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We investigate the possibility to employ magnetic Josephson junctions as magnetic noise detectors. To
illustrate our idea, we consider a system consisting of a quantum dot coupled to superconducting leads in the
presence of an external magnetic field. Under appropriate assumptions, we relate the noise in the Josephson
current to magnetization noise. At the magnetic field driven 0-π transition, the junction sensitivity as magnetic
noise detector is strongly enhanced and it diverges in the zero temperature limit. Moreover, we demonstrate that,
if also dot energy is affected by fluctuations, only the magnetic noise channel contributes to Josephson current
noise response when the quantum dot is tuned in resonance with superconducting leads.
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I. INTRODUCTION

Charge noise spectroscopy has long been recognized as a
tool of crucial relevance to investigate the physics of quan-
tum transport in mesoscopic systems and devices [1,2]. An
example is provided by shot noise measurements used to
demonstrate the fractional charge of quasiparticles in the frac-
tional quantum Hall effect [3,4]. Recently, scanning tunneling
microscopy approach for shot noise measurements revealed
coherent electron tunneling from magnetic impurity into a
s-wave superconductor via Yu-Shiba-Rusinov state [5]. In
this scenario, spin-noise spectroscopy (SNS) exploiting spin
fluctuations to extract information about the system spin dy-
namics represents a promising investigation technique [6].
Specifically, probing the electron spin dynamics we can gain
information about the underlying microscopic interactions
such as spin-orbit coupling and magnetic disorder [6]. Among
the several methods to probe magnetization fluctuations, Fara-
day rotation spectroscopy, whose working principle consists
in measuring spin fluctuations from the Faraday polarization
rotation of a linearly polarized light impinging on the sample,
deserves to be mentioned [7]. In particular, this method has
been successfully applied to study electron-spin dynamics
for conduction electrons in bulk GaAs [8] and to extract
spin relaxation time and Landé g factor from the spin-noise
signal. In Ref. [9], electrons and holes g factors have been de-
rived for localized states in semiconductor (In, Ga)As/GaAs
quantum dots (QDs) from the measured magnetic fluctua-
tions. Furthermore, Faraday rotation spectroscopy of quantum
dot molecules (QDM) has allowed to resolve the coherent
tunneling between QDs as well as the exchange-type spin-
spin interactions [10], while it has been also used to study
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heterogeneous interacting spin systems via cross-correlation
SNS [11]. Similarly, in view of having more compact ex-
perimental on-chip setups, SQUID (superconducting quantum
interference device) based magnetometry [12,13] has been
recognized as a valuable tool to measure magnetic field fluc-
tuations in spin glasses [14,15] and superconductors [16] with
the sample being placed close to a dc-SQUID circuit [6].

In this manuscript, we propose a spin-noise detector
based on a Josephson device [17–20]. Recent experiments
have demonstrated the possibility to fabricate ferromagnetic
Josephson junctions having high quality factors and a plasma
frequency in the GHz range [21–27]. These results hint at the
possibility to employ these junctions to realize novel quantum
devices and sensors, exploiting exchange rather than orbital
magnetic phenomena [21–27]. Our main idea is to exploit
the magnetic field dependence of Andreev tunneling charac-
terizing Josephson effect in ballistic quantum point contacts
[28–46] to detect spin fluctuations. We consider a single level
quantum dot Josephson junction (SQDS JJ) in the presence
of an external magnetic field and we show that, under appro-
priate conditions, the supercurrent noise fluctuations can be
directly related to spin noise. We identify the magnetic field
induced 0-π transitions in SQDS JJs as the origin of enhanced
current noise sensitivity to magnetic field fluctuations, that
can be controlled by the system temperature, thus, suggesting
a sizable amplification for magnetic noise even in the weak
field limit [47]. Moreover, also in the presence of dot energy
fluctuations the SQDS JJ detector appears to be much more
sensitive to spin rather than charge noise when the dot is tuned
in resonance with the superconducting leads.

The proposed device would provide the unique chance of
accessing information about microscopic spin-noise sources
from the knowledge of the junction equilibrium trans-
port properties and it can be used to probe magnetization
fluctuations in the ferromagnets employed as barriers in
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unconventional ferromagnetic Josephson junctions for super-
conducting qubits [21–27,48–50]. Research interest in JJs
with ferromagnetic barriers [51–61], as well as magnetic
quantum dot junctions [32,33,37,38,41,62–66], lies especially
in their potential application as π shifters [35,43,44,48–
50,62,63], in the possible implementation of tunable 0-π junc-
tions [23–25] and in the link between 0-π and topological
parity transitions [46,67,68]. In order to investigate the fea-
sibility of employing ferromagnetic JJs in superconducting
quantum circuits their magnetization noise characterization
is needed. Furthermore, the investigation of noise in these
systems underlies the possibility to simultaneously highlight
material specific features, such as the decay time of spin-
spin correlations, and detect device properties. Interestingly
enough, our work might be relevant also to model noise in
a Josephson junction through a Yu-Shiba-Rusinov state, re-
cently realized by Karan et al. [69], and the oscillations of
Gilbert damping, recently revealed by Yao et al. in ferromag-
netic Josephson junctions [70].

The paper is structured as follows. In Sec. II, we present
the SQDS JJ under study, together with the system and noise
Hamiltonians, and we recall the Josephson current formula
for equilibrium transport properties. In Sec. III, we describe
the system current noise in the presence of static fluctuations
in dot energy and magnetic field, and we identify the most
favorable transport regime for magnetic noise detection from
current fluctuations. In Sec. IV, we recall the mechanisms
underlying magnetic field driven 0-π transitions in SQDS JJs
and recognize these π switchings as a source of enhanced
sensitivity of the current noise to magnetic fluctuations. More-
over, we point out the optimal working conditions to extract
information about microscopic spin-noise sources from the
equilibrium current noise. In Sec. V, we investigate how the
Josephson current noise is modified by increasing the system
temperature. Section VI summarizes our main findings.

II. MODEL

We model the device as a Josephson junction with a single
level quantum dot (QD) barrier of energy εd in an external
magnetic field B0, that we here chose to lie along the z axis,
thus perpendicular to the transport plane, i.e., x-y plane, Fig. 1.

