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Collisionless dynamics of the superconducting gap excited by a spin-splitting field
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We study the coherent dynamic interaction of a time-dependent spin-splitting field with the homogeneous
superconducting order parameter �(t ) mediated by spin-orbit coupling using the time-dependent Bogoliubov–de
Gennes theory. In the first part of the work we show that the linear response of the superconductor is strongly
affected by the Zeeman field and spin-flip processes, giving rise to multiple resonant frequencies of the
superconducting Higgs modes, which can be coupled linearly to the fluctuating part of the Zeeman field. In the
second part, we analyze the nonadiabatic dynamics of quasiparticle states arising from the intersection of spectral
branches from different spin subbands provoked by a monotonically changing Zeeman field. Nonadiabatic
spin-flip tunneling in the spectrum leads to drastic change in the order parameter �(t ) above the Pauli limit
and results in a nonequilibrium magnetization of the quasiparticle gas.
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I. INTRODUCTION

Extensive studies of nonequilibrium states of supercon-
ductors [1,2] pay considerable attention to the so-called
collisionless dynamics of a superconducting condensate, de-
scribed by the complex-valued pairing potential �(t ). At
timescales shorter than the typical inelastic relaxation time
t � τε the dynamics of Cooper pairs is in coherent regime and
is described by the Keldysh technique for Green’s functions
or its quasiclassical approximation [3,4]. The collisionless
regime manifests itself most clearly in the existence of oscil-
lations of the amplitude of the order parameter �(t ) = �0 +
δ�(t ) near the equilibrium gap value �0 (so-called Higgs
mode [5,6]). This mode comes from excited interference in-
teraction between the wave functions of the quasiparticles
(QP) from broken Cooper pairs. Due to the QP dispersion,
the summation over all interference contributions results in an
inhomogeneous broadening of the total gap mode, which is
equivalent to a weak damping with a typical time evolution
δ�(t ) ∝ cos(2�0t )/

√
�0t [3]. Since the Higgs mode is a

scalar excitation, it can not be coupled to the electromagnetic
field A(t ) linearly and several indirect mechanisms have been
studied, such as a linear excitation by the THz radiation in the
presence of dc supercurrent [7,8] and nonlinear coherent (or
incoherent [9]) excitation by intense THz pulses, which can
be detected by ultrafast pump-probe spectroscopy and third
harmonic generation measurements [10–14].

It is known that, in addition to electromagnetic fields,
superconductors also respond to nonstationary spin-splitting
fields h(t ). Typically, this field is produced by an external
magnetic field h = μBH or by the exchange field of an ad-
jacent ferromagnetic layer h ∝ JexMF , which is induced by
proximity to the superconductor. Spin-split systems serve as a
good platform for spintronic applications and extensive study

of various nonequilibrium processes has been done over the
last few decades [15–17]. In particular, by inducing magnetic
moment dynamics in superconductor-ferromagnet (S/F) junc-
tions an effective spin-triplet component of the superconduct-
ing gap is generated resulting in long-range proximity effects
[18–21]. On the other hand, experimental observations indi-
cate that the superconducting subsystem has a direct impact on
the ferromagnetic resonance in hybrid S/F structures [22–24].

In recent years there has been a growing interest in study-
ing of the Higgs modes in the proximitized superconducting
systems [25,26] as well as the interaction of collective modes
in S/F systems [27]. For instance, it was recently shown that in
a superconductor in the helical phase, which can be achieved
in the presence of a strong spin-orbit coupling (SOC) and an
exchange field, the Higgs mode can be linearly coupled to the
electromagnetic field through the nonzero superconducting
phase gradient in the ground state [28]. Also, it was revealed
that the coupling of the Higgs mode δ�(t ) in a superconductor
to external light A(t ) and magnetic dynamics m(t ) in the F
layer allows the generation of time-dependent spin currents
[29]. These currents can themselves excite the Higgs mode in
the superconductor through the resonance of the ferromagnet
due to the reciprocal effect [29]. Another example is an inter-
play between the superconducting Higgs mode and a magnon
mode in the adjacent F layer in the presence of a SOC and
static proximity effect [30]. Interestingly, the Higgs mode here
is coupled to the Zeeman field h(t ) linearly due to the presence
of both the spin-orbit interaction and some preferred direction
given by wave vector of the magnetic mode.

According to the aforementioned works, the SOC is critical
for interaction of different spin subbands of the QP spectrum,
which directly leads to the gap dynamics �(t ). Some precon-
ditions for this can be taken from the elementary analysis of
the equilibrium state. The equilibrium superconducting gap
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does not depend on the Zeeman field below the so-called
paramagnetic limit hcr = �0/

√
2, so that �(h < hcr, T =

0) = �0; and above this limit the superconductivity is com-
pletely suppressed with �(h > hcr, T = 0) = 0 [31,32]. The
SOC drastically changes the dependence �(h) and promotes a
generation of triplet component superconducting correlations,
leading to the survival of the gap at h > hcr [33]. This effect
is associated with mixing of the different spin states of QP,
which is natural to expect in the nonstationary case as well.

The purpose of this work is to study the dynamical aspects
of the nonequilibrium state of a superconducting condensate
excited in the presence of both a spin-splitting field and SOC.
For the sake of simplicity we consider specific system of a uni-
form superconductor at zero temperature T = 0 and consider
short timescale t � τε at which the collisionless regime holds,
so one can treat the system with the pure quantum-mechanical
approach within the time-dependent Bogoliubov–de Gennes
(TDBdG) equations [34]. We assume a homogeneous SOC
and a spin-splitting field with only one component h(t ) =
h(t )z0.

After introducing the TDBdG equations in Sec. II, we
examine two different regimes of coherent evolution of the
order parameter. In Sec. III we analyze linearized gap dy-
namics where the temporal evolution of the Higgs modes
δ�(t ) is traced in the presence of a stationary spin-splitting
field h0. Since the SOC allows the transitions between the
QP states with different spins, the induced perturbation of the
gap δ�(t ) acquires three eigenfrequencies including the stan-
dard 2�0 and two additional frequencies 2(�0 ± h0). These
modes define both the free oscillation of the perturbed gap at
h−1

0 � t � τε, and resonant peaks in the case of driven oscil-
lations. It was also shown that in the specific configuration, the
linear coupling of the Higgs mode and the perturbation of the
Zeeman field δh(t ) codirectional with h0 is possible. Note that
the frequencies shifted by the spin-splitting field have been
observed in the numerical simulation of the dynamics of the
one-dimensional Fermi superfluid exposed to the nonstation-
ary Zeeman field and strong SOC in Ref. [35].

In Sec. IV we consider the dynamics of the gap �(t )
driven out of equilibrium by linearly growing field h(t ).
At some point the field becomes larger then the equilib-
rium gap value |h(t )| > �0 and thus provokes the crossing
of the branches from different spin subbands of the QP
spectrum. The appearance of nonadiabatic transitions be-
tween the states at the intersection point is equivalent to
the dynamical spin-flip process and can be described with
the Landau-Zener-Stückelberg-Majorana (LZSM) tunneling
problem [36]. Corresponding redistribution of QP states con-
tributes to the gap function �(t ) and drastically changes its
behavior depending on the field growth rate. In Secs. IV C
and IV D we derive an analytical expression for �(t ) from
the self-consistency equation which contains two different
terms: (i) quasistatic dependence �h[h(t )] arising directly
from spin-flip tunneling and depending on the probability of
redistribution of QP states; (ii) small oscillating part δ�(t )
originating from the interference between redistributed states.
In addition, in Secs. IV E and IV F we discussed the spin im-
balance generated due to LZSM tunneling and corresponding
dynamical magnetization of the QP gas. Some experimen-
tal proposals and conclusions are presented in Secs. V and
Sec. VI. respectively.

II. TIME-DEPENDENT BOGOLIUBOV–de
GENNES EQUATIONS

We consider a homogeneous s-wave superconductor in the
presence of the uniform time-dependent Zeeman field h(t )
and Rashba spin-orbit coupling (RSOC). The coherent QP
dynamics is governed by the TDBdG equations [34]

i
∂

∂t
ψ̌k = Ȟ(k, t )ψ̌k, (1)

where the Hamiltonian

Ȟ(k, t ) =
(

Ĥ (k, t ) iσ̂y�(t )

−iσ̂y�(t ) −Ĥ∗(−k, t )

)
(2)

is the 4 × 4 matrix in the Nambu × spin space with the
Pauli matrices σ̂i acting on the four-component wave func-
tion ψ̌k (t ). The single-particle matrix Hamiltonian in the spin
space Ĥ (k, t ) = ξk σ̂0 − h(t )z0σ̂ + α(σ̂ × k)z0 depends on the
modulus k = |k| and the relative phase θk = arg(kx + iky)
of the momentum. Here ξk = k2/2m − EF is a free-particle
spectrum measured from the Fermi level and α is a strength of
RSOC. Hereafter, we put h̄ = 1. For simplicity we consider
here the motion of QPs only in the x-y plane neglecting their
dispersion along the z0 axis, so that k = (kx, ky).

The pairing potential �(t ) should satisfy the self-
consistency equation, which at zero temperature T = 0 can
be written as

�(t ) = −λ

2

∑
i.c.

ψ̌
†
k (t )τ̌�ψ̌k (t ), (3)

where λ is the pairing constant, τ̌� = (τ̂x + iτ̂y) ⊗ iσ̂y/2, and
the independence of � on θk is taken into account. The
summation here is performed over all solutions of Eq. (1)
for different initial conditions (i.c.) at t = 0. The information
about the dynamics as well as the distribution function of the
QP excitations is contained in the functions ψ̌k (t ), which self-
consistently define the temporal evolution of the gap. In the
homogeneous problem, the initial conditions are numbered by
the momentum k, which, in the case of a spin-split supercon-
ductor, must be supplemented by the spin quantum number.
All possible initial configurations of the QP states are defined
by an equilibrium distribution function. The pairing potential
�(t ) can be chosen as a real function of time, and this choice
will be justified below.

