orders because the electron is a fermion. Recently, bosonic topological orders have been extensively completely
classified up to rank 6 using representation theory. Inspired by their method, we provide in this paper a systematic
method to classify the fermionic topological orders by explicitly building their modular data, which encodes the
self and mutual statistics between anyons. Our construction of the modular data relies on the fact that the modular
data of a fermionic topological order forms a projective representation of the �θ subgroup of the modular group
SL2(Z). We carry out the classification up to rank 10 and obtain both unitary and nonunitary modular data.
This includes all previously known unitary modular data, and also two new classes of modular data of rank 10.
We also determine the chiral central charges (mod 1

2 ) via a novel method, which does not require the explicit
computation of modular extensions.
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I. INTRODUCTION

Topological orders are gapped systems beyond the Landau
symmetry-breaking paradigm, characterized by long-ranged
entanglement of the ground state, topological ground state
degeneracy, and nontrivial statistics between emergent topo-
logical excitations [1–6]. In (2+1)D in particular, quasipar-
ticle excitations can have statistics other than bosonic or
fermionic, in which case they are called anyons. The emer-
gence of anyons in (2+1)D and their physical properties
have been extensively investigated both in condensed mat-
ter physics and high energy physics [7–10]. For example,
they are at the heart of the physics of important condensed
matter systems such as fractional quantum Hall states and
gapped spin liquids [2,11–17]. In addition to being of theo-
retical interest, the physics of anyons is highly relevant for
the realization of the fault-tolerant quantum computation, i.e.,
topological quantum computation [8,14,18,19]. In spite of the
strong interest in the study of anyons, a complete classifica-
tion of possible topological orders hosting anyons has proven
elusive.

The bulk topological properties of (2+1)D topological
orders can be completely characterized by the fusion and
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braiding properties of its anyonic excitations [6,7,21]. Math-
ematically, the types of anyons together with their fusion and
braiding properties form a structure known as a braided fu-
sion category (BFC) [6,22,23]. When the fundamental degrees
of freedom in the theory are bosonic (we may neverthe-
less get emergent fermions), the corresponding mathematical
structure is called a modular tensor category (MTC), but
when the fundamental degrees of freedom contain fermions
[24,25], we get a supermodular tensor category (super-MTC)
[22,26]. (We note that there also exists a different formalism
of super pivotal categories for studying fermionic topoloigcal
orders [27,28].) While such bosonic and fermionic theories
are intimately related via a process called modular extension
[22,29], an intrinsically fermionic classification for fermionic
topological orders is both conceptually illuminating and com-
putationally more efficient. Indeed, for well-known condensed
matter systems built out of elections, such as the Laughlin
state at filling ν = 1/3, or more generally the odd K matrix
Abelian fractional quantum Hall states [30,31], an intrinsi-
cally fermionic description as a super-MTC is more natural.
Super-MTC can also be symmetry-enriched, and their anoma-
lies will be related to (3+1)D fermionic symmetry-protected
topological phases [32]. Hence, the study of super-MTCs is of
broad interest.

We note that there are different physical topological orders
which share the same BFC data, related by stacking with
invertible topological orders. Invertible topological orders are
systems with no nontrivial bulk topological excitations or
ground state degeneracy but which nevertheless cannot be
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deformed smoothly to the trivial product state, and support
gapless edge modes (see, e.g., Refs. [16,22] for a review of the
concept). This means they carry a chiral central charge c but
do not affect the bulk anyon data. For fermionic topological
orders, all invertible topoloigcal orders (in the absence of
symmetry) are stacks of the p + ip superconductor, which
carry Majorana edge modes giving c = 1

2 [21,33]. Thus we
can fully specify a 2 + 1D fermionic topological order via
(C, c), where C is the super-MTC representing its anyon data
and c tells us how many layers of the p + ip superconductor
are present [22].

In spite of the interest in BFCs, a direct classification of
the defining data of BFCs is known to be prohibitively dif-
ficult because of huge gauge redundancies. Thus attempts at
classification have instead focused on the so-called modular
data (MD) of BFCs, which consist of the so-called S and T
matrices. The S matrix encodes the mutual statistics of the
anyons, while the T matrix encodes their self-statistics. The
dimension of these matrices—or, equivalently, the number
of distinct types of anyons—is called the rank of the MD
(or of the corresponding BFC). For example, the topological
properties of the Kitaev toric code are described by a rank
4 MTC, while the Ising MTC is rank 3 [7,14]. Although the
MD do not provide a complete classification of BFCs, known
examples of BFCs which cannot be distinguished by their MD
only occur at very high rank [34,35], and since the MD are
gauge invariant they are much more amenable to classifica-
tion. See Refs. [36–40] for the previous efforts in this line of
thinking.

Recently, Ref. [20] has introduced a method which uses
representations of SL2(Z) to classify the MD of MTCs, i.e.,
bosonic topological orders, and used it to classify MD up to
rank 6. They make use of the fact that every MD given by
a pair (S, T ) forms a projective congruence representation
of SL2(Z) [41]. Since every congruence representation of
SL2(Z) can be constructed explicitly [42,43], this gives us a
list of candidates from which valid MD can be constructed,
and leads to the most complete classification of bosonic topo-
logical orders so far obtained.

There have also been attempts to classify super-MTCs,
which characterize fermionic topological orders. The fusion
rules of unitary super-MTCs have been completely classified
up to rank 6 [39] and partially for rank 8 [40], while their
explicit MD have been partially classified in Ref. [22].

We go beyond these results and obtain a classification of
fermionic MD up to rank 10. Our classification is complete
up to some “unresolved” cases (details will be explained in
Sec. III B 1). We recover all previously known unitary MD
[22,39,40] and obtain nonunitary MD, which had previously
not been classified. Furthermore, we discover two completely
new classes of MD with a previously unknown fusion rule.
The new types of MD are primitive in that they are not ob-
tained from stacking other theories, and they contain large
fusion coefficients N̂k

i j = 3 or 4, and large total quantum di-
mensions, larger than that of any MD discovered by Ref. [6].

Moreover, our method allows us to identify the central
charge modulo 1

2 of all these theories, without having to
compute their modular extensions. It had been known that, in
principle, a super-MTC determines the chiral central charge
mod 1

2 (stacking with fermionic invertible topological orders

can change c by multiples of 1
2 without affecting the super-

MTC data, so c only has meaning modulo 1
2 for a given

super-MTC), but due to a lack of an explicit formula relating
the MD to the central charge in the fermionic case, previous
results could only identify c through the bosonic MTC ob-
tained by modular extension [22]. Since modular extensions
are in general difficult to compute for a given super-MTC,
it is advantageous to be able to identify c without explicit
reference to modular extensions. Our classification method
based on congruence representation is in fact able to do this,
as will be explained in Sec. III B 3.

The starting point of our method is the result of Ref. [44]
that the MD of the fermionic quotient of a super-MTC form
projective congruence representations of �θ , a subgroup of
SL2(Z) generated by [26] s = (0 −1

1 0 ) and t2, where t =
(1 1
0 1). Thus, if we have a list of congruence representations

of �θ , we could hope to do something similar to the bosonic
classification of MD carried out in Ref. [20]. We do exactly
that, by first obtaining the list of �θ congruence representa-
tions using representation theory, and then constructing and
checking potential MD from the representations.

In Sec. II, we introduce super-MTCs and some known
facts about them which shall be relevant for our classifica-
tion procedure. In Sec. III, we state the necessary theorems
which allow us to obtain all congruence representations of �θ

(Sec. III A), and explain how to construct MD from �θ rep-
resentations (Sec. III B). We present and compare our results,
which classify fermionic MD up to rank 10, to previous results
in Sec. III C.

II. CATEGORICAL DESCRIPTION OF FERMIONIC
TOPOLOGICAL ORDERS

A. Fermionic topological orders, supermodular tensor
categories, and spin modular tensor categories

Fermionic topological orders are zero temperature phases
beyond Landau’s symmetry breaking paradigm, realized in
a fermionic many-body system [22]. In (2+1)D, fermionic
topological orders (up to invertible topological orders) are
characterized by the fusion rules and braiding statistics of
emergent pointlike excitations (anyons) together with the fun-
damental fermionic excitation. The fusion and braiding of
these excitations form a categorical structure, known as a
super-MTC [22,26].

A super-MTC is a ribbon fusion category with its non-
trivial transparent object isomorphic to the local fermion
object f . We refer to Ref. [26] for details of super-MTCs,
and only introduce some key properties necessary for our
purposes. Physically, “transparent” means that f has trivial
mutual statistics with any other pointlike excitations. The
simple objects of a super-MTC always come in pairs, as for
any anyon a, f ⊗ a is a distinct object. Hence the rank, or
the number of anyons, of a super-MTC is always even. The
subcategory of transparent objects (the Müger center) of a
super-MTC is sVec, the category of supervector spaces. The
trivial super-MTC is equivalent to sVec, and we shall denote it
as F0.

The full physical data of a fermionic topological order
(up to stacking with invertible bosonic topological orders) is
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specified by a spin modular tensor category (spin MTC),
which is a modular extension of a super-MTC [22,26]. A
spin MTC is simply a regular MTC which contains a distin-
guished excitation f which is fermionic (d f = 1, θ f = −1).
Restricting to anyons which have trivial double braiding with
f (including f itself), we obtain a super-MTC. For example,
the Laughlin fractional quantum Hall states at filling fraction
ν = 1

m with odd m are described by the U (1)4m MTC, which
has anyons labeled by l = 0, 1, · · · , 4m − 1. The l = 2m
anyon is the distinguished fermion, and the corresponding
super-MTC consists of even labels l [26].

Conversely, given a super-MTC B, we can add anyons
which braid nontrivially with the fermion f to build a
spin MTC (with nondegenerate S matrix) M, and M is
called a modular extension of B. If M has smallest pos-
sible total quantum dimension D2

M = 2D2
B, it is called a

minimal modular extension. In the sequel, modular extension
will always mean minimal modular extension unless stated
otherwise.

Given a super-MTC, a modular extension always exists
[45], and there are always 16 different modular exten-
sions [29]. In other words, a super-MTC does not uniquely
determine its modular extension. However, the modular ex-
tensions can be distinguished by their central charge c.
The 16 different modular extensions will have different c
mod 8, with c differing by multiples of 1/2. Thus, in-
stead of specifying a spin MTC, we may instead specify the
same physical data by specifying a super-MTC together with
c mod 8.

B. Fermionic modular data and congruence
representations of �θ

As for MTCs, a full characterization of super-MTCs re-
quires gauge-dependent data called R and F tensors. The
MD S and T matrix are gauge-invariant and much easier to
classify, while they give only a partial characterization: there
may be multiple inequivalent fusion categories with the same
MD [34] and even if we find candidate MD which satisfy the
necessary conditions explained below, it remains to explicitly
construct and prove the existence of a fusion category which
gives rise to such MD. However, the MD capture a large part
of the physical properties of interest [22], and the conditions
are stringent enough that they allow us to narrow down the list
of candidates considerably.

The S matrix of a super-MTC is always degenerate. How-
ever, it is known that the MD of a super-MTC always admit a
tensor decomposition [22,26]

S = 1√
2

(
1 1
1 1

)
⊗ Ŝ, T =

(
1 0
0 −1

)
⊗ T̂ (1)

where Ŝ is unitary. Given T , T̂ is not well-defined, but T̂ 2

is. We can always uniquely determine (Ŝ, T̂ 2) in terms of
(S, T ) and vice versa, so we refer to them interchangeably as
fermionic MD, and also simply as MD when no confusion
with the bosonic case should arise.

The decomposition in Eq. (1) allows us to make use of Ŝ
and T̂ 2, which are unitary matrices. These together generate a
projective representation of a subgroup �θ of SL2(Z) [22,26].
The fact only T̂ 2 is well-defined reflects the fact that the

topological spins of anyons are defined modulo 1
2 due to

existence of the local fermion f . Mathematically, it is because
�θ is generated by s and t2.

In Ref. [44], it was shown that any projective �θ rep-
resentation arising from a super-MTC (assuming that the
super-MTC admits a modular extension) is a congruence rep-
resentation, i.e., its kernel contains a principal congruence
subgroup of SL2(Z). The definition and properties of congru-
ence representations will be detailed in Appendix C. In the
sequel, any representation we mention will be assumed to be
congruence unless otherwise stated.

Physically, this �θ representation contains information
about the NS-NS sector states of the theory. In the bosonic
case, topological orders have a Hilbert space of states on the
torus, whose dimension corresponds to the number of anyon
types. The S and T matrices describe how these states trans-
form under modular transformations of the torus, which form
an SL2(Z) representation. Similarly, fermionic topological
orders carry a space of states on the torus, but the theory is
now sensitive to the spin structure. The torus with NS-NS spin
structure carries a number of states corresponding to half the
rank of the super-MTC, and under modular transformations
of the torus which preserve the NS-NS spin structure (which
forms �θ ), they transform precisely as a �θ representation
given by Ŝ and T̂ 2 [46].

