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Emergent axion response in multilayered metamaterials
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We consider the design of metamaterials whose behavior embodies the equations of axion electrodynamics.
We derive an effective medium description of an assembly of magneto-optical layers with out-of-plane magneti-
zation analytically and show how to achieve effective axion response with tunable parameters. We display some

key predictions and validate them numerically.
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I. INTRODUCTION

The composition of dark matter is a major open question in
physics and cosmology [1]. Because, presently, we have only
upper limits on nongravitational interactions of dark matter,
while gravitation is a universal force, several kinds of particles
could explain the origin of the dark matter [2]. Axions [3,4]
are among the most intriguing possibilities because their exis-
tence is suggested on independent grounds and their predicted
properties follow from deep conceptual principles.

An axion is anticipated to be a light particle, with masses
in the range from peV to meV being favored [5,6], although
smaller masses are also possible. The predicted high phase-
space density of cosmological axions allows them to be
described by a classical pseudoscalar axion field. The elec-
tromagnetic coupling of this field leads to additional terms in
the Maxwell equations in the form [7,8]

4 1 9(E) 4rx .
rot(u” " B)=- —
c ot
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c ot
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Here, p and j are the conventional charges and currents, &
and p are the permittivity and permeability of the background
medium, and ¢ is the axion coupling constant of the electro-
magnetic field.

If cosmic axions exist, their coupling constant ¢ is ex-
tremely feeble, which makes their experimental observation
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challenging. On the other hand, Eqgs. (1)—(3) can be recast as
Maxwell’s equations in a medium:

10D 4m .
rotH=- — + —j, “)
c ot c
divD = 4mp, (5)
1 0B .
rotE=—-—, divB =0, (6)
c ot
where the constitutive relations take the form
D=¢E+ xB, @)
H=—xE+u'B, ®)

and x = s a. Hence, if some material is described by the con-
stitutive relations (7) and (8), its electromagnetic properties
are precisely captured by the equations of axion electrody-
namics, and it is said that the material features an effective
axion field. The origin of this effective field is not related to
cosmic axions.

Collective excitations that couple like a(x, ¢) are known as
emergent axions [9—12]. More common are materials that sup-
port a nontrivial constant value of a. Then the new phenomena
arise primarily at interfaces and boundaries.

In condensed matter physics these sorts of constitutive
relations occur in magnetoelectrics and multiferroics [13,14].
Such materials were predicted theoretically [15] and later
found in nature, Cr,O3 being the first example, followed later
by a large class of other magnetoelectric materials [13,14].
Multiferroics have received significant attention from the
condensed matter community because they are of practical
use, for instance, for e-ink technology in electronic books.
However, the effective axion response of such structures is
relatively weak (x ~ 1073—1072) and requires low tempera-
tures in some cases [14]. Strong three-dimensional topological
insulators also feature a quantized effective axion response
[11,16] that is manifested in some cases up to the optical
frequencies [17].

©2023 American Physical Society
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Parallel investigations occurred in the macroscopic elec-
tromagnetism community. There, materials described by the
constitutive relations (7) and (8) are known as Tellegen media,
while x is sometimes termed the Tellegen coefficient. Such
materials were first considered by Tellegen, who suggested a
medium consisting of electric and magnetic dipoles attached
to each other [18]. Tellegen media as well as a wider class
of bianisotropic materials were actively investigated [19,20],
and examples of meta-atoms featuring an effective Tellegen
response were put forward [21,22].

Metamaterials are artificially structured media with sub-
wavelength periodicity and engineered, often unconventional,
electromagnetic properties [23—27]. The area of metamate-
rials has led to such spectacular developments as negative
refraction [28], subwavelength imaging [29], and invisibil-
ity cloaking [30,31]. Recently, it has been proposed that
wire metamaterials [32—34] could be useful for cosmic axion
detection [35].

In this paper we bring these strands together, introducing
the concept of axion metamaterials. We demonstrate theo-
retically that multilayered structures [36-38] composed of
conventional magneto-optical materials should provide prac-
tical axion metamaterials in the sense that they will obey the
equations of axion electrodynamics to a good approximation
over a substantial range of conditions. Notably, here, the axion
response yx is a design parameter subject to flexible control. In
particular, it need not be small and can reach values around
1 for realizations in the microwave and terahertz domains
(see Appendix F). Qualitative understanding of the compara-
tively simple effective equations guides us to some distinctive
physical predictions, which we validate quantitatively through
numerical simulation of the full dynamics.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the suggested design of our axion meta-
material. Section III continues with the calculation of the
effective axion response x for the designed structure, reveal-
ing some unexpected aspects of metamaterial homogenization
theory. In Sec. IV we examine spatial gradients of xy and
obtain the equations of axion electrodynamics. Next, Sec. V
discusses the ways to tailor and control the effective axion
response of the designed metamaterial. In Sec. VI we validate
our effective medium treatment by examining electromagnetic
fields in the designed multilayered structure and comparing
the results to those predicted by the effective medium model.
Finally, we conclude our analysis by discussing the results and
outlining future perspectives in Sec. VII.

