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We extend the Mattis-Bardeen theory for the dynamical response of superconductors to include different types
of Hall responses. This is possible thanks to a recent modification of the quasiclassical Usadel equation, which
allows for analyzing Hall effects in disordered superconductors and including the precise frequency dependence
of such effects. Our results form a basis for analyzing dynamical experiments especially on novel thin-film
superconductors, where ordinary Hall and spin Hall effects can both show up.
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I. INTRODUCTION

Simultaneous application of electric and magnetic fields
on a conductor leads to the presence of a charge current
with a transverse component perpendicular to both fields, in
addition to the ordinary longitudinal current in the direction
of the electric field. This ordinary Hall effect has been known
since the 19th century [1] and it can be directly incorporated
into the Drude model [2,3] of electronic conduction once the
Lorenz force due to the magnetic field is included. Varying
the electric field in time leads to similarly varying longitudinal
and transverse charge currents [4]. This dynamical Hall effect
can be observed for example in optical spectroscopy via the
Faraday-Kerr rotation of the polarization state of light [5,6].
For frequencies low compared to the scattering rate and for
materials in their normal state, both longitudinal and Hall
currents are in phase with the electric field. This is in contrast
with the superconducting state [7], featuring both in-phase
and out-of-phase contributions. For the longitudinal response,
the former describes electronic transitions and features a su-
perconducting gap at low temperatures, whereas the latter
results from the supercurrent. Despite some attempts over the
years [8,9] based on phenomenological two-fluid models and
Bardeen-Cooper-Schrieffer (BCS) theory, to our knowledge
the microscopic extension of the Drude model for the dynam-
ical Hall response in superconductors in the dirty limit has
not been presented before. We fill this gap by deriving the
frequency dependent linear conductivity of dirty superconduc-
tors in the presence of the Hall effect and discuss how the
in- and out-of-phase parts of the transverse response show up
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in the amplitude and phase of the frequency dependent Kerr
response of such materials.

In type II superconductors, motion of vortices and the flux
they carry gives additional contributions to the Hall effect
[10–13]. By now, especially in the steady state, these effects
are well studied. Here we consider situations below the critical
field in which no vortices are present, concentrating on the
time-dependent response in the uniform gapped state.

In the presence of spin-orbit interaction, another type of
Hall effect called the spin Hall effect occurs [14]. It involves
the generation of a transverse spin current in response to
a charge current. There are two major mechanisms for this
spin Hall effect: in the intrinsic mechanism, it is produced
by the inversion symmetry breaking either due to the lattice
(Dresselhaus spin-orbit coupling (SOC) [15]) or the sample
structure (Rashba spin-orbit coupling [16]), and in the ex-
trinsic mechanism it results from the spin dependence of the
scattering.

In superconductors, the spin Hall effect couples (equi-
librium) supercurrents and spin [17–21]. In addition, super-
conductors show also a quasiparticle spin Hall effect, which
behaves otherwise similar to the normal-state version but
depends strongly on temperature. Vortex motion can also gen-
erate it [22]. In this paper, we examine the dynamical spin Hall
response in superconductors and show how it also contains
in- and out-of-phase contributions similar to the longitudinal
current response. In the normal state, our frequency dependent
results are consistent with the literature predictions [23,24],
where the intrinsic spin Hall current is maximal at frequen-
cies comparable with the spin-relaxation rate, whereas the
extrinsic mechanism produces spin Hall response also at low
frequencies. Superconductivity actually provides a tool for
probing these different mechanisms as in the intrinsic case it
leads to strongly temperature dependent spin Hall responses.
Hence, whereas the frequency dependence may be difficult to
probe on a wide scale of the order of the spin-relaxation rate,
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in the superconducting case one may fix the frequency and
rather vary the temperature. Such studies may then provide
information about the nature of the relevant mechanisms for
the spin Hall effect.

Our paper is based on the recent extensions of the quasi-
classical Usadel equation to govern ordinary and spin Hall
effects [25,26], both in the extrinsic and intrinsic cases.
We utilize these extensions here to study those dynamic
responses. The dynamical Hall effect can be studied on con-
ventional spin singlet superconductors in the presence of the
time-independent magnetic field. Because of Meissner screen-
ing, it shows up as a surface effect, but the same is true
for the normal state because of the finite skin depth. On the
other hand, the spin Hall effects require strong spin-orbit
interaction and are especially interesting in thin-film systems
involving either heavy-metal superconductors or the presence
of a nearby heavy metal in which case the spin-orbit coupling
would enter as a proximity effect. On the other hand, our
paper provides a baseline to compare the results of dynamical
experiments on frequency dependent electromagnetic suscep-
tibility of two-dimensional superconductors where possible
spin ordering or orbital degrees of freedom may complicate
the dynamic response.

Our paper is organized as follows. In Sec. II we out-
line the theory for describing the various Hall effects in
superconductors by introducing ordinary and SU(2) vector
potentials and the accompanying field strength tensor terms
into the Usadel equation. In Sec. III we analyze the sym-
metry properties of the resulting dynamical response matrix.
This section uses dynamical SU(2) fields as a formal tool
for uncovering those symmetries. Section IV shows how the
ordinary Mattis-Bardeen response [7] naturally comes from
our formalism. Then Sec. V discusses the dynamical Hall re-
sponse, and Secs. VI and VII discuss the dynamical spin Hall
and inverse spin Hall responses in superconductors. Finally,
Sec. VIII discusses the results and possible extensions of the
theory to new materials.

II. THEORY OF HALL EFFECTS IN DISORDERED
SUPERCONDUCTORS

In this section, we introduce the specific scenarios and
main equations used in this paper. Our paper encompasses
a broad scope, focusing on superconductors subjected to
electromagnetic fields, alongside exchange fields and linear-
in-momentum spin-orbit coupling, which can be treated as
effective SU(2) potentials [27]. These can be described by the
following Hamiltonian:

H = (p − Ǎ)2

2m
− μch + Vimp + τ3Ǎ0 − i�̌, (1)

where p is the momentum, m is the electron mass, μch is
the chemical potential, �̌ = �τ1 is the superconducting order
parameter for s-wave superconductors, and σ j and τ j are the
Pauli matrices in spin and Nambu spaces, respectively. Vimp is
a random impurity potential that consists of the usual elastic
scattering and the spin-orbit interaction [25,28,29]. Ǎμ is the
generalized four-potential containing both U(1) and SU(2)

components [30–32] given by

Ǎ0 = −eφτ3 + h̄

2
A0 jσ j, (2a)

Ǎi = −eAiτ3 + h̄

2
Ai jσ j . (2b)

φ and A are the usual U(1) scalar and vector electromagnetic
potentials, while A0 j and Ai j are SU(2) potentials describing
the Zeeman or exchange field and the linear-in-momentum
SOC, respectively [24]. Here and below a sum over repeated
indices is assumed.