Generally speaking, the concept of an energy spectrum
for a dynamical system is not clearly defined. However, in
the case of adiabatic evolution one can introduce the eikonal
approximation for the QP wave functions ψ̌k (t ) ∝ ̌k (t )eiSk (t ),
from which the adiabatic spectrum Ek (t ) = −∂t Sk can be ex-
tracted. The functions ̌k (t ) are the instantaneous eigenstates
of the Hamiltonian Ȟ(t ) from Eq. (2). The resulting spectrum
is

Ekn(t ) =

±
√

E2
0 + α2k2 + h2(t ) ∓ sgn(σ )2

√
ξ 2

k α2k2 + h2(t )E2
0 ,

(4)

where E0 =
√

ξ 2
k + �2. We use the index n ≡ σ± =

{↑ +,↓ +,↑ −,↓ −} which refers to different spin subbands
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and positive and negative energies (these notations will be
used in the text below). There are four corresponding in-
stantaneous eigenstates which can be written as ̌kn(t ) =
(uk↑n, uk↓n, vk↑n, vk↓n)T . The detailed structure of the vectors
is given in Appendix A. The functions ̌kn(t ) form an or-
thonormal basis with the normalization condition ̌

†
kňkn′ =

δnn′ and the completeness relation
∑

kn ̌kň
†
kn = 1̌. Obvi-

ously, in the limit of the stationary Zeeman field, ̌kn becomes
an exact solution of stationary problem (1).

It is important to keep in mind that in the presence of
both RSOC and spin-splitting field the equilibrium gap value
depends of the values of these fields �eq = �eq(h, α). In what
follows, the RSOC strength α will be considered as a small
parameter, and the static dependence �(α) will be neglected
for simplicity. Thus, the equilibrium gap value is defined as
follows:

�eq = �0 = 2h̄ωDe− 1
λN (0) ,

where ωD is Debye frequency and N (0) is the density of states
at Fermi energy.

III. LINEARIZED GAP DYNAMICS

In this section we want to address the temporal evolution of
a small fluctuation of the gap �0 + δ�(t ) in the presence of
the static spin-splitting field h = h0z0. The gap dynamics can
be excited by some external pulse at t = 0 or can be driven,
for instance, by time-dependent spin-splitting field δh(t ) =
δh(t )z0. In linear order in small perturbations δ�(t ), δh(t ) �
h0 < �0, the TDBdG equations for the QP wave functions
read as

i
∂

∂t
ψ̌k (t ) = [Ȟ0 + V̌ (t )]ψ̌k (t ), (5)

where the operators in the Nambu × spin space are

Ȟ0 =
(

Ĥ0(k) iσ̂y�0

−iσ̂y�0 −Ĥ∗
0 (−k)

)
,

V̌ (t ) =
(

−δh(t )σ̂z iσ̂yδ�(t )

−iσ̂yδ�(t ) −δh(t )σ̂z

)
,

(6)

and single-particle Hamiltonian is Ĥ0(k) = ξk σ̂0 − h0σ̂z +
α(kyσ̂x − kxσ̂y).

Time-dependent equation (5) can be written in the adia-
batic basis using stationary eigenfunctions ̌kn of the operator
Ȟ0. Additionally, the RSOC energy αk ≈ αkF is considered a
perturbative parameter. By approximating the eigenvectors up
to first order in αkF /�0 (see Appendix A), we can infer from
Eq. (3) that the fluctuation in the gap will have an order up to
O(α2k2

F /�2
0). However, in the general case, the gap � should

not be affected by the direction of the SOC. Therefore, the
first-order change in the gap δ� ∝ O(αkF /�0) must vanish.

Instead of the general eikonal theory, we use the perturba-
tive approach with the ansatz written in terms of the dynamical
phase

ψ̌k (t ) =
∑

n

̌knCkn(t )e−iEknt . (7)

The index n = {↑ +,↓ +,↑ −,↓ −} denotes the spectral
branches and all negative and positive energy terms are in-
volved into the dynamics of QPs. Substituting the function (7)
into Eq. (5) we obtain the equation for the dynamics of the
coefficients

i
∂

∂t
Ckm(t ) =

∑
n

̌†
mV̌ (t )̌ne−i(En−Em )tCkn(t ), (8)

which completely determine the evolution of gap �(t ) in time
through the self-consistency equation

�0 + δ�(t )

= −λ

2

∑
i.c.

∑
n,n′

C∗
kn(t )Ckn′ (t )e−i(En′ −En )t ̌

†
knτ̌�̌kn′ . (9)

The dynamics of the system is considered in the interval t ∈
[0,∞).

Equation (8) describes transitions between the states with
different n. The conservation of k simplifies the formulation
of the initial conditions. In the case of zero temperature T = 0
there are two possible initial configurations at t = 0. All QP
states with energies below Fermi level in the first (second) spin
subband with σ =↑ (↓) are fully occupied for all momenta
with ξk ∈ (−ωD, ωD). This imposes two corresponding initial
conditions for Eq. (8):

(i) Ck↑−(0) = 1, Ck[↓−,↑+,↓+](0) = 0;

(ii) Ck↓−(0) = 1, Ck[↑−,↑+,↓+](0) = 0. (10)

Therefore, it is natural to linearize Eq. (8) as follows:

Ckn(t ) = Ckn(0) + δCkn(t ). (11)

The sum in Eq. (9) should be taken over all QP states origi-
nating from the above i.c. (10).

Performing Laplace transform in the complex plane s =
iω + ζ for the linearized equations (8), (9), and (11) (see
Appendix B) we get the following dynamic self-consistency
equation:

δ�(s) = [K0(s) + K+(s) + K−(s)]δ�(s)

+ [F+(s) − F−(s)]δh(s) + I (s). (12)

Here K0,±(s) are kernels of the self-consistency equation and
F±(s) defines the dynamical structure of the “force” term
(in analogy with a mechanical oscillator) related with δh(t ).
The term I (s) [see Eq. (B8) in Appendix B] is determined
by the initial nonequilibrium perturbation in the distribution
of the QP population through the coefficients δCkn(t = 0).
Taking into account Eq. (9) this term can be treated as an
effective self-consistent initial condition for the gap dynam-
ics δ�(t ). Due to the absence of particle-hole asymmetry,
which couples the phase and amplitude fluctuations [6], the
imaginary part of δ�(s) naturally vanishes and we consider
only amplitude (or Higgs) modes of the superconducting gap.
Knowing the function K(s) one can find eigenfrequencies and
free dynamics of the system, while F±(s) induces the driven
dynamics. We will conduct a thorough examination of these
terms below.
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A. Spin-split Higgs modes

It is known that in the absence of a spin-splitting field
and RSOC the Higgs mode has a singular behavior in the
vicinity of the eigenfrequency ω = 2�0, which defines the
free evolution of the gap perturbation δ�(t ) ∝ cos(2�0t )/

√
t

[14]. Since the energy of the Higgs mode lies at the lower
bound of the QP spectrum, the oscillatory behavior here can
be represented as a coherent decay and formation of a Cooper
pair into two QPs with opposite spins and energies �0 at
k ≈ kF . The contribution from the pairs of QPs with other
momenta leads to the inhomogeneous broadening of the mode
with the corresponding damping law. The presence of Zeeman
field and RSOC makes the dynamics more complicated. To
analyze the eigenmodes of the superconductor one can set
δh(t ) = 0 and write the self-consistency equation as follows:

χ−1
��(s)δ�(s) = I (s), (13)

where we define the bare pair susceptibility

χ��(s) = 1

1 − K0(s) − K+(s) − K−(s)
. (14)

The corresponding kernels read as (see Appendix B)

K0(s) =
〈

2ξ 2

E0

1

s2 + 4E2
0

〉
∝ O

(
α0k0

F

�0
0

)
,

K±(s) =
〈
A2(ξ )

E0 ± h0

s2 + 4(E0 ± h0)2

〉
∝ O

(
α2k2

F

�2
0

)
, (15)

where the notation 〈 . . . 〉 = λN (0)
´ ωD

−ωD
dξ is used. The func-

tion A(ξ ) ∝ ̌
0†
kn τ̌�̌0

kn ∝ αkF /�0 is proportional to nonzero
triplet component of the wave function, therefore, the kernels
K± are of the second order in the RSOC parameter.

The frequencies of the eigenmodes of the superconducting
condensate can be traced out from the condition |χ−1

��(ω)| =
0, which reflects the singular points of the kernels (15).
Consider these points in more detail. Instead of straightfor-
ward integrating, we are going to implement the analysis in
the spirit of the work [3] and analytically obtain the limit
ζ → 0. The functions K0,±(s → ω) can be represented as
K(s) = K′(ω) + i sgn(ωζ )K′′(ω). The real parts of the ker-
nels

K′
0(ω)

λN (0)
=
 ωD

−ωD

2ξ 2√
ξ 2 + �2

0(4ξ 2 + 4�2
0 − ω2)

dξ, (16)

K′
±(ω)

λN (0)
=
 ωD

−ωD

A2(ξ )(E0 ± h0)

4(E0 − h0)2 ± |ω|2 dξ (17)

are regular on the imaginary axis s = iω. The imaginary parts
are

K′′
0 (ω)

λN (0)
= −π

2

√
ω2 − ω2

0

|ω| �
[
ω2 − ω2

0

]
, (18)

K′′
±(ω)

λN (0)
= −π

8

|ω| ∓ 2h0

ξ±
A2(ξ±)�

[
ω2 − ω2

±
]
, (19)

where ξ± = 1
2

√
(|ω| − ω±)2 + 4�0(|ω| − ω±). The disconti-

nuities at the real axis ζ mean the existence of the branch

FIG. 1. (a) Branch points ω0 = 2�0, ω± = 2(�0 ± h0 ) (red
dots) corresponding to the kernels K0(s) and K±(s),F±(s) [Eq. (12)]
in the complex plane s = iω + ζ . Red lines show the chosen branch
cuts. Black crosses correspond to the poles of the external force
δh(s). (b)–(d) Illustration of physical mechanism behind the appear-
ance of three eigenfrequencies ω+ (b), ω0 (c), ω− (d).

points

ω0 = 2�0, ω+ = 2(�0 + h0), ω− = 2(�0 − h0), (20)

and corresponding cuts in the complex plane [Fig. 1(a)].
The analysis of the general linear response of the order

parameter can be significantly simplified by expanding the
susceptibility |χ��(ω)| in the powers of the small parameter
αkF /�0 since the kernels K± ∝ O(α2k2

F /�2
0). As mentioned

before, the maximum order we can take into account is
|χ��| ∝ O(α2k2

F /�2
0). The resonance condition |χ−1

��(ω)| =
0 is satisfied at ω = ω± where the kernels K′′

±(s) have a singu-
larity (note that A is regular at ξ = ξ±), and at ω = ω0, where
the function K′′

0 (s) goes to zero. Thus, the branch points (20)
define new eigenmodes of the superconductor in the presence
of spin-splitting field and weak RSOC.