II. DESIGN OF AXION METAMATERIAL
AND SYMMETRY REQUIREMENTS

First, we examine the symmetry properties of the desired
constitutive relations (7) and (8). Since E and B have dif-
ferent parities under spatial inversion P, the effective axion
response x is odd under inversion, i.e., pseudoscalar. Due to
the different behaviors of E and B under time reversal 7, x is
also 7 odd. However, it remains invariant under the combined
PT transformation. Such behavior is fully consistent with that
expected for an axion field. In an electromagnetic context, this
response requires external fields breaking the reciprocity of
the material.

FIG. 1. Schematic of the designed multilayered structure com-
posed of gyrotropic layers with spatially varying out-of-plane
magnetization schematically shown by the black arrows. The average
magnetization of the structure vanishes.

Furthermore, the constitutive relations (7) and (8) have a
continuous rotational symmetry. To reconcile that with the
fabrication capabilities, we require at least full rotational sym-
metry of the structure with respect to one axis, Oz.

As a simple structure fulfilling the above requirements we
choose a multilayered metamaterial with out-of-plane mag-
netization of the layers parallel to the Oz axis (Fig. 1). To
exclude the conventional magneto-optical effects such as the
Faraday effect, we require average magnetization to be zero.
The permittivity of a single layer is given by the expression

£ iglz)y O
g=\|—-ig e 0], C)
0 0 £

where g(z) is a periodic function with period a, so that its
Fourier expansion

g@) =) g™, (10)
n#0

where b = 25 /a is the reciprocal lattice period and gy = 0
due to the vanishing average magnetization. From the symme-
try point of view, the designed structure breaks time-reversal
symmetry. However, the combination of spatial inversion
and time reversal leaves it invariant, and there is a contin-
uous rotational symmetry with respect to the z axis. Hence,
the designed structure satisfies the necessary symmetry
requirements.

It should be noted that the magnetoelectric response of
antiferromagnetic structures has been known in condensed
matter physics for a long time [14,15]. However, different
magnetoelectrics feature a variety of electromagnetic phe-
nomena which distinguish them from one another. A simple
picture capturing their electrodynamics is currently lacking,
while the ways to control and reconfigure their electromag-
netic properties remain practically uncharted. To fill this
gap, we investigate electrodynamics of the designed structure
in detail, explicitly calculate the effective axion response,
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estimate its typical values for several potential realizations,
and show ways to control its magnitude.

III. EFFECTIVE AXION RESPONSE
OF THE METAMATERIAL

The effective description of composite media relies on
averaging rapidly oscillating local fields, which yields slowly
varying macroscopic fields. The coefficients that relate the
macroscopic polarization and magnetization to the averaged
fields are associated with the effective material parameters
[39]. The validity of the effective medium description is
largely determined by the period-to-wavelength ratio, & =
a/A, which is considered to be small. The metamaterial ho-
mogenization strategy has been well established [40,41], with
a history of application to various types of metamaterials
[33,42], including multilayered ones [43—-45]. Quite impor-
tantly, all homogenization approaches derive the effective
material parameters from the bulk properties.

The current problem, however, has a subtle feature. Equa-
tions (1)—(3) suggest that an effective axion field which is
constant in time and space does not modify Maxwell’s equa-
tions. Therefore, analysis of the bulk properties in such a
setting does not allow one to extract the Tellegen coefficient
x . Below, we prove that an analysis of the boundary condi-
tions allows one to solve this problem, eventually yielding the
equations of axion electrodynamics.

Using the periodicity of the structure, the fields in the
metamaterial can be presented in the form

E(I‘) x En(r)
D) | = D,(r) | X", an
B(r) n=—o00 \ B, ()

where the monochromatic e’ time dependence is sup-
pressed throughout, k™ = (k,, 0, k. + nb), k. and k, are the
components of the Bloch wave vector normal and parallel to
the layers, respectively, and k, can always be set to zero by
the choice of the coordinate system. Here, Eq, Dy, and By
are the respective averaged (or macroscopic) fields, while E,,
D,, and B,,, with nonzero n, are the amplitudes of the rapidly
oscillating Floquet harmonics. In the analysis below, our goal
is to derive the equations for the macroscopic fields excluding
all rapidly oscillating terms.

The microscopic (nonaveraged) fields in the structure sat-
isfy the conventional Maxwell’s equations, which can be
recast in the form

. 5 4miq
V(divE) — AE=¢"D + J, (12)
c

divD =0, 13)
where ¢ = w/c and j = jo e***%% are the external distributed
currents exciting the structure. The electric displacement for
gyrotropic layers takes the form

D=¢E —ig(z)[e, x E]. (14)

Substituting Floquet expansions for the fields [Eq. (11)] and
Fourier series for the gyrotropy [Eq. (10)] in Egs. (12)-(14),
we recover the set of linear equations that relate the ampli-
tudes of the Floquet harmonics. Applying perturbation theory

with a small £ = a/A = g/b, we derive the expressions for
the Floquet harmonics of the electric field with n # 0 (see
Appendix A):

i8n » K 3
Eq = 22 q — ; E()y + O(E )s (15)
2
- 3

Eny = —1&n W EOX + O(é: )7 (16)

. ke k;
Ey=—ign — (1= = ) Epy + 0. (17)

enb nb
Using the equation B = —i/q rot E, we can also evaluate the

respective Floquet harmonics of the magnetic field as B, =
k™ x E,/q. This yields