For the full physical data including those of the R-R sector
(the NS-R and R-NS sectors can actually be obtained from
the NS-NS sector through modular transformations), we need
the modular extension. As discussed in Sec. II A, the modular
extension can be specified by giving the central charge mod 8.
The advantage of this approach is that instead of working with
higher rank SL2(Z) representations, we can work with �θ

representations of much lower rank. A modular extension M
of a super-MTC B satisfies 3

2 rank B � rank M � 2 rank B
[26]. Moreover, the important information about the mod-
ular data of the super-MTC B is actually captured by the
�θ representation formed by Ŝ and T̂ 2, whose dimension is
1
2 rank B. For example, consider super-MTCs of rank 10. The
corresponding spin MTCs will have rank between 15 and 20;
however, the corresponding �θ representation is merely of
dimension 5. Thus, describing fermionic topological orders
as a pair (B, c) of a super-MTC and central charge mod 8,
as opposed to describing them with a spin MTC M, greatly
facilitates their classification.

III. CLASSIFICATION OF FERMIONIC
TOPOLOGICAL ORDERS

A. Classification of congruence representations

A complete list of irreducible representations of the modu-
lar group SL2(Z), organized either by level or by dimension,
can be obtained from Ref. [43]. In this section, we explain
how to obtain the representations of �θ from those of SL2(Z).

1. Representations of a subgroup

Consider a finite group G and its subgroup H < G. Sup-
pose we have a representation of G, denoted by R. Then we
can obtain a representation of H , denoted by ResG

H R, by re-
striction, which simply means that we limit ourselves to R(h)
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such that h ∈ H . If ResG
H R of an irreducible representation R

is again irreducible, both R and ResG
H R are of the same di-

mension and we say that ResG
H R is extendable. In other words,

any irreducible representation of H which is extendable can
be obtained by restriction.

On the other hand, given any representation π of H , we
can construct an induced representation IndG

Hπ of G (this is
unique for a given π ). While not every irreducible represen-
tation of H is extendable, every representation of H can be
induced to a representation of G. Restriction and induction are
“adjoint” to each other due to a property known as Frobenius
reciprocity. Roughly speaking, Frobenius reciprocity states
that the induced representation of π decomposes as a direct
sum of irreducible representations Ri of G, where each irre-
ducible representation appears with the multiplicity mi equal
to the number of times its restriction to H contains π . As a
corollary, every irreducible representation of H is contained in
the restriction of some irreducible representation of G. There-
fore, by Frobenius reciprocity, we can obtain every irreducible
representation of �θ from restriction of irreducible represen-
tations of SL2(Z). Readers interested in mathematical details
are invited to Appendix D.

An explicit description of induced representations is given
as follows. Let π : H → GL(V ) be a representation of H < G
on a vector space V . Let N = [H : G] be the index of H in G
and {gi}N

i=1 be the full set of representatives of left cosets in
G/H . The G representation IndG

Hπ acts on the vector space
W = ⊕N

i=1 giV , i.e., N copies of V . For any g ∈ G, its action
on W is given by the following. First, for each coset gi, g ·
gi = g j(i)hi for some (possibly different) coset corresponding
to g j(i) and hi ∈ H . Once we have fixed the set {gi}n

i=1 of coset
representatives, the decomposition is unique. Second, the g-
action permutes the cosets according to gi �→ g j(i). Moreover,
on each subspace giV , hi acts by π (hi ).

2. Computation of congruence representations of �θ

How do these results apply to the case at hand? Both
SL2(Z) and �θ are infinite, noncompact groups. However,
SL2(Zn) and �θ/�(n) are finite groups for every n, and
�θ/�(n) < SL2(Zn). Here, �(n) is the level-n principal con-
gruence subgroup. Note that n is always an even number
because �θ itself is a level-2 congruence subgroup.

Given an SL2(Z) representation R of level n, we can
restrict it to �θ straightforwardly. Denote the restricted repre-
sentation by R|�θ

. Since ker R � �(n), ker R|�θ
� �θ ∩ �(n).

As previously mentioned, �(n) < �θ for every even n, thus
�θ ∩ �(n) = �(n) if n is even and �(2n) if n is odd. On
the other hand, ker R|�θ

cannot contain �(n′) for n′ < n; if
it were the case, we could think of R|�θ

as a representation of
�θ/�(n′) and induce it to a representation of SL2(Zn′ ). Frobe-
nius reciprocity ensures the induced representation contains
R, but this contradicts the fact that R is of level n. Hence the
level of R|�θ

is n (if n is even) or 2n (if n is odd).
As a consequence, every irreducible representation of

�θ/�(n) (where n is always even) can be obtained from the
decomposition into irreducible representations of the restric-
tion of irreducible representations of SL2(Zn) and SL2(Zn/2).
In other words, every congruence irreducible representation
of �θ can be obtained from restricting and decomposing the

congruence irreducible representations of SL2(Zn). This is the
key result which enables us to obtain the full list of congru-
ence representations of �θ up to a given dimension.

In order to facilitate the computation, we make explicit use
of induction. For simplicity, we shall speak of the induction
from �θ to SL2(Z) in the sequel, but technically this should al-
ways be understood as an induction from �θ/�(n) to SL2(Zn),
which are both finite groups. Note that N = [�θ : SL2(Z)] =
[�θ/�(n) : SL2(Zn)] = 3 [47], so that if we start with a d-
dimensional representation of �θ/�(n), the dimension of the
induced representation is always 3d .

A choice of left coset representatives of �θ < SL2(Z)
is given by {1, t, st}. Let us denote the �θ representation
by ρ : �θ → GL(V ), and its induced representation by R :
SL2(Z) → GL(W ). If the action of ρ on V is represented by
the matrices ρ(s) = S and ρ(t2) = T2, then the action of R
on W = V ⊕ tV ⊕ stV is given by the matrices R(s) = S and
R(t) = T which take the block form

S =

⎛
⎜⎝
S 0 0

0 0 S2

0 1 0

⎞
⎟⎠, T =

⎛
⎜⎝

0 T2 0

1 0 0

0 0 (ST2)−1

⎞
⎟⎠. (2)

This explicit form of the induced representation allows us to
efficiently compute d-dimensional irreducible representations
of �θ coming from 3d-dimensional irreducible representa-
tions of SL2(Z), using the reverse induction formula detailed
in Appendix B. The restriction to �θ means the generators are
now

S =

⎛
⎜⎝
S 0 0

0 0 S2

0 1 0

⎞
⎟⎠, T 2 =

⎛
⎜⎜⎝
T2 0 0

0 T2 0

0 0 (ST2)−2

⎞
⎟⎟⎠.

(3)

Note that the restriction of the induced representation indeed
contains the original representation of �θ in the first block.

Frobenius reciprocity heavily constrains which irreducible
representations of SL2(Z) give rise to an irreducible represen-
tation of �θ of a given dimension d . Consider a d-dimensional
irreducible representation ρ of �θ . Its induced representation
takes the form

Indρ =
⊕

i

miRi (4)

for some irreducible representations R of SL2(Z), which in
turn satisfy

ResRi = miρ ⊕ · · · (5)

for each i. Since dim Indρ = 3d , Indρ (if it is not 3d-
dimensional) can only decompose as 3d = d + d + d (in
which case ρ is extendable), or (d + a) + (2d − a) for some
0 � a � d . The (d + a)-dimensional irreducible representa-
tion Rd+a satisfies ResRd+a = ρ ⊕ σ ⊕ · · · where σ can at
most be a-dimensional. Indσ should in turn contain Rd+a, so
we need

3a � dim Indσ � dim Rd+a = d + a. (6)
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FIG. 1. Flowchart of computation of �θ representations.

This translates to a � d/2, or

d + a � 3
2 d. (7)

On the other hand, if a > d/2, then 2d − a < 3d/2, so the
(2d − a)-dimensional irreducible representation R2d−a would
not satisfy the above requirements. Hence we need exactly
a = d/2, or, in other words,

d + a = 3
2 d. (8)

Thus, for any given ρ, either its induced representation is
a 3d-dimensional irreducible representation of SL2(Z), or it
decomposes into two 3d/2-dimensional irreducible represen-
tations of SL2(Z). When d is odd, the latter possibility is
precluded as 3d/2 is not an integer.

For example, if we are interested in obtaining four-
dimensional irreducible representations of �θ , we should look
at the restrictions of (i) four-dimensional SL2(Z)-irreps (these
give rise to extendable irreps), (ii) six-dimensional SL2(Z)-
irreps, and (iii) 12-dimensional SL2(Z)-irreps and obtain their
irreducible components.

When the spectrum of T is degenerate, the reverse induc-
tion formula is difficult to be utilized due to the freedom
of orthogonal transformation in the degenerate subspace.
Fortunately, at least for d � 5, the 3d-dimensional irre-
ducible representations of SL2(Z) which have degenerate T
are not induced representations. However, (3d/2 + 3d/2)-
dimensional representations should always have degenerate
T ; otherwise, they cannot be valid MD. Thus we directly
block-diagonalize the restricted representations (i.e., S and
T 2) simultaneously to get irreducible representations of �θ .
Schematic flowchart of �θ representation computing process
is shown in Fig. 1.

We compute all congruence irreducible representations
of �θ up to dimension 5. The number of irreducible rep-
resentations for each dimension is shown in Table IV. For
comparison, the number of irreducible representations of
SL2(Z) for each dimension is shown as well.

B. Construction of fermionic modular data

Once we have obtained all irreducible representations of �θ

from those of SL2(Z), using methods outlined in Sec. III A 2,
we can use them to construct candidate MD. As in bosonic
case [20], we first construct a �θ representation ρisum for a
given dimension d as a direct sum of irreducible �θ represen-
tations. Then, by applying an orthogonal transformation U ,
we put it into a specific basis which makes it a candidate for
an MD. After obtaining the list of candidates, we can check
the necessary conditions for being a valid MD of a super-
MTC, such as the Verlinde formula and the Frobenius-Schur

indicator condition. In this work, we carry this program out
up to dimension 5 (which corresponds to super-MTCs of rank
10).

1. Basis transformation and resolved representations

The MD (Ŝ, T̂ 2) are basis-dependent quantities, and even
if (Ŝ, T̂ 2) form a reducible representation, the corresponding
super-MTC may be indecomposable. Thus, if we are inter-
seted in fermionic MD (Ŝ, T̂ 2) of dimension d , we need
to look at all d-dimensional representations of �θ (includ-
ing reducible ones), in all possible valid bases. Following
Ref. [20], we denote by ρisum the direct sum of irreducible
representations in the basis coming from our list of symmetric
irreducible representations �θ (in their case ρisum denotes a
direct sum of irreducible SL2(Z) representations), and ρ =
UρisumU −1 the basis-changed version, which is a candidate
for the MD. More precisely, ρ is a linear lift of the projective
representation formed by (Ŝ, T̂ 2).

There are several conditions for a valid basis. First, ρ(t2)
should be diagonal. As our irreducible representations of �θ

are all in this form, this condition is automatically satisfied
by any ρisum. In orther to preserve this under a transforma-
tion UρisumU −1, U can only act block-diagonally, where each
block corresponds to a degenerate subspace of the eigenvalues
of ρ(t2). Second, we require that ρ(s) is symmetric. As ρisum

is always symmetric, we need U to be an orthogonal matrix.
(To make each step clear, we think of U as a combination
of a signed diagonal matrix V and an orthogonal matrix U0,
i.e., U = VU0.) Lastly, ρ(s) should not have zeros in the
first row (or, equivalenly, the column, since it is symmetric),
i.e., ∀i, ρ(s)1i �= 0, corresponding to the fact that quantum
dimensions cannot be zero. This leads to the t2-spectrum
condition, which states that whenever ρisum is a direct sum, the
t2-spectrum of each direct summand should have nonempty
overlap [37]. (In Ref. [37], authors deal with SL2(Z) represen-
tations and hence the t-spectrum, rather than the t2-spectrum,
but the idea is the same.)

Accordingly, for a given dimension, we build ρisum and
organize them into types, according to how much overlap
their t-spectra have. For example, for dimension 4, we con-
sider the following types of ρisum: 4-d irreps, (3+1)-d type
(2), (2+2)-d type (2), (2+2)-d type (2,2), (2+1+1)-d type
(2,2), and (2+1+1)-d type (3,1). Here, type (a, b) denotes
that the eigenvalues of ρisum(t2) (hence ρ(t2)) overlap in sets
of sizes a and b. For example, if the four eigenvalues are
{1, 1, 1,−1}, the representation is of type (3,1). In dimension
5, (1+1+1+1+1)-d type (5) does not yield any valid MD.
We prove in Appendix G that a direct sum of one-dimensional
representations can only give rise to split (hence nonprimitive)
super-MTCs.