One can obtain an asymptotic behavior these eigenmodes
in the time domain [3]. Let us assume the specific form of
the initial condition I (s) = I0 = const in Eq. (12), which
corresponds to a certain quench. We consider the impulse
response of the gap fluctuation for t ∈ [0,∞) using inverse
Laplace transform

δ�(t ) = 1

2π i

ˆ i∞+ε

−i∞+ε

χ��(s)I0est ds. (21)

The integral can be evaluated using closed contour shown in
Fig. 1(a). Making sure that all integrals on infinitely large and
small arcs vanish and applying residue theorem we get

δ�(t ) = 2

π

ˆ ∞

ω−
Imχ��(s)|ζ→+0Im[eiωtI0]dω. (22)

One can show that the peculiarities in the vicinities of the
eigenfrequencies in Imχ��(s) lead to three partial contribu-
tions to the long-time (h−1

0 � t) gap dynamics

δ�(t ) ≈ 4�0

π3/2

I0

λN (0)

cos(ω0t − π/4)√
�0t

−
√

π

2

(αkF )2�0

(�0 − h0)2

∑
j=±

λN (0)I0

|1 − K0(ω j )|2
cos(ω jt − π/4)√

�0t
,

(23)

104507-4



COLLISIONLESS DYNAMICS OF THE SUPERCONDUCTING … PHYSICAL REVIEW B 108, 104507 (2023)

FIG. 2. (a) The bare pair susceptibility |χ��(s)| from Eq. (14) for
s = iω + ζ . Features at the frequencies ω0 = 2�0 and ω± = 2(�0 ±
h0 ) correspond to Higgs modes resonances. (b) Response function
|χ�h(s)| of the driven gap oscillations δ�(t ) excited by the Zeeman
field δh(t ). Both plots are symmetrical with respect to ω → −ω and
have the parameters h0 = 0.4�0, αkF = 0.09�0. Broadening of the
resonance peaks is given by ζ = 0.005�0.

which can be identified as spin-split Higgs modes. Details of
the derivation of δ�(t ) are provided in Appendix C.

Appearance of the frequencies (20) and corresponding
oscillations (23) in the spin-split superconductor can be ex-
plained qualitatively. Coherent decay of the Cooper pairs from
the Fermi level can occur into two different spin subbands
of the QP spectrum. When two electrons with opposite spins
from a pair dissociate into two QP at k ≈ kF with the energies
�0 ± h0 without spin flipping, then the total decay energy is
equal to QP threshold ≈2�0. This process corresponds to the
mode 2�0 and shown in Fig. 1(c). A decay into two QPs with
the same spins is possible in the presence of RSOC due to the
effective spin-flip scattering. The energies of such two QPs are
either �0 + h0 or �0 − h0. This process leads to the modes
2(�0 ± h0) correspondingly [Figs. 1(b) and 1(d)]. Note that
this naive interpretation of the complicated QP dynamics is
valid for the sufficiently small RSOC αkF � �0.

Numerically calculated susceptibility |χ��(ω)| from
Eqs. (14) and (15) is shown in Fig. 2(a). The observed res-
onances have a different parametric order of smallness. The
Higgs mode with the frequency ω0 which exists in the ab-
sent the RCOS becomes dominating with more pronounced
peak |χ��(ω ≈ ω0)| ∝ α0k0

F , whereas two other modes at
shifted frequencies ω± are of the order of |χ��(ω ≈ ω±)| ∝
α2k2

F /�2
0. These modes merge with ω0 at h0 → 0 and dis-

appear for α → 0. It is expected that the excitation of the
bare response of the superconductor can be implemented with

the standard THz laser pump-probe techniques. The electric
field of the pump pulse produces a quench of the spin-split
superconductor and subsequent probe pulse detects the multi-
frequency Higgs oscillations.

Note that a similar dynamics of the order parameter was
studied in the spin-orbit coupled Fermi gases [37–39]. In
particular, the existence of the Higgs modes modified by the
Zeeman field in the presence of strong SOC with αkF ∼
h(t ) ∼ EF was discussed in Ref. [35]. The authors performed
a numerical simulation of the one-dimensional Fermi super-
fluid and examined the excitation of the gap oscillations with
few frequencies by abrupt change of the Zeeman field. De-
spite the significant differences between the models, there is a
general tendency for the influence of the shift of spectral QP
branches on the behavior of the order parameter modes.

We also note that in the presence of the strong Zeeman field
the superconductor can be unstable to a transition to the spa-
tially modulated Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state with inhomogeneous order parameter. The appearance of
the broken translational symmetry gives rise to gapless Higgs
and Goldstone modes, which have been investigated theoreti-
cally in Refs. [40,41]. Hereafter we ignored the possibility of
of FFLO formation, focusing on purely homogeneous case.

B. Coupling of Higgs modes and Zeeman field

We found that, in addition to an electromagnetic field, the
gap dynamics in a spin-split superconductor can be excited
by a nonstationary component of Zeeman field h(t ) = [h0 +
δh(t )]z0. In this particular configuration the perturbation of
the spin-splitting field δh(t ) appears in the self-consistency
equation (12) in the first order, which is the trace of a dot
product (h0 · δh). Note that the field δh(s) is weighted by the
functions

F±(s) =
〈
A(ξ )B(ξ )

(E0 ± h0)

s2 + 4(E0 ± h0)2

〉
∝ O

(
α2k2

F

�2
0

)
, (24)

which can be written as F (s) = F ′(ω) + i sgn(ωζ )F ′′(ω) and
have the same order in αkF and the same analytical properties
as the kernels K±(s) in (17) and (19) because both functions
A2(ξ ) and A(ξ )B(ξ ) are regular for ξ ∈ (−ωD, ωD). The
presence of the singular points in the force term makes the
analysis of Eq. (12) more sophisticated, despite the fact that
these points are shared with other kernels.

Consider the general case of forced oscillations of the order
parameter driven by some field δh(t ) which is abruptly turned
on at t = 0. It is convenient to introduce the linear response
function as follows:

δ�(s) = χ�h(s)δh(s), (25)

χ�h(s) = F+(s) − F−(s)

1 − K0(s) − K+(s) − K−(s)
. (26)

The numerically integrated shape of |χ�h(s)| is shown in
Fig. 2(b) and, as expected, it has three resonance peaks at
the frequencies ω0,±. However, since the external field δh(t )
couples to the gap through the RSOC, the amplitude of the
susceptibility in the vicinity of the resonances has the same
order of smallness |χ�h(ω0,±)| ∝ O(α2k2

F /�2
0), which differs

from the bare response (14).
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FIG. 3. (a), (b) QP spectrum Ek from Eq. (4) for �0/EF = 0.01, αkF /EF = 0.0025, and for two values of Zeeman field h(t ) before (a) and
after (b) avoided crossing. Colored (empty) circles correspond to filled (empty) states. In (e) the schematic temporal evolution of the filling
probabilities |Ck |2(t ) for two states at fixed ξk is shown. The gray lines show a tunneling process similar to the real one in the vicinity of the
avoided transition point t0(ξk ) = √ξ 2

k + �2
0/γ , while red and blue lines refer to transition matrix approximation of the LZSM tunneling with

the probability pk . (b), (d) The QP distribution function for one spin projection f↑(E , t ) from Eq. (45) before and after crossing of spectral
branches at δLZ = 0.5.

The temporal evolution of the gap fluctuation δ�(t ) in
[0,∞) can be found using inverse Laplace transform. Simi-
larly to Eq. (22) the susceptibility Imχ�h can be expanded into
series since F±,K± ∝ O(α2k2

F /�2
0), and different strongly

dominant terms in the vicinity of the branch points (20) can
be distinguished (Fig. 2). Here we write the result for the su-
perconducting gap oscillations, which at large times h−1

0 � t
reads as (for details see Appendix C)

δ�(t ) ≈
∑

p

χ�h(sp)espt Res
s=sp

[δh(s)] + 4�0

π3/2

[F ′
+(ω0) − F ′

−(ω0)]

λN (0)

Im[δh(iω0)ei(ω0t+π/4)]√
�0t

+
√

π

2

(αkF )2�0

(�0 − h0)2

∑
j=±

λN (0)[1 − K′
0(ω j )]

|1 − K0(ω j )|2
Im[δh(iω j )ei(ω j t+π/4)]√

�0t
. (27)

The first term here is related to the forced oscillations of
the gap, caused by the Zeeman field δh(t ). For instance, the
general harmonic perturbation δh(t ) = Re(δh0e(iω−β )t ) with
β → 0 yields two poles sp shown in Fig. 1(a). The last three
terms in (27) correspond to the free oscillations triggered by
δh(t ) at t = 0 in the long-time asymptote, with three char-
acteristic frequencies (20) and square-root damping law. The
latter can be interpreted as partial contribution from the Higgs
modes in the spin-splitting field h0. The eigenmodes decay at
t → ∞ and in the long-time asymptote the forced oscillations
prevail. Consider the steady-state behavior of δ�(t ) [the first
term in Eq. (27)] in the time interval restricted by the inelastic
relaxation processes where the presented description of the
coherent gap dynamics is valid.

In this section, we have solely focused on the longitudi-
nal component of the field perturbation δh(t )z0 with respect
to the stationary field h0z0. However, it is also possible to
introduce the time-dependent transversal component δh⊥(t )
and examine its dynamic interaction with the superconducting
system in Eq. (5). This component generates triplet correla-

tions, but these do not contribute to the order parameter since
only singlet pairing in (3) is considered. Consequently, in
the second-order perturbation theory with respect to αkF /�0,
there is no linear coupling between the field δh⊥(t ) and the
gap δ�(t ). This outcome is unsurprising since the only true
scalar in this regime (δh⊥ · h0) is zero.