Bmc = ign i E()x + 0(%‘2)’ (18)
nb
Buy = ign — Egy + O(5), (19)
nb
. ke q 3
an = —1&n Vl2 b2 E()x + 0(5 )’ (20)
k. Eq,
Bo, = ——. 1)
q

Having the explicit expressions for E, and B,, we now
analyze the boundary conditions at the interface of the meta-
material with air. Clearly, the microscopic fields satisfy the
conventional continuity conditions at the interface:

E/l.—o=E", (22)
Bl =B, (23)
B/l = Bf‘“, 24)
eE|._o=EM. (25)

However, the microscopic field at the boundary of a meta-
material z =0, E|,.—o = ), E,, is generally different from
the averaged field Ey due to the contribution of higher-order
Floquet harmonics. Keeping the terms up to the first power in
small £ and using the expressions for the Floquet harmonics
above, we recover the following set of boundary conditions
for the averaged fields:

Ey =E™, By —B™ = xEo, (26)

By, = B e Ep, — E;ut = —x Bo;. 27

z

Interestingly, we observe that the tangential components of
B\ and normal components of ¢ E feature the discontinuity.
As we prove below, these jumps in the averaged fields at
the boundary are a signature of the Tellegen medium, and
the coefficient x quantifies the strength of the effective axion
response:

_4 N 8

bn#On

(28)

It should be emphasized that the outlined picture of the
effective Tellegen medium is valid once the metamaterial is
subwavelength (¢ = a/A < 1) and effects of the order of &2
can be neglected. Counterintuitively, the effective Tellegen

115101-3



LEON SHAPOSHNIKOV et al.

PHYSICAL REVIEW B 108, 115101 (2023)

response is fully isotropic even though the designed meta-
material has a single axis of continuous rotational symmetry
and other rotational axes are lacking. Therefore, the developed
description of the metamaterial holds for arbitrary incidence
angles. However, as we discuss in Appendix B, the anisotropy
in the electromagnetic response of our metamaterial arises in
the second order in the period-to-wavelength ratio £.

Another interesting feature of our system is the dependence
of x on the structure termination. Indeed, if the boundary is
shifted by A, the Fourier harmonics of gyrotropy g(z) change
from g, to g, ¢"*®. In the general case, this alters the effective
axion response (28). This feature is in stark contrast to the
behavior of the conventional material parameters, which are
normally derived from the bulk properties and do not depend
on the structure termination [40,41,45].

IV. SPATIAL GRADIENTS OF THE EFFECTIVE
AXION RESPONSE

In the analysis above, we assumed that the metamaterial is
periodic and time independent, which ensures constant x. To
demonstrate the link with axion electrodynamics and prove
that yx is, indeed, the effective axion response, we general-
ize our treatment to the case of y slowly varying is space,
which mimics the so-called axion wind scenario [46]. For
our metamaterial, this can be achieved by breaking the strict
periodicity of the structure. To investigate this scenario, we
divide the system into blocks with a characteristic size L much
larger than the period of metamaterial a but smaller than the
characteristic scale of x variation (Fig. 2).

Applying Egs. (26) and (27) to the boundary of the two ad-
jacent blocks with x; and x, Tellegen coefficients, we recover
the following discontinuities in B, and ¢ E,:

By — By = (02— x1)E,
eEy, —eE; =—(x2 — x1)B;.

On the other hand, such discontinuities result in the surface
currents j; and charges p, induced at the boundary between
the blocks:

4
A= x By —Bi] = (x2 — x1) [e; x EJ,

dm py=¢eEy, —eE;; = —(x2 — x1) B:.

To average the obtained distribution of the sources over scales
of the order of L, we make the replacement j,/L — j, po;/L —

zZ

Ps
X1 "X2 X3
Js 0O

— —
E<tg

FIG. 2. Sketch of the metamaterial with broken strict periodicity,
which is constructed of blocks with close values of x. The boundaries
between the blocks host surface charge with density p, and surface
current with density j;.

p,and (x» — x1)e;/L — V x, where j and p are the respective
bulk currents and charges induced due to the gradient of the
effective axion response. This procedure yields

4
- 1= [Vx x E], (29)

4mp = —Vyx -B. (30)

Inserting the obtained expressions into Maxwell’s equa-
tions with sources, we obtain

10
rotB= - —(¢E)+[Vx x E], 31
c ot
div(eE) = —Vyx - B, (32)
1 0B .
rotE=—-—, divB=0. (33)
c ot

In the case of time-independent y, this matches the equa-
tions of axion electrodynamics (1)—(3), which allows us to
interpret x as an effective axion response.

V. TAILORING THE EFFECTIVE AXION
RESPONSE

A unique advantage of the metamaterial platform is the
possibility of tailoring the effective axion response x on de-
mand by manipulating the distribution of the magnetization
and associated gyrotropy g(z). As discussed in Sec. III, a
counterintuitive, but technically straightforward, way to mod-
ify the axion response is to change the termination of the
metamaterial. This potentially allows us not only to change
the magnitude but also to swap the sign of x.

