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Magnons, as elementary excitations in magnetic systems, can carry and transfer angular momentum. Due
to the absence of Joule heat during magnon transport, research on magnon transport has gained considerable
interest over the past decade. Recently, a full quantum theory has been employed to investigate magnon
transport in ferromagnetic insulators (FMIs). However, the most commonly used magnetic insulating material in
experiments, yttrium iron garnet (YIG), is a ferrimagnetic insulator (FIMI). Therefore a full quantum theory for
magnon transport in FIMIs needs to be established. Here, we propose a Green’s function formalism to compute
the bulk and interface magnon currents in both FIMIs and antiferromagnetic insulators (AFMIs). We investigate
the spatial distribution and temperature dependence of magnon currents in FIMIs and AFMIs generated by
a temperature or spin chemical potential step. In AFMIs, magnon currents generated by a temperature step in
the two sublattices cancel each other out. Subsequently, we numerically simulate the magnon junction effect
using the Green’s function formalism, and the results show a near 100% magnon junction ratio. This study
demonstrates the potential of using a full quantum theory to investigate magnon transport in specific magnonic
devices.
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I. INTRODUCTION

Magnons, which are the elementary excitations in mag-
netic systems [1–3], have potential to serve as information
carriers due to their ability to carry and transfer angular
momentum. Compared to electrons, using magnons for in-
formation transport offers three main advantages. Firstly,
magnons can transport in magnetic insulators, which avoids
the generation of Joule heat [4]. Secondly, magnons are
ideal carriers for transporting GHz or THz information [5–9].
Thirdly, there are multiple methods to inject and detect
magnon currents. The injection methods include microwave
antennas [10–12], the spin Seebeck effect (SSE) [4,13–16],
and the spin Hall effect (SHE) [17]. The detection meth-
ods include Brillouin light scattering [18] and the inverse
spin hall effect (ISHE) [19,20]. Recently, there has been in-
creased research on spin transport involving magnons, such
as magnon-mediate drag effect [21,22], magnon valve effect
[23–26], and magnon junction effect [27]. Similar to the
metal-oxide-semiconductor field-effect transistor (MOSFET)
in microelectronic devices, a magnon junction, consisting of
a ferromagnetic insulator (FMI1)/antiferromagnetic insulator
(AFMI)/ferromagnetic insulator (FMI2), is an elementary de-
vice that controls the opening and closing of magnon transport
channels. To be more specific, we can control the magnitude
of the output magnon current by manipulating the magnetiza-
tion state of the two FMI layers. The output magnon current
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is larger for the parallel state and smaller for the antiparallel
state.

For a deeper understanding of the experimental phe-
nomenon, numerous theories have been proposed to investi-
gate magnon transport. One widely used classical equation for
calculating magnon accumulation and transport [28,29] is the
LLG (Landau-Lifshitz-Gilbert) equation, initially introduced
by Landau and Lifshitz, and later modified by Gilbert [30].
Another approach is the magnon Schrödinger equation, which
is employed to study the wave properties and coherent trans-
port of magnons [31–38]. The magnon Boltzmann function
[39–42] is used to describe magnon transport from a particle
perspective. Recently, Duine et al. proposed a Green’s func-
tion formalism to elucidate magnon transport in FMIs, with
and without anisotropy terms [43,44]. The advantage of this
approach lies in proposing a complete quantum theory for
calculating magnon transport, facilitating the consideration of
disorder and the coupling of magnons with other particles
or quasi-particles. However, in experimental studies, yttrium
iron garnet (YIG), a ferrimagnetic insulator (FIMI), is one
of the most commonly used magnetic materials, thereby ne-
cessitating the development of a Green’s function formalism
specifically tailored for FIMIs.

In this paper, we present an analytical derivation of the
Green’s function formalism for magnon transport in FIMIs
or AFMIs. Our analysis reveals the existence of two distinct
effective magnon currents in FIMIs or AFMIs, which do
not interact with each other. Furthermore, we investigate the
spatial distribution of magnon currents induced by temper-
ature or spin chemical potential steps in FIMIs or AFMIs.
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Additionally, we calculate the temperature dependence of
magnon current, which is consistent with previous research
[22]. Them, we study the magnon transport in a magnon
junction, simulating the magnon junction effect and the re-
sult shows near 100% magnon junction ratio. Our work
demonstrates the potential of utilizing the Green’s func-
tion formalism to investigate magnon transport in specific
magnonic devices.