As in conventional electrodynamics we can define the field
strength associated with Ǎ:

F̌μν = ∂μǍν − ∂νǍμ − i

h̄
[Ǎμ, Ǎν]. (3)

The last commutator appears because of the fact that the
SU(2) components are non-Abelian. Here and below Greek
indices range μ = 0, 1, 2, 3.

In what follows, we are interested in the currents (charge
and spin) generated by the electric field, which is given by the
Ě j ≡ F̌ 0 j = −eE jτ3 + (h̄/2)E jlσl components of the field
strength tensor (3), where the Latin indices range j = 1, 2, 3.
In the linear response regime the current and the field are
related via the response tensor:

jiμ(ω) = σ iμ, jν (ω)E jν (ω). (4)

Here ji0 are the components of the charge current whereas ji j

is the spin-current tensor. The usual U(1) electric field is given
by E j ≡ E j0, and E jl denote the components of the SU(2)
electric field. The real part of σ iμ, jν describes the in-phase
response, and the imaginary part is the out-of-phase response
of the current to the field.

Our goal is to find the conductivity tensor σ iμ, jν (ω) in
diffusive superconducting systems showing different types
of Hall effects. For this we use the quasiclassical approach
generalized in Refs. [25,26] to include SOC.

To describe the transport properties of the system we
use the gauge covariant quasiclassical Green’s function (GF)
formalism. The GF ǧ(t, t ′) is an 8 × 8 matrix in Keldysh-
Nambu-spin space [33–35], ǧ = (ǧR ǧK

0 ǧA ), where the Keldysh

GF ǧK = ǧR · ȟ − ȟ · ǧA describes the nonequilibrium proper-
ties of the system. Here, ȟ is the distribution function and
the center dot is used to denote a convolution in time, i.e.,
integration in the intermediate time variable. The caron sym-
bol, e.g., in ǧ, denotes matrices in Keldysh ⊗ Nambu ⊗ spin
or Nambu ⊗ spin space. The quasiclassical GF satisfies the
normalization condition ǧ · ǧ = δ(t − t ′).

In systems with time translational symmetry, the Green’s
function can be Fourier transformed in the τ = t − t ′ variable
into the energy domain as

ǧ(ε) =
∫

dτeiετ/h̄ǧ(τ ). (5)

For a bulk superconductor the retarded and advanced GFs in
the energy domain are given by

ǧR/A
0 (ε) = g0(ε)τ3 + f0(ε)τ1, (6)
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where g0 and f0 are the normal and anomalous parts of the
bulk GF,

g0(ε) = −i(ε ± i�)√
�2 − (ε ± i�)2

, (7a)

f0(ε) = �√
�2 − (ε ± i�)2

, (7b)

and the equilibrium distribution function is given by ȟ(ε) =
tanh ε

2kBT . The upper and lower signs correspond to the re-
tarded and advanced GFs respectively. The convergence factor
� → 0+ guarantees that the retarded (advanced) GF is zero
for negative (positive) time t − t ′. Nonetheless, a finite �

may also describe inelastic scattering effects present in real
materials [36]. Such inelastic processes are responsible for
the smoothing of the density of states peaks at the supercon-
ducting gap. The order parameter �(T ) needs to be computed
self-consistently [12] with the gap equation

� ln

(
T

Tc0

)
= 2πkBT

∑
n=0

(
f0(ωn) − �

ωn

)
, (8)

where ωn = 2πkBT (n + 1/2), with n ∈ Z, are the Matsub-
ara frequencies, Tc0 is the zero-field critical temperature, and
f0(ωn) is the Matsubara anomalous GF (7b), obtained by an-
alytic continuation of the GF to the complex plane ε + i� →
iωn.

In diffusive systems where the scattering rate τ−1 is much
higher than the other energy scales in the system, excluding
the Fermi energy, the GF is determined from the well-known
Usadel equation [37]. The covariant version of the Usadel
equation [25,26] allows describing the Hall and intrinsic spin
Hall effects. For intrinsic SOC the Usadel equation reads
[30–32]

h̄D∇̃iJ̌
i − {τ3h̄∂t , ǧ} − [iǍ0τ3 + �̌, ǧ] = 0, (9)

and for extrinsic SOC [25]

h̄D(∇̃iJ̌
i + Ť ) − {τ3h̄∂t , ǧ} −

[
iǍ0τ3 + �̌ + σiǧσi

8τSO
, ǧ

]
= 0,

(10)

where D is the diffusion coefficient, τSO = 9τ/(8λ4 p4
F ) is

the spin-orbit relaxation time, λ describes the SOC strength,
pF is the Fermi momentum, ∇̃iX̌ = ∂iX̌ − i/h̄[Ǎi, X̌ ] is the
covariant derivative, Ť is an extrinsic SOC correction due to
an effective torque originating from the spin Hall and the spin
swapping effects [28,29]

Ť = iεi jk
κ

4
[∇̃iǧ · ∇̃ j ǧ, σk] + εi jk

θ

4
[σk, ǧ · ∇̃iǧ · ∇̃ j ǧ], (11)

and J̌ i is the matrix current given by

J̌ i = ǧ · ∇̃iǧ + τ

4m
({F̌ i j + ǧ · F̌ i j · ǧ, ∇̃ j ǧ}

− ih̄∇̃ j (ǧ · [∇̃iǧ, ∇̃ j ǧ])) (12)

for intrinsic SOC [26] and

J̌ i = ǧ · ∇̃iǧ − iεi jk
κ

4
[ǧ · ∇̃ j ǧ, σk + ǧ · σkǧ]

− εi jk
θ

4
{∇̃ j ǧ, σk + ǧ · σkǧ} (13)

for extrinsic SOC [25]. Here κ = 2p2
F λ2/3 and θ =

2h̄pF λ2/� are spin-swapping and spin Hall coefficients [38],
respectively, with εi jk the Levi-Civita symbol and � the mean-
free path. The first term in Eqs. (12) and (13) is the standard
diffusive current, while the second term is the leading contri-
bution from spin-charge coupling describing the Hall effect.