We observe that when ρisum is irreducible, the t2-spectrum
is nondegenerate, at least up to dimension 5, so there is no
further possibility of orthogonal transformation U0 available.
In such a case we simply perform all possible signed diagonal
transformations, V ρisumV −1, which gives us the candidate ρ.
On the other hand, when ρisum is a direct sum, the t2-spectrum
is degenerate, and in each degenerate eigenspace of dimension
dθ (corresponding to the topological spin θ ) we can perform
an orthogonal transformation of dimension dθ .
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The possible orthogonal transformations are in fact heavily
constrained for the so-called “resolved representations” [20],
for which the degenerate eigenspace can be “resolved” (i.e.,
the degeneracy lifted) by the set of matrices

H (a) = ρ(s)2ρ(t)−(a−1)ρ(s)(ρ(t)2ρ(s))ā−1ρ(t)−(a−1)ρ(s)
(9)

where a is an element of Z×
n which satisfies θa2 = θ . Here,

n is the level of the representation ρ, and ā is the inverse of
a modulo n, i.e., aā ≡ 1 mod n. Due to a theorem related to
Galois conjugation [48], each H (a) should be a signed per-

muation for a valid ρ. The theorem is proved for the bosonic
case, but using the existence of a modular extension, we can
extend the result to fermionic case. The fact that H (a) has
to be a signed permutation matrix after the orthogonal trans-
foramtion U0 places severe constraints on what U0 can be for
resolved representations. For details, see Sec. C.1 of Ref. [20].
We apply their logic to the fermionic case, and find that we
need only consider the follwoing orthogonal transformations
for the resolved degenerate eigenspaces (as mentioned above
and in Appendix G, we need not consider a five-dimensional
eigenspace). For a two-dimensional subspace,

(
cos φ − sin φ

sin φ cos φ

)
(10)

with φ = 0, π/4,−π/4. For a three-dimensional subspace,⎛
⎜⎝

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎞
⎟⎠,

⎛
⎜⎝

cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ

⎞
⎟⎠,

⎛
⎜⎝

1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞
⎟⎠ (11)

with φ = 0, π/4,−π/4. For a four-dimensional subspace,⎛
⎜⎜⎜⎜⎝

cos φ − sin φ 0 0

sin φ cos φ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

cos φ 0 − sin φ 0

0 1 0 0

sin φ 0 cos φ 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos φ − sin φ 0

0 sin φ cos φ 0

0 0 0 1

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

cos φ 0 0 − sin φ

0 1 0 0

0 0 1 0

sin φ 0 0 cos φ

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 cos φ 0 − sin φ

0 0 1 0

0 sin φ 0 cos φ

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos φ − sin φ

0 0 sin φ cos φ

⎞
⎟⎟⎟⎟⎠

(12)

with φ = 0, π/4,−π/4.

Hence, for resolved representations, there are only a dis-
crete set of possible candidates for MD. The vast majority
of known valid MD come from resolved representations—in
fact, up to rank 8, for which there is a more or less complete
classification for unitary super-MTCs, all but one of them
come from resolved representations (the one exception cor-
responds to the toric code stacked with the trivial fermionic
theory, 4B

0 � F0). For rank 10, a few of the known unitary
super-MTCs are obtained from unresolved representations.
We discuss how we obtained them, as well as their nonunitary
versions, and our general (though incomplete) strategy for
dealing with unresolved representations, in Appendix E.

2. From linear to projective representations and modular data

Once we obtain the candidate linear representations ρ =
UρisumU −1, we can easily construct the MD by

Ŝ = |ρ(s)11|
ρ(s)11

ρ(s)11, T̂ 2 = ρ(t2)

ρ(t2)11
(13)

where the vacuum corresponds to the first index. The MD
(Ŝ, T̂ 2) now only satisfy the relations of the congruence rep-
resentation projectively, and the level may change.

The linear representation ρ may be thought of as a lift of
the projective representation formed by Ŝ and T̂ 2 to a linear
representation. If every projective representation of �θ formed
by MD admits such a linear lift, then we can claim that our
search for MD is complete, since we begin with a complete list
of linear representations of a given dimension. For SL2(Z),
the existence of linear lifts of the projective reprsentations
formed by bosonic MD is guaranteed [48]. We state a similar
theorem for fermionic MD and �θ .

Theorem III.1. Suppose ρ̃ is a projective representation of
�θ formed by the fermionic MD (Ŝ, T̂ 2) of a super-MTC B,
i.e., ρ̃(s) = Ŝ and ρ̃(t2) = T̂ 2. Then, ρ̃ always admits a lift to
a linear congruence representation of �θ .

For brevity, we detail the proof of theorem III.1 in
Appendix F.

After obtaining the candidate (Ŝ, T̂ 2) via Eq. (13), we
check whether they are valid using the Verlinde formula

N̂ i j
k =

∑
l∈	0

Ŝil Ŝ jl Ŝ∗
kl

Ŝ1l
(14)

where the nonnegative integer fusion coefficients N̂ i j
k

form a fusion ring, and the Frobenius-Schur indicator
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condition

±1 = ν2(a) = 2

D2

∑
j,k∈	0

N̂ jk
a d jdk

(
θ j

θk

)2

(15)

for any self-dual anyon a (i.e., an anyon which satisfies ā =
a). Here, 	0 is the label set of anyons, di = Ŝ1i is the quantum
dimension of anyon i, θi = T̂ii = e2iπsi where si is the topo-
logical spin of anyon i, and D =

√∑
i d2

i is the total quantum
dimension.

In addition, we check the balancing equation (A3). While
the Verlinde formula and the Frobenius-Schur indicator con-
ditions can be checked in terms of the fusion rules N̂k

i j of the
fermionic quotient, to check the balancing equation we need
the full fusion rules Nk

i j . Checking the balancing equation then
is really a question of asking: given the N̂k

i j , obtained from our
candidate Ŝ, can we construct Nk

i j satisfying Eq. (A3) such that
the balancing equation is satisfied? We find that, sometimes
there are two very similar MD (with identical lists of spins
and quantum dimensions) with minor differences in some of
the entries of Ŝ, and that only one of the Ŝ is consistent with
the balancing equation. Hence the balancing equation helps us
pin down the correct Ŝ matrix.

3. Central charge from linear representations

A strength of our approach is that we can determine the
central charge of the resulting super-MTC, which is defined
modulo 1/2. For bosonic MTCs, whose central charge is de-
fined modulo 8, the approach of congruence representations
confers no additional advantage as it is straightforward to
determine the central charge from the modular matrices S and
T via (ST )3 = e2iπc/8S2. In the fermionic case, where S is de-
generate, and (Ŝ, T̂ 2) only form a projective representation of
�θ rather than SL2(Z), it is impossible to determine c from the
given MD by themselves using only the group relations of �θ .

Rather, for super-MTCs, c is defined in terms of the cen-
tral charge of the modular extensions [22]. While the central
charge of each modular extension is defined modulo 8, there
are 16 different modular extensions for a given super-MTC (as
a consequence of theorem 5.4 of Ref. [29]) with their central
charges differing by multiples of 1/2 [26], so c is defined
modulo 1/2 for a super-MTC. This means that, in order to
compute the central charge of a super-MTC, we first need
to compute (one of) the modular extensions. The modular
extensions are bosonic MTCs of much higher rank (see lemma
4.2 of Ref. [39] for an explicit bound on the rank), and their
computation is a highly nontrivial task.

Our approach, which begins first with linear representa-
tions and then constructs the projective representations, allows
us to determine the central charge of the super-MTCs we
obtain without having to compute their modular extensions.
The key idea is that the central charge of the modular exten-
sions is involved in the lift of the fermionic MD to a linear
representation. (See Appendix F.)

For each MD (Ŝ, T̂ 2), if ρ(t2) = e−2iπc/12T̂ 2 furnishes a
linear lift, then e−2iπ (c+m/2)/12T̂ 2 also furnishes a linear lift.
Hence there are at least 24 different linear representations
(up to tensor product with one-dimensional representations,
which does not affect the central charge) for a given MD.

In our classification process, we start with a complete list
of linear representations which can potentially yield valid
MD. Thus our list of linear representations must include these
linear lifts coming from the existence of minimal modular ex-
tensions, i.e., for every projective representation formed by a
given MD, there are at least 24 different linear representations
which all lead to it. If there are exactly 24, their c should differ
by multiples of 1/2, and this fixes the c of the super-MTC
modulo 1/2.

More concretely, consider a particular pair (Ŝ, T̂ 2). We
keep track of which linear representations ρα gave raise to this
MD. These ρα differ from one another by a phase of ρα (t2). If
we find that there are 24 such ρα with ρα (t2) = e2iπα/12ρ0(t2),
where ρ0 is a chosen reference representation, and α come in
steps of 1/2, then we can fix c modulo 1/2. For every MD,
we obtain, this has been the case, enabling us to determine c
modulo 1/2.

C. Comparison to previous results

The results of the classification are summarized in Tables
I–IX. Let us compare our results to previous results in the
literature. First, previous results (for any rank) were limited to
unitary MD, but we obtain both unitary and nonunitary MD.
We find that for every non-Abelian fusion rule, there are both
unitary and nonunitary MD realizing it (for comparison, in the
bosonic case, every non-Abelian fusion rule up to rank 5 has
both a unitary and nonunitary realization [20,49]). We expect
that the nonunitary MD are related by Galois conjugation to
the unitary MD. Moreover, in the unitary case, we recover all
previously known MD [22].

In addition, we obtain two completely new fusion rules
of rank 10, and unitary and nonunitary MD realizing it (Ta-
ble IX). The unitary MD for these fusion rules have total
quantum dimension D2 = 472.379 or 475.151, which are
much larger than any previously known total quantum di-
mension for rank 10 [22]. The new MD are non-Abelian and
primitive, and do not fall into (the fermion condensation of)
any known series of MTCs [50]. One may ask whether these
new MD are in fact realizable by a super-MTC. The answer
is yes. First, in a work to be published [51], we compute the
minimal modular extensions (on the level of bosonic modular
data) for these MD. If we assume that those bosonic MD are
realizable by MTCs, these fermionic MD are also realizable
by super-MTCs through fermion condensation. Moreover, re-
cently, inspired by the arXiv version of the present paper,
Ref. [52] has used the Drinfeld centers of near-group fusion
categories to construct super-MTC realizing these new MD.
Their construction is explicit for representative cases, and
others are believed to be closely related to these via Galois
conjugation. Hence it is reasonable to believe that these new
MD all realizable. These new MD involve largest fusion co-
efficient N̂ i j

k = 3 or 4. For comparison, all previously known
examples of rank 10 MD had the bound N̂ i j

k � 2.
The classification of rank 8 fusion rules by Ref. [40] had to

place some bounds on the fusion coefficients in certain cases,
though the bounds are very generous (N̂ i j

k � 14 or N̂ i j
k � 21).

Our method places no such bound on the fusion coefficients,
and yet do not find new fusion rules of rank 8; this is evidence
for the results of Ref. [40] being complete.
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TABLE I. List of rank 4 fermionic MD. Shaded data are of nonunitary MD. MD in the same box share the same (fermionic quotient) fusion
rule. They may be related by Galois conjugation. For simplicity of notation, we have introduced ζ m

n = sin[π (m+1)/(n+2)]
sin[π/(n+2)] and χm

n = m + √
n. In

the last column, we comment on whether the MD is obtained from stacking, or is primitive. Data of non-Abelian bosonic MD are retrieved
from Supplementary Material of Ref. [20], and given the notation RankB

# , while Abelian MD, which are taken from Table 11 of Ref. [6] and
specified by RankB

c . RankB,∗
c refer to nonunitary analogues of the unitary Abelian MD. We also note the cases where the primitive MD are

obtained from fermion condensation (“f.c.”) of known affine Lie algebra constructions.

# c D2 Quantum dimensions Topological spins Comments

1 0 4 1,1,1,1 0, 1
2 , 1

4 ,− 1
4 F0 � 2B

1

2 0 4 1, 1, −1, −1 0, 1
2 , 1

4 ,− 1
4 F0 � 2B,∗

1

3 1
5 7.2360 1, 1, ζ 1

3 , ζ 1
3 0, 1

2 , 1
10 , − 2

5 F0 � 2B
#2

4 − 1
5 7.2360 1, 1, ζ 1

3 , ζ 1
3 0, 1

2 , − 1
10 , 2

5 F0 � 2B
#1

5 1
10 2.762 1, 1, − 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , − 1

5 , 3
10 F0 � 2B

#4

6 − 1
10 2.762 1, 1, − 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , 1

5 ,− 3
10 F0 � 2B

#3

7 1
4 13.656 1, 1, χ 1

2 , χ 1
2 0, 1

2 , 1
4 ,− 1

4 Primitive: f.c. of (A1)6

8 1
4 2.343 1, 1, − 1

χ1
2
, − 1

χ1
2

0, 1
2 , 1

4 ,− 1
4 Primitive

The arXiv version of Ref. [22] listed some MD which did
not have valid modular extensions, colored in red. These do
not appear in our classification as they do not form congruence
representations. Our method automatically excludes such spu-
rious MD without having to independently check the existence
of modular extensions. Moreover, as noted in Sec. III B 3, we
find central charges modulo 1/2 for every MD we obtain.
Previously, the central charge data was missing for several
MD of rank 8 and rank 10 in Ref. [22].