In the presence of noise, the Hamiltonian can be written as

H = HS + Hnoise, (1)

where HS denotes the system Hamiltonian in the absence of
fluctuations while Hnoise accounts for noise fluctuations. The
system Hamiltonian can be in turn cast as follows:

HS = Hleads + HD + HT, (2)

where HD, Hleads and HT are the dot, the leads and the
tunneling Hamiltonian, respectively. The dot Hamiltonian,
depending on the dot energy, εd , and the Zeeman splitting
provided by the magnetic field, h = hz = gμB|B0|z, with μB

and g denoting the Bohr magneton and the electronic gyro-
magnetic ratio, reads

HD = εd

∑
σ=↑,↓

d†
σ dσ + h(d†

↑d↑ − d†
↓d↓), (3)

FIG. 1. Scheme of the superconductor-quantum dot-
superconductor Josephson junction (SQDS JJ) in the presence
of an external magnetic field B0. Here, εd is the dot energy and
h = gμB|B0| is the Zeeman splitting between the two spin channels
affecting the dot level when B0 is turned on. The two s-wave
superconductors are chosen to have equal gap � and chemical
potential μ. φL/R is the superconducting phase of the L/R lead,
respectively. t is the amplitude of the hopping integral among
the superconducting leads and the dot. Finally, a sketch of the
fluctuations in the orientation of nuclear spins in the substrate
beneath the dot is reported.

where dσ indicates the annihilation operator for electrons of
spin σ =↑,↓ on the dot. Following Ref. [38], we neglect
Coulomb interaction on the dot. For the sake of simplicity,
the superconducting electrodes are supposed to be s-wave
with equal chemical potential μ, normal-state dispersion εk,σ ,
and superconducting gap �, thus yielding the following leads
Hamiltonian:

Hleads =
∑

i=L,R

∑
k

∑
σ=↑,↓

(εk,σ − μ)c†
i,k,σ

ci,k,σ

+
∑

i=L,R

∑
k

�eiφi c†
i,k,↑c†

i,−k,↓ + H.c.,
(4)

where ci,k,σ represents the annihilation operator for electrons
in the state k with spin σ on the lead i (i = L, R). Here, φi is
the superconducting phase in the lead i, respectively. We set
φL = −φ/2, φR = φ/2, and μ = 0.

The tunneling Hamiltonian HT reads

HT = t
∑

i=L,R

∑
k

∑
σ

c†
i,k,σ

dσ + H.c., (5)

where the hopping amplitudes between the leads and the dot
are chosen to be equal and k-independent for both leads.

When we assume rigid superconductors and constant hop-
ping amplitude, noise Hamiltonian Hnoise only involves dot
energy and Zeeman field fluctuations, i.e., δεd and δh, where
the latter, in principle, can be noncollinear to the equilibrium
exchange field hz

Hnoise = δεd

∑
σ=↑,↓

d†
σ dσ +

∑
σ,σ ′=↑,↓

d†
σ (σ̂ · δh)dσ ′ . (6)

Here, σ̂ = (σ̂1, σ̂2, σ̂3) is the vector of the Pauli matrices in the
spin space.

Fluctuations in dot energy, δεd , can originate from statis-
tical retrapping processes of charge carriers in the substrate
beneath the QD, possibly inducing fluctuations in the control
gate voltage [71–75]. Fluctuations of the Zeeman field may
arise, in this geometry, due to the interactions between the
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dot electrons and spins of the nuclei in the substrate that, for
weak external fields, can be described within the so-called
“central spin model” [6,47,76]. In this framework, the intrinsic
dynamics of the spin-bath happens on time-scales τi � 100 µs
[6] and thus can be neglected. The noise Hamiltonian only
involves the hyperfine coupling between electrons and nuclei
of the substrate,

Hhf
noise �

∑
n

∑
σ,σ ′=↑,↓

d†
σ An (σ̂ · In)dσ ′ , (7)

where In denotes the spin of the nucleus n and An quantifies
the interaction between the n-th nucleus and the electron on
the dot.

The effects of the hyperfine coupling between electrons
and substrate nuclei, within the “frozen spin approxima-
tion,” [47] yields, for an ensemble of N nuclei, an effective
Overhauser field given by BN = ∑

i Ai Ii [6,47]. In this con-
text, Zeeman field fluctuations would simply read as δh =
μBgδBN. It can be shown that, within this approximation, due
to the rotational symmetry of the system, the direction of the
total Zeeman coupling, i.e., hz + δh, does not affect the junc-
tion transport properties. For this reason, later on we consider
δh parallel to the equilibrium Zeeman field, i.e., δh = δhz.

Josephson current

In the case of no bias voltage applied to the S electrodes,
the equilibrium Josephson current, J (φ), is only driven by the
phase difference φ between the leads and, in the Matsubara
representation, can be written as follows [24,31,38,40,64]:

J (φ) = eT �	 sin

(
φ

2

) ∑
ωn

�(Fdd,↓↑(ωn))√
�2 + ω2

n

, (8)

where ωn = π (2n + 1)T is the fermionic Matsubara fre-
quency and T is the system temperature, with Fdd,↓↑(ωn)
being the ↓↑ element of the anomalous dot Green’s function
(GF), describing the superconducting correlations on the dot.
We approximate the two leads normal-state dispersion εk,σ by
considering them as described by a flat and infinite band with
a constant density of state ρ0 (i.e., the leads density of states
at the Fermi level) [38,40,64], thus, introducing the linewidth
of the dot energy levels as simply 	 = 2πρ0t2, describing the
dot-lead hybridization. In this work, we set h̄ = kB = 1 and
the Josephson current J is scaled by e�.

Since the linewidth of the dot level 	 plays the same role
of Thouless energy ETh in diffusive SNS JJs [29–31,77,78],
the small and long junction conditions reading, respectively,
� � ETh and � � ETh, simply become � � 	 and � � 	

in SQDS JJs [29–31]. Short junction limit is characterized
by negligible quasiparticles contribution to Josephson cur-
rent [29–31], thus representing the proper regime to simulate
transport properties of novel tunnel ferromagnetic Josephson
junctions with insulating barrier [21–26], more suitable for
quantum circuits applications in view of the low quasiparticles
current. For this reason, in this work, we analyze SQDS JJs
characterized by � � 	 and all energies are scaled by 	. In
Appendix A, we calculate the dot GF when it is coupled to
the leads, encoding information about the junction Andreev
bound states (ABS), through which the supercurrent flows

[38,40], whose knowledge is necessary to compute the junc-
tion current-phase relation (CPR), i.e., J (φ).