Yet another approach is to tailor the spatial dependence of
g(2). To illustrate the dependence of the effective axion re-
sponse on the functional form of g(z), we recast the expression
for x in Eq. (28) in the form
a
v
where M = max g(z) is the maximal gyrotropy within the unit
cell, & = a/L = q/b is the period-to-wavelength ratio, and o,
is the dimensionless coefficient that depends on the specific
form of the g(z) function:

X =0a,M (34)

1 a
o= /O (r — b))z, (35)

where g(z) = g(z)/M (see the derivation in Appendix C). We
examine several representative scenarios of the magnetization
distribution within the unit cell (Fig. 3) with the same value
of the maximal gyrotropy M. In each case, we evaluate the di-
mensionless a, factor which quantifies the relative strength of
the effective axion response at a given period-to-wavelength
ratio a/A. Comparing the step function with several other rep-
resentative examples, including the harmonic magnetization
modulation, we observe that the stepwise gyrotropy distribu-
tion maximizes the strength of the effective axion response.

To elaborate more on this observation, we explicitly derive
an upper bond on «; for fixed M and a/A:

1 a
lotg| = ‘—/‘ (mr — b2)g(2)dz
alJo

l a
< —/ (G — bo)ldz = =
a Jo 2
(36)
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FIG. 3. Different spatial distributions of gyrotropy g(z) within
the unit cell, giving rise to the distinct values of the effective axion
response in the metamaterial x o< .

where we use the fact that |g(z)| < 1. Since |[(m — bz)| =
(m — bz) sgn(wr — bz), the upper limit o™ = 7 /2 is achieved
when g = sgn(w — bz), which is exactly the step-function
profile. In this case, the maximal value of the effective axion
response reads

max 4 a
==M—. 37
X M 37
VI. VALIDATION OF THE EFFECTIVE
MEDIUM DESCRIPTION

After deriving the effective medium picture of the designed
metamaterial, we validate this approximate description. For
that purpose, we simulate the behavior of the axion metamate-
rial with the stepwise gyrotropy distribution using the transfer
matrix approach [47—49] or full wave numerical techniques
that fully account for the metamaterial microstructure. The
obtained results are compared to the predictions of the effec-
tive medium model with the effective axion response given by
Eq. (37).

First, we examine the reflection of the plane wave at nor-
mal incidence from the finite slab of the axion metamaterial.
Evaluating the effective axion response from Eq. (37) and
employing the analytical theory of Tellegen media [50], we
derive the electric field of the reflected wave E' = 7 E" with
a2 x 2 matrix 7 having the components

(x> +¢e—eo)sinL

Fxxy = Fyy = — 3 . = (38)
(x2+ €&+ eo)sinL + 2i,/eggcos L
2x /g0 sin L
Fyy = —Iyx X U (39)

- (x2+¢e+ey)sinl + 2i/eegcos L’

where L = 27 \/eL/\o = 2./ewNa/A is the optical path in-
side the slab, L is the thickness of the slab, N is the number
of periods in the structure, Ao is the wavelength in vacuum,
and ¢ and g are the permittivities of the Tellegen medium and
host material, respectively. Thus, the polarization plane of the
reflected light is rotated, and the reflected light contains both

copolarized and cross-polarized components proportional to
Ty and ry,, respectively.

As expected, the major contribution to the copolarized
reflectance comes from the difference between & and g.
Therefore, to isolate the contributions stemming from the
effective axion response x, we compare the results of the
transfer matrix method to the analytical expressions (38)
and (39) for the scenario ¢ = ¢y for both cross-polarized
[Fig. 4(a)] and copolarized [Fig. 4(b)] reflection coefficients.
Assuming fixed thickness of the slab L = 100a, we gradually
change the frequency of the incident wave, thus varying the
period-to-wavelength ratio & = a/A. If the metamaterial unit
cell is deeply subwavelength (§ < 0.15), the two approaches
perfectly agree, with a typical discrepancy between them of
the order of a few percent. However, a further increase of &
results in significant errors that reach 50% for £ = 0.3 that
make the effective medium treatment inadequate.

To further check the validity of our model for plane wave
propagation, we fix a sufficiently small period-to-wavelength
ratio £ = 0.02 and analyze the scenario with a nonzero in-
cidence angle . Figure 4(c) compares the results calculated
using the transfer matrix method [48] and those obtained from
the effective medium approach. In the latter case, we eval-
uate the transfer matrix for the entire slab while employing
the relevant boundary conditions and using the fact that the
eigenmodes in the medium with axion response are degen-
erate and have a refractive index n = ,/eu. Interestingly, we
observe perfect agreement between the two approaches even
for the large incidence angles approaching /2. This high-
lights the isotropic nature of the effective axion response even
though our model has only one axis of continuous rotational
symmetry.

Next, we verify that the equations of axion electrodynam-
ics (31)—(33) capture the behavior of our metamaterial once
its periodicity is broken and a gradient of the effective axion
response is introduced. For simplicity, we examine the case
of a constant gradient that corresponds to Weyl semimetals
[51-55], providing an instance of the so-called Carroll-Field-
Jackiw electrodynamics [56].