The Usadel equation together with the normalization con-
dition specifies the value of the GF. The observable quantities
of the system are given by the GF, for example, the charge and
spin currents are given by

ji0(r, t ) = −π h̄σD

8e
Tr{τ3J̌ i(r, t, t )K }, (14)

ji j (r, t ) = h̄

2

π h̄σD

8e2
Tr{σ j J̌

i(r, t, t )K }, (15)

where the Drude conductivity is given by σD = νF e2D, νF is
the density of states at the Fermi energy, and the K superscript
denotes the Keldysh block of the matrix current.

III. ONSAGER SYMMETRIES

The Onsager reciprocal relations relate the conductivities
between different pairs of driving fields and their conjugate
currents. They demonstrate the reciprocity between inverse
effects, such as the Hall, the spin Hall, or spin-galvanic effects
and their corresponding inverse effects.

The conductivity tensor in Eq. (4) can be decomposed into
four blocks:

σ iμ, jν =
(

σ i0, j0 σ i0, jl

σ ik, j0 σ ik, jl

)
. (16)

The elements of the conductivity tensor are related through
the Onsager reciprocal relations σ j0,i0(B) = σ i0, j0(−B),
σ jl,ik (B) = σ ik, jl (−B), and σ i0, jl (B) = −σ jl,i0(−B), where
B denotes all time-reversal symmetry (TRS) breaking fields
[39]. The minus sign in the last relation appears due to the
spin currents having opposite T parity to charge currents [40].
The charge block σ i j ≡ σ i0, j0 is the usual 3 × 3 conductivity
tensor describing the electric effects. The diagonal elements
are the longitudinal conductivities (Ohm’s law), while the
off-diagonal elements describe the Hall effect. For instance,
the system considered in Sec. V consists of a superconductor
pierced by a magnetic field in the z direction. The magnetic
field breaks the TRS, allowing for nonzero transverse conduc-
tivities in the xy plane. Due to rotational invariance around the
z axis, the transverse (Hall) conductivities are related through
the relation σ xy = −σ yx.

The spin block σ ik, jl is a 9 × 9 matrix relating the spin
currents to the spin SU(2) fields. For instance, some of the
off-diagonal elements of the spin block describe the spin-
swapping effect. The spin-charge blocks σ ik, j0 and σ i0, jl

describe the spin Hall and inverse spin Hall effects, re-
spectively. In Sec. VI we study the spin Hall effect in a
superconductor due to intrinsic and extrinsic SOC. In the
intrinsic case the SOC is of the Rashba type, while in the
extrinsic case the SOC is introduced by impurities. Since there
are no TRS breaking fields, the spin Hall conductivities satisfy
σ i0, jl = −σ jl,i0. In the intrinsic case, inversion symmetry in
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the z direction is broken by the Rashba SOC, so the spin Hall
effect is restricted to the xy plane. In the extrinsic case, the
isotropy of the impurities results in spin currents in the plane
perpendicular to the charge current direction i, so that the spin
Hall conductivities are related through σ l j,i0 = −σ jl,i0.

The susceptibility χ = iωσ is the response function to the
vector potentials. From the fluctuation-dissipation theorem for
χ [41], it follows that the Hermitian part of the generalized
conductivity tensor σ ′ = 1

2 (σ + σ †) is the dissipative contri-
bution, while the anti-Hermitian part σ ′′ = 1

2i (σ − σ †) is the
reactive contribution.

IV. MATTIS-BARDEEN THEORY WITHIN
QUASICLASSICS

In this section we apply the quasiclassical GF formalism
introduced in Sec. II to the linear response theory to compute
the longitudinal (charge) conductivity of a diffusive supercon-
ductor subjected to a time-dependent electric field E(t ). In
particular, we consider a superconductor in a microwave field
which has extensively been experimentally realized [42–46].

In diffusive normal metals the Drude model predicts a
purely dissipative response [4], that is to say, the current is in
phase with the electric field. Superconductors however show
a reactive current which is most relevant at small frequencies
compared to the superconducting gap. The frequency de-
pendent microwave response of an s-wave superconductor is
described within the Mattis-Bardeen theory [7]. These results
can be rederived in the present approach as follows.

We assume that the electric field is small enough so that
it can be treated perturbatively. The bulk GF (6) is corrected
by the driving field, but the leading current contribution is
given by the bulk GF. We start from a single-frequency elec-
tric field along the x direction E(t ) = E0e−iωt ûx described
via the vector potential A(t ) = −iE0/ωe−iωt ûx. Therefore,
the only nonzero term of the potential (2) is Ǎx = −eAxτ3.
Using Eq. (14) we compute the longitudinal current jx(t ),
and dividing by the electric field E0e−iωt we obtain the lon-
gitudinal conductivity σ xx(ω). The convolutions in Eq. (12)
can conveniently be computed after a Fourier transformation
into the energy domain. From (14), we get (see Supplemental
Material [47])

σ xx(ω) = σD

2h̄ω

∫
dε[Reg0(ε+)Reg0(ε) + Im f0(ε+)Im f0(ε)][h(ε+) − h(ε)] + i{2[Reg0(ε)Img0(ε) + Re f0(ε)Im f0(ε)]h(ε)

+ [−Reg0(ε+)Img0(ε) + Im f0(ε+)Re f0(ε)]h(ε+) + [−Img0(ε+)Reg0(ε) + Re f0(ε+)Im f0(ε)]h(ε)}, (17)

where ε+ = ε + h̄ω. The expression is lengthy, but we can
identify the different parts. The first term on the first line is
the dissipative contribution. It yields the normal-state result
σ xx = σD when f0(ε) = 0 and g0(ε) = 1. The rest of the terms
are out of phase and describe the supercurrent effects. The
prefactors of the distribution function terms are nonzero only
when ε is of the order of � and decay at large energies, ensur-
ing the convergence of the integrals. In general, the integral
needs to be evaluated numerically.

In Fig. 1 we show the frequency dependence of the lon-
gitudinal conductivity σ xx(ω) for different temperatures [47].
The conductivity is in agreement with the BCS theory and the
experimental measurements [42,43]. At T = 0 the real part of

FIG. 1. Mattis-Bardeen response of a superconductor for differ-
ent temperatures. The solid and dashed lines correspond to the real
and imaginary parts of the conductivity, respectively.

the conductivity is zero for h̄ω < 2�0, where �0 = 1.76kBTc0

is the zero-temperature gap, and it increases monotonously
with a finite slope for h̄ω > 2�0 so that it approaches the
Drude conductivity in the ω → ∞ limit. At T = 0 there
are no thermally excited quasiparticles, so the processes that
allow energy absorption are limited to the creation of electron-
hole pairs, which require frequencies greater than 2�0 [48].
The effect of temperature in the conductivity is twofold; on
the one hand, the superconducting gap �(T ) is reduced with
increasing temperature, so the the absorption edge is reduced
to lower frequencies. On the other hand, at finite temperatures
quasiparticles are thermally excited, allowing energy absorp-
tion processes at lower frequencies.