IV. CONCLUSION

In this paper, we have detailed a procedure to classify the
MD of super-MTCs using congruence representations, and
have provided a full classification of both unitary and nonuni-
tary MD up to rank 10. The classification is complete up to
potential new MD coming from unresolved representations.
Our result includes every unitary MD hitherto obtained, and
also includes nonunitary MD. We also find new primitive MD
of rank 10 with completely new fusion rules.

TABLE II. List of rank 6 fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

1 0 6 1,1,1,1,1,1 0, 1
2 , 1

6 , − 1
3 , 1

6 , − 1
3 F0 � 3B

2

2 0 6 1,1,1,1,1,1 0, 1
2 ,− 1

6 , 1
3 , − 1

6 , 1
3 F0 � 3B

−2

3 0 8 1, 1, 1, 1,
√

2,
√

2 0, 1
2 , 0, 1

2 , 1
16 ,− 7

16 F0 � 3B
#7 = F0 � 3B

#9

4 0 8 1, 1, 1, 1,
√

2,
√

2 0, 1
2 , 0, 1

2 , − 1
16 , 7

16 F0 � 3B
#8 = F0 � 3B

#10

5 0 8 1, 1, 1, 1,
√

2,
√

2 0, 1
2 , 0, 1

2 , 3
16 ,− 5

16 F0 � 3B
#15 = F0 � 3B

#17

6 0 8 1, 1, 1, 1,
√

2,
√

2 0, 1
2 , 0, 1

2 , − 3
16 , 5

16 F0 � 3B
#16 = F0 � 3B

#18

7 0 8 1, 1, 1, 1, −√
2, −√

2 0, 1
2 , 0, 1

2 , − 3
16 , 5

16 F0 � 3B
#12 = F0 � 3B

#14

8 0 8 1, 1, 1, 1, −√
2, −√

2 0, 1
2 , 0, 1

2 , − 1
16 , 7

16 F0 � 3B
#20 = F0 � 3B

#22

9 0 8 1, 1, 1, 1, −√
2, −√

2 0, 1
2 , 0, 1

2 , 1
16 ,− 7

16 F0 � 3B
#19 = F0 � 3B

#21

10 0 8 1, 1, 1, 1, −√
2, −√

2 0, 1
2 , 0, 1

2 , 3
16 ,− 5

16 F0 � 3B
#11 = F0 � 3B

#13

11 1
7 18.591 1, 1, ζ 1

5 , ζ 1
5 , ζ 2

5 , ζ 2
5 0, 1

2 ,− 1
7 , 5

14 , − 3
14 , 2

7 F0 � 3B
#2

12 − 1
7 18.591 1, 1, ζ 1

5 , ζ 1
5 , ζ 2

5 , ζ 2
5 0, 1

2 , 1
7 , − 5

14 , 3
14 , − 2

7 F0 � 3B
#1

13 − 3
14 5.724 1, 1, − ζ 2

5
ζ 1

5
,− ζ 2

5
ζ 1

5
, 1

ζ 1
5
, 1

ζ 1
5

0, 1
2 , 3

14 ,− 2
7 , 1

14 , − 3
7 F0 � 3B

#5

14 1
14 3.682 1, 1, − ζ 1

5
ζ 2

5
, − ζ 1

5
ζ 2

5
, 1

ζ 2
5
, 1

ζ 2
5

0, 1
2 , 1

7 , − 5
14 , − 1

14 , 3
7 F0 � 3B

#3

15 − 1
14 3.682 1, 1, − ζ 1

5
ζ 2

5
, − ζ 1

5
ζ 2

5
, 1

ζ 2
5
, 1

ζ 2
5

0, 1
2 , − 1

7 , 5
14 , 1

14 , − 3
7 F0 � 3B

#6

16 3
14 5.724 1, 1, − ζ 2

5
ζ 1

5
,− ζ 2

5
ζ 1

5
, 1

ζ 1
5
, 1

ζ 1
5

0, 1
2 ,− 3

14 , 2
7 , − 1

14 , 3
7 F0 � 3B

#4

17 0 44.784 1, 1, χ 1
3 , χ 1

3 , χ 2
3 , χ 2

3 0, 1
2 , − 1

6 , 1
3 , 0, 1

2 Primitive: f.c. of (A1)−10

18 0 44.784 1, 1, χ 1
3 , χ 1

3 , χ 2
3 , χ 2

3 0, 1
2 , 1

6 , − 1
3 , 0, 1

2 Primitive: f.c. of (A1)10

19 0 3.2154 1, 1, − χ1
3

χ2
3
, − χ1

3
χ2

3
, 1

χ2
3
, 1

χ2
3

0, 1
2 , − 1

6 , 1
3 , 0, 1

2 Primitive

20 0 3.2154 1, 1, − χ1
3

χ2
3
, − χ1

3
χ2

3
, 1

χ2
3
, 1

χ2
3

0, 1
2 , 1

6 , − 1
3 , 0, 1

2 Primitive
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TABLE III. List of rank 8 fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

1 0 8 1,1,1,1,1,1,1,1 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 1

2 F0 � 4B,a
0

2 0 8 1, 1, 1, 1, −1, −1, −1, −1 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 1

2 F0 � 4B,a,∗
0

3 0 8 1,1,1,1,1,1,1,1 0, 1
2 , 0, 1

2 , 1
8 ,− 3

8 , 1
8 , − 3

8 F0 � 4B
1

4 0 8 1,1,1,1,1,1,1,1 0, 1
2 , 0, 1

2 , − 1
8 , 3

8 , − 1
8 , 3

8 F0 � 4B
3

5 0 8 1, 1, −1, −1, −1, −1, 1, 1 0, 1
2 , 0, 1

2 , − 1
8 , 3

8 , − 1
8 , 3

8 F0 � 4B,∗
3

6 0 8 1, 1, −1, −1, −1, −1, 1, 1 0, 1
2 , 0, 1

2 , 1
8 ,− 3

8 , 1
8 , − 3

8 F0 � 4B,∗
1

7 0 8 1,1,1,1,1,1,1,1 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 F0 � 4B,b
0

8 0 8 1, 1, −1, −1, −1, −1, 1, 1 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 F0 � 4B,b,∗1
0

9 0 8 1, 1, 1, 1, −1, −1, −1, −1 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 F0 � 4B,b,∗2
0

10 1
5 14.472 1, 1, 1, 1, ζ 1

3 , ζ 1
3 , ζ 1

3 , ζ 1
3 0, 1

2 , 1
4 , − 1

4 , 1
10 , − 2

5 , − 3
20 , 7

20 F0 � 4B
#18 = F0 � 4B

#20

11 − 1
5 14.472 1, 1, 1, 1, ζ 1

3 , ζ 1
3 , ζ 1

3 , ζ 1
3 0, 1

2 , 1
4 , − 1

4 , 3
20 , − 7

20 ,− 1
10 , 2

5 F0 � 4B
#17 = F0 � 4B

#19

12 − 1
5 14.472 1, 1, −1, −1, −ζ 1

3 , −ζ 1
3 , ζ 1

3 , ζ 1
3 0, 1

2 , 1
4 , − 1

4 , 3
20 , − 7

20 ,− 1
10 , 2

5 F0 � 4B
#26 = F0 � 4B

#27

13 1
10 5.528 1, 1, −1, −1, − 1

ζ 1
3
, − 1

ζ 1
3
, 1

ζ 1
3
, 1

ζ 1
3

0, 1
2 , 1

4 , − 1
4 , − 1

5 , 3
10 , 1

20 , − 9
20 F0 � 4B

#25 = F0 � 4B
#29

14 1
10 5.528 1, 1, 1, 1, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , 1

4 , − 1
4 , 1

20 ,− 9
20 , − 1

5 , 3
10 F0 � 4B

#22 = F0 � 4B
#24

15 − 1
10 5.528 1, 1, −1, −1, − 1

ζ 1
3
, − 1

ζ 1
3
, 1

ζ 1
3
, 1

ζ 1
3

0, 1
2 , 1

4 , − 1
4 , 1

5 , − 3
10 , − 1

20 , 9
20 F0 � 4B

#28 = F0 � 4B
#32

16 − 1
10 5.528 1, 1, 1, 1, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , 1

4 , − 1
4 , 1

5 , − 3
10 , − 1

20 , 9
20 F0 � 4B

#21 = F0 � 4B
#23

17 1
5 14.472 1, 1, −1, −1, −ζ 1

3 , −ζ 1
3 , ζ 1

3 , ζ 1
3 0, 1

2 , 1
4 , − 1

4 , − 3
20 , 7

20 , 1
10 , − 2

5 F0 � 4B
#30 = F0 � 4B

#31

18 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 1
16 , − 7

16 Primitive

19 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , − 1
16 , 7

16 Primitive

20 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 3
16 , − 5

16 Primitive: f.c. of (D6)2

21 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , − 3
16 , 5

16 Primitive

22 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , 1
16 , − 7

16 Primitive

23 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , − 1
16 , 7

16 Primitive

24 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , 3
16 , − 5

16 Primitive

25 0 24 1, 1, 1, 1, 2, 2,
√

6,
√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , − 3
16 , 5

16 Primitive: f.c. of (D6)−2

26 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , − 1
16 , 7

16 Primitive

27 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , − 1
16 , 7

16 Primitive

28 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , − 3
16 , 5

16 Primitive

29 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 3
16 , − 5

16 Primitive

30 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , 1
16 , − 7

16 Primitive

31 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 1
16 , − 7

16 Primitive

32 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , − 3
16 , 5

16 Primitive

33 0 24 1, 1, 1, 1, 2, 2, −√
6, −√

6 0, 1
2 , 0, 1

2 , − 1
6 , 1

3 , 3
16 , − 5

16 Primitive

The generalization to higher rank should be straightfor-
ward. There are several advantages to our approach compared
to other approaches [22,39,40]: (1) we do not need to place
any bound on either the fusion coefficients or the total quan-
tum dimension, (2) by treating unitary and nonunitary MD on
an equal footing, we can easily obtain nonunitary as well as
unitary MD, (3) we can determine the central charge without

TABLE IV. Number of congruence irreducible representations of
SL2(Z) and �θ .

d 1 2 3 4 5

SL2(Z) 12 54 136 180 36

�θ 96 600 416 2436 288

having to compute the modular extensions explicitly, and (4)
spurious MD which do not admit a modular extension (see
arXiv version of Ref. [22]) are automatically excluded.

Another advantage is that it allows to focus on nonsplit
super-MTCs. In this paper, we have included split super-
MTCs as well as nonsplit super-MTCs to illustrate the power
of this approach, but a classification of split super-MTCs
are redundant since they follow trivially from the classifi-
cation of MTCs. By excluding representations ρisum which
are projectively extendable, we can automatically get rid of
this redundancy and obtain a only the MD of nonsplit super-
MTCs. A weakness of our approach is that it is difficult to
handle unresolved representations. In practice, a judicious
choice of orthogonal transformations allows us to obtain some
valid MD even from unresolved representations. Thus we
cannot claim the completeness of our classification. We leave
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TABLE V. List of rank 8 fermionic MD. Continued. In the Comments, 4F
#n refers to the nth entry of our rank 4 fermionic MD table I.