A specific prediction of axion electrodynamics in this case
is the rotation of the polarization plane of light [57], similar
to the Faraday effect in magneto-optical materials. To verify
this, we simulate the scenario of normal incidence while in-
troducing a linear gradient of axion response x (z) = XmaxZ/L,
where L is the total thickness of the slab. The metamaterial
slab is constructed from N, >> 1 blocks, each comprising
N; identical bilayers of subwavelength thickness a < A,
with each bilayer consisting of two layers having the same
magnitude but opposite orientations of magnetization. The
absolute value of magnetization is constant within each block
but linearly changes throughout the blocks, which thus creates
an approximation of the linear gradient of x(z). The chosen
parameters ensure that the spatial variation of the effective
axion field is smooth. We compute the field in the metamate-
rial close to the output facet and average the field polarization
over the block of N; ~ 10? layers to exclude rapid oscillations
at the subwavelength scale (see Appendix D). Figure 4(d)
shows a comparison of transfer matrix results averaged in
the described way with the effective medium picture, which
suggests polarization rotation 6 = xnm.x/2. The agreement
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FIG. 4. Validation of the effective medium picture for the de-
signed axion metamaterial with the stepwise gyrotropy distribution.
Red lines and dots show the results of the transfer matrix method;
light blue lines are the results of the effective medium approximation.
(a) Cross-polarized and (b) copolarized reflection coefficients |ry,|
and |r,| for the slab versus the period-to-wavelength ratio a/A.
Vertical cyan dashed lines mark the ratio a/x = 1/50 used in the
calculations in (c) and (d). (c) Cross-polarized reflection coefficients
|Rsp| = |R,| for the slab of the axion metamaterial versus the in-
cidence angle . (d) Averaged rotation angle of the microscopic
field near the output facet of the axion metamaterial slab with a
constant gradient of x. Parameters of the simulations: &g = ¢ =1
and (a) and (b) L = 100a, g = 0.01; (c) g = 0.01, L = 2.75); and
(d) gmax = 0.01L/(40021).

between the two approaches is excellent for various
thicknesses L of the slab, which confirms the validity of
the effective medium description of inhomogeneous axion
metamaterials.

Continuous Metamaterial
(@) () -
E, H, E, H,
(c) x=0 (e) g=0
=0.25
-max H, max
-max E, max

FIG. 5. Emergence of the electric dipole field for a point mag-
netic dipole inside the axion spherical shell. (a) and (b) Sketches of
the simulated systems. (a) corresponds to the case of the continuous
Tellegen medium (¢ = 1, u = 1), whereas (b) shows the metama-
terial realization with ¢ = 1 and p = 1. The blue arrows represent
the point magnetic dipole oscillating with frequency f = 1.0 GHz.
The distance from the dipole to the shell inner boundary is A/4; the
shell thickness is A /2. The period of the layered structure is a = 1/6.
Fields corresponding to (c) and (d) the continuous medium and (e)
and (f) layered metamaterial when the effective axion response is
either (c) and (e) zero or (d) and (f) nonzero.

Finally, we examine whether the effective medium treat-
ment remains adequate when the metamaterial is excited by
the external sources. To that end, we explore a dynamic analog
of the Witten effect [58], which manifests as the emergence of
an electric charge induced by the magnetic monopole placed
inside an axion medium. In the condensed matter context,
this effect was predicted to occur in axion topological in-
sulators [59,60]. Below, we analyze the fields produced by
the oscillating point magnetic dipole surrounded by an ax-
ion shell [Fig. 5(a)]. The theory [8] predicts that the axion
shell hybridizes electric and magnetic responses such that
the field outside is a superposition of magnetic and electric
dipole fields [Figs. 5(c) and 5(d)]. To validate this physics, we
simulate the magnetic dipole inside the designed metamaterial
[Fig. 5(b)] and analyze scenarios with layer magnetization
from zero [Fig. 5(e)] to some fixed nonzero value [Fig. 5(f)]
matching the magnitude of £ used in the effective medium
calculation. Examining the obtained field patterns [Fig. 5(f)],
we discover that our metamaterial indeed generates an elec-
tric dipole field with the induced electric dipole parallel to
the magnetic one. Interestingly, the oscillating electric dipole
inside the axion shell also induces an effective collinear mag-
netic moment, as further discussed in Appendix E.
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VII. DISCUSSION AND CONCLUSIONS

We have proposed a practical design for an axion meta-
material and calculated its effective Tellegen response x from
first principles. While the building blocks of our metamaterial
are conventional magneto-optical layers, an axion response
for the entire structure emerges through their combined action.
Our estimates showed that the designed structure may exhibit
a strong effective axion response x =~ 1 in microwave and
terahertz domains, providing a tabletop platform to test the
effects of axion electrodynamics.

Interestingly, the strength of the axion response depends on
the structure termination, which in turn affects the boundary
conditions. The importance of boundary terms is well appreci-
ated in the emergent axion theory but represents an important
subtlety in metamaterial homogenization.

Our derivation of the effective axion response comple-
ments the existing tool kit of more abstract theoretical
methods such as dimensional reduction procedures [9] and
analysis of quantum field theory anomalies [61,62].