IV. EVOLUTION OF QP STATES IN STRONG
ZEEMAN FIELD

In this section we address the case of a linearly growing
spin-splitting field h(t ) = γ t , which can exceed the equilib-
rium value of the superconducting gap �eq ≡ �0 and thus
provide the crossing of the two QP spectral branches E↑+(ξk )
and E↓−(ξk ) from different spin subbands [Figs. 3(a) and
3(c)]. In the collisionless regime and in the absence of RSOC
the intersecting spectral branches do not interact, so that the
occupation of the quasiparticle states defined at t = 0 does
not change in time. This means that the self-consistent gap
function will not change even above the paramagnetic limit
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h(t ) > �0 and will be defined by the initial condition �(t ) =
�0. It is clear from general considerations that the spin-orbit
coupling provoke transitions and the interplay between QP
states with different spins, and our goal is to investigate the
distinctive features of such an interaction and its effect on
the superconducting order parameter �(t ). As mentioned in
Sec. II, we will treat the RSOC energy as a small parameter
αkF /� � 1. Therefore, we neglect the dependence of the
equilibrium gap �eq on α and assume �eq ≡ �0.

A. Adiabatic evolution of QP states

The evolution of QP wave function of the TDBdG equa-
tions (1) can be regarded with the help of general adiabatic
ansatz

ψ̌k (t ) =
∑

n

Ckn(t )̌kn(t ), (28)

where ̌kn(t ) are the instantaneous eigenstates of the Hamil-
tonian (2). Here all negative and positive energy terms with
the indices n = {↑ +,↓ +,↑ −,↓ −} are taken into account.
The coefficients Ckn(t ) define the occupation of QP states and
its temporal evolution [similarly to the ansatz (7) used in the
previous section]. The initial conditions for C(t ) are fixed by
the equilibrium distribution at t = 0 and have been discussed
in Sec. III [see Eq. (10)]. Using short notations two possi-
ble initial conditions read as Ckn(t = 0) = δn,l , where δn,n′ is
Kronecker delta and l = {↑ −,↓ −}. Thus, for the given l we
have Ckl (t = 0) = 1 and Ck(n �=l )(t = 0) = 0.

We introduce the vector

Ĉk (t ) = (Ck↑+,Ck↓+,Ck↑−,Ck↓−)T , (29)

which contains all the information about the dynamics of the
QP states. Corresponding adiabatic temporal evolution can
be described with the help of the unitary operator Ĉk (t2) =
Ûk (t2, t1)Ĉk (t1) where Ûk = diag(Uk↑+,Uk↓+,Uk↑−,Uk↓−)
and

Ukn(t2, t1) = exp

(
−i

ˆ t2

t1

Ekn(t )dt

)
. (30)

The interaction of the branches Ek↑+(t ) and Ek↓−(t ) leads to
avoided crossing of the QP levels at fixed energy ξk with the
splitting proportional to αkF . Thus, the adiabatic approxima-
tion is justified only for the levels with Ek (t ) � αkF , e.g., far
enough from the crossing points. Therefore, for the Zeeman
field h(t ) � �0 all nonadiabatic transitions are suppressed and
the gap function defined by the self-consistency equation (3)
is equal to the equilibrium value �(t ) = �0.

B. Transition evolution matrix

The avoided crossing between the spectral terms at h(t ) �
�0 should be described in terms of nonadiabatic dynamics.
For this we consider the branch intersection as consecutive
avoided crossing of pairs of the QP states with fixed en-
ergy ξk at the time instant t0(ξk ) =

√
ξ 2

k + �2/γ (Fig. 3).
For each crossing at ξk ∈ (−ωD, ωD) it is possible to formu-
late the time-dependent Landau-Zener-Stückelberg-Majorana
(LZSM) problem [36], which describes the transitions be-
tween two QP states with different spins during their temporal

evolution. Note that resulting nonadiabatic tunneling is equiv-
alent to dynamical spin-flip process.

In general, the description of such a tunneling (or LZSM
problem) requires joint solution of TDBdG equation (1)
and self-consistency equation (3). However, some important
results can be obtained analytically using certain approxima-
tions:

(i) If the time variation of the gap function �(t ) is small on
the typical tunneling timescale τLZ (see Appendix D), then the
tunneling of QP states is not affected by the order parameter
dynamics.

(ii) The gap �(t ) is defined by all states in range
ξk ∈ (−ωD, ωD), and a time-dependent perturbation of the
states caused by the dynamical LZSM transition makes a
small contribution to the sum over all ξk .

Thus, one can neglect the transient dynamics of the coeffi-
cients Ĉk (t ) in the vicinity of a transition point for each ξkth
mode. This also means that one can investigate the tunneling
problem with the help of so-called transition evolution matrix
[36] connecting two adiabatic regimes before (t < t0−) and
after (t > t0+) avoided crossing [Fig. 3(e)]. These conditions
allow one to effectively decouple the LZSM problem from the
self-consistency equation and solve them independently.

Taking into account all these assumptions, the time evo-
lution of the vector Ĉk (t ) from the adiabatic ansatz (28) is
described as

Ĉk (t ) =
{

Ûk (t, t0+)ŜLZÛk (t0−, 0)Ĉk (0), t > t0(ξk )

Ûk (t, 0)Ĉk (0), t < t0(ξk ).
(31)

Here the nonadiabatic transitions between QP states are in-
cluded into transition matrix ŜLZ, which acts on the state
vector Ĉk (t ) at the time instant t = t0(ξk ). The matrix ŜLZ can
be obtained by considering the interaction of two intersecting
energy branches E↑+ and E↓− in the TDBdG equation (1).
Using so-called diabatic basis [basis of Hamiltonian (2) in the
absence of RSOC] one gets a system of dynamical equations,
the asymptotic solution of which forms a transition matrix
describing the passage through the avoided intersection point.
Then we go to the original adiabatic basis (28) and get the
matrix ŜLZ. The complete derivation of ŜLZ is presented in
Appendix D and it reads as

ŜLZ =

⎛
⎜⎜⎜⎜⎝

√
pk 0 0

√
1 − pkei(... )

0 1 0 0

0 0 1 0

−√
1 − pke−i(... ) 0 0

√
pk

⎞
⎟⎟⎟⎟⎠, (32)

where (. . . ) = χk − θk − π
2 sgn(α). The coefficient

pk = exp

[
− δLZ

�2

ξ 2
k + �2

]

is expressed through the dimensionless LZSM parameter
δLZ = πα2k2

F /γ and determines the probability of tunneling
between QP states with different spins. The transition is ac-
companied by the appearance of the Stokes phase χk (see
Appendix D) and the phase θk = arg (kx + iky).

To avoid confusion, we use the same notations for the
spectral branches (4) before (t < t0−) and after (t > t0+) QP
transitions, as shown in Fig. 3. Thereby, we do not need to
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keep track of the indices of the eigenvectors ̌kn(t ) and the
evolution operators Ukn(t ) from (30). It is sufficient that these
functions take into account the permutation of the branches
of the spectrum (4), so that all QP levels change their indices
after the transition in accordance with the chosen notation.

C. Time dependence of superconducting gap

The time-dependent order parameter subjected to the field
h(t ) � �0 depends on both the adiabatic wave function (28)
and nonadiabatic LZSM tunneling (31). The calculation of
�(t ) can be accomplished using the self-consistent equa-
tion (3), which gets the form

�(t ) = −λ

2

∑
l

∑
k

∑
n,n′

C∗
kn(t )Ckn′ (t )̌†

knτ̌�̌kn′ , (33)

where index l means different initial configurations of the
occupation of the QP spectrum at t = 0 (see Sec. IV A).
The first configuration with Ckn(t = 0) = δn,↑− corresponds
to occupation of all QP states belonging to the spectral branch
Ek,↑− for all momenta with ξk ∈ (−ωD, ωD). The evolution of
the coefficients Ckn(t ) is determined by Eq. (31) together with
Eqs. (29) and (30). Since the branch Ek,↑− does not cross with
other branches, the coefficients Ckn(t ) have a trivial adiabatic
dynamics, which can be written as

Ĉk (t ) =

⎛
⎜⎜⎜⎝

0
0

U↑−(t, 0)
0

⎞
⎟⎟⎟⎠. (34)

The second initial configuration with Ckn(t = 0) = δn,↓−
leads to the intersection of the filled branch Ek,↓− and empty
branch Ek,↑+. Using Eq. (31) we obtain a nontrivial dynamics
of the states with LZSM tunneling, which reads as

Ĉk (t )=

⎛
⎜⎜⎜⎝

√
1 − pkei(... )U↑+(t, t0+)U↓−(t0−, 0)�[t − t0]

0
0

(
√

pk�[t − t0] + �[t0 − t])U↓−(t, 0)

⎞
⎟⎟⎟⎠.

(35)

Here (. . . ) = χk − θk − π
2 sgn(α) and �(t ) is the Heaviside

function.
Substituting coefficients (34) and (35) obtained from dif-

ferent initial conditions together with the QP wave functions
̂kn from (A3) into the self-consistency equation (33) we get

�(t ) = λ
∑

|ξk |>
√

h2−�2

u0v0

+ λ
∑

|ξk |<
√

h2−�2

[( =1

|Ck↑−|2 +
∝pk

|Ck↓−|2 −
∝1−pk

|Ck↑+|2)u0v0

2

+ u0u1ie−iθkC∗
k↑+Ck↓− + v0v1(−i)eiθkC∗

k↓−Ck↑+

]
.

(36)

FIG. 4. Quasistatic dependence of the superconducting gap �h

on the spin-splitting field h(t ) for different values of δLZ [Eq. (38)].
The dashed-dotted line separates two regions where �h ≶ h. The
dashed line shows the critical value of the field h(t ) = �0 and the
red circle marks the point of change in the behavior of the gap �h in
the region �h > h. After this point the equilibrium solution �h = �0

should jump to one of the solutions fixed by the parameter δLZ.

The last two terms are of the order of O(αkF /�), so it is
convenient to write the gap function as

�(t ) = �h[h(t )] + δ�(t ). (37)

We have identified two contributions that have significantly
different origins: �h is defined by the amplitude of the LZSM
tunneling and depends on time only through the Zeeman field
h(t ); δ�(t ) ∝ O(αkF /�) is defined by cross terms and re-
flects interference effects between QP wave functions caused
by LZSM transitions and depends on time explicitly.

If one neglects the small perturbation δ�(t ) in (37) then it
becomes possible to get a simplified self-consistency equa-
tion for �h[h(t )] from Eq. (36). In an implicit form this
equation reads as

�h = �0 exp

(ˆ h/�h

1

e−δLZ/s2 − 1√
s2 − 1

ds

)
, (38)

where δLZ = πα2k2
F /γ and its numerical integration is shown

in Fig. 4. The quasistatic superconducting gap �h behaves
differently at h(t ) > �0 depending on the regime by which
the condensate was driven out of equilibrium.