# c D2 Quantum dimensions Topological spins Comments

34 − 1
10 26.180 1, 1, ζ 1

3 , ζ 1
3 , ζ 1

3 , ζ 1
3 , ζ 2

8 , ζ 2
8 0, 1

2 , 1
10 , − 2

5 , 1
10 , − 2

5 , 1
5 , − 3

10 F0 � 4B
#2

35 0 26.180 1, 1, ζ 1
3 , ζ 1

3 , ζ 1
3 , ζ 1

3 , ζ 2
8 , ζ 2

8 0, 1
2 , 1

10 , − 2
5 , − 1

10 , 2
5 , 0, 1

2 F0 � 4B
#5

36 1
10 26.180 1, 1, ζ 1

3 , ζ 1
3 , ζ 1

3 , ζ 1
3 , ζ 2

8 , ζ 2
8 0, 1

2 ,− 1
10 , 2

5 , − 1
10 , 2

5 , − 1
5 , 3

10 F0 � 4B
#1

37 0 3.820 1, 1, − 1
ζ 1

3
, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, 1

ζ 2
8
, 1

ζ 2
8

0, 1
2 , 1

5 , − 3
10 , − 1

5 , 3
10 , 0, 1

2 F0 � 4B
#6

38 − 1
5 3.820 1, 1, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, 1

ζ 2
8
, 1

ζ 2
8

0, 1
2 , 1

5 , − 3
10 , 1

5 , − 3
10 , − 1

10 , 2
5 F0 � 4B

#3

39 1
5 3.820 1, 1, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, − 1

ζ 1
3
, 1

ζ 2
8
, 1

ζ 2
8

0, 1
2 , − 1

5 , 3
10 ,− 1

5 , 3
10 , 1

10 , − 2
5 F0 � 4B

#4

40 − 1
5 10 1, 1, −1, −1, − 1

ζ 1
3
, − 1

ζ 1
3
, ζ 1

3 , ζ 1
3 0, 1

2 ,− 1
10 , 2

5 , − 1
5 , 3

10 , 1
10 , − 2

5 F0 � 4B
#10

41 − 1
10 10 1, 1, −1, −1, − 1

ζ 1
3
, − 1

ζ 1
3
, ζ 1

3 , ζ 1
3 0, 1

2 , − 1
5 , 3

10 , 1
5 , − 3

10 , 1
10 , − 2

5 F0 � 4B
#9

42 1
10 10 1, 1, −1, −1, − 1

ζ 1
3
, − 1

ζ 1
3
, ζ 1

3 , ζ 1
3 0, 1

2 , 1
5 , − 3

10 ,− 1
5 , 3

10 , − 1
10 , 2

5 F0 � 4B
#8

43 1
5 10 1, 1, −1, −1, − 1

ζ 1
3
, − 1

ζ 1
3
, ζ 1

3 , ζ 1
3 0, 1

2 , 1
10 , − 2

5 , 1
5 , − 3

10 , − 1
10 , 2

5 F0 � 4B
#7

44 1
4 27.313 1, 1, 1, 1, χ 1

2 , χ 1
2 , χ 1

2 , χ 1
2 0, 1

2 , 1
4 , − 1

4 , 0, 1
2 , 1

4 ,− 1
4 4F

#7 � 2B
1

45 1
4 27.313 1, 1, −1, −1, −χ 1

2 , −χ 1
2 , χ 1

2 , χ 1
2 0, 1

2 , 1
4 , − 1

4 , 0, 1
2 , 1

4 ,− 1
4 4F

#7 � 2B,∗
1

46 1
4 4.6863 1, 1, −1, −1, − 1

χ1
2
, − 1

χ1
2
, 1

χ1
2
, 1

χ1
2

0, 1
2 , 1

4 , − 1
4 , 1

4 , − 1
4 , 0, 1

2 4F
#8 � 2B

1

47 1
4 4.6863 1, 1, 1, 1, − 1

χ1
2
, − 1

χ1
2
,− 1

χ1
2
, − 1

χ1
2

0, 1
2 , 1

4 , − 1
4 , 0, 1

2 , 1
4 ,− 1

4 4F
#8 � 2B,∗

1

48 1
6 38.468 1, 1, ζ 1

7 , ζ 1
7 , ζ 2

7 , ζ 2
7 , ζ 3

7 , ζ 3
7 0, 1

2 , 1
6 , − 1

3 ,− 2
9 , 5

18 , − 1
6 , 1

3 F0 � 4B
#12

49 − 1
6 38.468 1, 1, ζ 1

7 , ζ 1
7 , ζ 2

7 , ζ 2
7 , ζ 3

7 , ζ 3
7 0, 1

2 , − 1
6 , 1

3 , 2
9 , − 5

18 , 1
6 ,− 1

3 F0 � 4B
#11

50 − 1
6 10.890 1, 1, − ζ 3

7
ζ 1

7
, − ζ 3

7
ζ 1

7
, − ζ 3

7
ζ 1

7
, − ζ 3

7
ζ 1

7
,

ζ 2
7

ζ 1
7
,

ζ 2
7

ζ 1
7

0, 1
2 , − 1

6 , 1
3 , 1

6 , − 1
3 , 1

18 , − 4
9 F0 � 4B

#15

51 − 1
6 4.640 1, 1, − ζ 2

7
ζ 3

7
, − ζ 2

7
ζ 3

7
, − 1

ζ 3
7
, − 1

ζ 3
7
,

ζ 1
7

ζ 3
7
,

ζ 1
7

ζ 3
7

0, 1
2 , − 1

9 , 7
18 , − 1

6 , 1
3 , 1

6 , − 1
3 F0 � 4B

#16

52 1
6 10.890 1, 1, − ζ 3

7
ζ 1

7
, − ζ 3

7
ζ 1

7
, − ζ 3

7
ζ 1

7
, − ζ 3

7
ζ 1

7
,

ζ 2
7

ζ 1
7
,

ζ 2
7

ζ 1
7

0, 1
2 , 1

6 , − 1
3 ,− 1

6 , 1
3 , − 1

18 , 4
9 F0 � 4B

#14

53 1
6 4.640 1, 1, − ζ 2

7
ζ 3

7
, − ζ 2

7
ζ 3

7
, − 1

ζ 3
7
, − 1

ζ 3
7
,

ζ 1
7

ζ 3
7
,

ζ 1
7

ζ 3
7

0, 1
2 , 1

9 ,− 7
18 , 1

6 , − 1
3 , − 1

6 , 1
3 F0 � 4B

#13

TABLE VI. List of rank 8 fermionic MD. Continued.

# c D2 Quantum dimensions Topological spins Comments

54 − 1
20 49.410 1, 1, ζ 1

3 ζ 2
6 , ζ 1

3 ζ 2
6 , ζ 2

6 , ζ 2
6 , ζ 1

3 , ζ 1
3 0, 1

2 , − 3
20 , 7

20 , 1
4 , − 1

4 , 1
10 ,− 2

5 4F
#7 � 2B

#2

55 1
20 49.410 1, 1, ζ 1

3 ζ 2
6 , ζ 1

3 ζ 2
6 , ζ 2

6 , ζ 2
6 , ζ 1

3 , ζ 1
3 0, 1

2 , 3
20 , − 7

20 , 1
4 , − 1

4 , − 1
10 , 2

5 4F
#7 � 2#1

56 − 1
20 8.478 1, 1, − ζ 1

3
ζ 2

6
, − ζ 1

3
ζ 2

6
, − 1

ζ 2
6
, − 1

ζ 2
6
, ζ 1

3 , ζ 1
3 0, 1

2 , 3
20 , − 7

20 , 1
4 , − 1

4 , − 1
10 , 2

5 4F
#8 � 2B

#1

57 − 3
20 18.873 1, 1, − ζ 2

6
ζ 1

3
, − ζ 2

6
ζ 1

3
, ζ 2

6 , ζ 2
6 ,− 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , 1

20 , − 9
20 , 1

4 ,− 1
4 ,− 1

5 , 3
10 4F

#7 � 2B
#4

58 − 3
20 3.2381 1, 1, 1

ζ 1
3 ζ 2

6
, 1

ζ 1
3 ζ 2

6
,− 1

ζ 2
6
, − 1

ζ 2
6
, − 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , 1

20 , − 9
20 , 1

4 ,− 1
4 ,− 1

5 , 3
10 4F

#8 � 2B
#4

59 3
20 18.873 1, 1, − ζ 2

6
ζ 1

3
, − ζ 2

6
ζ 1

3
, ζ 2

6 , ζ 2
6 ,− 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , − 1

20 , 9
20 , 1

4 ,− 1
4 , 1

5 , − 3
10 4F

#7 � 2B
#3

60 3
20 3.2381 1, 1, 1

ζ 1
3 ζ 2

6
, 1

ζ 1
3 ζ 2

6
,− 1

ζ 2
6
, − 1

ζ 2
6
, − 1

ζ 1
3
, − 1

ζ 1
3

0, 1
2 , − 1

20 , 9
20 , 1

4 ,− 1
4 , 1

5 , − 3
10 4F

#8 � 2B
#3

61 − 1
20 8.478 1, 1, − ζ 1

3
ζ 2

6
, − ζ 1

3
ζ 2

6
, − 1

ζ 2
6
, − 1

ζ 2
6
, ζ 1

3 , ζ 1
3 0, 1

2 , − 3
20 , 7

20 , 1
4 , − 1

4 , 1
10 ,− 2

5 4F
#8 � 2B

#2

62 0 93.254 1, 1, χ 1
2 , χ 1

2 , χ 1
2 , χ 1

2 , χ 3
8 , χ 3

8 0, 1
2 , 1

4 , − 1
4 , 1

4 ,− 1
4 , 0, 1

2 4F
#7 �F0 4F

#7

63 0 16 1, 1, −1, −1, − 1
χ1

2
,− 1

χ1
2
, χ 1

2 , χ 1
2 0, 1

2 , 0, 1
2 , 1

4 ,− 1
4 , 1

4 , − 1
4 4F

#7 �F0 4F
#8

64 0 2.7452 1, 1, 1
(χ1

2 )2 , 1
(χ1

2 )2 , − 1
χ1

2
, − 1

χ1
2
, − 1

χ1
2
, − 1

χ1
2

0, 1
2 , 0, 1

2 , 1
4 ,− 1

4 , 1
4 , − 1

4 4F
#8 �F0 4F

#8

65 − 1
8 105.09 1, 1, ζ 2

14, ζ
2
14, ζ

4
14, ζ

4
14, ζ

6
14, ζ

6
14 0, 1

2 ,− 1
8 , 3

8 , 1
8 , − 3

8 , 1
4 , − 1

4 Primitive: f.c. of (A1)−14

66 1
8 105.09 1, 1, ζ 2

14, ζ
2
14, ζ

4
14, ζ

4
14, ζ

6
14, ζ

6
14 0, 1

2 , 1
8 , − 3

8 , − 1
8 , 3

8 , 1
4 , − 1

4 Primitive: f.c. of (A1)14

67 1
8 12.959 1, 1, − ζ 4

14
ζ 2

14
, − ζ 4

14
ζ 2

14
, 1

ζ 2
14

, 1
ζ 2

14
,

ζ 6
14

ζ 2
14

,
ζ 6

14
ζ 2

14
0, 1

2 , 1
4 , − 1

4 , − 1
8 , 3

8 , 1
8 , − 3

8 Primitive

68 − 1
8 12.959 1, 1, − ζ 4

14
ζ 2

14
, − ζ 4

14
ζ 2

14
, 1

ζ 2
14

, 1
ζ 2

14
,

ζ 6
14

ζ 2
14

,
ζ 6

14
ζ 2

14
0, 1

2 , 1
4 , − 1

4 , 1
8 , − 3

8 ,− 1
8 , 3

8 Primitive

69 1
8 5.7859 1, 1, − ζ 6

14
ζ 4

14
, − ζ 6

14
ζ 4

14
, 1

ζ 4
14

, 1
ζ 4

14
,

ζ 2
14

ζ 4
14

,
ζ 2

14
ζ 4

14
0, 1

2 ,− 1
8 , 3

8 , 1
8 , − 3

8 , 1
4 , − 1

4 Primitive

70 − 1
8 5.7859 1, 1, − ζ 6

14
ζ 4

14
, − ζ 6

14
ζ 4

14
, 1

ζ 4
14

, 1
ζ 4

14
,

ζ 2
14

ζ 4
14

,
ζ 2

14
ζ 4

14
0, 1

2 , 1
8 , − 3

8 , − 1
8 , 3

8 , 1
4 , − 1

4 Primitive

71 − 1
8 4.1583 1, 1, − ζ 4

14
ζ 6

14
, − ζ 4

14
ζ 6

14
, − 1

ζ 6
14

, − 1
ζ 6

14
,

ζ 2
14

ζ 6
14

,
ζ 2

14
ζ 6

14
0, 1

2 ,− 1
8 , 3

8 , 1
4 ,− 1

4 , 1
8 , − 3

8 Primitive

72 1
8 4.1583 1, 1, − ζ 4

14
ζ 6

14
, − ζ 4

14
ζ 6

14
, − 1

ζ 6
14

, − 1
ζ 6

14
,

ζ 2
14

ζ 6
14

,
ζ 2

14
ζ 6

14
0, 1

2 , 1
8 , − 3

8 , 1
4 ,− 1

4 ,− 1
8 , 3

8 Primitive
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TABLE VII. List of rank 10 fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

1 0 10 1,1,1,1,1,1,1,1,1,1 0, 1
2 , 1

10 ,− 2
5 , 1

10 , − 2
5 , 2

5 , − 1
10 , 2

5 ,− 1
10 F0 � 5B

4

2 0 10 1,1,1,1,1,1,1,1,1,1 0, 1
2 , 1

5 , − 3
10 , 1

5 , − 3
10 , 3

10 , − 1
5 , 3

10 , − 1
5 F0 � 5B

0

3 0 24 1, 1, 1, 1,
√

3,
√

3,
√

3,
√

3, 2, 2 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 Primitive: f.c. of (A1)−4 � U (1)4