III. CURRENT NOISE IN SQDS JJS

We study the system current noise in the presence of both
dot energy εd and Zeeman field h fluctuations. Since we aim
to exploit the junction current noise response as a probe of
the magnetic noise source, we focus our attention on the
intrinsic link between J and h fluctuations. In the follow-
ing we assume the two noise sources to be uncorrelated. To
keep the discussion simple, we further specify our analysis
to the case of static Gaussian noise, where the QD degrees
of freedom are characterized by time-independent zero-mean
fluctuations, 〈δh〉 = 〈δεd〉 = 0, described by Gaussian proba-
bility distribution, P(δεd ) and P(δh), with variance given by
σ 2

εd
= 〈(δεd )2〉 and σ 2

h = 〈(δh)2〉, respectively. The assump-
tion of Gaussian static noise can be justified for magnetic
fluctuations considering that, in the central spin model and
“frozen spin approximation” [47], the Overhauser field BN

yields classical static fluctuations, that in the limit of a large
N are Gaussianly distributed with a standard deviation σBN =
BN max/

√
N , BN max indicating the maximum Overhauser field

which is typically of the order of a few mT [76,79,80]. For
an electron confined in a GaAs quantum dot and interact-
ing with a typical number 100 spin-3/2 nuclei, this results
in σBN ∼ 4 mT [80] and, consequently, in an overall mag-
netic field with probability distribution given by P(B0) =
exp(−B2

0/(2σ 2
BN

))/(
√

2πσBN ). A careful discussion of the lim-
its of validity of the frozen spin approximation in external
magnetic fields can be found in Ref. [76]. In the context of
Gaussian static noise, the SQDS JJ current-noise characteri-
zation reduces calculate the Josephson current variance as a
function of the superconducting phase difference between the
leads can be expressed as [81–83]

σ 2
J (φ) = 〈(δJ (φ))2〉 = 〈J2(φ)〉 − 〈J (φ)〉2, (9)

where 〈·〉 is intended as the average over dot energy and
Zeeman field fluctuations distributions, P(δεd ) and P(δh). In
view of a possible application of the SQDS JJ as magnetic
noise detector, we should be able to isolate and analyze the
magnetic field fluctuations contribution to current noise re-
sponse in Eq. (9). In the presence of multiple noise sources
this represents in general an hard task. However, in the
small fluctuations limit, the current noise σJ can be approx-
imated by the following expansion with respect to σεd and σh

[71,81–83]

σ 2
J (φ) =

⎛
⎝∂J (φ)

∂h

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 2
h +

⎛
⎝∂J (φ)

∂εd

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 2
εd

+ 1

2

⎛
⎝∂2J (φ)

∂ε2
d

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 4
εd

+ 1

2

⎛
⎝∂2J (φ)

∂h2

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 4
h

− 1

2

⎛
⎝∂2J (φ)

∂ε2
d

∣∣∣∣
δεd =0
δh=0

∂2J (φ)

∂h2

∣∣∣∣
δεd =0
δh=0

⎞
⎠σ 2

εd
σ 2

h , (10)
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FIG. 2. SQDS JJ level scheme in the absence of magnetic field.
Dot level finite linewidth 	 is the result of hybridization with the
leads. By controlling εd one can reach both “resonant” and “nonres-
onant” tunneling regime.

where make the assumption of uncorrelated noise sources and
express the fourth order moment of δεd and δh as 〈(δεd )4〉 =
3σ 4

εd
and 〈(δh)4〉 = 3σ 4

h [81–83]. As one can see in Eq. (10),
the JJ current-noise response is determined by the current
derivatives with respect to εd and h. The two contributions are
in general difficult to separate. The existence of “sweet spots”
in the Hamiltonian parameters space where σεd contribution
to σJ can be disregarded suggests a strategy to isolate the
magnetic noise contribution. Specifically, when we tune the
dot in resonance with the two superconducting electrodes (see
Fig. 2) [30,31], i.e., εd = 0, ∂εd J goes identically to 0, actually
predicting a vanishing first order contribution in σεd to σJ .
Thus, in case of negligible contribution from high order terms
in σεd and σh, see Appendix B, the current variance σ 2

J (φ) in
Eq. (10) simply reduces to

σ 2
J (φ, εd = 0) =

⎛
⎝∂J (φ, εd = 0)

∂h

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 2
h . (11)

To demonstrate that ∂εd J vanishes at εd = 0 we recall the cur-
rent formula in Eq. (8) yielding ∂εd J ∝ ∂εd Fdd,↓↑. Fdd,↓↑(ωn)
has in general a cumbersome expression, that in the limit of
zero Zeeman field h = 0 [40,64] simplifies to

Fdd,↓↑(ωn) = 	� cos
(

φ

2

)
√

�2 + ω2
n

×
(

−ω2
n − ε2

d − 	2
(
�2 cos (φ/2)2 + ω2

n

)
(�2 + ω2

n )

− 2	ω2
n√

�2 + ω2
n

)−1

. (12)

Starting from the above equation the current derivative along
εd can be easily calculated in the resonant tunneling where it

identically vanishes

∂εd Fdd,↓↑|εd =0 = ∂εd J|εd =0 = 0. (13)

This approach represents a promising starting point in view of
detecting magnetic noise from the current variance and the
knowledge of the junction equilibrium transport properties.
Our purpose is to investigate in which conditions Eq. (11)
provides an accurate approximation to σ 2

J (φ), leading to a
simple description of the system current noise response. In
this scenario, essential for the practical applicability of this
device as a magnetic noise detector is its sensitivity to h
fluctuations. For this reason, later on we concentrate on the
current noise accompanying Zeeman field induced 0-π transi-
tions, where the junction turns out to exhibit an increased σJ

sensitivity to magnetic noise that is strictly connected to the
choice of the quantum dot as the junction barrier.