(i) The value δLZ = 0 means zero RSOC (α = 0), so there
is no interaction of the QP states at the intersection of the
spectral branches and the trivial solution for the gap �h = �0

holds.
(ii) The limit of δLZ � 1 with γ � α2k2

F corresponds
to sudden (quench) regime. The spectral branches intersect
nonadiabatically, or so rapidly that they do not feel the RSOC.
The Landau-Zener tunneling is suppressed and the gap has a
weak dependence on the Zeeman field at h(t ) > �0:

�h ≈ �0 exp

⎛
⎜⎝−δLZ

√
h2(t ) − �2

h

h(t )

⎞
⎟⎠.

(iii) In the opposite limit of δLZ � 1 with γ � α2k2
F the

QPs undergo strong spin-flip tunneling during a slow (almost
adiabatic) avoided crossing. This leads to the effective for-
mation of the triplet superconducting correlations (or related
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triplet component of the anomalous Green function [42]) even
for the small RSOC energy αkF /� � 1. Such dynamically
generated correlations are determined by the rate of field
change γ and their effect on the gap can significantly exceed
the static mixing of singlet-triplet pairs for α �= 0 [33]. As
a result, the singlet gap function (3) is suppressed and the
self-consistency equation reads as

�h ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
�0(2h(t ) − �0) for �h > h/δLZ,

�0 exp
(− δLZ

√
h2(t )−�2

h

h(t )

) exp(
√

δLZ
√

δLZ−1)√
δLZ+√

δLZ−1

for �h < h/δLZ.

However, the appearance of these triplet correlations does
not result in the generation of the spin-triplet pairing order
parameter since within our model we do not introduce any
nonzero coupling constant for the triplet pairing channel [43].

(iv) The critical value δLZ → ∞ corresponds to the com-
plete Landau-Zener spin-flip tunneling, so that there are
no QPs at the energies E > 0. In this case we have
restored the thermodynamically metastable branch �h ≈√

�0(2h(t ) − �0) from well-known static case [31].
The actual behavior of the gap in time must be determined

by switching between different branches of �h[h] as the Zee-
man field h(t ) increases. The first solution, which is fixed by
the initial condition �h(t = 0) = �0, holds until h(t ) = �0,
where �h goes to another unique possible solution �h[h] for
a given δLZ (see the red point and black dashed line in Fig. 4).
The question of the exact dynamics of the gap in the jump
region is difficult because, due to the rapid change in the �h,
the decoupling of the LZSM problem and self-consistency
equation may not be guaranteed (Sec. IV B). It is qualitatively
expected that the jump at t ≈ �0/γ should be smeared both
by nonzero static contribution of SOC to the gap (since the
equilibrium gap value depends on α) and by the QP tunneling
dynamics. At large times h(t ) � �0 there are no transitions
between the QP states (pk → 1) since the splitting between
the spectral branches becomes zero and therefore the gap
tends to the constant asymptotics �h(∞).

D. QP interference effects

In addition to the quasistatic term �h, the gap equation (36)
also contains small rapidly oscillating term

δ�(t ) = λ
∑

|ξk |<
√

h2−�2

u0u1ie−iθC∗
k↑+Ck↓−

+ v0v1(−i)eiθC∗
k↓−Ck↑+, (39)

arising from the interference of the QP states which have ex-
perienced LZSM transitions. It is obvious that in its structure
this function resembles the collective Higgs mode, which is
excited in a natural way during the redistribution of states in
the QP spectrum. Let us look at it in more details. Using the
time-dependent coefficients (34) and (35) we obtain

δ�(t )

λN (0)
=
ˆ √

h2−�2

−√
h2−�2

√
pk

√
1 − pkG(ξ, t ) cos[Dk (t )]dξ,

(40)

where we introduce the dynamical phase
Dk (t ) = 2

´ t
t0

[E0 − h(t )]dt + χk + π and the function
G(ξ, t ) = sgn(α)(u0u1 + v0v1). The function G(ξ ) is
proportional to αkF /�, which means that δ�(t ) is
parametrically small and can be considered against the
background of the main change in the gap �h from Eq. (38).

For the integral (40), it is easy to estimate the asymptotic
behavior at large times �0/γ � t . The dynamical phase is
written as Dk (t ) = −(E2

0 + γ 2t2)/γ + χk + π + 2E0t for the
spin-splitting field h(t ) = γ t . Here 2E0t is a fast oscillating
term at t → ∞ and one can use a stationary phase approx-
imation for the ξ integration in Eq. (40) with the stationary
phase point ξ = 0. Using Eq. (A6) for G(ξ = 0, t ), we find
the asymptotic behavior of δ�(t ):

δ�(t ) ≈ λN (0)e−δLZ/2
√

1 − e−δLZ
|α|kF

2(γ t − �h)

×
√

π�h

t
cos

(
(γ t − �h)2

γ
+ 3π

4
− χ0

)
, (41)

where �h[h(t → ∞)] from Eq. (38) is a constant determined
by δLZ. The result obtained means that the collective inter-
ference between the two QP states at each ξk after LZSM
crossing behaves at large times as a modified Higgs mode.
Due to linear dependence h(t ), this mode has a modulated fre-
quency and polynomial damping law ∝t−3/2 arising from the
inhomogeneous broadening of the mode. Note that for large
times only the contribution from the point ξ = 0 survives, so
the amplitude of δ�(t ) does not depend on the number of
redistributed states in the QP spectrum.

If the linear growth of the spin-splitting field h(t ) stops at
a certain value h f > �0 after the redistribution of some of the
QP states, then the accumulated dynamic phase Dk (t ) and the
gap fluctuation will depend only on this value h f :

δ�(t ) ≈ λN (0)e−δLZ/2
√

1 − e−δLZ
|α|kF

2(h f − �h)

√
π�h

t

× cos

(
2(h f − �h)t − 3π

4
− �2

h − h2
f

γ
+ χ0

)
.

(42)

The specific spectral distortion occurring between two
branches Ek↑+ and Ek↓− during the Landau-Zener dynamics
at h(t ) < h f acts as an initial perturbation for the gap function
at t = h f /γ . The free gap dynamics at t > h f /γ resembles
the Higgs mode with δ�(t ) ∝ cos[2(h f − �h)t]/

√
t at the

frequency ω = 2|�h − h f | (or ω = ω− in our previous nota-
tions) with the standard damping law. It is interesting that the
amplitude of this mode proportional to |α|kF instead of α2k2

F
as it is expected in the case of small perturbations (Sec. III).
Such amplification is a direct consequence of the intersection
of two specific spectral branches and the subsequent nonadi-
abatic dynamics. Thus, this mode turns out to be leading in
comparison with other nonadiabatic corrections arising due
to the interaction of all QP spectral branches. Note that the
method for calculating the self-consistency equation devel-
oped in Sec. III can be combined with the Landau-Zener
problem (D3) and all corrections can be computed within the
perturbation theory.
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E. Density of states and distribution function

Rearrangement of the spectrum as a result of the intersec-
tion of spectral branches naturally leads to a change of the
structure of the density of states (DOS), that has become time
dependent. Since the temporal evolution of the spectrum is
adiabatic except the small region where the crossing occurs
one can use the quasistatic description of the DOS. For the
small RSOC the DOS for one spin projection can be written
in terms of Bogoliubov–de Gennes functions

N↑(E , t ) ≈
∑

k

∑
n=↑+,↑−

|u0|2δ(E − Ekn)

+ |v0|2δ(E + Ekn). (43)

Here we use static QP amplitudes u0 and v0 [see Eq. (A4)]
to distinguish the particle and hole contributions and Ek↑±
are defined in Eq. (4). The calculation of N↑ is cumbersome
because the RSOC shifts the spectral branches and opens a
minigap ∝αkF at E = 0 (Appendix E). For the small RSOC
parameter these changes are negligible and one can use a
standard expression for the DOS

N↑(E , t )

N (0)
≈ |E + h(t )|√

(E + h(t ))2 − �2
h

. (44)

Here the gap function �h is taken from (38) and two coher-
ence peaks are present at E = ±�h − h(t ).

The amplitude of the QP wave function ψk (t ) from (28)
contains the information about filling (or occupation) of the
ξkth state. More precisely, the coefficients |Ck↑±(t )|2 and
|Ck↓±(t )|2 can serve as an effective distribution functions
f↑↓(E ) for QPs with different spin projections. As discussed
in Sec. IV C, the temporal evolution of these coefficients is de-
termined by the LZSM problem, and for spin-up states one has

|Ck↑−(t )|2 = 1,

|Ck↑+(t )|2 = (1 − pk )�
[√

h2(t ) − �2
h − ξk

]
,

which can be rewritten as a distribution function

f↑(E , t ) ≈

⎧⎪⎪⎨
⎪⎪⎩

0, E > 0

1 − exp
[− δLZ�2

h
(E+h(t ))2

]
, �h − h < E < 0

1, E < �h − h.

(45)

The dependence f↑(E ) is shown in Fig. 4 for δLZ = 0.5. The
most pronounced change of the distribution function occurs at
E ≈ �h − h since for large QP energies the LZSM tunneling
is suppressed. For the opposite spin projection the DOS N↓(E )
has the similar structure (44) with h → −h, while the corre-
sponding distribution function f↓(E ) is different and is given
by Eqs. (34) and (35). The DOS structure and effective distri-
bution function enable the calculation of a system’s optical or
transport response, which can be experimentally measured.

F. Dynamical magnetization of QP gas

Nonadiabatic LZSM tunneling of QP states causes a spin
imbalance in the spectrum, which results in the appearance of
nonzero dynamical magnetization. Using (28) we can write an
expression for the z component of the magnetization per unit

FIG. 5. (a) Dynamical magnetization mh per unit volume induced
by the nonadiabatic tunneling of QP states and (b) corresponding
spin susceptibility χ sp versus time-dependent spin-splitting field h(t )
for different values of δLZ.

volume

mz(t ) = μB

∑
i.c.

ψ̌
†
k (t )τ̌mψ̌k (t ), (46)

where τ̌m = (τ̂0 + τ̂z ) ⊗ σ̂z/2; the vector ψ̌k (t ) is a solution
of the TDBdG problem (28) and “i.c.” means the summation
over all initial conditions [see Eq. (3)]. Due to symmetry and
homogeneity of the problem for the field h(t ) = h(t )z0 the
transversal components of the magnetization mx,y(t ) are zero.