Regarding the imaginary part of the conductivity, at T = 0
it diverges as 1/ω for h̄ω 	 2�0. In superconductors where
the electromagnetic field varies slowly in space on the scale
of the coherence length the charge current is determined by
the London equation [49]. For diffusive superconductors at
T = 0, the London equation is given by j = −(π�0σD/h̄)A,
where the vector potential is given in the London gauge
[48]. The London equation describes the free-acceleration
aspect of the supercurrent response. For the plane wave vector
potential considered here [see above Eq. (17)] the electric
current is given by j = iπ�0σD/(h̄ω)E, so at low frequen-
cies the conductivity is purely imaginary and proportional
to 1/ω.

At the critical temperature the gap is completely sup-
pressed �(Tc0) = 0 and the metal transitions into the normal
state, so the conductivity is given by the AC Drude model
[4]. In diffusive normal metals the Drude conductivity is
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FIG. 2. (a) Hall response of a superconductor for different temperatures. The solid and dashed lines correspond to the real and imaginary
parts of the conductivity, respectively. (b) Kerr and (c) Faraday rotation angles of linearly polarized incident light for different temperatures.
The parameters used in panels (b) and (c) are τ = 5 × 10−2 h̄/�0, ωc = 0.2�0/h̄, ωp = 3 × 104�0/h̄, and d = 0.2λ, where λ is the London
penetration length.

frequency independent at frequencies much smaller than
the elastic scattering rate and equal to the DC Drude
conductivity σD.

V. ORDINARY HALL EFFECT AND KERR ROTATION

In this section we study the Hall response of a su-
perconductor in a microwave field subjected to a constant
magnetic field B = B0ûz. In the Landau gauge, the vector
potential is given by Ǎx = −e(−iE0/ωe−iωt − B0y)τ3. The

only nonzero elements of the field strength tensor (3) are
F̌ xy = −F̌ yx = −eB0τ3. We assume that both the electric and
magnetic fields are small and compute the electric currents
to leading order in both fields. In addition to the longi-
tudinal conductivity given by the Mattis-Bardeen response
(17), the system shows a transverse conductivity σ yx due to
the interaction between the magnetic field and the electric
current. The leading term of the Hall current is propor-
tional to E0B0 and it is given by the second current term in
Eq. (12). The Hall conductivity is given by the y component of
Eq. (14) [47]:

σ yx(ω) = 3σDωcτ

4
+ σDωcτ

16h̄ω

∫
dε {g0(ε+)K (ε)∗ + g0(ε)∗K (ε+) + 2 f0(ε)∗ f0(ε+)[g0(ε+) + g0(ε)∗]}[h(ε+) − h(ε)]

+ {g0(ε+)K (ε) − g0(ε)K (ε+) + 2 f0(ε) f0(ε+)[g0(ε+) − g0(ε)]}h(ε)

+ {g0(ε+)∗K (ε)∗ − g0(ε)∗K (ε+)∗ + 2 f0(ε)∗ f0(ε+)∗[g0(ε+)∗ − g0(ε)∗]}h(ε+), (18)

where ωc = eB0/m is the cyclotron frequency and K (ε) =
g0(ε)2 − f0(ε)2. In the normal state g0(ε) = 1 and f0(ε) = 0,
the first line in the integrand tends to 2[h(ε+) − h(ε)] and
integrates to 4ω, whereas the two other lines tend to zero. To-
gether, these terms provide the normal-state Hall conductivity
σ yx = σDωcτ , valid to the first order in ωc.

In Fig. 2(a) we show the Hall conductivity as a function
of frequency at different temperatures. At T = 0 the real part
of the conductivity shows a sharp minimum at h̄ω = 2�0 and
asymptotically approaches the normal-state Hall conductivity
σ yx = σDωcτ at high frequencies. The real part of the con-
ductivity is finite at T = 0, while the imaginary part remains
equal to zero until a threshold frequency is achieved. This is
consistent with the experimental measurements of the Hall
conductivity in superconducting YBa2Cu3O7−δ samples by
Spielman et al. [9]. As argued in Sec. III, the dissipative
contribution to the current is described by the Hermitian part
of the conductivity tensor Eq. (16). Due to the σ xy = −σ yx

symmetry relation, the dissipative part of the Hall current
is given by the imaginary part of σ yx, i.e., the out-of-phase
component, while the reactive part is given by Reσ yx. This is
the reason why at T = 0 the imaginary part of the conductivity
is nonzero only for h̄ω > 2�0, so that the signal may be
absorbed to create the electron-hole pairs. The temperature

dependence of the Hall conductivity is very similar to that
of the longitudinal conductivity discussed in Sec. IV. The
superconducting gap decreases with increasing temperature,
so the absorption edge and the minimum of Reσ yx are shifted
to lower frequencies. For T = Tc0, we recover the normal-
state Hall conductivity. The normal-state Hall response is
nondissipative, in the leading order in ωcτ , whereas in the
superconducting state the response has a dissipative quasipar-
ticle component.

Note that although the off-diagonal elements of σ remain
nonzero in the static limit ω → 0 in the superconducting
state, all elements of the resistivity tensor ρ = σ−1 vanish
for ω → 0. Hence, the relation j = σE, or E = ρ j, does not
imply here that uniform static supercurrent generates electric
fields or a Hall effect. Such equilibrium electric fields are
expected to exist when the superflow is nonuniform, [50] but
such configuration is not considered in the model here.

A. Kerr and Faraday rotations

The Hall conductivity can be probed optically through the
Faraday or Kerr effect measurement as shown in Fig. 3(a),
where linearly polarized light transmitting or reflecting
from the sample becomes elliptically polarized [5,6]. The
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FIG. 3. (a) Proposed setup for the measurement of the Hall
effect. Materials subjected to a magnetic field show circular bire-
fringence, i.e., left and right polarized light waves propagate with
different velocities. The Kerr rotation angle is related to the longi-
tudinal and transversal conductivities of the material. (b) Proposed
setup for the detection of the inverse spin Hall effect in a supercon-
ductor using a lateral spin valve. If a charge current IQ is injected
from the ferromagnet (F) to the normal metal (N), the nonequilibrium
spin accumulation generated at the interface generates a pure spin
current IS to the right of F. The superconductor absorbs the spin
current owing to its strong SOC, generating a charge current I ′

Q due
to the inverse spin Hall effect.

polarization rotation is described by the Faraday and Kerr
angles which are in general complex quantities: their real
part describes the amplitude of polarization rotation, and their
imaginary part describes the ellipticity of the reflected po-
larization. These angles can be straightforwardly calculated
from our theory. However, for simplicity the theory assumes
a constant magnetic field, a situation that cannot be realized
in the case of thick superconductors because of the Meiss-
ner effect expelling the field from inside the superconductor.
However, the (Kerr) reflection is also a surface effect because
of the finite skin depth of the electromagnetic field, and the
transmission takes place only if the material is thinner than
the corresponding skin depth. In other words, our estimates
are accurate in the case where the London penetration depth
is larger than either the skin depth (for Kerr reflection) or the
sample thickness (for Faraday transmission).