4 0 24 1, 1, 1, 1,
√

3,
√

3,
√

3,
√

3, 2, 2 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 1

2 , 1
3 , − 1

6 Primitive: f.c. of (A1)4 � U (1)−4

5 0 24 1, 1, 1, 1, −√
3, −√

3, −√
3,−√

3, 2, 2 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 Primitive

6 0 24 1, 1, 1, 1, −√
3, −√

3, −√
3,−√

3, 2, 2 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 1

2 , 1
3 , − 1

6 Primitive

7 0 24 1, 1, 1, 1,
√

3,
√

3,
√

3,
√

3, 2, 2 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 , 1
6 , − 1

3 Primitive: f.c. of (A1)−4 � 4B
3

8 0 24 1, 1, 1, 1,
√

3,
√

3,
√

3,
√

3, 2, 2 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 , 1
3 , − 1

6 Primitive: f.c. of (A1)4 � 4B
−3

9 0 24 1, 1, 1, 1, −√
3, −√

3, −√
3,−√

3, 2, 2 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 , 1
6 , − 1

3 Primitive

10 0 24 1, 1, 1, 1, −√
3, −√

3, −√
3,−√

3, 2, 2 0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 , 1
3 , − 1

6 Primitive

11 0 24 1, 1, 1, 1, 2, 2,
√

3,
√

3,
√

3,
√

3 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 1
8 , − 3

8 , 1
8 , − 3

8 F0 � 5B
#5

12 0 24 1, 1, 1, 1, 2, 2,
√

3,
√

3,
√

3,
√

3 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 3
8 , − 1

8 , 3
8 , − 1

8 F0 � 5B
#2

13 0 24 1, 1, 1, 1, 2, 2,
√

3,
√

3,
√

3,
√

3 0, 1
2 , 0, 1

2 , 1
3 , − 1

6 , 1
8 , − 3

8 , 1
8 , − 3

8 F0 � 5B
#1

14 0 24 1, 1, 1, 1, 2, 2,
√

3,
√

3,
√

3,
√

3 0, 1
2 , 0, 1

2 , 1
3 , − 1

6 , 3
8 , − 1

8 , 3
8 , − 1

8 F0 � 5B
#6

15 0 24 1, 1, 1, 1, 2, 2, −√
3,−√

3,−√
3, −√

3 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 1
8 , − 3

8 , 1
8 , − 3

8 F0 � 5B
#4

16 0 24 1, 1, 1, 1, 2, 2, −√
3,−√

3,−√
3, −√

3 0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 3
8 , − 1

8 , 3
8 , − 1

8 F0 � 5B
#8

17 0 24 1, 1, 1, 1, 2, 2, −√
3,−√

3,−√
3, −√

3 0, 1
2 , 0, 1

2 , 1
3 , − 1

6 , 1
8 , − 3

8 , 1
8 , − 3

8 F0 � 5B
#7

18 0 24 1, 1, 1, 1, 2, 2, −√
3,−√

3,−√
3, −√

3 0, 1
2 , 0, 1

2 , 1
3 , − 1

6 , 3
8 , − 1

8 , 3
8 , − 1

8 F0 � 5B
#3

19 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 1
16 ,− 7

16 Primitive

20 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 3
16 ,− 5

16 Primitive: f.c. of (D10)2

21 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 5
16 ,− 3

16 Primitive: f.c. of (D10)−2

22 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 7
16 ,− 1

16 Primitive

23 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 1
16 , − 7

16 Primitive

24 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 3
16 , − 5

16 Primitive

25 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 5
16 , − 3

16 Primitive

26 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√

10,
√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 7
16 , − 1

16 Primitive

27 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 1
16 ,− 7

16 Primitive

28 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 3
16 ,− 5

16 Primitive

29 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 5
16 ,− 3

16 Primitive

30 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
10 , − 2

5 , 2
5 , − 1

10 , 7
16 ,− 1

16 Primitive

31 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 1
16 , − 7

16 Primitive

32 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 3
16 , − 5

16 Primitive

33 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 5
16 , − 3

16 Primitive

34 0 40 1, 1, 1, 1, 2, 2, 2, 2, −√
10, −√

10 0, 1
2 , 0, 1

2 , 1
5 ,− 3

10 , 3
10 , − 1

5 , 7
16 , − 1

16 Primitive

a complete treatment of unresolved representations to a future
work.

Congruence representations also appear in rational con-
formal field theories (RCFTs): it is known that characters
of RCFTs transform as representations of SL2(Z), and that
these representations are congruence [48]. Reference [53] has
used this idea to classify characters of bosonic RCFTs, and
Ref. [54] has used congruence representations of subgroups
of SL2(Z) to carry out a similar classification program for
fermionic RCFTs. It would be interesting to flesh out the
bulk-boundary relation between super-MTCs and fermionic
RCFTs, along the lines of Refs. [55–57] which dealt with
the bosonic case. In a future work [51], we will make this
connection by explicitly computing the modular extensions of
super-MTCs.
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TABLE VIII. List of rank 10 fermionic MD. Continued.