II. MODEL AND METHOD

The Hamiltonian for the FIMI or AFMI systems, con-
sidering Zeeman energy, nearest and next-nearest neighbor
Heisenberg exchange interactions, is expressed as follows:

Ĥ = − JAB

∑
〈i,m〉

Ŝi · Ŝm − JA

∑
〈〈i, j〉〉

Ŝi · Ŝ j

− JB

∑
〈〈m,n〉〉

Ŝm · Ŝn − hext

(∑
i

μAŜz
i +

∑
m

μBŜz
m

)
,

(1)

where the subscribe 〈· · · 〉 denotes summing over nearest sites,
〈〈· · · 〉〉 denotes summing over next-nearest sites. JAB < 0 and
JA(B) > 0 represent the nearest and next-nearest Heisenberg
exchange interactions energy, respectively. Si(m) is the spin
in A(B) sublattice, μA(B) is the magnetic moment in A(B)
sublattice. hext is applied magnetic field along the z direction.
Using Holstein-Primakoff (HP) transformation [2], Fourier
transformation and Bogoliubov transformation (Details are
shown in the Appendix A), we can get

Ĥ =
∑

k

⎡
⎢⎣

⎡
⎢⎣Ak − Bk

2
+

√
(Ak + Bk )2 − 4C2

k

2

⎤
⎥⎦α̂

†
k α̂k

+

⎡
⎢⎣−Ak + Bk

2
+

√
(Ak + Bk )2 − 4C2

k

2

⎤
⎥⎦β̂

†
k β̂k

⎤
⎥⎦ + const

≡
∑

k

(
wα

k α̂
†
k α̂k + w

β

k β̂
†
k β̂k

) + const, (2)

where α̂k (β̂k ), α̂†
k (β̂†

k ) are magnon annihilation and creation
operators in A(B) sublattice, respectively. And α(β ) mode
magnons have the spin polarization direction parallel to
the direction of magnetic moment in sublattice A(B).
Ak ≡ −2JASAγk,nn − JABSBNn + 2JASANnn + hextμA, Bk ≡
−2JBSBγk,nn − JABSANn + 2JBSBNnn − hextμB, Ck ≡ −JAB√

SASBγk,n, Nn, Nnn are the numbers of nearest and the
next-nearest sites, respectively. In the case of one-dimensional
atomic chain model, Nn = Nnn = 2, γk,n = 2 cos(ka),
γk,nn = 2 cos(2ka), where a is the distance between
nearest sites. Thus, in both FIMI or AFMI systems, the
magnon currents can be separated into two uncoupled
currents with opposite polarities. Specifically, in AFMI,
JA = JB, SA = SB, μA = μB, but in FIMI, the above
equation does not hold.

Equation (2) shows that in both FIMI and AFMI systems,
there exist two distinct types of independent magnons. We can
use Fourier transformation to Eq. (2) to transform Hamilto-

FIG. 1. The variation of the Fourier expansion coefficient with
expansion order n for (a) AFMI and (b) FIMI. The parameters are
shown as follows, (a) JAB = −0.002 eV, JA = JB = 0.02 eV, SA =
SB = 1; and (b) JAB = −0.005 eV, JA = 0.05 eV, JB = 0.01 eV, SA =
1, SB = 1.5.

nian of FIMI or AFMI to the summation in coordinate space,
and get

w
α(β )
k =

∞∑
n=0

2An(Bn)cos (nka), (3)

where A0(B0) and A1(B1) represent on-site and nearest tran-
sition energy of magnons in A(B) sublattice. Then the
Hamiltonian can be written as

Ĥ =
∞∑

n=0

∑
i, j

δi− j±n(Anα̂
†
i α̂ j + Bnβ̂

†
i β̂ j ). (4)