The skin depth can be obtained by solving the Maxwell
equations inside the material. Disregarding the small correc-
tion from the Hall effect, it is obtained from

�skin = c

ωIm
√

1 + iσ xx/(ωε0)
. (19)

On the other hand, the London penetration depth λ is the zero-
frequency limit of this skin depth. At T = 0, σ xx ≈ iχ0/ω,
where χ0 = π�0σD/h̄, and hence λ ≈ c/

√
χ0/ε0.

For the simplest geometry, i.e., normal incidence of a lin-
early polarized electromagnetic wave onto the sample, using
Maxwell equations and the boundary conditions, one can ob-
tain the Kerr φK and Faraday φF angles as [5,6]

φK = i
r+ − r−
r+ + r−

 σ yx

σ xx
√

1 + i σ xx

ωε0

, (20)

φF = ωd

c

r+ − r−
(1 − r+)(1 − r−)

 i
d

2cε0

σ yx√
1 + i σ xx

ωε0

, (21)

where r± are the reflection coefficients for left- and right-
handed (with respect to the applied field) circularly polarized
light, ε0 is the vacuum permittivity, and d is the sample
thickness. Note that the expression is obtained by assuming

a small perturbation from the external magnetic field and only
considering linear terms in the Hall conductivity (σ yx). This
approximation is valid when the Hall conductivity is much
smaller than the longitudinal conductivity, a condition often
met in many materials. Noting σD as a natural scale of conduc-
tivity and defining the plasma frequency ωp = √

σD/(ε0τ ), we
notice that the latter term inside the square root can also be
written as σ xx/(ωε0) = (σ xx/σD)ω2

pτ/ω, providing a direct
way to compare dimensionful quantities. For frequencies of
interest here, ω � �/h̄, the typical range is ω 	 ωp, 1/τ ,
and therefore the first term inside the square root in Eq. (20)
can typically be disregarded. The order of magnitude of the
polarization rotation is hence proportional to the small factor
ωcτ

√
ω/(ω2

pτ ).
The Faraday-Kerr rotation of the polarization state of light

can experimentally be measured by passing the reflected light
through a polarizer. The polarization direction is obtained by
measuring the intensity of the reflected light with the polarizer
oriented in parallel and perpendicular to the incident light. The
Kerr (Faraday) rotation angle θK (F ) specifies the rotation of
the major axis of the elliptically polarized reflected light. It
is given by the real part of φK (F ) = θK (F ) + iεK (F ), plotted in
Figs. 2(b) and 2(c). The imaginary part εK (F ) specifies the ratio
of the minor to the major axes of the ellipsoid.

In Fig. 2(b) we show the Kerr rotation angle (20) for normal
incident light. The parameters used are τ = 5 × 10−2 h̄/�0,
ωc = 0.2�0/h̄, and ωp = 3 × 104�0/h̄; these values are ac-
cessible in experiments. σ xx and σ yx are computed evaluating
Eqs. (17) and (18). The Kerr rotation angle is of the order of
μrad, which is an experimentally measurable rotation [51].
In the normal state σ xx and σ yx are positive numbers, so θK

is always positive. In the superconducting state both conduc-
tivities acquire an imaginary part, allowing for positive and
negative values of θK . In Fig. 2(c) we show the Faraday rota-
tion angle (21). θF has a weaker dependence on temperature,
but it is three orders of magnitude grater than θK , so it is easier
to measure than θK .

Besides coupling to free-space light, the dynamical Hall
effect can be accessed by studying the scattering parameters
of microwaves in a multiterminal geometry. In particular, the
matrix S of scattering parameters depends on the admittance
matrix Y (ω) of the studied sample [52]:

S (ω) = 1 − Z1/2Y (ω)Z1/2

1 + Z1/2Y (ω)Z1/2
, (22)

where Z = diag(Z1, . . . , ZN ) is a diagonal matrix containing
the characteristic impedances of transmission lines connected
to each terminal i. This way, in case the bulk supercon-
ductor response gives the dominating contribution to the
admittance matrix—in other words, interface effects can be
disregarded—the Hall response can be related with the off-
diagonal components of S .

VI. DYNAMICAL SPIN HALL RESPONSE AND ITS
DETECTION WITH MAGNETIC RESONANCE

In this section we study the spin Hall effect in a super-
conductor with SOC subjected to a microwave field. Several
methods have been proposed and realized to measure the spin
Hall and its inverse effects including electrical measurements

104506-6



DYNAMICAL HALL RESPONSES OF DISORDERED … PHYSICAL REVIEW B 108, 104506 (2023)

[53–56] and Kerr rotation microscopy [51]. In Fig. 3(b) we
propose a measurement setup based on a lateral spin valve. A
lateral spin valve consists of a normal metal (N) bridging a
ferromagnetic injector (F) and a detector, which in our case
is a superconductor (S) with SOC. A charge current IQ is
injected from F into the left side of N . The nonequilibrium
spin accumulation generated at the interface is relaxed within
the spin diffusion length, generating a pure spin current IS

to the right of F. If the distance between the F and the S
is shorter than the spin diffusion length, a nonequilibrium
spin accumulation is generated at S [55]. The spin current is
absorbed by the superconductor owing to its strong SOC. The
polarization of the spin current is tuned to lie out of plane
by applying a normal magnetic field. A perpendicular charge
current I ′

Q is generated at the S due to the inverse spin Hall
effect. This AC current can experimentally be measured by
closing the S wire with a superconducting loop coupled to a rf
superconducting quantum interference device.