# c D2 Quantum dimensions Topological spins Comments

35 1
22 69.2929 1, 1, ζ 1

9 , ζ 1
9 , ζ 2

9 , ζ 2
9 , ζ 3

9 , ζ 3
9 , ζ 4

9 , ζ 4
9 0, 1

2 , 2
11 , − 7

22 , 7
22 , − 2

11 , 9
22 ,− 1

11 , 5
11 , − 1

22 F0 � 5B
#15

36 − 1
22 69.2929 1, 1, ζ 4

9 , ζ 4
9 , ζ 3

9 , ζ 3
9 , ζ 2

9 , ζ 2
9 , ζ 1

9 , ζ 1
9 0, 1

2 , 1
22 , − 5

11 , 1
11 ,− 9

22 , 2
11 , − 7

22 , 7
22 , − 2

11 F0 � 5B
#16

37 5
22 5.6137 1, 1, − ζ 1

9
ζ 4

9
, − ζ 1

9
ζ 4

9
, − ζ 3

9
ζ 4

9
, − ζ 3

9
ζ 4

9
,

ζ 2
9

ζ 4
9
,

ζ 2
9

ζ 4
9
, 1

ζ 4
9
, 1

ζ 4
9

0, 1
2 , 1

22 , − 5
11 , 1

11 ,− 9
22 , 3

11 , − 5
22 , 9

22 , − 1
11 F0 � 5B

#23

38 − 5
22 5.6137 1, 1, 1

ζ 4
9
, 1

ζ 4
9
,

ζ 2
9

ζ 4
9
,

ζ 2
9

ζ 4
9
, − ζ 3

9
ζ 4

9
,− ζ 3

9
ζ 4

9
, − ζ 1

9
ζ 4

9
, − ζ 1

9
ζ 4

9
0, 1

2 , 1
11 , − 9

22 , 5
22 , − 3

11 , 9
22 ,− 1

11 , 5
11 , − 1

22 F0 � 5B
#18

39 2
11 6.64709 1, 1,

ζ 4
9

ζ 3
9
,

ζ 4
9

ζ 3
9
, − ζ 2

9
ζ 3

9
, − ζ 2

9
ζ 3

9
, − 1

ζ 3
9
, − 1

ζ 3
9
, − ζ 1

9
ζ 3

9
, − ζ 1

9
ζ 3

9
0, 1

2 , 3
22 , − 4

11 , 5
22 , − 3

11 , 3
11 , − 5

22 , 7
22 , − 2

11 F0 � 5B
#22

40 − 2
11 6.64709 1, 1, − ζ 1

9
ζ 3

9
, − ζ 1

9
ζ 3

9
, − 1

ζ 3
9
, − 1

ζ 3
9
,− ζ 2

9
ζ 3

9
, − ζ 2

9
ζ 3

9
,

ζ 4
9

ζ 3
9
,

ζ 4
9

ζ 3
9

0, 1
2 , 2

11 , − 7
22 , 5

22 , − 3
11 , 3

11 , − 5
22 , 4

11 , − 3
22 F0 � 5B

#19

41 3
22 9.62957 1, 1,

ζ 4
9

ζ 2
9
,

ζ 4
9

ζ 2
9
,− 1

ζ 2
9
, − 1

ζ 2
9
, − ζ 3

9
ζ 2

9
,− ζ 3

9
ζ 2

9
,

ζ 1
9

ζ 2
9
,

ζ 1
9

ζ 2
9

0, 1
2 , 1

22 , − 5
11 , 5

22 , − 3
11 , 4

11 , − 3
22 , 5

11 , − 1
22 F0 � 5B

#20

42 − 3
22 9.62957 1, 1,

ζ 1
9

ζ 2
9
,

ζ 1
9

ζ 2
9
,− ζ 3

9
ζ 2

9
, − ζ 3

9
ζ 2

9
, − 1

ζ 2
9
,− 1

ζ 2
9
,

ζ 4
9

ζ 2
9
,

ζ 4
9

ζ 2
9

0, 1
2 , 1

22 , − 5
11 , 3

22 , − 4
11 , 3

11 , − 5
22 , 5

11 , − 1
22 F0 � 5B

#21

43 1
11 18.8168 1, 1,

ζ 4
9

ζ 1
9
,

ζ 4
9

ζ 1
9
, − ζ 2

9
ζ 1

9
, − ζ 2

9
ζ 1

9
, − ζ 3

9
ζ 1

9
, − ζ 3

9
ζ 1

9
, 1

ζ 1
9
, 1

ζ 1
9

0, 1
2 , 3

22 , − 4
11 , 7

22 , − 2
11 , 4

11 , − 3
22 , 9

22 , − 1
11 F0 � 5B

#24

44 − 1
11 18.8168 1, 1, 1

ζ 1
9
, 1

ζ 1
9
, − ζ 3

9
ζ 1

9
, − ζ 3

9
ζ 1

9
, − ζ 2

9
ζ 1

9
, − ζ 2

9
ζ 1

9
,

ζ 4
9

ζ 1
9
,

ζ 4
9

ζ 1
9

0, 1
2 , 1

11 , − 9
22 , 3

22 , − 4
11 , 2

11 , − 7
22 , 4

11 , − 3
22 F0 � 5B

#17

45 1
14 70.6848 1, 1, ζ 2

12, ζ
2
12, ζ

2
5 , ζ 2

5 , ζ 2
5 , ζ 2

5 , ζ 4
12, ζ

4
12 0, 1

2 , 1
7 , − 5

14 , 5
14 , − 1

7 , 5
14 ,− 1

7 , 3
7 , − 1

14 F0 � 5B
#10

46 − 1
14 70.6848 1, 1, ζ 4

12, ζ
4
12, ζ

2
5 , ζ 2

5 , ζ 2
5 , ζ 2

5 , ζ 2
12, ζ

2
12 0, 1

2 , 1
14 , − 3

7 , 1
7 ,− 5

14 , 1
7 , − 5

14 , 5
14 , − 1

7 F0 � 5B
#9

47 1
7 4.3117 1, 1,

ζ 2
5

ζ 4
12

,
ζ 2

5
ζ 4

12
,

ζ 2
5

ζ 4
12

,
ζ 2

5
ζ 4

12
, − 1

ζ 4
12

, − 1
ζ 4

12
,− ζ 2

12
ζ 4

12
, − ζ 2

12
ζ 4

12
0, 1

2 , 3
14 , − 2

7 , 3
14 , − 2

7 , 2
7 , − 3

14 , 5
14 , − 1

7 F0 � 5B
#14

48 − 1
7 4.3117 1, 1, − ζ 2

12
ζ 4

12
, − ζ 2

12
ζ 4

12
, − 1

ζ 4
12

, − 1
ζ 4

12
,

ζ 2
5

ζ 4
12

,
ζ 2

5
ζ 4

12
,

ζ 2
5

ζ 4
12

,
ζ 2

5
ζ 4

12
0, 1

2 , 1
7 , − 5

14 , 3
14 , − 2

7 , 2
7 , − 3

14 , 2
7 , − 3

14 F0 � 5B
#11

49 3
14 9.00346 1, 1, − ζ 2

5
ζ 2

12
, − ζ 2

5
ζ 2

12
, − ζ 2

5
ζ 2

12
,− ζ 2

5
ζ 2

12
, − 1

ζ 2
12

, − 1
ζ 2

12
,

ζ 4
12

ζ 2
12

,
ζ 4

12
ζ 2

12
0, 1

2 , 1
14 ,− 3

7 , 1
14 , − 3

7 , 2
7 , − 3

14 , 3
7 , − 1

14 F0 � 5B
#12

50 − 3
14 9.00346 1, 1,

ζ 4
12

ζ 2
12

,
ζ 4

12
ζ 2

12
, − 1

ζ 2
12

, − 1
ζ 2

12
, − ζ 2

5
ζ 2

12
, − ζ 2

5
ζ 2

12
, − ζ 2

5
ζ 2

12
, − ζ 2

5
ζ 2

12
0, 1

2 , 1
14 ,− 3

7 , 3
14 , − 2

7 , 3
7 , − 1

14 , 3
7 , − 1

14 F0 � 5B
#13

51 1
5 204.317 1, 1, ζ 8

18, ζ
8
18, ζ

6
18, ζ

6
18, ζ

2
18, ζ

2
18, ζ

4
18, ζ

4
18 0, 1

2 , 0, 1
2 , 1

10 , − 2
5 , 1

10 , − 2
5 , 3

10 , − 1
5 Primitive: f.c. of (A1)18

52 − 1
5 204.317 1, 1, ζ 8

18, ζ
8
18, ζ

4
18, ζ

4
18, ζ

6
18, ζ

6
18, ζ

2
18, ζ

2
18 0, 1

2 , 0, 1
2 , 1

5 , − 3
10 , 2

5 , − 1
10 , 2

5 , − 1
10 Primitive: f.c. of (A1)−18

53 1
5 5.12543 1, 1, 1

ζ 8
18

, 1
ζ 8

18
, − ζ 2

18
ζ 8

18
, − ζ 2

18
ζ 8

18
, − ζ 6

18
ζ 8

18
, − ζ 6

18
ζ 8

18
,

ζ 4
18

ζ 8
18

,
ζ 4

18
ζ 8

18
0, 1

2 , 0, 1
2 , 1

10 , − 2
5 , 1

10 , − 2
5 , 3

10 , − 1
5 Primitive

54 − 1
5 5.12543 1, 1, 1

ζ 8
18

, 1
ζ 8

18
,

ζ 4
18

ζ 8
18

,
ζ 4

18
ζ 8

18
, − ζ 2

18
ζ 8

18
, − ζ 2

18
ζ 8

18
, − ζ 6

18
ζ 8

18
, − ζ 6

18
ζ 8

18
0, 1

2 , 0, 1
2 , 1

5 , − 3
10 , 2

5 , − 1
10 , 2

5 , − 1
10 Primitive

55 1
10 6.29808 1, 1, − ζ 2

18
ζ 6

18
, − ζ 2

18
ζ 6

18
,

ζ 8
18

ζ 6
18

,
ζ 8

18
ζ 6

18
, − 1

ζ 6
18

, − 1
ζ 6

18
, − ζ 4

18
ζ 6

18
, − ζ 4

18
ζ 6

18
0, 1

2 , 0, 1
2 , 3

10 ,− 1
5 , 3

10 , − 1
5 , 2

5 , − 1
10 Primitive

56 − 1
10 6.29808 1, 1, − ζ 2

18
ζ 6

18
, − ζ 2

18
ζ 6

18
, − ζ 4

18
ζ 6

18
, − ζ 4

18
ζ 6

18
,

ζ 8
18

ζ 6
18

,
ζ 8

18
ζ 6

18
, − 1

ζ 6
18

, − 1
ζ 6

18
0, 1

2 , 0, 1
2 , 1

10 ,− 2
5 , 1

5 , − 3
10 , 1

5 , − 3
10 Primitive

57 1
10 24.2592 1, 1, − ζ 6

18
ζ 2

18
,− ζ 6

18
ζ 2

18
,− 1

ζ 2
18

,− 1
ζ 2

18
,

ζ 8
18

ζ 2
18

,
ζ 8

18
ζ 2

18
,

ζ 4
18

ζ 2
18

,
ζ 4

18
ζ 2

18
0, 1

2 , 0, 1
2 , 3

10 ,− 1
5 , 3

10 , − 1
5 , 2

5 , − 1
10 Primitive

58 − 1
10 24.2592 1, 1, − ζ 6

18
ζ 2

18
,− ζ 6

18
ζ 2

18
,

ζ 4
18

ζ 2
18

,
ζ 4

18
ζ 2

18
, − 1

ζ 2
18

, − 1
ζ 2

18
,

ζ 8
18

ζ 2
18

,
ζ 8

18
ζ 2

18
0, 1

2 , 0, 1
2 , 1

10 ,− 2
5 , 1

5 , − 3
10 , 1

5 , − 3
10 Primitive

TABLE IX. New class of rank 10 primitive fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

59 0 472.379 1, 1, χ 4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2 , 0, 1
2 , 1

6 , − 1
3 , 1

10 , − 2
5 , 2

5 , − 1
10 Primitive, N̂ � 3

60 0 472.379 1, 1, χ 4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2 , 0, 1
2 , 1

6 , − 1
3 , 1

5 ,− 3
10 , 3

10 , − 1
5 Primitive, N̂ � 3

61 0 472.379 1, 1, χ 4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2 , 0, 1
2 , 1

3 , − 1
6 , 1

10 , − 2
5 , 2

5 , − 1
10 Primitive, N̂ � 3

62 0 472.379 1, 1, χ 4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2 , 0, 1
2 , 1

3 , − 1
6 , 1

5 ,− 3
10 , 3

10 , − 1
5 Primitive, N̂ � 3

63 0 7.621 1, 1, 1
χ4

15
, 1

χ4
15

,
χ5

15
χ4

15
,

χ5
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 1
10 , − 2

5 , 2
5 , − 1

10 Primitive, N̂ � 3

64 0 7.621 1, 1, 1
χ4

15
, 1

χ4
15

,
χ5

15
χ4

15
,

χ5
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

0, 1
2 , 0, 1

2 , 1
6 , − 1

3 , 1
5 ,− 3

10 , 3
10 , − 1

5 Primitive, N̂ � 3

65 0 7.621 1, 1, 1
χ4

15
, 1

χ4
15

,
χ5

15
χ4

15
,

χ5
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

0, 1
2 , 0, 1

2 , 1
3 , − 1

6 , 1
10 , − 2

5 , 2
5 , − 1

10 Primitive, N̂ � 3

66 0 7.621 1, 1, 1
χ4

15
, 1

χ4
15

,
χ5

15
χ4

15
,

χ5
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

, − χ3
15

χ4
15

0, 1
2 , 0, 1

2 , 1
3 , − 1

6 , 1
5 ,− 3

10 , 3
10 , − 1

5 Primitive, N̂ � 3

67 0 475.151 1, 1, χ 5
24, χ

5
24, χ

3
6 , χ 3

6 , χ 3
6 , χ 3

6 , χ 4
24, χ

4
24 0, 1

2 , 0, 1
2 , 1

4 , − 1
4 , 1

4 , − 1
4 , 1

6 ,− 1
3 Primitive, N̂ � 4

68 0 475.151 1, 1, χ 5
24, χ

5
24, χ

3
6 , χ 3

6 , χ 3
6 , χ 3

6 , χ 4
24, χ

4
24 0, 1

2 , 0, 1
2 , 1

4 , − 1
4 , 1

4 , − 1
4 , 1

3 ,− 1
6 Primitive, N̂ � 4

69 0 4.84898 1, 1, 1
χ5

24
, 1

χ5
24

,
χ3

6
χ5

24
,

χ3
6

χ5
24

,
χ3

6
χ5

24
,

χ3
6

χ5
24

, − χ4
24

χ5
24

, − χ4
24

χ5
24

0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 , 1
6 ,− 1

3 Primitive, N̂ � 4

70 0 4.84898 1, 1, 1
χ5

24
, 1

χ5
24

,
χ3

6
χ5

24
,

χ3
6

χ5
24

,
χ3

6
χ5

24
,

χ3
6

χ5
24

, − χ4
24

χ5
24

, − χ4
24

χ5
24

0, 1
2 , 0, 1

2 , 1
4 , − 1

4 , 1
4 , − 1

4 , 1
3 ,− 1

6 Primitive, N̂ � 4
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APPENDIX A: ALGEBRAIC STRUCTURE OF ANYONS

Anyons in a topologically ordered system are characterized
by their fusion and braiding data. In terms of mathematics,
these data are encoded in braided fusion categories (BFCs).
For bosonic topological orders, relevant BFCs are modualr
tensor categories (MTCs) [6,7]. In contrast, for fermionic
topological orders, so-called super-modular tensor categories
(super-MTCs) play the role [22,26]. Because of its relevance
to our work, we here briefly review some important concepts
of super-MTCs.

A super-MTC, as in MTCs, has gauge-invariant data called
S and T matrices. Each element Si j gives us the information
of mutual statistics of anyons labeled by i and j, while Ti j =
δi je2iπsi encodes the self-statistics of an anyon i. Here, si is
called the topological spin of anyon i and defined modulo 1.

The consistency of fusion of anyons translates as a fusion
ring given by

i ⊗ j =
∑
k∈	

Ni j
k k, (A1)

where Ni j
k are the fusion coefficients and 	 is the label set of

simple objects, i.e., anyons. The fusion coefficients Ni j
k and

the S matrix are related by the Verlinde formula [22]

∑
k∈	

Ni j
k Skl = Sil S jl

S1l
. (A2)

Elements in the first column of the S matrix correspond to the
quantum dimension of anyons, di = Si1/S11, where the index
1 corresponds to the vacuum. The total quantum dimension
is given by D2 = ∑

i∈	 d2
i . These data satisfy the balancing

equation [23]

Si j = 1

D

∑
k∈	

Ni j
k

θk

θiθ j
dk . (A3)

Since the simple objects of a super-MTC always come in
pairs related by fusion with f , i.e., a and a ⊗ f ≡ a f , we can
decompose the set of simple objects into two

S = 1√
2

(
1 1
1 1

)
⊗ Ŝ, T =

(
1 0
0 −1

)
⊗ T̂ . (A4)

After this decomposition, we obtain the fermionic quotient B0

of a super-MTC B, which is a fusion category with half the
number of simple objects as B. While the decomposition is
not canonical, the properties which follow will not depend on
the choice [26]. The pair (Ŝ, T̂ ) can now be thought of as the
MD of the fermionic quotient B0. The anyons of B0 form a
fusion ring among themselves

i ⊗ j =
∑
k∈	0

N̂ i j
k dk, (A5)

where 	0 is the label set of simple objects of B0, and N̂ i j
k ,

satisfy

N̂ i j
k = Ni j

k + Ni j
k f . (A6)

Not all (Ŝ, T̂ ) can describe a valid super-MTC. There are
necessary conditions which (Ŝ, T̂ ) need to satisfy if they are to
describe a valid super-MTC [22,26,39]: the Verlinde formula

N̂ i j
k = 2

D

∑
l∈	0

Ŝil Ŝ jl Ŝ∗
kl

Ŝ1l
(A7)

and the Frobenius-Schur indicator condition

±1 = ν2(a) = 2

D2

∑
j,k∈	0

N̂ jk
a d jdk

(
θ j

θk

)2

(A8)

for any self-dual anyon a.

APPENDIX B: REVERSE INDUCTION FORMULA

Suppose we have a 3d-dimensional symmetric representa-
tion of SL2(Z) given by (S, T ). We assume that the spectrum
of T is nondegenerate. If the representation is an induced
representation of some d-dimensional representation of �θ

given by (S,T2), then there exists a 3d × 3d unitary matrix
U such that

USU−1 =
⎛
⎝S 0 0

0 0 S2

0 1 0

⎞
⎠,

UT U−1 =
⎛
⎝0 T2 0
1 0 0
0 0 (ST2)−1

⎞
⎠.

(B1)

To find such U , first we re-arrange T via a permutation matrix
P so that

PT P−1 =
⎛
⎝−T 0 0

0 T 0
0 0 T′

⎞
⎠. (B2)

Second, we introduce

U =
⎛
⎝−1 1 0
T−1 T−1 0

0 0 C

⎞
⎠, (B3)

where CT′C−1 = (ST2)−1, then Eq. (B1) is satisfied for
U = UP. Note that the U in Eq. (B3) confines S to a
symmetric matrix. In addition, we have freedom of signed
diagonal conjugation before conjugating with U . We denote
the signed diagonal matrix by D. As a result, the transforma-
tion (B1) can be implemented by U = UDP. We can obtain
a d-dimensional representation of �θ given by (S,T2) from
3d-dimensional (S, T ) via

USU−1 =
⎛
⎝S 0 0

0 0 S2

0 1 0

⎞
⎠, PT P−1 =

⎛
⎝−T 0 0

0 T 0
0 0 T′

⎞
⎠.