IV. 0-π TRANSITIONS AND CURRENT NOISE
AMPLIFICATION IN RESONANT SQDS JJS

A. Zeeman field driven 0-π transitions in SQDS JJs

The crucial role of the exchange field in controlling
the switching between 0 and π phases in superconductor-
ferromagnet-superconductor junctions is well established
[51–58]. However, due to the peculiar nature of the barrier,
it is useful to recall the mechanisms characterizing the 0-
π transitions in quantum dot JJs [32,33,37,38,41]. For this
purpose, in Fig. 3, we show the ABS spectrum computed
with increasing Zeeman interaction along an Zeeman field
driven 0-π , transition. It is useful to focus our attention on
the absence of a gap in the ABS spectrum also when h = 0,
Fig. 3(a), with Andreev levels crossings at φ = ±π at zero-
energy. Magnetic field affects the levels structure introducing
a Zeeman splitting between different spin channels [32,41],
Fig. 3(b), with levels crossings appearing at φ = ±φ0 �= ±π .
By further increasing the dot Zeeman field the ABS crossing
points are pushed toward φ0 = 0, Fig. 3(c), thus, driving the
system to the π phase, where two particle-hole symmetric
Andreev levels are switched, Fig. 3(d). The crossings phase
points ±φ0 are, in principle, function of all the microscopic
parameters entering the ABS levels calculation, i.e., εd , h, �,
and 	.

In Appendix C, we show that the presence of ABS cross-
ings between particle-hole symmetric levels in this kind
of SQDS JJ reflects in the occurrence of sharp jumps in
the CPR, from positive to negative currents, at the cross-
ings phases along 0-π transitions [32,33,38,41,45,68], as it
is visible in Fig. 4, where the junction current-phase re-
lations J (φ) corresponding to the ABS spectra in Fig. 3,
computed at temperature T = 0.02 TC , are reported. Pecu-
liar jump discontinuities in CPR, well known in ballistic
quantum point contacts (QPCs) in resonant regime and short
ballistic JJs [30–32,54,84], have been already predicted in
SQDS junctions along the 0-π switchings [34,38,54] also in
the presence of Coulomb interaction on the dot [32–34,36–
40,42,45,46,68], as well as in ferromagnetic Josephson de-
vices with QPCs, e.g., SFcFS [54], and correspond to a system
state characterized by the contemporary presence of two
minima in the total energy at φ = 0 and π [32,34,38,54] (see
Appendix C). This peculiar CPR behavior goes along with
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(a) (b) (c)

FIG. 3. Andreev levels spectrum for the SQDS JJ (εd = 0, 	 = 1, � = 0.01) along an Zeeman field induced 0-π transition, computed,
from left to right, at h = 0 (a), 0.2 (b), 0.9 (c), and 1.05 (d), respectively. By increasing the Zeeman splitting between the different spin levels,
Andreev bound states (ABS) crossings at zero energy occur for φ = ±φ0 �= 0,±π . Transition between the 0 and π phases is accomplished
when the two near-zero ABS are switched.

an enhanced contribution of higher harmonics, that is a well
established signature of the transition to π state in JJs with
ferromagnetic barriers [23–25,55,58]. We can better appre-
ciate and summarize the transport properties of the SQDS
junction by looking at Fig. 5, where the density plot of the
Josephson current as a function of the phase and Zeeman
field, i.e., J (φ, h), (computed for εd = 0, � = 0.01 and T =
0.02 TC) is presented. Josephson current J (φ) is shown along
the lines at fixed h value on the y axis. To accomplish the
0-π transition, the system must move across an intermediate
regime in which the J (φ) shows sharp jump discontinuities,
corresponding to sudden changes of color in the graphic. In
the resonant tunneling regime, we can observe the lack of
a region of the parameter space where the junction exhibits
a pure 0 behavior, starting its transitions toward the π state
as soon as the Zeeman coupling is turned on. π switching is
accomplished when h = ±1 corresponding to the situations
where both the Zeeman splitted dot levels with linewidth 	 =
1 do not overlap anymore with the superconducting banks
chemical potential μs = 0, thus having the junction exiting
the resonant tunneling regime (Figs. 1 and 2).

� �
2

0
2

�1.

�0.5

0.

0.5

1.

J
(

)

e

FIG. 4. CPR behavior of the SQDS JJ in the resonant tunneling
regime (at εd = 0, � = 0.01, 	 = 1, and T = 0.02 TC) computed
along the Zeeman induced 0-π switching at h = 0 (blue solid curve),
h = 0.2 (green dot-dashed curve), h = 0.9 (orange dashed curve) and
h = 1.05 (red dotted curve), respectively. Along the 0-π transition
the JJ shows peculiar CPR jump discontinuities at the ABS crossings.

B. Current noise amplification in the presence
of Zeeman field fluctuations

Occurrence of CPR jumps at the ABS crossing phases,
φ = ±φ0, gains relevance when the Hamiltonian parameters
on which φ0 depends are affected by noise. In our case, CPR
discontinuities may lead to an increased sensitivity of the
current noise along the 0-π transition to εd and h fluctuations
(	 and � are kept fixed), see Appendix C.

In particular, the abrupt change in sign of J (φ) leads to
δ-like peaks in the current derivatives with respect to the dot
energy and Zeeman field, as it happens for ∂hJ (φ) shown in
the density plot in Fig. 6(a). Here, the amplitude of ∂hJ (φ)
along the 0-π switching is enhanced by two orders of mag-
nitude at the ABS crossings with respect to the background.
In the presence of Zeeman field fluctuations, as long as the
system is in the small fluctuations regime and the expansion in
Eq. (11) is valid, ∂hJ (φ) divergences at ABS crossing phases
suggests an enhanced current noise response to h fluctuations.

FIG. 5. Density plot of Josephson current as a function of the
phase and Zeeman field J (φ, h), computed at εd = 0, 	 = 1, � =
0.01, and T = 0.02 TC . Transition between 0 and π phases is char-
acterized by an intermediate transport regime in which the junction
CPR shows peculiar jumplike discontinuities, e.g., abrupt change in
the plot color when moving along the φ axis at fixed Zeeman field h
value.
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(a)

(b)

FIG. 6. Density plot of the current derivative along h (a) and of
the current variance σ 2

J (φ, h) (b) as a function of the superconducting
phase difference and the Zeeman field (εd = 0, � = 0.01, 	 = 1,
and T = 0.02 TC). σ 2

J (φ, h) = 〈J2(φ)〉 − 〈J (φ)〉2 is computed in the
presence of dot energy and Zeeman field fluctuations with equal
standard deviation σεd = σh = 0.005. Along 0-π transition ∂hJ di-
vergences at the CPR jumps appear and the SQDS JJ exhibits current
noise peaks.