While the condensed matter community has been study-
ing magnetoelectric and multiferroic materials for a long
time, connecting them to metamaterials opens new pathways.
The dual possibilities of producing metamaterials with cor-
responding properties but on larger length scales and with
tunable properties or of “scaling up” to different kinds of
metamaterials using magnetoelectric and multiferroic build-
ing blocks both deserve much further attention. Another
promising possibility is achieving time-dependent control of
X, which potentially can be harnessed for cosmic axion detec-
tion [63-66].
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APPENDIX A: FLOQUET HARMONICS
OF ELECTRIC FIELD

This Appendix supplements the discussion in Sec. III and
provides the derivation of electric field Floquet harmonics.
The starting point of this derivation is the set of Eqgs. (12)—
(14). Using the Fourier expansion of gyrotropy and Floquet
expansion of electromagnetic field, Egs. (10) and (11), we
derive the set of scalar equations for the respective Floquet
harmonics:

(kz(n))ZEnx . kxkﬁ”) E,. = qz Dy, (A1)
(K2 + (k)] Ey = % Dy (A2)
—ke k" Epy + K} En; = q° Dy, (A3)

ky Dy + k" Dy, = 0, (A4)

D,,=¢E, +i Z &n—n Epy, (AS)
n'#n

Dy =¢Ey—i ) gnwEn, (A6)
n'#n

D,, = ¢E,.. (A7)

From this system of equations, we calculate E,y, E,y, and E,,
up to the second power in small £ = a/A = ¢q/b.

Equation (A2) yields E,, ~ q2 /(n? bz)Dny + 0. In
turn, Eq. (A6) suggests D,,, = —ig, Eo, + O(£?). Combining
these two results, we find

2
. q 3
Eny = —18n m EOx + O(E )
Next, Eq. (AS5) yields D,, =ig,Eo, + O(?), and
Eq. (A4) allows us to calculate D,,: D,, = —kx/ké”)an =
—igy ky/(nb)[1 — k,/(nb)]Eo, + O(£3). Using Eq. (A7), we
immediately evaluate

(A8)

ik + O3
Enz = —1&n 1 EOy (E ) (A9)
enb nb

Finally, we use Eq. (A1) to calculate E,, via the already found
D, and E,,, which yields

I8n 2 k;% 3
En= s (@ =2 ) Eo + 0@, (A10)
Equations (A8)—(A10) define higher-order Floquet harmonics
via averaged fields, which allows us to construct the effective

description of the metamaterial in terms of the averaged fields.

APPENDIX B: EFFECTIVE PERMITTIVITY OF THE
AXION METAMATERIAL

In Sec. III, we focused our attention on the derivation of the
effective axion response y . For completeness, we discuss here
the derivation of the effective permittivity of the metamaterial
e keeping the terms up to £2. We start from Eq. (14), which
can be recast in the form

Do=eEo+i) g .[E xel.
n#0

Combining this with the expressions for E,, Floquet harmon-
ics, Egs. (15)—(17), we get

D Ox Eiif O . 0 EOx
D()y = 0 & ;;t 0 EOy s
Dy, 0 0 geff Eo,

iz

where the components of the effective permittivity tensor in

the chosen coordinate system (k, = 0) calculated with preci-
sion up to £ read

eff 2 8n 8—n

Ex =€+4¢ pyER (B1)
n#0
k2 n —n
e =6 + <q2 = —X> 8o (B2)
e n? b?
n#0
el = ¢. (B3)

iz
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We observe that the correction to the effective permittivity is
of the order of &2, while the effective axion response x is
stronger, being of the order of &£. Once terms proportional to &2
are taken into account, the metamaterial becomes anisotropic,
and spatial dispersion effects emerge. Note also that £ does
not depend on the choice of the unit cell as it is typical for the
bulk properties of metamaterials [45]. In addition, the terms
proportional to £ modify the boundary conditions.

APPENDIX C: ANALYSIS OF THE FORMULA FOR THE
EFFECTIVE AXION RESPONSE

In this Appendix, we rewrite the expression for the effec-
tive axion response x [Eq. (28)] in a form more convenient
for calculations. For that purpose, we transform the sum of
the Fourier components g, as follows:

) gn ) 1 a inbs i /a —inbz
— —_ = — dz = —— d
l; n l; na \/0 g(Z)e ’ a 0 g(Z) ; :
. a ) ) 1 a
= —é / g [In(1 — e~y —In(1 — ¢™)]dz = P / g)(r —bz)dz. (CDhH
0 0

Hence, the effective axion response can be recast in the form

1 a
X = % / g(2) (T — bz)dz. (C2)
0
APPENDIX D: DETAILS OF THE TRANSFER
MATRIX METHOD

Here, we briefly discuss the calculation of the reflection
and transmission coefficients, Faraday rotation, and ellipticity
via the transfer matrix method at normal incidence, both for
the case of isotropic Tellegen media and for the designed mul-
tilayered metamaterial. To examine oblique incidence, we use
the general form of the transfer matrices derived in Ref. [48].
First, we discuss the application of the transfer matrix method
to the calculation of transmission or reflection amplitudes
under normal incidence in the homogeneous isotropic Telle-
gen medium described by the constitutive relations (7) and
(8). The relevant amplitudes were calculated for some special
cases of the homogeneous Tellegen media in Refs. [20,50],
although using a different form of the material equations. As
an amplitude column vector, we choose the four-component
vector of tangential field components and define the transfer

matrix M as
E(z) _~( E()
<eZ X B(z)) o M(eZ X B(O))'