Taking the dynamical amplitudes Cn(t ) from (34) and
(35) and implementing the same procedure as for the self-
consistency equations (36) and (37) we found that the
magnetization can be written as

mz(t ) = mh[h(t )] + δm(t ). (47)

As in the case of the gap equation (37) we have two contribu-
tions: mh which is a quasistatic function of h(t ) arising from
the redistribution of the quaiparticle states, and δm(t ) ∝ αkF

which is small oscillatory term originated from the interfer-
ence of the redistributed states. The first term can be easily
calculated with the help of the quasiparticle density

nσ (t ) =
ˆ

Nσ (E , t ) fσ (E , t )dE , (48)

where σ = {↑,↓}. Corresponding spin imbalance results in
the dynamical magnetization mh = μB(n↑ − n↓), which is
shown in Fig. 5(a).

For h(t ) < �0 there is no crossing of the QP spectral
branches and according to our model there is no tunneling
between QP states, therefore, mh = 0. Once the intersection
has occurred at h(t ) = �0, the distribution functions f↑,↓(E )
transform and nonzero spin imbalance n↑ − n↓ is generated.
Due to the jump of �h function at h(t ) = �0 (Fig. 4) the mag-
netization mh at this point also has a jump discontinuity. At
large times the tunneling of QP states is suppressed, therefore,
the magnetization is saturated to a constant value determined
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by the parameter δLZ. Obviously, an increase in δLZ makes
the spin-flip tunneling more efficient and thereby increases
the maximum value of mh. The second term in (47) resembles
the Higgs mode term (39) and gives negligible contribution to
mz(t ), therefore, it can be discarded.

In addition, one can compute the dynamical susceptibil-
ity of the QP gas in the Zeeman field of the general form
h(t ) = μBH (t ). It is known that an orbital and a spin part of
the magnetic susceptibility can be splitted in the case of small
spin-orbital effects [42]. Since we consider a homogeneous
system and neglect all orbitals effects only the spin part plays
a role, which can be written as

χ sp[h(t )] = μB
∂mh

∂h
. (49)

The ratio of the numerically calculated susceptibility χ sp[h(t )]
and the normal susceptibility χ

sp
N = 2μ2

BN (0) [44] is shown if
Fig. 5(b). It is seen that spin-flip tunneling in the QP spectrum
provokes a paramagnetic response of the superconducting
condensate. The function (49) should have a singularity χ sp ∝
[h(t ) − �0]−1/2 in the vicinity of h(t ) ≈ �0, which is defined
by the shape of the QP spectrum at k ≈ kF and has the same
origin as the coherence peak in the DOS (44). However, due
to the jump of the order parameter �h at this point we observe
shifted peaks, which have to be smeared out near h(t ) = �0 if
more realistic model of LZSM tunneling (Sec. IV B) is taken
into account. We note again that we discuss only the dynamic
contribution to the susceptibility, which, generally speaking,
has to be added to the static one, which is not equal to zero at
T = 0 in the presence of SOC [42,44].

V. EXPERIMENTAL PERSPECTIVES

As an experimental platform for detecting the described
effects, we propose to use S/F hybrid structures. The ferro-
magnetic layer can serve as a source of both Rashba spin-orbit
coupling and an exchange field. Since it is important to
remove orbital effects from the system, the most suitable
geometry for superconductor is either a thin film or an one-
dimensional nanowire [45]. For the small layer thicknesses,
the exchange interaction can be averaged in the direction
perpendicular to the layers, giving a homogeneous effective
exchange field inside the superconductor.

The excitation of spin-split Higgs modes in superconduc-
tors requires frequencies of the order of �0/h̄, which vary
from the far infrared to the terahertz range. The laser exci-
tation of modes seems to be the most practical and feasible,
and their detection can be implemented using the ultrafast
pump-probe spectroscopy [10–12].

We propose two possible ways to generate rapidly chang-
ing modulus of the spin-splitting field h(t ):

(i) If the S/F bilayer possesses a strongly anisotropic ex-
change, so that the Zeeman energy ∝MF ĝσ in Eq. (6) is
defined through the tensorial g factor, then the absolute value
of the exchange field is no more determined only by the ab-
solute value of the magnetic moment |MF (t )| = const. Thus,
we can get a pronounced component of the spin-splitting field
hz(t ) varying in time just for a standard precession of MF (t ).
Such approach can be reasonable amid a progress in the ul-
trafast optical control of magnetization in various materials
[23,46–48].

(ii) Another possibility is based on the obvious fact that
the field h is determined not only by the magnetic moment,but
also by the penetration length of the wave functions of elec-
trons from superconductor to the insulator. This penetration
clearly depends on the potential jump at the S/F interface and,
thus, can be tuned by the electric field effect. Certainly, to re-
alize a noticeable field effect we need to take a ferromagnetic
film with a rather narrow energy gap in the band spectrum,
e.g., a film of ferromagnetic semiconductor. In this case the
exchange field value can be modulated by simply applying a
time-dependent gate potential to the semiconducting layer.

Finally, we present parameter estimates for the experi-
mental observation of LZSM transitions in the QP spectrum.
For example, consider �0 = 0.1 meV (for Tc ≈ 1 K) and
αkF ∼ 10−3 meV � �0. Then the constraint for the small
tunneling rate is h̄γ � α2k2

F in dimensional units, which is
equivalent to γ � 10−3 meV/ns. Consider inelastic relaxation
of QP with a typical time τph ∼ 100 ns in the case of the
electron-phonon scattering at low temperatures [49,50]. The
collisionless regime is maintained at t � τph, which corre-
sponds to times t � 10 ns. Under such conditions the field
h(t ) = γ t ∼ �0 is achievable only for γ ∼ 10−2 meV/ns.

VI. CONCLUSIONS

To sum up, we analyzed the coherent dynamics of the
superconducting condensate in the presence of Zeeman field
and SOC in collisionless regime. First, it was established that
the Higgs mode of the superconducting gap is sensitive to the
spin-splitting field h0 and can be directly triggered by either
its harmonic perturbation δh(t ) or by a nonadiabatic quench
induced by a laser pulse. Second, it was shown that the field
h(t ) ∼ t can provoke an avoided crossing of the QP spectral
branches accompanied by adiabatic spin-flip tunneling of the
QPs between the different branches. Corresponding redistri-
bution of the QPs in the spectrum leads to the appearance
of the dependence �[h(t )] and generation of the interference
effects. Emerging spin imbalance reveals itself in the effective
dynamical distribution function and in a generation of a weak
magnetization of the QP gas. We consider S/F structures to be
good candidates for experimental realization of the described
findings.
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APPENDIX A: EIGENVECTORS

The instantaneous eigenvectors of the Hamiltonian Ȟ(k, t )
from Eq. (2) can be written as

̌kn(t ) = 1√
1 + a2

1n + a2
2n + a2

3n

⎛
⎜⎜⎝

1
−ia1neiθk

−ia2neiθk

a3n

⎞
⎟⎟⎠, (A1)
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where we have defined the phase θk = arg (kx + iky) and real
coefficients

a1n = (h + Ekn)2 − E2
0 − α2k2

2αk(ξk + h)
,

a2n = αk

�
− Ekn − ξk − h

�
a1n,

a3n = Ekn − ξk + h

�
− αk

�
a1n. (A2)

The instantaneous eigenvalues of Ȟ(k, t ) are

Ekn(t ) ≡ Ekσ±(t )

= ±
√

E2
0 + α2k2 + h2(t ) ∓ sgn(σ )2

√
ξ 2

k α2k2 + h2(t )E2
0 ,

where E0 =
√

ξ 2
k + �2; the subscript ± refers to spectral

branch above and below the Fermi level and σ = {↑,↓} de-
notes a spin subband. Note that the Hamiltonian (2) implies
the symmetry relations between the energies Ek↑+ = −Ek↓−
and Ek↓+ = −Ek↑−, and between the corresponding eigenvec-
tors ̌k↑+ = iτ̂y ⊗ σ̂ž

∗
k↓− and ̌k↓+ = iτ̂y ⊗ σ̂ž

∗
k↑−, where

τ̂i(σ̂i ) is the Pauli matrix in the Nambu (spin) space.
For the case of weak SOC αkF � {EF , h(t ),�(t )} the

eigenvectors (A1) can be expanded up to the first order in
αkF /� as follows:

̌k↑+ ≈

⎛
⎜⎜⎝

u0

−iu1eiθk

−iv1eiθk

v0

⎞
⎟⎟⎠, ̌k↓+ ≈

⎛
⎜⎜⎝

iu1e−iθk

−u0

v0

−iv1e−iθk

⎞
⎟⎟⎠,

̌k↑− ≈

⎛
⎜⎜⎝

−v0

iv1eiθk

−iu1eiθk

u0

⎞
⎟⎟⎠, ̌k↓− ≈

⎛
⎜⎜⎝

−iv1e−iθk

v0

u0

−iu1e−iθk

⎞
⎟⎟⎠. (A3)

Here we define equilibrium QP amplitudes

u0 = 1√
2

√
1 + ξk

E0
, v0 = 1√

2

√
1 − ξk

E0
, (A4)

and

u1 ≈ αk
h − ξk

2h(E0 − h)
u0, v1 ≈ αk

(h + ξk )(E0 − ξk )

2h�(E0 − h)
u0

(A5)

correspond to the triplet component of the QP wave functions.
The function G(ξ, t ) = sgn(α)(u0u1 + v0v1) from Eq. (40)

at the stationary phase point ξ = 0 can be found from (A4)
and (A5) by putting � ≈ �h [see Eq. (38)] and reads as

G(0, t ) ≈ |α|kF

2(h(t ) − �h)
. (A6)

APPENDIX B: DERIVATION OF LINEARIZED
SELF-CONSISTENCY EQUATION

We start with the linearized (8) and (11) dynamical equa-
tions

i
∂

∂t
δCkm =

∑
n

̌†
mV̌ (t )̌ne−i(En−Em )t (δn,l + δCkn), (B1)

where δn,n′ is Kronecker delta, the indices n, m = {↑ +,↓
+,↑ −,↓ −} number all QP branches, and l = {↑ −,↓ −}
corresponds to two possible initial configurations [see
Eq. (10)]. The compact form of the self-consistency equa-
tion for the gap (9) is

�eq + δ�(t )

= −λ

2

∑
l

∑
k

∑
n,n′

(δn,l + δCkn(t )∗)(δn′,l + δCkn′ (t ))

× e−i(En′ −En )t ̌
†
knτ̌�̌kn′ . (B2)

As was mentioned in Sec. II, we neglect the effect of RSOC
on the equilibrium value of the gap, which can be taken as
�eq = �0. It also makes sense to omit the negligibly small
corrections from the RSOC to the energy spectrum, so one
can put En ≡ Ekσ± ≈ ±E0 − sgn(σ )h0.