On the other hand, in the resonant dot case, divergences in
∂εd J along Zeeman field induced 0-π transitions are pre-
vented, since ∂εd J is identically zero for εd = 0, possibly
indicating vanishing first order σεd contribution to current
fluctuations. Confirmation of the prediction of amplified cur-
rent noise response can be found in Fig. 6(b) where we show
the current variance σ 2

J obtained from Eq. (9) in the presence
of both εd and h fluctuations taken with the same standard
deviation σεd = σh = 0.005 for simplicity. In this density plot,
we observe the appearance of pronounced σ 2

J peaks at the
ABS crossing phases. The large amplitude of the peaks, ris-
ing two orders of magnitude over background, indicates that
Zeeman field driven 0-π transitions in QD JJs can be exploited
to amplify and detect small magnetic fluctuations through cur-
rent noise response. This enhances the practical potentialities

of these systems for probing Zeeman field noise. In addition,
we observe in Fig. 6(b) that the current noise amplification ac-
companying the 0-π transition starts as soon as the magnetic
field is switched on, and the largest current noise response is
achieved at very low Zeeman coupling values. This suggests
the possibility to have a high detection sensitivity without em-
ploying strong external magnetic fields that could in principle
have detrimental effects on the superconducting leads.

The inherent device sensitivity, whose fingerprint are the
CPR jumps, is tightly connected to the Andreev spectrum
dependence on the microscopic parameters, and it may be
reduced in the presence of strong quasiparticles currents. We
thus analyze Andreev levels and quasiparticles current contri-
butions separately in Fig. 7 by varying the superconducting
gap, starting from a deeply short junction limit, � = 0.01	

to the case where � = 	. If the short junction regime is
characterized by a negligible quasiparticles contribution to
J (φ), Figs. 7(a) and 7(b), when we increase the �/	 ratio
quasiparticles current gradually grows until reaching the same
order of magnitude of ABS supercurrent when � ≈ 	, as it
is evident in Fig. 7(c). We can see that when quasiparticles
contribution becomes sizable it is opposite in sign with respect
to ABS current [38,85], hence, leading to a reduction of the
CPR jump. Hence, also the maximum of ∂hJ divergent peaks
is decreased, since their height is proportional to the jump
discontinuity in J (φ). This indicates a strong attenuation of
the current noise sensitivity when the superconducting gap
approaches the dot linewidth, as shown in Fig. 7(d), further
justifying the choice of working in the short junction limit in
order to have also the current noise response maximized. In
the followings, we fix � = 0.01, thus quenching the quasi-
particles contribution to supercurrent that is detrimental for
noise amplification.

Once the most favorable transport regime for magnetic
noise detection has been determined, the success in using the
SQDS JJ magnetic noise detector relies on the accuracy of
Eq. (11). The latter, in resonant tunneling case, not only allows
us to access information about magnetic noise sources but it
assures that dot energy noise does not contributes to σJ . It is
thus important to identify the regime of validity of the small
fluctuations approximation. For this purpose, in Fig. 8, we
show the current variance σ 2

J computed at different widths of
the dot energy and Zeeman field distributions, i.e., σεd and σh,
by comparing the outcomes of Eqs. (9) and of (11). We note
that the smaller is σh, i.e., the narrower is the Zeeman field
noise distribution, the higher is the precision of Eq. (11) in
reproducing the correct results both for σ 2

J peaks height and
width. These results are still better visualized when comparing
the maximum of the σJ (φ) peaks computed with the two ap-
proaches, in Fig. 9, where we observe that for σh � 5 × 10−3,
Eq. (11) succeeds in providing an accurate description for the
current variance that hence turns out to be proportional to σh.
Not only these results validate the small fluctuations expan-
sion approach but they also demonstrates that dot energy noise
can be disregarded for σ 2

J calculation in the resonant tunnel-
ing. In this scenario, these findings points out the possibility to
extract information about the magnetic noise directly from the
knowledge of the Josephson current variance and the junction
equilibrium transport properties. Following Refs. [6,47], we
highlight that the small fluctuations condition do not limit
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(a)

(b)

(c)

(d)

FIG. 7. In [(a)–(c)], the current-phase relation (blue solid lines)
together with the relative current contributions of ABS (red dashed
lines) and quasiparticles (green dot-dashed lines), in the lower panel
(d) the current variance for σεd = σh = 0.005, computed at different
values of the superconducting gap � (at εd = 0, h = 0.2, 	 = 1, and
T = 0.02 TC), are respectively shown. As long as the system is in
the short junction limit, i.e., � � 	, quasiparticles current remains
negligible, while it reaches the same order of magnitude of the cur-
rent carried by Andreev levels when � approaches 	. Reduction of
CPR jumps due to quasiparticles current leads to strong attenuation
of the current noise peaks at the ABS crossings, when � approaches
	, with the SQDS JJ exiting the short-junction regime.

applicability of these systems as magnetic noise detectors. In-
deed, we find that the expected Zeeman coupling distribution
width σ

exp
h corresponding to magnetic field standard devia-

tion σBN ∼ 4mT, as mentioned in Refs.[6,47], is of the order
of σ

exp
h ∼ 10−7 eV, where we consider the electronic gyro-

magnetic factor in such heterostructures being g ∼ 0.3–0.4

[86–90], while in our case, when dealing with systems such
that 	 ∼ 100� and σh = 5 × 10−3	, we predict Zeeman field
standard deviation σh = 5 × 10−5 eV for � = 10−1 meV.

V. HIGH TEMPERATURE LIMIT: TEMPERATURE
INDUCED NOISE DAMPING

In this section, we study thermal effects on the sensitivity
of the SQDS JJ detector. Starting from Eqs. (8) and (9),
we calculate the current and its noise by varying the sys-
tem temperature in the range [0.02TC, 0.5TC]. The results for
the QD JJ at h = 0.2 (Fig. 4) are shown in Figs. 10(a) and
10(b), respectively. We find that the sharp jumps, strongly ev-
ident when the temperature approaches zero, are significantly
smoothed by the temperature.

CPR jump discontinuities in such systems represent a fin-
gerprint of the enhanced sensitivity to magnetic noise, these
findings thus suggest a strong damping of the current noise
peaks, as confirmed by Fig. 10(b), where the amplitude of σJ

peaks is reduced by one order of magnitude at T = 0.1 TC and
by more than two order of magnitude at T = 0.3 TC .