From Eqs. (2)–(4), we can see that for a one-dimensional
atomic chain model A2i+1 = B2i+1 = 0(i = 0, 1, 2, . . . ), de-
tails of calculation are shown in Appendix B. Then we
investigate the variation of the Fourier expansion coefficient
with expansion order, as shown in Fig. 1, where for AFMI
we use the following parameters [45,46]: JAB = −0.002 eV,
JA = JB = 0.02 eV, SA = SB = 1, and for FIMI we use the
following parameters [29]: JAB = −0.005 eV, JA = 0.05 eV,
JB = 0.01 eV, SA = 1, and SB = 1.5. We can see that for both
AFMI and FIMI the odd parts of the expansion coefficients
are consistently 0, while the even parts approach 0 when n �
4, indicating that only two terms A0(B0) and A2(B2) need to
be retained.

Next, we investigate the magnon transport in FIMI or
AFMI systems, considering only two terms A0(B0) and
A2(B2). Figure 2 presents a schematic diagram depicting the
magnon current transport through FIMI or AFMI. The FIMI

FIG. 2. Schematic diagram that illustrates the transport of
magnon current through FIMI or AFMI driven by temperature or spin
chemical potential step.
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or AFMI is connected to two normal metals (NMs) with
temperatures TR, TL and spin chemical potentials μL, μR, re-
spectively. The magnon current arises from the temperature or
spin chemical potential difference between two NMs. To com-
pute the bulk magnon current, we first calculate the retarded
and advanced Green’s functions using the Dyson equation

GR(A)(ε) = [ε+(−) − H − h̄ΣR(A)(ε)]
−1

, (5)

where GR(A) is retarded (advanced) Green’s function, ε+(−) =
ε + (−)iη, η is a infinitesimal positive number, H is Hamil-
tonian for the FIMI or AFMI systems, and ΣR(A)(ε) is
retarded(advanced) self-energy, which describes the coupling
between FIMI or AFMI and external environment. According
to Eq. (4), considering the first two terms of the expansion, the
Hamiltonian for the FIMI or AFMI systems is

Ĥ =
∑
i, j

[(A0δi, j + A2δi, j±2)α̂†
i α̂ j + (B0δi, j + B2δi, j±2)β̂†

i β̂ j]

(6)
and the self-energy is composed of three items 	R(ε) =
	R

C (ε) + 	R
L (ε) + 	R

R (ε), where

	R
C i, j (ε) = −iα(ε − μC )δi, j/h̄,

ΣR
Li, j (ε) = −iηL(ε − μL )δi, j (δ j,1 + δ j,2)/h̄,

ΣR
Ri, j (ε) = −iηR(ε − μR)δi, j (δ j,N + δ j,N−1)/h̄ (7)

are retarded self-energy induced by Gilbert damping in FIMI
or AFMI, connection with left NM and right NM, respectively.
Where α is Gilbert damping constant, h̄ is reduced Planck’s
constant, ηL(R) is parameter that represents the coupling with
left and right NMs [44,47], μL(R) is spin chemical potential of
left(right) NM, μC is magnon potential of FIMI or AFMI.

Secondly, we can calculate the magnon density matrix
using Langreth rule, take α mode magnon as an example [44]

ρ ≡ 〈α̂†α̂〉 =
∫ ∞

−∞

dε

2π
[GR(ε)ih̄Σ<(ε)GA(ε)], (8)

where the lesser self-energy can be calculated by

Σ<(ε) = Σ<
C (ε) +

∑
r∈{L,R}

Σ<
r (ε)

= 2iNB

(
ε − μC

kBTC

)
Im

(
ΣR

C (ε)
)

+
∑

r∈{L,R}
2iNB

(
ε − μr

kBTr

)
Im

(
ΣR

r (ε)
)
, (9)

where NB(x) = 1
ex−1 is Bose-Einstein distribution. Then we

can calculate bulk magnon current using Heisenberg motion
equation.

h̄
d〈α†

i αi〉
dt

=
∑

j

−i(hi, jρ j,i − h j,iρi, j ) =
∑

j

jm;i, j, (10)

where jm;i, j represents the magnon current from site i to site j,
hi, j = A0δi, j + A2δi, j±2 is Hamiltonian for α mode magnons.
Eq. (10) indicates that the change of the magnon number at
site i is equal to all magnon currents from site i to other sites.