This choice of the basis is particularly convenient in view
of the implementation of the relevant boundary condition,
Eq. (26), which translates into a boundary transfer matrix be-
tween two isotropic Tellegen media with Tellegen parameters

x1 and x,:
. I 0
M—) = A X - B
=2 ((m—xl)ez 1)

where 1 is the two-dimensional unit matrix and the matrix

W (0 -1
=1 o

describes the effect of the vector product e on the transverse
fields. Since the waves propagate in the bulk of the Tellegen
medium identically to their propagation in an isotropic dielec-
tric, the transfer matrix describing the bulk of the Tellegen

(D1)

(D2)

(D3)

[
medium coincides with that of a dielectric with the same
permittivity ¢ and reads

~ cos(kz)
Ma(z) = (—i sin(kz)./€

where k = /ew/c. Hence, the full transfer matrix for the
freestanding Tellegen slab of length L reads

(D4)

—isin(kz)/+/€
cos(kz) ’

M = My \My(L)M; . (D5)

Then, all the necessary reflection and transmission amplitudes
can be deduced from the following system:

E! _ M]l M]Q Eirf—i-Er
—JVeaE ] T \My My )\ —/eoE™ + \/eoE"

(D6)

where the superscript indices in, ¢, and r correspond to inci-
dent, transmitted, and reflected fields, respectively, and ¢y is
the permittivity of the medium surrounding the Tellegen slab.
For example, the reflection matrix

D7)

connecting the incident and reflected fields (E" = RE™) reads

R = — [\JeoMi; + Moy + eoM 12 + /eoMan]™!
x [eoMy1 + May — oMy — /oM,

which yields Egs. (38) and (39) in the main text. Second,
we discuss the application of the transfer matrix method to
the designed multilayered metamaterial. At normal incidence,
boundary conditions for TM and TE modes coincide, and
the modes with left and right circular polarizations (LCP and
RCP) propagate without any mixing. Accordingly, we employ
the exact transfer matrices in the basis of circular polarizations
with amplitude vector (EXP, ELCP ERCP pRCPYT “where the
indices «<— and — indicate the direction of propagation of
the corresponding plane waves, either along e, or in the op-
posite direction. The transfer matrix realizing the boundary

115101-8



EMERGENT AXION RESPONSE IN MULTILAYERED ...

PHYSICAL REVIEW B 108, 115101 (2023)

conditions between the two layers i and j then reads [47]

1+ni 1—;@ 0 0

. | 1=nf 14nE 0 0

L= — 1 t

Mij=31 o 0 14nf 1-ni| ¥
0 0 1—n%t 1+nt

i tj

where n?; = nli /nf and nlﬁE are the refractive indices for
LCP/RCP modes in the ith layer, which for layers with pos-
itive H, read n* = /gy £ g and for layers with negative H,
read n¥ = /e F g (in air, n, = 1). To model the perfect
mirror, we use the boundary transfer matrix for the perfect
electric conductor (PEC):

Mprc = 3 DY)

SO ==
SO =
—_—_—0 o
—_—o o

Transfer matrices describing the propagation in the bulk read

em'P 0 0 0

. 0 —inf P 0 0

=1 o eo oo |0 ®O0
0 0 0 e imP

where P = 2mwa/Ag, and Xy is the light wavelength in air. The
resultant transfer matrix describing the entire multilayer with
an even number (2N) of layers then reads

MAFM :M<_airM_><_(M<__>T<_M_><—T—>)NMair—>a (Dll)

while the transfer matrix for the same structure backed with a
perfectly conducting mirror reads

Marmspec = MpecM ' Mapw. (D12)

Co- and cross-polarized reflection and transmission coeffi-
cients are then calculated as [47]

1 <M2,1 M4,3> 1 (Mg,l M4,3>
yx = = —-i——,ryx:—, _—— — ],
2\ My,  Mus) - 2i\Mp, My

1 {det(d1) N det(MR)
T2\ My, Mgy ) (D13)

oo L [detn)  det(Mr)
T2\ M, Myy )’

where M; and My represent the upper left and lower right
matrix blocks of the resultant transfer matrix, respectively.
The angle of polarization rotation 6" and ellipticity n" are

calculated via
2Re(K;
20% = tan™! (Lél),
1 - |Ks|

20t = sin”! (—ZIm(KS) >
1+ K1)

where K; = s,,/sx, and s € {r,¢}. While the main text dis-
cusses the reflection from the freestanding slab of the axion
metamaterial, we also compare numerical and analytical re-
sults for the reflection from the axion metamaterial backed
by the ideal mirror. For that purpose, we employ the same

(D14)

transfer matrix approach as above, but with a different full
transfer matrix,

Mprc = My(L)M 2, (D15)
while forcing the transmitted field E’ in Eq. (D6) to vanish at
the PEC boundary. This allows us to calculate the reflection

amplitudes r,, and ry, and the rotation angle of the reflected
light via Eq. (D14):

(D16)

1 4 2o sin? L
A" = 3 arctan |: XY /e ]

—4x2gqsin* L 4 2

where ¥ = e cos? L + sin? L(gg — x?) and the ellipticity of
the reflected light vanishes. For the typical scenario ¥ < 1,
Eq. (D16) gives

2x /g0 sin® L

0" ~
gcos? L + gosin® L

D17)

This prediction is reproduced with high precision by the trans-
fer matrix method (Fig. 6).