Alternatively, the measurement can be realized with a dy-
namic version of the setup used in Ref. [57]. There, two
heavy-metal (Pt) injectors are used to generate and detect
a magnon current in a ferromagnetic insulator. A heavy-
metal superconductor placed in the middle absorbs part of
the magnon current and converts it into a charge current via
the inverse spin Hall effect. Replacing the DC injection by
a finite-frequency injection then allows studying the AC spin
Hall response of the superconductor. It also becomes interest-
ing to separate the in- and out-of-phase oscillating parts of the
detected signal, in comparison with the injected current.

A. Intrinsic spin Hall response

First, we study the spin Hall effect in a superconductor with
Rashba SOC subjected to a microwave field. The Rashba SOC
interaction is linear in momentum

HR = α(p × ûz ) · σ (23)

so it can be described through the SU(2) four-potential Ǎx =
mασy, Ǎy = −mασx. The term −eAxτ3 should be added to Ǎx

to account for the time-dependent electric field. For Rashba
SOC the nonzero elements of the field strength tensor are
F̌ xy = −F̌ yx = 2m2α2σz/h̄.

The terms contributing to the spin Hall current in Eq. (12)
depend on the first-order correction of the GF due to the
time-dependent electric field. We expand the GF to the first
order in the electric field ǧ = ǧ0 + δǧ + O(E2

0 ), where δǧ is
the correction to the bulk GF. The Rashba SOC does not
modify the bulk GF of a superconductor ǧ0, so it is given
by Eqs. (6) and (7). Unlike the bulk GF, ǧ0(t, t ′) = ǧ0(t − t ′),
the first-order correction is not time-translation invariant due
to the time-dependent electric field. Based on the time de-
pendence of the electric field, we use the ansatz δǧ(t, t ′) =
e−iωtδǧ(t − t ′) for the correction of the GF. The normalization
condition for δǧ reads ǧ0(ε+)δǧ(ε) + δǧ(ε)ǧ0(ε) = 0, and the
Usadel equation (9) to first order in E0 is given by

− εα ([σy, ǧ0(ε+)[σy, δǧ(ε)]] + [σx, ǧ0(ε+)[σx, δǧ(ε)]])

+ ih̄ωτ3δǧ(ε) + [iετ3 − �̌, δǧ(ε)]

= iεE [σx, {σz, τ3ǧ0(ε) − ǧ0(ε+)τ3}], (24)

FIG. 4. Spin Hall response of a superconductor for different tem-
peratures. The solid and dashed lines correspond to the real and
imaginary parts of the conductivity, respectively. The value of the
Dyakonov-Perel energy used is εα = 0.25�0.

where δǧ(ε) is the Fourier transform (5) of δǧ(t − t ′), εα =
Dm2α2/h̄ is the Dyakonov-Perel energy (scattering rate), and
εE = Dτm2α3eE0/(h̄2ω). The spin structure of δǧ(ε) can be
inferred from the Rashba Hamiltonian (23). As shown in
Sec. IV, the microwave field generates a longitudinal current
along the x direction. The Rashba SOC gives rise to intrinsic
zero-field spin splitting [58]. The motion of an electron in a
two-dimensional electron gas through a perpendicular electric
field results in a magnetic field in the rest frame of the elec-
tron that couples to the spin as given by Eq. (23), where the
momentum-dependent magnetic field is μBBeff = α(p × ûz ).
Therefore, a vector potential in the x direction spin splits
the GF in the spin-y direction as δǧ = δgyσyτ3 + δ fyσyτ1.
In Appendix A we solve Eq. (24) analytically and obtain
closed form solutions for the retarded/advanced GFs δǧR/A and
the distribution function δȟ, where δǧK (ε) = δǧR(ε)h(ε) −
h(ε+)δǧA(ε) + ǧR

0 (ε+)δȟ(ε) − δȟ(ε)ǧA
0 (ε).

Plugging the solution into Eq. (15) we obtain the spin Hall
conductivity [47]:

σ yz,x0(ω) = σDτmα2

e
− σDmα

4e2E0

∫
dεg0(ε+)δgK

y (ε)

+ f0(ε+)δ f K
y (ε) + 2

[
Reg0(ε+)δgA

y (ε)

+ iIm f0(ε+)δ f A
y (ε)

]
h(ε+). (25)

In Fig. 4 we show the spin Hall conductivity for a supercon-
ductor with intrinsic SOC. The value of the Dyakonov-Perel
energy used is εα = 0.25�0. In Appendix B we obtain a
closed form expression for the spin Hall conductivity in
the normal state, which agrees with literature predictions
[23,24]. The spin conductivity depends on two characteristic
frequency scales related to εα and �(T ). In homogeneous
metals, the DC spin current is covariantly conserved unless
extrinsic sources of spin relaxation such as magnetic impuri-
ties are included [59], or nonlinear in p SOC is considered,
such as cubic Dresselhaus interaction [60]. This shows up as
a vanishing spin Hall conductivity at ω = 0. The real part of
the conductivity increases monotonically with an increasing
frequency, reaching the asymptotic value σ yz,x0 = σDτmα2/e
for h̄ω � εα , while the imaginary part reaches an extremum
at h̄ω = 4εα and decays to zero at high frequencies.

In the superconducting state, the temperature dependence
of the spin Hall conductivity is most relevant at frequencies
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lower than 2�. The absolute values of the real and imagi-
nary parts of the spin Hall conductivity have a minimum at
h̄ω = 2�. Due to the σ i0, jl = −σ jl,i0 Onsager relation, the
dissipative component of the spin Hall conductivity is given
by the imaginary part of σ yz,x0. Similar to the ordinary Hall
response, at T = 0 the out-of-phase spin current vanishes
below the absorption edge 2�0.

B. Extrinsic spin Hall response

We consider the response of the system with SOC due to
extrinsic impurity scattering. In this case, the matrix current
takes the form (13). Due to the isotropy of the impurity scat-
tering, we have spin Hall currents in both y and z directions. In
this case the spin currents (15) can be computed analytically.
The conductivities are given by

σ zy,x0 = −σ yz,x0 = h̄σDθ

2e
, (26)

which do not depend on the frequency or temperature. This is
a consequence of the diffusive regime considered in this paper.
For extrinsic SOC, the spin Hall conductivity is real, i.e., it is
nondissipative. In the following section we study the inverse
Hall effect in systems with intrinsic and extrinsic SOC and
explicitly show that the Onsager relations are satisfied.

VII. INVERSE SPIN HALL RESPONSE

In this section we compute the charge current generated in
systems with intrinsic and extrinsic SOC due to the inverse
Hall effect. The charge current and the U(1) electric field
are conjugate variables, in the same way the spin current
has a conjugate force field E jl which generates l-polarized
spin currents along the j direction. This force field can be
generated by the gradient of a Zeeman field, a time-dependent
SOC, or a spin dependent chemical potential [61,62].