According to Ref. [22], The reversal of the FM layer mag-
netization does not affect the transport of magnon generated

by the spin Hall effect (SHE). However, for magnon current
induced by the spin Seebeck effect (SSE), the reversal of the
FM layer magnetization leads to a opposite output signal.
Therefore we assume that magnons with opposite polarity
experience an equivalent spin chemical potential step but an
opposite temperature gradient.

The Green’s function formalism can also be utilized
to calculate the interface magnon current. By using the
Landauer-Büttiker formula [44], we find that the magnon cur-
rent at the interface between AFMI and NMs can be expressed
as follows:

jm
L(R) = jm

L(R),α + jm
L(R),β

=
∫

dε

2π

[
NB

(
ε − μL(R)

kBTL(R)

)
− NB

(
ε − μR(L)

kBTR(L)

)]
Tb,α (ε)

+
∫

dε

2π

[
NB

(
ε − μL(R)

kBTL(R)

)
− NB

(
ε − μC

kBTAFMI

)]
Tf ,α (ε)

+
∫

dε

2π

[
NB

(
ε − μL(R)

kBTR(L)

)
− NB

(
ε − μR(L)

kBTL(R)

)]
Tb,β (ε)

+
∫

dε

2π

[
NB

(
ε − μL(R)

kBTAFMI

)
− NB

(
ε − μC

kBTL(R)

)]
Tf ,β (ε)},

(11)

where the transmission function

Tb,i(ε) ≡ Tr
[
h̄ΓL(R),i(ε)GR

i (ε)h̄ΓR(L),i(ε)GA
i (ε)

]
,

Tf ,i(ε) ≡ Tr
[
h̄ΓL(R),i(ε)GR

i (ε)h̄ΓAFMI,i(ε)GA
i (ε)

]
, (12)

where i = α or β, are two modes of magnons with opposite
polarity, the rates ΓL(R),i(ε) = −2Im(ΣR

L(R),i(ε)).
The Green’s function formalism can be utilized to calcu-

late magnon current driven by temperature gradient or spin
chemical potential gradient. In particular, we use temperature
difference between left and right NMs to simulate magnon
current excited by SEE, and use spin chemical difference be-
tween left and right NMs to simulate magnon current excited
by SHE.

III. RESULTS AND DISCUSSIONS

To investigate the spatial distribution and temperature de-
pendence of magnon currents in AFMI excited by the SSE and
the SHE, we set the temperature difference ΔT and spin chem-
ical potential difference Δμ between two NMs. In Fig. 3(a),
we calculated spatial distribution of magnon currents excited
by SSE in AFMI. The parameters used in simulation are
set to be A0 = B0 = 0.5 eV, A2 = B2 = −0.25 eV, N = 100,
hext = 0, μL = μR = 0, ηL = ηR = 8, kBTAFMI = 0.026 eV,
TL = 1.2 T AFMI, TR = 0.8 T AFMI, μAFMI = 0, and αAFMI =
0.001 [48]. We can see that the magnon currents composed
of α and β modes magnons have different sign but the same
absolute value, so the α and β mode magnon currents cancel
with each other, total magnon current jsum

m is 0. Then we
keep the temperature of left NM TL = 1.2 T AFMI fixed, change
the temperature of right NM TR, and average all the α mode
magnon current at 100 sites, the temperature dependence of
averaged α mode magnon currents j

α

m is shown in Fig. 3(b),
we can see that j

α

m shows positive correlation dependence
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FIG. 3. Spatial distribution and temperature dependence of
magnon currents excited by SSE [(a) and (b)] and SHE [(c) and
(d)] in AFMI. The spin chemical potential of two normal metals
and temperature profile are set to be (a) μL = μR = 0, kBTAFMI =
0.026 eV, TL = 1.2 T AFMI, TR = 0.8 T AFMI, and (c) μL = 0.1A0,
μR = 0, kBTAFMI = 0.026 eV, TL = TR = TAFMI.