We can understand this effect by recalling the ABS current
formula at finite temperature [29–31,77,78]

JABS (φ) =
∑
j,ε�0

∂ε j (φ)

∂φ
tanh

(
ε j (φ)

2T

)
. (14)

and looking at the current carrying Andreev levels, i.e., at ε <

0, in Fig. 11(a). When we compute the Boltzmann thermal
factor for the Andreev state exhibiting zero energy crossings
at φ = ±φ0, by varying the system temperature, Fig. 11(b),
we notice that it exhibits a visible dip at the crossings, whose
width grows with the temperature. This leads to the lowering
and widening of the CPR jumps, together with a strong re-
duction of σJ peaks. In this scenario, the SQDS JJ detector
sensitivity is intrinsically related to the quantum mechanical
nature of Andreev current governing the 0-π transition and
thus is maximized at low working temperature, promising
even improved performances when T is further reduced

VI. CONCLUSIONS AND REMARKS

In this work, we studied the equilibrium current noise in
quantum dot JJs in an external magnetic field in the pres-
ence of magnetic and dot energy fluctuations. We investigated
the microscopic mechanisms underlying the current noise
response to magnetic field fluctuations in these devices and
to extract information about magnetic noise sources from
current fluctuations, thus, paving the way to a novel spin-
noise spectroscopy technique. We considered the case of static
Gaussian noise, which is justified if the magnetic noise can
be described in the “central spin model” within the “frozen
spin approximation” [6,47,76]. We identified the short junc-
tion regime and the resonant tunneling as the most favorable
conditions for magnetic noise detection from the current noise
response. Indeed, we demonstrated that, when the dot is tuned
in resonance with the leads, dot energy noise contribution
to current fluctuations can be disregarded, thus leading to a
simple proportionality relation between current variance σJ

and the standard deviation of the dot Zeeman splitting σh,
in the small fluctuations regime. Zeeman field induced 0-π
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(a) (b) (c)

FIG. 8. Comparison between σ 2
J (φ) calculated by the means of Eqs. (9) and (11) for the CPR curve at h = 0.2 in Fig. 4 (εd = 0, 	 =

1, � = 0.01), at different values of the dot energy and Zeeman field standard deviations, σεd = σh = 0.005 (a), σεd = σh = 0.01 (b), and
σεd = σh = 0.02 (c), respectively.

transitions in quantum dot JJ turn out to amplify current
noise response to magnetic fluctuations. In these systems,
along 0-π switchings the occurrence of peculiar CPR jump
discontinuities, intrinsically linked to the presence of Andreev
levels crossings, is visible at low temperatures [33,38,41].
CPR jumps are the origin of noise amplification, giving rise
to strong current noise response, i.e., σJ (φ), whose hallmarks
are σJ peaks at ABS crossings. Although enhanced sensi-
tivity of the current noise response to magnetic fluctuations
along the 0-π transition may constitute a practical limit to
employ these devices in quantum circuits, it also represents
a unique opportunity to probe the magnetic fluctuations, ac-
cessing information about the microscopic noise sources from
the junction equilibrium transport properties, thus, inspiring
novel kind of Josephson spin-noise detectors. In addition, we
investigated the quasiparticles destructive influence on CPR
jumps and on the detection sensitivity, pointing out the best
working regime for maximizing the amplification of current
response to magnetic noise. In this scenario, system temper-
ature T plays a crucial role in smoothening the CPR jumps

FIG. 9. Maximum of the σJ peaks at the ABS crossings for the
CPR curve at h = 0.2 (green dot-dashed curve in Fig. 4) computed by
varying the Zeeman field standard deviation σh in comparison with
the results predicted from first order σJ expansion in Eq. (11).

accompanying the 0-π transitions and washing out the σJ

peaks, thus limiting the detectors sensitivity for T ≈ 10−1 TC

but suggesting even improved performances when T is further
reduced. For this reason, temperature turns out to be a valuable
resource as a control knob of sensitivity to magnetic noise in

(a)

(b)

FIG. 10. CPR and current variance σ 2
J (φ) modifications with the

system temperature increasing. Results for the JJ with h = 0.2 in
Fig. 4 computed at T = 0.02 TC (blue solid curve), T = 0.1 TC (red
dashed curve), T = 0.3 TC (green dot-dashed curve), and T = 0.5 TC

(purple dotted curve), respectively, are reported. The temperature
induced smoothing of CPR jumps and damping of the σJ noise peaks
are remarkable.
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(a)

(b)

FIG. 11. Negative energy states of the junction ABS spectrum
(at εd = 0, h = 0.2, � = 0.01, and 	 = 1) lying below the super-
conducting leads chemical potential, through which supercurrent
flows across the junction, (a). In (b) the thermal damping factor
computed for the Andreev level exhibiting zero energy crossings at
T = 0.02 TC (blue solid line), T = 0.1 TC (red dashed line), T =
0.3 TC (green dot-dashed line), and T = 0.5 TC (purple dotted line),
respectively, is shown. A dip is present at the ABS crossing phases,
whose width is enhanced by the temperature increasing, thus, pro-
viding the CPR jumps smoothing.

these devices, also in view of their application in supercon-
ducting quantum circuits.
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APPENDIX A: JOSEPHSON CURRENT FORMULA

In this Appendix, we present the calculation of the dot
Green’s function (GF) when it is connected to the supercon-
ducting leads by the means of perturbation theory. Moreover,

we recall how to derive from its knowledge the Andreev levels
spectrum and the Josephson current formula in Matsubara
representation.

Introducing the field operator formalism in Nambu⊗spin
space, we define ψD and ψi,k as the field operators annihilating
an electron on the QD and on the lead i (i = L, R) in the state
k, respectively, as

ψD = (d↑, d↓, d†
↑, d†

↓)T , ψi,k = (ci,k,↑, ci,k,↓, c†
i,−k,↑c†

i,−k,↓)T .

(A1)

In this framework, leads, dot and tunneling Hamiltonians,
respectively, are written as follows:

Hleads =
∑

i=L,R

∑
k

ψ
†
i,kȞi,kψi,k, HD = ψ

†
DȞDψD,

HT =
∑

i=L,R

∑
k

ψ
†
DȞTψi,k + H.c., (A2)

where ȞD, Ȟi,k, and ȞT are the QD, the lead i and the hopping
Hamiltonian matrices in Nambu⊗spin space, respectively,
reading

Ȟi,k = (εki − μs)σ̂0 ⊗ τ̂3 + i�eiφi σ̂2 ⊗
(

τ̂1 + iτ̂2

2

)
+ H.c.,

ȞD = τ̂3 ⊗ (εd σ̂0 + hσ̂3), ȞT = t σ̂0 ⊗ τ̂3, (A3)

where we indicate with σ̂0 and σ̂ν (ν = 1, 2, 3) the identity and
the Pauli matrices in the spin space, respectively, while τ̂0 and
τ̂ν (ν = 1, 2, 3) play the same role in the Nambu space. Here
and in the following, the symbol .̂ stands for 2 × 2 matrices in
spin or Nambu space while .̌ indicates the 4 × 4 matrices in
Nambu⊗spin space.