A. Intrinsic SOC

We consider an SU(2) driving field Eyz(t ) = E0e−iωt which
generates a z-polarized spin current in the y direction. This
electric field is described via the SU(2) vector potential
Ǎy(t ) = −ih̄E0/(2ω)e−iωtσz. Taking the Rashba SOC into ac-
count, the vector potentials are given by Ǎx = mασy, Ǎy =
−mασx − ih̄E0/(2ω)e−iωtσz, so that the nonzero elements
of the field strength tensor are F̌ xy = −F̌ yx = 2m2α2σz/h̄ −
i(mαE0/ω)e−iωtσx. Following a similar procedure to the one
used in Sec. VI A, we obtain the correction to the bulk GF due
to the driving field (see Appendix A) and compute the charge
current along the x direction using Eq. (14). The inverse spin
Hall conductivity is

σ x0,yz(ω) = −σDτmα2

e
+ σDτm2α3

eh̄2E0

∫
dεδgK

y (ε). (27)

Evaluating Eqs. (25) and (27) numerically we have checked
that the spin Hall and inverse spin Hall conductivities satisfy
the Onsager relation introduced in Sec. III σ x0,yz = −σ yz,x0.

B. Extrinsic SOC

As it has been argued in Sec. VI B, systems with extrinsic
SOC subjected to an electric field generate spin currents in
both directions perpendicular to the electric field. For this
reason, we consider two driving fields Eyz(t ) = E0e−iωt and
Ezy(t ) = E0e−iωt and compute the charge current generated in
the x direction in each case. Following an equivalent proce-
dure to Sec. VI B, it is possible to obtain the inverse spin Hall
conductivities analytically. They are

σ x0,zy = −σ x0,yz = − h̄σDθ

2e
. (28)

In this case we may evaluate the Onsager symmetry analyt-
ically by comparing Eqs. (26) and (28) to obtain σ i0, jl =
−σ jl,i0. The proportionality between the conductivities shows
that the spin Hall and inverse spin Hall effects are reciprocal
effects.

VIII. CONCLUSIONS

In this paper, we have used a unified description of charge
and spin transport to study the dynamical response of dissi-
pative superconductors to U(1) and SU(2) electric fields. We
have used the gauge covariant quasiclassical GF formalism to
obtain the charge and spin conductivities of superconductors
in the presence of magnetic fields and spin-orbit interaction.
Our model recovers known results in the appropriate limits,
such as the normal-state Hall conductivity and the spin Hall
conductivity for normal metals with Rashba spin-orbit cou-
pling. While diffusive normal metals show a purely dissipative
response, superconductors show a reactive current that decays
in frequency as ω−1, as described by the Mattis-Bardeen
theory. We have analyzed the Onsager reciprocal relations
between the direct and inverse Hall effects and have explicitly
shown that they are satisfied.

Our findings show that both the ordinary and spin Hall
conductivities show a dissipative component related to the
out-of-phase current. In the case of the ordinary Hall effect,
the dissipative current contribution only arises in the super-
conducting state. For intrinsic spin Hall effect, the imaginary
(dissipative) part of the Hall conductivity is always weaker
in the superconducting state than in the normal state. At low
frequencies, the spin Hall conductivity of a superconductor
with Rashba SOC is dominated by the in-phase component,
while in the normal state it is of the same order as the
out-of-phase component. For extrinsic SOC, the spin Hall
response is frequency and temperature independent and pro-
portional to the spin Hall angle. In other words, there is no
correction from superconductivity on the extrinsic spin Hall
conductivity.

The dynamical Hall effect can be observed in optical spec-
troscopy via the Faraday-Kerr rotation of the polarization state
of light in conventional superconductors. Suitable materials
for the measurement of the spin Hall effect due to intrinsic
SOC are Bi2Se3/monolayer NbSe2 heterostructures [63], or
LaAlO3/SrTiO3 interfaces [64,65], where the Rashba SOC
can be tuned by applying a gate voltage. For the extrinsic spin
Hall effect we propose Nb [66], NbN [56], and V [67], as they
are superconductors with sizable impurity-induced SOC. For
the detection of the spin Hall effect we propose a lateral spin
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valve, where a superconductor with SOC is used as a detector
[see Fig. 3(b)].

Our paper focuses on investigating the dynamic charge and
spin responses in conventional singlet single-band supercon-
ductors. It is worth noting that spin ordering, as for example
on iron based superconductors [68,69], would be interesting
to study. Our results can be readily generalized to include the
effects of such spin ordering for example via the presence of
an exchange field. Moreover, orbital degrees of freedom in
multiband superconductors may provide additional dynamical
channels, which possibly also show up in dynamic Hall-like
responses, such as the valley Hall effect. Such effects may
become visible in the dynamic responses of superconducting
twisted multilayer graphene or field-biased bilayer graphene.
Describing such effects would require generalizing our quasi-
classical approach to the multiband case.
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APPENDIX A: CLOSED FORM SOLUTION
FOR THE CORRECTED GF

Unlike for extrinsic SOC, the spin conductivity for intrinsic
SOC depends on the correction of the GF due to the electric
field δǧ. In this Appendix we solve Eq. (24) analytically and
provide a closed form solution for δǧ. As argued in Sec. VI A,
δǧ has the following spin structure: δǧ = δǧyσy. The retarded
and advanced parts of the Usadel equation (24) are simplified
to

− 4εα ǧ0(ε+)δǧy(ε) + ih̄ωτ3δǧy(ε) + [iετ3 − �̌, δǧy(ε)]

= 4εE [τ3ǧ0(ε) − ǧ0(ε+)τ3]. (A1)

The left-hand side of the commutator in Eq. (A1) is pro-
portional to the bulk GF ǧ0(ε) [see Eqs. (6) and (7)]. Using
the normalization condition ǧ0(ε+)δǧy(ε) + δǧy(ε)ǧ0(ε) = 0,
Eq. (A1) becomes a matrix equation of the form Ǎδǧy = B̌,
such that δǧy is given by

δǧy(ε) = 4εE [−4εα ǧ0(ε+) + ih̄ωτ3 + iετ3 − �̌

−
√

�2 − ε2ǧ0(ε+)]−1[τ3ǧ0(ε) − ǧ0(ε+)τ3]. (A2)

The Keldysh equation for the distribution function δȟ =
δhyσy reads[−4εα ǧR

0 (ε+) + ih̄ωτ3
][

ǧR
0 (ε+) − ǧA

0 (ε)
]
δhy(ε)