Equations (B1) and (B2) can be simplified and written as
follows:

∂ f1

∂t
= iei[2(E0−h0 )t][Aδ�(t ) − Bδh(t )],

∂ f2

∂t
= iei[2(E0+h0 )t][Aδ�(t ) + Bδh(t )],

∂g

∂t
= i

ξ

E0
ei(2E0t )δ�(t ),

δ�(t ) =
〈A

2
Re f1(t )e−i[2(E0−h0 )t]

〉

+
〈A

2
Re f2(t )e−i[2(E0+h0 )t]

〉
+
〈

ξ

E0
Reg(t )e−i(2E0t )

〉
.

(B3)

We have used the notation 〈 . . . 〉 = λ
∑

k ≈ λN (0)
´ ωD

−ωD
dξ

and introduced new complex-valued functions

f1 ≡ −ieiθ δC↑+, g1 ≡ −δC↓+,

f2 ≡ −ie−iθ δC↓+, g2 ≡ −δC↑+,

g = g1 + g2

2
, (B4)

where the subscript corresponds to the two possible initial
conditions. The functions

A(ξ ) = 2(u0u1 + v0v1) ≈ αkF
E0h − ξ 2

E0h(E0 − h)
,

B(ξ ) = 2(u0v1 + u1v0) ≈ αkF
�0

E0(E0 − h)
(B5)

have the lowest order in αkF parameter (Appendix A) and
are even in ξ . All terms odd in ξ in Eq. (B3) are related to
the imaginary part of δ�(t ) and vanish due to the approxi-
mate electron-hole symmetry of BdG Hamiltonian (2), due to
which the density of states is approximated as N (ξ ) ≈ N (0)
in the 〈. . . 〉 integration [51].

Applying the Laplace transform f (s) = ´∞
0 e−st f (t )dt

with s = iω + ζ (where ζ → 0) for Eq. (B3) we obtain the
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gap equation in the complex plane, which is found to be

δ�(s) = δ�(s)

〈
2ξ 2

E0

1

s2 + 4E2
0

〉
+ δ�(s)

〈
A2(ξ )

(E0 + h0)

s2 + 4(E0 + h0)2

〉
+ δ�(s)

〈
A2(ξ )

(E0 − h0)

s2 + 4(E0 − h0)2

〉

+ δh(s)

〈
A(ξ )B(ξ )

(E0 + h0)

s2 + 4(E0 + h0)2

〉
− δh(s)

〈
A(ξ )B(ξ )

(E0 − h0)

s2 + 4(E0 − h0)2

〉

+
〈

f ′
1(0)

A(ξ )

2

s

s2 + 4(E0 − h0)2

〉
+
〈

f ′′
1 (0)

A(ξ )(E0 − h0)

s2 + 4(E0 − h0)2

〉
+
〈

f ′
2(0)

A(ξ )

2

s

s2 + 4(E0 + h0)2

〉

+
〈

f ′′
2 (0)

A(ξ )(E0 + h0)

s2 + 4(E0 + h0)2

〉
+
〈
g′(0)

ξ

E0

s

s2 + 4E2
0

〉
+
〈
g′′(0)

2ξ

s2 + 4E2
0

〉
. (B6)

Here f = f ′ + i f ′′ and the initial conditions f1,2(0) =
f1,2(t = 0), g(0) = g(t = 0) implicitly contain the initial
value of the gap perturbation δ�(t = 0). Now we can single
out functions of s with different singularities in the complex
plane and denote them using short notations

K0(s) =
〈

2ξ 2

E0

1

s2 + 4E2
0

〉
,

K±(s) =
〈
A2(ξ )

(E0 ± h0)

s2 + 4(E0 ± h0)2

〉
,

F±(s) =
〈
A(ξ )B(ξ )

(E0 ± h0)

s2 + 4(E0 ± h0)2

〉
. (B7)

Other terms in Eq. (B6) can be grouped into one function

I (s) =
〈A(ξ )

2

s f ′
1(0) + 2(E0 − h0) f ′′

1 (0)

s2 + 4(E0 − h0)2

〉

+
〈A(ξ )

2

s f ′
2(0) + 2(E0 + h0) f ′′

2 (0)

s2 + 4(E0 + h0)2

〉

+
〈

ξ

E0

sg′(0) + 2E0g′′(0)

s2 + 4E2
0

〉
, (B8)

which actually is an effective initial condition for the dynamics
of the gap δ�(t ) and originated from the initial nonequilib-
rium perturbations of the QP population δCkn(t = 0).

The functions A and B are of the first order in the small
parameter αkF /�, therefore, we have

K0(s) ∝ O

(
α0k0

F

�0
0

)
, K±(s),F±(s) ∝ O

(
α2k2

F

�2
0

)
.

It can be shown that the the difference [F+(s) − F−(s)] is pro-
portional to h0. This allows one to write the terms with δh(t )
in (B6) as δh(s)[F+(s) − F−(s)] or [h0 · δh(s)][F+(s) −
F−(s)]/h0, where both vectors are oriented along the z0 axis.
By rewriting Eq. (B6) with the new introduced functions (B7)
we get the self-consistency equation (12).

APPENDIX C: LONG-TIME BEHAVIOR OF δ�(t )

The susceptibility Imχ��(s)|ζ→0 = Imχ��(ω) in Eq. (22)
has strongly dominant terms in the vicinity of different branch
points in the interval ω ∈ [ω−,∞). In order to demonstrate
this, the function Imχ��(s) can be expanded in a series up to
the second order in the parameter αkF /�, and this expansion
must be carried out accurately near the branch points and

may differ in different regions of ω. Therefore, we assume
that the value of the integral is determined by these dominant
contributions of Imχ�h(ω) and can be evaluated sequentially
as
´∞

ω−
= ´ ω0

ω−
+ ´ ω+

ω0
+ ´∞

ω+
. Let us consider the small regions

� � ω0,± in the vicinity of these points separately.
(i) Close to the point ω = ω− + � the term K′′

−(ω) domi-
nates:

K′′
−(�) ≈ −λN (0)

π�0A2(0)

4
√

�0�
∝ 1√

�
. (C1)

Despite the kernel 1 − K′
0(ω) goes to zero at ω → ω0 there is

no singularity in χ��(ω) at this point due to the small terms of
the order of (αkF )2 in the denominator. Therefore, the region
in the vicinity of ω0 will not contribute to the integral. Thus,
the behavior of the first integral for ω ∈ [ω−, ω0) at large time
h0t � 1 can be estimated asˆ ω0

ω−
≈ Im

[ I0eiω−t

[1 − K′
0(ω−)]2

ˆ ω0−ω−

0
K′′

−(�)ei�t d�

]

≈ −λN (0)
π3/2�0A2(0)

4
√

�0t

Im[I0ei(ω−t+π/4)]

[1 − K′
0(ω−)]2

. (C2)

(ii) In the vicinity of the branch point ω = ω0 + � the
main contribution is defined by

K′′
0 (�) ≈ −λN (0)

π

2�0

√
�0� ∝

√
�. (C3)

Thus, at large times h0t � 1 we getˆ ω+

ω0

=
ˆ ω+

ω0

1

K′′
0 (ω)

Im[eiωtI0]dω

≈ −2
√

�0√
πt

1

λN (0)
Im[I0ei(ω0t+π/4)]. (C4)

(iii) For the last branch point ω = ω+ + � the kernel
K′′

+(ω) dominates:

K′′
+(�) ≈ −λN (0)

π�0A2(0)

4
√

�0�
∝ 1√

�
. (C5)

At large times h0t � 1 we getˆ ∞

ω+
≈
ˆ ∞

ω+

K′′
+(ω)Im[eiωtI0]

[1 − K′
0(ω+)]2 + [K′′

0 (ω+)]2
dω

≈ −λN (0)
π3/2�0A2(0)

4
√

�0t

Im[I0ei(ω+t+π/4)]

[1 − K′
0(ω+)]2 + [K′′

0 (ω+)]2
.

(C6)
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By combining all three contributions (C2), (C4), and (C6)
we will get Eq. (23) in the main text. Note that discussed
approximations work for 0 < h0 < �0.

Equation (27) can be obtained in the similar way from
Eq. (25):

δ�(t ) =
∑

p

χ�h(sp)espt Res
s=sp

[δh(s)]

+ 2

π

ˆ ∞

ω−
Imχ�h(s)|ζ→+0Im[eiωtδh(iω)]dω. (C7)

The kernels F±(s) in (26) have the same analytical properties
as K±(s) and only differ by A2(ξ ) → A(ξ )B(ξ ). The func-
tions A and B from (B5) at the point ξ = 0 are

A(0)B(0) = A2(0) = (αkF )2

(�0 − h0)2
. (C8)

Also, the analytical expressions for the kernel K0(ω) at ω > 0
reads as

1 − K′
0(ω)

λN (0)

=

⎧⎪⎪⎨
⎪⎪⎩

√
4�2

0−ω2

ω
arctan

(
ω√

4�2
0−ω2

)
for ω < 2�0,

−
√

ω2−4�2
0

ω
1
2 ln

(ω−
√

ω2−4�2
0

ω+
√

ω2−4�2
0

)
for ω > 2�0,

(C9)

K′′
0 (ω)

λN (0)
= −π

2

√
ω2 − 4�2

0

ω
�[ω − 2�0]. (C10)

Finally, the expression with the kernels F±(ω) from (C4) can
be calculated numerically for small αkF � �0:

[F ′
+(ω0) − F ′

−(ω0)]

λN (0)

= h0

 ωD

0
A(ξ )B(ξ )

h2
0 − ξ 2 − 2�2

0(
ξ 2 − h2

0

)2 − 4�2
0h2

0

dξ . (C11)