From the expression of the system Hamiltonian in
Nambu⊗spin space, we can compute the dot Green’s function
when it is coupled to the superconducting leads, Ǧdd , whose
structure is given by

Ǧdd =
(

Ĝdd F̂dd

−F̂ ∗
dd −Ĝ∗

dd

)
, (A4)

with each block being a matrix in the spin space. The off-
diagonal terms in the right-hand side of Eq. (A4) are the
so-called anomalous GFs F̌dd , describing the superconduct-
ing pair correlations. Within the framework of perturbation
theory, we can write a Dyson equation for Ǧdd that, in the
Matsubara representation, reads

Ǧdd (ωn) =
⎛
⎝iωn1̌ − ȞD −

∑
i=L,R

ȞTǦ0
i (ωn)ȞT

⎞
⎠

−1

, (A5)

where 1̌ is the identity matrix in Nambu⊗spin space, ωn =
πT (2n + 1) is the fermionic Matsubara frequency with T the
system temperature. Here, Ǧ0

i (ωn) is the bare GF of the lead
i (i = L, R), that can be expressed in a simplified form, by
assuming a constant density of state ρ0 at the Fermi energy

104508-9



R. CAPECELATRO et al. PHYSICAL REVIEW B 108, 104508 (2023)

[38,40,64]:

Ǧ0
i (ωn) = −iωnπρ0√

�2 + ω2
n

+ i�πρ0√
�2 + ω2

n

σ̂2 ⊗
(

eiφi

(
τ̂1 + iτ̂2

2

)

− e−iφi

(
τ̂1 − iτ̂2

2

))
. (A6)

By calculating the dot GF poles we access the knowledge
about the junction ABS spectrum [19,20]. Starting from the
Eq. (A5), and performing its analytic continuation, i.e., iωn →
z, we obtain the Andreev bound states (ABS) by solving in z
the following secular equation:

det

(
z1̌ − ȞD −

∑
i=L,R

ȞTǦ0
i (z)ȞT

)
= 0. (A7)

The Josephson current, driven by the phase difference φ =
φR − φL established between the leads, can be calculated via
the tunneling Hamiltonian method [12,20]. Without any loss
of generality, we compute the Josephson current flowing from
the dot to the right lead [20,64] that, in the thermal Matsubara
representation [23–25,91,92], reads

J (φ)=− ie

2
T

∑
ωn

Tr[σ̂0 ⊗ τ̂3(ȞTǦcR,d (ωn) − ȞTǦd,cR (ωn))],

(A8)

where Tr stands for the trace over the Nambu⊗spin space
and ǦcRd/ǦdcR are the so-called lead-dot and dot-lead GFs
describing the charge transfer between the dot and the right
lead [20,23–25,91,92]. Analogously to Ǧdd in Eq. (A5), also
the GFs connecting leads and dot, can be calculated by the
means of perturbation theory from the interacting dot GF
Ǧdd , Eq. (A5), and bare right lead GF Ǧ0

R. Their expression
at the first nonvanishing order in the interaction (ĤT) are,

respectively:

ǦcRd � Ǧdd ȞTǦ0
R,

ǦdcR � Ǧ0
RȞTǦdd . (A9)

By performing the trace over the Nambu space and exploiting
the results in Eqs. (5), (A4), (A8), and (A9), the CPR formula
can be further simplified

J (φ) = iet2

2
T

∑
ωn

Trσ

[
F̂dd (ωn)F̂ 0,∗

R (ωn) − F̂ 0
R (ωn)F̂ ∗

dd (ωn)
]
,

(A10)

where F̂dd and F̂ 0
R are the anomalous blocks (in spin space) of

the dot and bare R lead GFs, respectively, and the remaining
trace Trσ is over the spin space. It is worth noticing that only
the superconducting correlation functions of the dot and bare
R lead contribute to the charge transfer across the junction
[64]. Eq. (A10) can be rearranged in the more clear-cut for-
mula in Eq. (8) by performing the trace over spin space and
exploiting both the expression for F̂ 0

s,R in Eq. (A6) and the
symmetries of dot anomalous GF in spin space, F̂ (ωn).

APPENDIX B: SMALL FLUCTUATIONS EXPANSION
FOR CURRENT NOISE IN RESONANT TUNNELING
LIMIT AND DIFFERENT NOISE CONTRIBUTIONS

In this Appendix, we derive the formula for the current
variance σ 2

J (φ) in Eq. (10) for the resonant tunneling case.
Moreover, we evaluate the different contributions to current
noise expansion, Eq. (10), in order to demonstrate that, as long
as the system is in the small fluctuations limit, the only non
negligible contribution is provided by the first order term in
σh, thus validating Eq. (11).

When dot energy is tuned in resonance with leads chemi-
cal potential μ = 0, ∂εd J|εd =0 identically vanishes also when
h �= 0. In this configuration, by assuming that the two noise
channels, δεd and δh, are totally uncorrelated, for small fluctu-
ations J (φ) can be expanded up to the second order as follows:

J (φ, εd = 0) ≈ J (φ, εd = 0)

∣∣∣∣
δεd =0
δh=0

+ ∂J (φ, εd = 0)

∂h

∣∣∣∣
δεd =0
δh=0

δh + 1

2

∂2J (φ, εd = 0)

∂h2

∣∣∣∣
δεd =0
δh=0

δh2 + 1

2

∂2J (φ, εd = 0)

∂ε2
d

∣∣∣∣
δεd =0
δh=0

δε2
d ,

(B1)

yielding the following expression for the current fluctuations δJ = J − 〈J〉

δJ (φ, εd = 0) ≈ ∂J (φ, εd = 0)

∂h

∣∣∣∣
δεd =0
δh=0

δh + 1

2

∂2J (φ, εd = 0)

∂h2

∣∣∣∣
δεd =0
δh=0

(
δh2 − 〈δh2〉) + 1

2

∂2J (φ, εd = 0)