+ [
iετ3 − �̌, ǧR

0 (ε+) − ǧA
0 (ε)

]
δhy(ε)

= 4εE
[
ǧR

0 (ε+)τ3 − τ3ǧA
0 (ε)

]
[h(ε) − h(ε+)], (A3)

so δhy is given by

δhy(ε) = 4εE
{[−4εα ǧR

0 (ε+) + ih̄ωτ3
][

ǧR
0 (ε+) − ǧA

0 (ε)
]

+ [
iετ3 − �̌, ǧR

0 (ε+) − ǧA
0 (ε)

]}−1[
ǧR

0 (ε+)τ3

− τ3ǧA
0 (ε)

]
[h(ε) − h(ε+)]. (A4)

Following a similar procedure for the inverse spin Hall
effect, the correction of the retarded and advanced GFs due
to the SU(2) electric field considered in Sec. VII A is given by

δǧy(ε) = εE [−4εα ǧ0(ε+) + ih̄ωτ3 + iετ3 − �̌

−
√

�2 − ε2ǧ0(ε+)]−1[ǧ0(ε+)ǧ0(ε) − 1], (A5)

where εE = DmαE0/ω and the correction to the distribution
function is

δhy(ε) = εE
{[−4εα ǧR

0 (ε+) + ih̄ωτ3
][

ǧR
0 (ε+) − ǧA

0 (ε)
]

+ [
iετ3 − �̌, ǧR

0 (ε+) − ǧA
0 (ε)

]}−1
[ǧR

0 (ε+)ǧA
0 (ε) − 1]

× [h(ε+) − h(ε)]. (A6)

APPENDIX B: SPIN HALL CONDUCTIVITY
IN THE NORMAL STATE

In the normal state (T � Tc0) the bulk GF is given by

ǧR
0 (ε) = τ3, ǧA

0 (ε) = −τ3, ǧK
0 (ε) = 2τ3h(ε). (B1)

The right-hand sides of the retarded and advanced parts of
Eq. (24) vanish, so the solution to the homogeneous equa-
tions is δǧR = δǧA = 0, i.e., ǧR/A are not corrected by the
electric field. Solving the Keldysh part of Eq. (24), we obtain
the correction to the distribution function:

δȟ = 4εE

ih̄ω − 4εα

[h(ε) − h(ε+)]σy. (B2)

Finally, we perform the integral in Eq. (25) analytically and
obtain the spin Hall conductivity in the normal state:

σ yz,x0(ω) = σDτmα2 h̄ω

e(h̄ω + 4iεα )
. (B3)

Following the same procedure for the inverse spin Hall
effect, the correction to the GF is δǧR = δǧA = 0 and

δȟ = εE
ih̄ω − 4εα

[h(ε) − h(ε+)]σy. (B4)

The inverse spin Hall conductance Eq. (27) in the normal state
is simplified to

σ x0,yz(ω) = − σDτmα2h̄ω

e(h̄ω + 4iεα )
, (B5)

satisfying the Onsager relation σ x0,yz = −σ yz,x0.
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[62] J. Fabian, I. Žutić, and S. Das Sarma, Theory of spin-polarized
bipolar transport in magnetic p-n junctions, Phys. Rev. B 66,
165301 (2002).

[63] H. Yi, L.-H. Hu, Y. Wang, R. Xiao, J. Cai, D. R. Hickey, C.
Dong, Y.-F. Zhao, L.-J. Zhou, R. Zhang, A. R. Richardella, N.
Alem, J. A. Robinson, M. H. W. Chan, X. Xu, N. Samarth,
C.-X. Liu, and C.-Z. Chang, Crossover from Ising- to Rashba-
type superconductivity in epitaxial Bi2Se3/monolayer NbSe2

heterostructures, Nat. Mater. 21, 1366 (2022).
[64] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C.

Cancellieri, and J.-M. Triscone, Tunable Rashba Spin-Orbit
Interaction at Oxide Interfaces, Phys. Rev. Lett. 104, 126803
(2010).

[65] M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and
Y. Dagan, Tuning Spin-Orbit Coupling and Superconductivity
at the SrTiO3/LaAlO3 Interface: A Magnetotransport Study,
Phys. Rev. Lett. 104, 126802 (2010).

[66] K.-R. Jeon, C. Ciccarelli, H. Kurebayashi, J. Wunderlich, L. F.
Cohen, S. Komori, J. W. A. Robinson, and M. G. Blamire,
Spin-Pumping-Induced Inverse Spin Hall Effect in Nb/Ni80Fe20

Bilayers and Its Strong Decay Across the Superconduct-
ing Transition Temperature, Phys. Rev. Appl. 10, 014029
(2018).

[67] T. Wang, W. Wang, Y. Xie, M. A. Warsi, J. Wu, Y. Chen,
V. O. Lorenz, X. Fan, and J. Q. Xiao, Large spin Hall angle
in vanadium film, Sci. Rep. 7, 1306 (2017).

[68] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H.
Yanagi, T. Kamiya, and H. Hosono, Iron-based layered su-
perconductor: LaOFeP, J. Am. Chem. Soc. 128, 10012
(2006).

[69] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono,
Iron-based layered superconductor La[O1−xFx]FeAs (x =
0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130, 3296
(2008).

104506-11

https://doi.org/10.1103/PhysRev.108.243
https://doi.org/10.1063/1.340483
https://doi.org/10.1103/PhysRevB.79.174512
https://doi.org/10.1038/s41598-022-10833-5
http://link.aps.org/supplemental/10.1103/PhysRevB.108.104506
https://doi.org/10.1103/PhysRevLett.20.660
https://doi.org/10.1126/science.1105514
https://doi.org/10.1038/nature04937
https://doi.org/10.1143/JJAP.51.010110
https://doi.org/10.1103/PhysRevB.89.054401
https://doi.org/10.1038/nmat4276
https://doi.org/10.1021/acsnano.0c07187
https://doi.org/10.1016/j.susc.2006.01.098
https://doi.org/10.1103/PhysRevB.100.195406
https://doi.org/10.1103/PhysRevB.71.121308
https://doi.org/10.1103/PhysRevLett.88.066603
https://doi.org/10.1103/PhysRevB.66.165301
https://doi.org/10.1038/s41563-022-01386-z
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevLett.104.126802
https://doi.org/10.1103/PhysRevApplied.10.014029
https://doi.org/10.1038/s41598-017-01112-9
https://doi.org/10.1021/ja063355c
https://doi.org/10.1021/ja800073m