(B4)
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To efficiently implement above formula on a computer, we further simplify the procedure. Let

PSP−1 =
⎛
⎝S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠, D = diag(a, b, c), (B5)

where each Si j is a d × d matrix satisfying S ji = ST
i j for all i, j, and a, b, c are d × d signed diagonal matrices. Explicit

calculation yields

USU−1 = 1

2

⎛
⎜⎝ Saa

11 + Sba
21 + Sab

12 + Sbb
22

(−Saa
11 − Sba

21 + Sab
12 + Sbb

22

)
T ∗

−T−1
(
Saa

11 − Sba
21 + Sab

12 − Sbb
22

) −T−1
(
Saa

11 − Sba
21 − Sab

12 + Sbb
22

)
T ∗

∗ ∗ ∗

⎞
⎟⎠, (B6)

where Sab = aSb−1 (same for similar notations) and irrel-
evant blocks are denoted by ∗ for simplicity. Comparing
Eqs. (B4) and (B6), we notice that

S = 2Saa
11 , Saa

11 = Sab
12 = Sbb

22 . (B7)

Therefore, for given (S, T ), we first find all permutation
matrices P satisfying Eq. (B2), and permute (S, T ) by them.
Then, for each permutation, we check if Eq. (B7) is satisfied
for some signed diagonal matrices a, b. If Eq. (B7) is satisfied,
we store (S,T2).

APPENDIX C: CONGRUENCE REPRESENTATIONS OF �θ

The subgroup �θ < SL2(Z) is defined as

�θ =
{(

γ11 γ12

γ21 γ22

)
∈ SL2(Z)|γ11γ21 ≡ γ12γ22 ≡ 0 mod 2

}
.

(C1)

Based on the connection to the MD of super-MTCs, we are
interested in congruence representations of �θ , rather than
general representations.

A congruence representation of SL2(Z) is a representation
whose kernel contains the principal congruence subgroup

�(n) = { γ ∈ SL2(Z) | γ ≡ 1 mod n } (C2)

for some positive integer n. The smallest such n is called
the level of the congruence representation. In other words,
a congruence representation of level n is a representation
of a level-n congruence subgroup. (A congruence subgroup
of level n is a subgroup which have �(n) as its subgroup.)
A congruence representation of �θ is defined in the same
way, i.e., a representation ρ such that �(n) < ker ρ for some
positive integer n. It is noteworthy that for any congruence
representation of �θ , n is always even since �θ itself is a
level-2 congruence subgroup of SL2(Z).

While the only relations among generators, s and t2, of �θ

are s4 = 1 and s2t2 = t2s2, the generators satisfy much more
relations in �θ/�(n), and any congruence representation of
�θ needs its representation matrices to satisfy these relations.
The precise number and content of these relations depend on
the level n, since these relations are extra conditions which a
representation ρ needs to satisfy in order to be a congruence
conditions of �θ representations.

We start from theorem 1 of Ref. [58], which lists the
congruence conditions for representations of SL2(Z). The

expressions used there to write the conditions involve odd
powers of ρ(t) = T, which are ill-defined for �θ , and are
unusable for our purposes. However, the conditions them-
selves are well-defined for �θ . Thus we need only re-write
the expressions in terms of elements of �θ . We have rewritten
the expressions so that the conditions are written in terms of
ρ(s) = S and ρ(t2) = T2 only. Note that the level n is always
even for a �θ representation.

Below, we list the congruence conditions for �θ represen-
tations, generated by S and T2.

(1) T forms an orbit of order n under matrix multiplica-
tion, i.e., Tn = 1.

(2) For a, b ∈ Z×
n , let H (a) = ρ((a 0

0 ā)) where ā is the

multiplicative inverse of a modulo n. Note that (a 0
0 ā) is

indeed an element of �θ/�(n). Then,

H (−1) = S2,

H (a)H (b) = H (ab),

SH (a) = H (ā)S,

H (a) = S2Ta2−aST−(ā−1)S(T2S)a−1.

(C3)

(3) (ST2)n = 1. This condition is not independent of the
above conditions, but provides a simple check in many cases.

APPENDIX D: MORE ON FROBENIUS RECIPROCITY

In this section, we formally state Frobenius reciprocity and
prove its corollary.

Theorem D.1. (Frobenius reciprocity) Given a subgroup
H < G and an irreducible representation π of H , the induced
representation of π decomposes as a direct sum of irreducible
G representations Ri, where each irreducible representation
appears with multiplicity mi equal to the number of times its
restriction to H contains π . In other words, IndG

Hπ = ⊕
i miRi

such that ResG
H Ri = miπi ⊕ · · · .

Frobenius reciprocity allows us to obtain every irreducible
representation of H from restriction of irreducible representa-
tions of G.

Corollary D.1. Every irreducible representation of H is
contained in the restriction of some irreducible representation
R of G, i.e., ResG

H R = mπ ⊕ · · · where m is the multiplicity
of R.

Proof. Every irreducible representation π of H has an
induced representation IndG

Hπ , which is a representation of
G, and this decomposes as IndG

Hπ = ⊕
i miRi where Ri are
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irreducible representations of G. By Frobenius reciprocity,
ResG

H Ri = miπ ⊕ · · · so these Ri are precisely those irre-
ducible representations of G whose restriction to H contains
π . �

APPENDIX E: UNRESOLVED REPRESENTATIONS

In Sec. III B 1, we saw that the possible orthogonal basis
transformations U0 are constrained to a finite set for resolved
representations. For unresolved representations, we have a
continuum of potential orthogonal transformations we need
to apply and then check.

In practice, however, all known cases are obtained from
π/4 and −π/4 rotations, and we expect all valid MD will
be obtained from orthogonal transformations involving simple
angles, since the resulting Ŝ matrix must solve the Verlinde
formula condition that Ŝ must diagonalize the fusion matrices,
which are nonnegative integer matrices. Hence, we check the
following set of angles for unresolved type (2), type (2,2),
and type (3) representations: {±π/4,±π/6,±π/3}. For type
(3), we allow the combination of all such rotations along all
three axes of rotations, but again along every possible axes of
rotation.

We find that, among dimension 5 reducible representations,
those of (2+2+1)-d type (2,2) and (2+1+1+1)-d type (4)
yield valid MD. Among dimension 4 reducible representa-
tions, those of (1+1+1+1)-d type (4) yield valid MD. Every
unitary MD obtained this way had previously been obtained
[22], though we also obtain the nonunitary MD with the same
fusion rules. In every case, the valid MD is obtained from a
π/4 or −π/4 orthogonal transformation. [For type (4), we
make two such orthogonal transformations along different
axes.]

For unresolved type (2) representations, there is only a sin-
gle parameter φ for the orthogonal transformation, since we
only have a rotation matrix on a two-dimensional subspace.
In this case, we use Mathematica to directly solve for this
unknown parameter given that all fusion coefficients (which
depends on φ) must be non-negative integers. We find that
there is no solution, meaning we can definitively claim that
unresolved type (2) representations do not yield valid MD.
(Technically, because of numerical issues we need to specify
some upper bound for the fusion coefficients, and in this case
we only check up to N̂ i j

k � 7. However, we believe this should
be sufficient, since the largest known fusion coefficient from
valid MD is 4.)

Thus our classification is complete for type (2) unresolved
representations (with the bound N̂ i j

k � 7); for other types, our
classification may be incomplete and there may exist valid
MD we have missed. However, up to rank 10, only a small mi-
nority of known MD come from unresolved representations,
and in those few cases they are all obtained by orthogonal
transformations involving only the angles ±π/4, so in prac-
tice it is unlikely that we have missed very many.

APPENDIX F: PROOF OF THEOREM III.1

In this section, we prove theorem III.1 in Sec. III B 2.
Proof. The super-MTC B admits a minimal modular exten-

sion M. According to Sec. 3.1 of Ref. [44], we can choose a

particular basis so that S and T 2 of M take the block-diagonal
form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ŝ 0 0 0 0

0 0 2A
√

2X 0

0 2AT 0 0 0

0
√

2X T 0 0 0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

T 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T̂ 2 0 0 0 0

0 T̂ 2 0 0 0

0 0 T̂ 2
v 0 0

0 0 0 T 2
σ 0

0 0 0 0 T̂ 2
v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(F1)

where Ŝ and T̂ 2 are the MD of B. (The other matrices such as
A and X are not relevant for our purposes.) This means that
the projective SL2(Z) representation formed by S and T , after
restriction to �θ , becomes reducible. (We are here interested
only in representation-theoretic properties and are thus free
to choose a basis.) More precisely, if we denote by �̃ the
projective SL2(Z) representation formed by S and T , we have

�̃|�θ
= ρ̃ ⊕ �̃′ (F2)

where �̃′ is the remaining part.
Let N = ord T . By theorem II of Ref. [48], �̃ always

admits a lift to a linear congruence representation � of level
n such that N |n|12N , which takes the form

�(s) = �̃(s),

�(t) = e−2iπc/12�̃(t),
(F3)

where c is determined modulo 8 by �̃. (We can also al-
ways take the tensor product of this linear representation with
one-dimensional representations of SL2(Z), but this does not
affect our argument.) The restriction of � to �θ then takes the
form

�̃|�θ
(s) = Ŝ ⊕ · · · ,

�̃|�θ
(t2) = e−2iπc/12T̂ 2 ⊕ · · · .

(F4)

Since �|�θ
is a linear representation of �θ , its direct summand

ρ given by

ρ(s) = Ŝ,

ρ(t2) = e−2iπc/12T̂ 2
(F5)

must also be a linear representation of �θ . Moreover, since the
level of � is n, we note that

ker ρ � ker �|�θ
� �θ ∩ �(n). (F6)

Since N is always even (because the list of simple objects of
M includes fermions, of spin 1/2), n is also even, so �θ ∩
�(n) = �(n). Thus we have

ker ρ � �(n), (F7)

i.e., the linear lift ρ obtained by attaching a phase e−2iπc/12

to T̂ , where c is the central charge of one of the modular
extensions, is congruence. �
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APPENDIX G: MODULAR DATA FROM A DIRECT SUM
OF 1-DIMENSIONAL REPRESENTATIONS

In Sec. III B 1, we have mentioned that a direct sum of five
one-dimensional representations of �θ do not give rise to any
valid MD. Let us call representations which are a direct sum
of one-dimensional representations “1d-sum representations,”
and super-MTCs arising from them as “1d-sum super-MTCs.”
Here we prove that no 1d-sum representations of dimension
5 give rise to valid super-MTCs. We also prove that 1d-sum
super-MTCs are always split and Abelian.

Let ρ = ⊕d
i=1 χi for some one-dimensional representa-

tions χi. By the t2-spectrum criterion (see section III B 1),
ρ(t2) must be proportional to the identity. The resulting MD
will be T̂ 2 = 1, and T will consist of 1s and −1s. Thus the
resulting super-MTC will have ord T = 2. Spherical fusion
categories (of which super-MTCs are a special case) satisfying
this condition have been classified in Ref. [59]. In particular,
they find that any such spherical fusion category is pointed
(Abelian). On the other hand, any pointed super-MTC is split

(see Proposition 2.1 of Ref. [40]). Thus there is no need for
extra classification of 1d-sum super-MTCs, as all of them
come from stacking bosonic theories with F0.

For the specific case of dimension 5, we can simply look at
the known bosonic classification in, say, Ref. [20], and see that
there is no rank 5 MTC whose T matrix consists exclusively
of 1s and −1s. This proves the assertion in section III B 1
that there are no rank 10 1d-sum super-MTCs. On the other
hand, in the bosonic classification of rank 4 MTCs there is a
well-known MTC whose T matrix consists exclusively of 1s
and −1s: the toric code theory. Hence in rank 8 the toric code
theory stacked with F0 is a 1d-sum super-MTC.

APPENDIX H: EXPLICIT MODULAR DATA
OF NEW CLASSES

We present the explicit data of the new classes of rank 10
MD we have found. We show only one representative from
each class. The MD of the first class is

Ŝ = 1√
30χ4

15

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 χ4
15 χ5

15 χ3
15 χ3

15

χ4
15 1 χ5

15 −χ3
15 −χ3

15

χ5
15 χ5

15 −χ5
15 0 0

χ3
15 −χ3

15 0 χ1
5 χ3

15
2 − 2

√
30χ4

15

χ5
5

χ3
15 −χ3

15 0 − 2
√

30χ4
15

χ5
5

χ1
5 χ3

15
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T̂ 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 e2iπ/3 0 0

0 0 0 e4iπ/5 0

0 0 0 0 e−4iπ/5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (H1)

where χm
n = m + √

n and the total quantum dimensions is D2 = 472.379. The MD of the second class is

Ŝ = 1

2
√

6χ5
24

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 χ5
24 χ3

6 χ3
6 χ4

24

χ5
24 1 χ3

6 −χ3
6 −χ4

24

χ3
6 χ3

6 −χ3
6 − i

√
6χ5

24 −χ3
6 + i

√
6χ5

24 0

χ3
6 χ3

6 −χ3
6 + i

√
6χ5

24 −χ3
6 − i

√
6χ5

24 0

χ4
24 −χ4

24 0 0 χ4
24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T̂ 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 e2iπ/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (H2)

where the total quantum dimensions is D2 = 475.151.
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