Note that while calculating the predictions of the effective
medium model with precision up to x2, we also have to take
into account the corrections to the effective permittivity of the
metamaterial that also are of the order of x? (see Appendix B).

For the multilayered structure under study with g, =

igle™™ — 1)/(wn), this correction reads Ag®f = (8§fcfy}, -

) = (a/))*g*(w?/12). Using this value of the permittivity,
e — & + A, in Egs. (38) and (39), we find that the calcu-
lated cross- and copolarized reflection coefficients r,, and 7.,
perfectly agree with the results of the transfer matrix approach
[see Fig. 4(b)].

Finally, in order to calculate the average polarization of
the field near the output facet of the multilayer with a linear
gradient of the effective axion response, we compose such a
multilayer out of N, >> 1 blocks of length L/N,,, where L is the
total slab thickness, each comprising N; > L/(AN}) individ-
ual bilayers with the same magnitude but opposite orientation
of magnetization. In this case, each block can be ascribed
an effective Tellegen coefficient which differs from block to
block, defining a spatially varying effective axion response
X (2). To calculate Fig. 4 in the main text, the following pa-
rameters are used: N, = 100, N; = 200, and a = 1/50.

APPENDIX E: POINT ELECTRIC DIPOLE INSIDE
THE AXION METAMATERIAL

As discussed in the main text (Fig. 5), a point magnetic
dipole surrounded by an axion spherical shell produces a com-
bination of electric and magnetic dipole fields. A similar effect
is observed if the point electric dipole is placed inside the ax-
ion shell [Figs. 7(a) and 7(b)]. In this case, the field outside the
shell is expected to be a combination of collinear electric and
magnetic dipoles [Fig. 5(d)]. This expectation is confirmed
by the full-wave numerical simulations of the electric dipole
inside the designed metamaterial [Fig. 5(f)], which highlights
once again the validity of the effective medium description.
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FIG. 6. Calculation of the reflection coefficient from the slab of
the axion metamaterial backed by the ideal mirror. Blue solid and red
dashed lines show the predictions of the effective medium approach
and transfer matrix method, respectively. (a) and (b) Cross- and
copolarized reflection coefficients versus the thickness L of the slab
for the fixed period-to-wavelength ratio a/A = 0.02. The effective
medium results [Eq. (39)] include second-order corrections o< x? to
the effective permittivity. (c) Rotation of the polarization plane 6"
for the light reflected from the mirror-coated axion metamaterial slab
versus the total slab thickness L. Parameters: a/A = 0.02, ¢y = 1.0,
g=10.01.

APPENDIX F: ESTIMATION OF THE AXION
RESPONSE yx

Below, we estimate the effective axion response for two
realizations in the terahertz and microwave domains showing
that x can reach very high values approaching 1. Importantly,
in both cases the suggested structures can operate at room
temperature. To minimize the demagnetizing effect of the ad-
jacent layers on each other, dielectric spacers can be inserted
between them.

To implement an effective axion response in the terahertz
range (frequencies around 0.5 THz), we suggest exploiting
thin HgTe films with a giant magneto-optical response [67].
Specifically, Faraday rotation in such films reaches 7 /4 at a

Continuous Metamaterial
(a) p (b) -
E, H, E, H,
(c) x=0 (e g=20
=025 g=209
-max
-max Ez max

FIG. 7. Emergence of the magnetic dipole field for a point elec-
tric dipole inside an axion spherical shell. (a) and (b) Sketches of
the simulated systems. (a) corresponds to the case of the continuous
Tellegen medium (¢ = 1, u = 1), and (b) shows the metamaterial
realization with ¢ = 1 and u = 1. The red arrows represent the point
electric dipole oscillating with frequency f = 1.0 GHz. The distance
from the dipole to the shell inner boundary is A/4; the shell thickness
is /2. The period of the layered structure is a = /6. Fields corre-
sponding to (c) and (d) the continuous medium and (e) and (f) layered
metamaterial when the effective axion response is either (c) and (e)
zero or (d) and (f) nonzero.

distance of 1 um in 0.6 T magnetic field, which allows us to
estimate the Verdet constant.

For estimation purposes, we assume the period-to-
wavelength ratio a = 1/7, which is sufficient for the effective
axion description to be valid, and magnetic field By = 0.1 T,
which is attainable in arrays of nanomagnets [68]. Next, we
calculate the effective axion response from Eq. (37) estimating
the gyrotropy value g from the Faraday rotation above. This
yields x of the order of unity.

In the microwave domain, a promising realization can be
based on the gyrotropy of the permeability tensor arising in a
class of ferrite materials. For instance, commercially available
Ni-Zn ferrite compounds feature strong gyrotropy g, reaching
4 at frequencies close to 6 GHz [69]. Assuming the same
period-to-wavelength ratio of 1/7, we estimate the maximal
X to be also around 1.

Finally, it is also possible to exploit natural antiferromag-
nets by combining them with other materials to enhance
the effective axion response. Thus, our proposal of an axion
metamaterial makes it possible to engineer a strong and con-
trollable effective axion response.
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