∂ε2
d

∣∣∣∣
δεd =0
δh=0

(
δε2

d − 〈
δε2

d

〉)
,

(B2)

where we use that 〈δεd〉 = 0 and 〈δh〉 = 0. Therefore small fluctuations expansion for σ 2
J (φ) = 〈δJ2(φ)〉 reads

σ 2
J (φ, εd = 0) = 〈δJ2(φ, εd = 0)〉 ≈

⎛
⎝∂J (εd = 0)

∂h

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 2
h + 1

2

⎛
⎝∂2J (εd = 0)

∂ε2
d

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 4
εd

+ 1

2

⎛
⎝∂2J (εd = 0)

∂h2

∣∣∣∣
δεd =0
δh=0

⎞
⎠

2

σ 4
h

− 1

2

⎛
⎝∂2J (εd = 0)

∂ε2
d

∣∣∣∣
δεd =0
δh=0

∂2J (εd = 0)

∂h2

∣∣∣∣
δεd =0
δh=0

⎞
⎠σ 2

εd
σ 2

h , (B3)
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FIG. 12. Different contributions to the small fluctuations expan-
sion formula for the current variance σ 2

J , in Eq. (B3) computed for
the CPR curve at h = 0.2 in Fig. 4 (εd = 0, 	 = 1, � = 0.01, T =
0.02TC), for σεd = σh = 0.005, testifying that when the quantum dot
is in resonance with the S leads the dot energy noise contribution to
current noise is negligible.

relating the CPR variance to the width of εd and h statistical
distributions, i.e., σεd and σh.

In order to demonstrate that Eq. (B3) reduces to Eq. (11)
it is necessary to evaluate the different contributions to CPR
noise expansion, in order to investigate whether the dot en-
ergy fluctuations can be disregarded with respect to magnetic
noise. For this purpose, in Fig. 12, we report the different σJ

series terms corresponding to the current variance in Fig. 8
for σεd = σh = 0.005, where the small fluctuations expansion
succeeds in providing a good description of current noise.
We observe that the second-order term in σh is two order
of magnitude lower than the first order one, while the latter
exceeds terms involving σεd by at least three order of mag-
nitude, thus, testifying that dot energy contribution to current
noise can be considered negligible in the resonant tunneling
limit and further proving the accuracy of Eq. (11) in the small
fluctuations regime. Nevertheless, it is worth noticing that the
larger is εd standard deviation with respect to σh the more
significant higher order terms in σεd are for CPR noise.

APPENDIX C: FROM ANDREEV LEVELS CROSSINGS
TO JUMPS IN CPR AND DIVERGENCES

IN CURRENT DERIVATIVES

In this Appendix, we provide a simple explanation to the
connection between the crossings of level pairs in Andreev
bound states (ABS) spectrum and the jumps discontinuities in
the Josephson current. For the sake of clarity, in Fig. 13, we
report as an example the ABS spectrum for the SQDS JJ in

FIG. 13. Example of Andreev levels crossings at ±φ0 �= ±π , for
the SQDS JJ at εd = 0, h = 0.4, 	 = 1, and � = 0.01.

the resonant tunneling regime (at εd = 0, h = 0.4, 	 = 1 and
� = 0.01) showing ABS crossings at ±φ0 �= ±π and energy
ε = 0.

If the Andreev levels {εn} (with n = 1, . . . , 4) together with
the crossing phases ±φ0 are functions of the system micro-
scopical parameters {λi} = {εd , h, 	,�}, i.e., εn = εn({λi})
and φ0 = φ0({λi}), we clarify why the first current derivatives
along {λi}, i.e., ∂λi J (φ), show δ-like divergences in correspon-
dence of the levels crossings.

Since the current is expressed in terms of the negative
energy part of the Andreev spectrum we can define the
current-carrying ABS level as follows:

εtot (φ) = ε1(φ) + ε̃2(φ), (C1)

where ε̃2(φ) reads

ε̃2(φ) = ε3(φ)[�(−φ − φ0) + �(φ − φ0)]

+ ε2(φ)[1 − �(−φ − φ0) − �(φ − φ0)], (C2)

and it is reported in Fig. 14.

FIG. 14. Current carrying Andreev levels and the total energy
state, defined as the sum of these two levels, that effectively carries
current through the SQDS JJ.
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Expression for ε̃2(φ) can be simplified by noticing that the
two crossing levels are particle-hole symmetric, thus, ε3(φ) =
−ε2(φ), leading to

ε̃2(φ) = ε2(φ)[1 − 2�(−φ − φ0) − 2�(φ − φ0)]. (C3)

When computing the Andreev bound states contribution to the
current, we have to perform the energy derivative along φ,
according to the equation:

J (φ) = ∂φεtot (φ), (C4)

that, using the expression in Eq. (C3), yields

J (φ) = ∂φε2[1 − 2�(−φ − φ0) − 2�(φ − φ0)]

+ ∂φε1 + 2ε2[δ(φ + φ0) − δ(φ − φ0)]. (C5)

The first term in the right-hand side of Eq. (C5) provides the
current with jumps at φ = ±φ0, while second term vanishes,
since the δ functions are identically 0 except for the crossing
points φ = ±φ0 where ε2(φ = ±φ0) = 0. Therefore the final
expression for the CPR reads

J (φ) = ∂φε1 + ∂φε2[1 − 2�(−φ − φ0) − 2�(φ − φ0)].
(C6)

Starting from the CPR formula in Eq. (C6), we can easily
demonstrate the presence of δ-like divergences in the current
derivatives along system parameters {λi} (e.g., h) by direct
calculation. Performing the derivative along the system pa-
rameter λi, we get

∂λi J (φ) = ∂λi∂φε2[1 − 2�(−φ − φ0) − 2�(φ − φ0)]

+ ∂λi∂φε1 + 2∂φε2∂λiφ0[δ(φ + φ0) − δ(φ − φ0)],
(C7)

where we use that φ0 is a function of {λi} and consequently
∂λi�(±φ − φ0) yields

∂λi�(φ − φ0) = ∂λiφ0({λi})δ(φ − φ0). (C8)

In addition, the second term in the right-hand side of
Eq. (C7) describing the δ divergences does not vanish unless
∂λiφ0 does, i.e., unless φ0 does not depend on the parameter λi.
This demonstrates that, at T = 0, the current derivatives along
the dot energy and Zeeman field exhibits δ-like divergences
at the crossing points, φ = ±φ0, between two particle-hole
symmetric Andreev levels.
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