APPENDIX D: DERIVATION AND SOLUTION
OF LZSM PROBLEM

The dynamics of two levels with avoided crossing can be
simply described with the help of so-called diabatic basis
formed by the instantaneous eigenfunction �̌0

kn(t ) of the time-
dependent Hamiltonian (1) at α = 0. Note here that for α = 0
the eigenstates do not depend of h(t ) at all and consist only of
the Bogoliubov’s amplitudes u0 and v0 [one can use (A3) and
set α = 0 there]. The complete solution of the time-dependent
Hamiltonian can be written as

̌k (t ) =
∑

n

Cd
kn(t )�̌0

kn(t ), (D1)

where n = {↑ +,↓ +,↑ −,↓ −}. In order to avoid confusion
with adiabatic basis in (28) the superscript “d” is used to de-
note the diabatic basis. The time-dependent coefficients obey
the following equation derived from (1):

i
∂

∂t
Cd

m =
∑

n

Cd
n �̌

0†
km

[
Ȟ(t ) − i

∂

∂t

]
�̌0

kn. (D2)

Note that here Ȟ(t )�̌0
kn �= En(t )�̌0

kn. By keeping in mind that
�̂0

kn(t ) depends on time only through �(t ), one can rewrite
(D2) as follows:

i
∂

∂t

⎛
⎜⎜⎜⎜⎝

Cd
↑+

Cd
↓+

Cd
↑−

Cd
↓−

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

E0 − h(t ) − ξk

E0
iαke−iθk i ξk

2E2
0

∂�
∂t

�
E0

iαke−iθk

ξk

E0
iαkeiθk E0 + h(t ) − �

E0
iαkeiθk i ξk

2E2
0

∂�
∂t

−i ξk

2E2
0

∂�
∂t

�
E0

iαke−iθk −E0 − h(t ) ξk

E0
iαke−iθk

− �
E0

iαkeiθk −i ξk

2E2
0

∂�
∂t − ξk

E0
iαkeiθk −E0 + h(t )

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Cd
↑+

Cd
↓+

Cd
↑−

Cd
↓−

⎞
⎟⎟⎟⎟⎠, (D3)

where E0 =
√

ξ 2
k + �2. One can remove the phase θk = arg (kx + iky) from (D3) by the unitary operator

Ûθ =
⎛
⎝ei( π

4 − θk
2 )σ̂z 0

0 ei( π
4 − θk

2 )σ̂z

⎞
⎠, (D4)

so that in the new basis we have

i
∂

∂t

⎛
⎜⎜⎜⎜⎝

C̃d
↑+

C̃d
↓+

C̃d
↑−

C̃d
↓−

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

E0 − h(t ) − ξ

E0
αk i ξ

E2
0

∂�
∂t

�
E0

αk

− ξ

E0
αk E0 + h(t ) �

E0
αk i ξ

E2
0

∂�
∂t

−i ξ

E2
0

∂�
∂t

�
E0

αk −E0 − h(t ) ξ

E0
αk

�
E0

αk −i ξ

E2
0

∂�
∂t

ξ

E0
αk −E0 + h(t )

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

C̃d
↑+

C̃d
↓+

C̃d
↑−

C̃d
↓−

⎞
⎟⎟⎟⎟⎠. (D5)

We assume that the time evolution of the gap function �(t ) is adiabatic on the timescale of the problem (D5). Therefore,
one can assume � to be constant during the transition with the typical time ∼τLZ. Since the most emphasized dynamics occurs
between two crossing branches, it is convenient to consider the interaction of only the corresponding terms Ck↑+ and Ck↓−
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(Fig. 3). Hence, one can extract an effective two-level problem for the crossing levels:

i
∂

∂t

(
C̃d

k↑+
C̃d

k↓−

)
=
(

E0 − γ t �
E0

αk
�
E0

αk −E0 + γ t

)(
C̃d

k↑+
C̃d

k↓−

)
. (D6)

This system can be viewed as the LZSM problem, which allows an exact solution [36]. However, as discussed in Sec. IV B,
one can neglect the transient dynamics of the Ck (t ) coefficients in the gap equation (3) and use the transition matrix approach
instead. Thus, we need to obtain the relation between the long-time asymptotes of the functions C̃d

k↑↓+(t ) before (t0−) and after

(t0+) transition at the point t0(ξk ) =
√

ξ 2
k + �2/γ . Here we use short notations (t0∓) ≈ t0 ∓ τLZ/2. The asymptotic solution of

the problem (D6) is well known [36] and reads as(
C̃d

k↑+(t0+)

C̃d
k↓−(t0+)

)
=
( √

pk −sgn(α)
√

1 − pkeiχk

sgn(α)
√

1 − pke−iχk
√

pk

)(
C̃d

k↑+(t0−)

C̃d
k↓−(t0−)

)
, (D7)

where the coefficient

pk = exp

[
− δLZ

�2

ξ 2
k + �2

]

with δLZ = πα2k2/γ ≈ πα2k2
F /γ defines the probability of tunneling. Here χk = π/4 + arg�(1 + i ln pk/2π ) −

ln pk[ln(− ln pk/2π ) − 1]/2π is the Stokes phase with the gamma function �.
For small energies ξk � � two different tunneling regimes are possible:

(weak) γ � α2k2
F → δLZ ≈ 0 → pk ≈ 1,

(strong) γ � α2k2
F → δLZ � 1 → pk ≈ 0.

When ξk � �, tunneling is suppressed (pk → 1) as the quasiparticle spectrum resembles that of a normal metal with no splitting
between crossing spectral branches.

The typical transient time τLZ for the LZSM tunneling can be estimated as follows [36]:

τLZ ∼
√

h̄

γ
max

⎧⎪⎨
⎪⎩1,

αkF√
2γ

�√
ξ 2

k + �2

⎫⎪⎬
⎪⎭.

If the intersection of the branches of the QP spectrum occurs at some ξk , then it is possible to determine the interval �ξk in which
all QP states experience transient dynamics. The size of �ξk depends on transient time, however, it can be shown that the upper
limit for this interval is �ξk ∼ αkF � �. The smallness of �ξk and the fact that the gap function �(t ) is determined by all QP
states in (−ωD, ωD) confirm the validity of the approximations made in Sec. IV B.

Combining all the results we write the asymptotic transition matrix Ŝd
LZ in diabatic basis as⎛

⎜⎜⎜⎜⎜⎝

Cd
k↑+(t0+)

Cd
k↓+(t0+)

Cd
k↑−(t0+)

Cd
k↓−(t0+)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

√
pk 0 0

√
1 − pkeiχk−iθk−i π

2 sgn(α)

0 1 0 0

0 0 1 0

−√
1 − pke−iχk+iθk+i π

2 sgn(α) 0 0
√

pk

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Cd
k↑+(t0−)

Cd
k↓+(t0−)

Cd
k↑−(t0−)

Cd
k↓−(t0−)

⎞
⎟⎟⎟⎟⎟⎠. (D8)

The LZSM transition matrix in the adiabatic basis (28) has the form ŜLZ = R̂−1(t0+)Ŝd
LZR̂(t0−), where we use the relationship

between the two bases (D1) and (28) written in general form as a time-dependent matrix R̂(t ). Using the perturbation theory with
respect to the small parameter αkF /� and considering points t0± far from the nonadiabatic region, one can show that the matrix
R̂(t0±) can be approximated with an identity matrix. The corrections proportional to αkF /� in all elements of the matrix R̂(t0±)
as well as ŜLZ can be neglected since in all equations of Sec. IV we consider the minimum possible order of the perturbation
theory with respect to the parameter αkF /�. With these approximations the matrices ŜLZ and Ŝd

LZ actually coincide and the
LZSM transition matrix in the adiabatic basis can be taken taken from (D8). Thus, we get Eq. (32).

APPENDIX E: CALCULATION OF SPIN-SPLIT DOS

The DOS for one spin projection can be written as follows:

N↑(E , t ) ≈
∑

k

∑
n=↑+,↑−

|u0|2δ(E − Ekn) + |v0|2δ(E + Ekn). (E1)
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FIG. 6. Spectrum (4) and density of states (E2)–(E4) for the QPs with ↑ spin for two different values of h(t ). The value �m represents a
minigap. Colored areas in DOS indicate the filling of the states in the corresponding energy intervals according to Eq. (45). The parameters
are �0/EF = 0.01, α/EF = 0.0025.

Here we use static QP amplitudes u0 and v0 to distinguish the particle and hole contributions and Ek↑± are defined in Eq. (4). Note
that the function N↑(E , t ) depends on time only through the Zeeman field h(t ). The straightforward calculations for h(t ) < �0

yield

N↑(E , t )

N (0)
≈ |E |

ξ0

∣∣∣∣∣∣∣1 − sgn(E )
α2k2

F + h2(t )√
ξ 2

0 α2k2
F + h2(t )

(
ξ 2

0 + �2
h

)
∣∣∣∣∣∣∣
−1

, (E2)

where

ξ0(E , t ) ≈
√

E2 + h2(t ) − �2
h + α2k2

F + sgn(E )2
√

E2
(
h2(t ) + α2k2

F

)− �2
hα

2k2
F (E3)

and we have assumed αk ≈ αkF due to the vicinity to the Fermi energy. The time-dependent gap function �h[h(t )] is defined
in (38). Two standard coherence peaks at the energies E = −

√
(�h + h(t ))2 + α2k2

F and E =
√

(�h − h(t ))2 + α2k2
F appear

[Fig. 6(a)].
For the case of large Zeeman fields h(t ) > �0 one obtains

N↑(E , t )

N (0)
≈

⎧⎪⎪⎨
⎪⎪⎩

|E |
ξ0

∣∣1 − sgn(E ) α2k2
F +h2(t )√

ξ 2
1 α2k2

F +h2(t )(ξ 2
1 +�2

h )

∣∣−1
, E > �m and E < −

√
(�h + h(t ))2 + α2k2

F ,

|E |
ξ0

∣∣1 − α2k2
F +h2(t )√

ξ 2
2 α2k2

F +h2(t )(ξ 2
2 +�2

h )

∣∣−1
, −

√
(�h − h(t ))2 + α2k2

F < E < −�m,

(E4)

where

�m ≈ �hαkF√
h2(t ) + α2k2

F

.

The splitting of the energy spectrum in the vicinity of E = 0 leads to the appearance of the two additional coherence peaks and
corresponding minigap at the energies E = ±�m, which are shown in Fig. 6(b).
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