on temperature difference between left and right NMs �T =
TL − TR and the influence of �T on j

α

m is gradually reduced
as �T increases. Then we calculated spatial distribution of
magnon currents excited by SHE in AFMI, see Fig. 3(c).
Spin chemical potential μL = 0.1A0, μR = 0, temperature
kBTAFMI = 0.026 eV, TL = TR = TAFMI. We can see that for
magnon current excited by SHE, α and β mode magnons
contribute equally in the component of sum magnon currents.
And then we change the temperature of left NM, AFMI, and
right NM at the same time, and calculate the temperature
dependence of average α mode magnon current, as shown in
Fig. 3(d). We can see that j

α

m increases as TAFMI increases.
It can be explained by that as TAFMI increase, the number
of α mode magnon in sublattice nα (ε) = 1

e
ε

kBTAFMI −1
increases,

therefore, the magnons involved in transport increase.
Then we calculate the spatial distribution and temperature

dependence of magnon currents in FIMI excited by the SSE
and the SHE. In Fig. 4(a), we calculated spatial distribution
of magnon currents excited by SSE in FIMI. The parameters
used in simulation are set to be A0 = 1.3 eV, B0 = 0.43 eV,
A2 = −0.6 eV, B2 = −0.2 eV, N = 100, hext = 0, μL =
μR = 0, ηL = ηR = 8, kBTFIMI = 0.026 eV, TL = 1.2 T FIMI,
TR = 0.8 T FIMI, μFIMI = 0 and αFIMI = 0.001. We can see
that although magnon currents generated by α and β mode
magnons have opposite sign, they do not cancel with each
other. Then we keep left NM temperature TL = 1.2 T FIMI

fixed, change the right NM temperature TR, calculate the
site average magnon current j

α

m, j
β

m, j
sum
m dependence on

the temperature difference, see Fig. 4(b) we can see the
absolute value of j

α

m, j
β

m, j
sum
m increase as temperature

difference between left and right NMs �T increases. As
for magnon current excited by SHE in FIMI, we set pa-
rameters to be spin chemical potential μL = 0.1A0, μR = 0,

FIG. 4. Spatial distribution and temperature dependence of
magnon currents excited by SSE [(a) and (b)] and SHE [(c) and
(d)] in FIMI.The spin chemical potential of two normal metals
and temperature profile are set to be (a) μL = μR = 0, kBTFIMI =
0.026 eV, TL = 1.2TFIMI, TR = 0.8TFIMI, and (c) μL = 0.1A0, μR = 0,
kBTFIMI = 0.026 eV, TL = TR = TFIMI.

temperature kBTFIMI = 0.026 eV, TL = TR = TFIMI, and calcu-
late the space distribution of magnon current. We can see from
Fig. 4(c) that in FIMI due to the difference of on-site and next-
nearest transition energy between α and β mode magnons, the
magnon currents composed by these two types of magnons
are not the same. And then we change the temperature of the
whole system at the same time, and calculate the temperature
dependence of average magnon current j

α

m, j
β

m, j
sum
m . We can

see from Fig. 4(d) that j
α

m, j
β

m, j
sum
m all increase as system

temperature increase, which is due to the increase of magnons
in two sublattices.

Using the same method above, we can calculate magnon
currents in magnon junction, the model includes a magnon
junction and two NM leads, as shown in Fig. 5. The boundary
conditions are set to be that magnon currents are continuous
at interface between FMI1 and AFMI1, between AFMI and
FMI2. And the magnon current injected from NM1 to FMI1
is set to be zero, which excluded the influence of spin current
injected from NM1 on output magnon current. The boundary
conditions are the set of equations relating μFMI1, μAFMI, and
μFMI2. From this system of equations, we can determine the
values of μFMI1, μAFMI, and μFMI2. (Details of calculation are
shown in Appendix C).

For parallel magnetization, magnon potentials are μFMI1 =
20 meV, μAFMI = 5.3 meV, μFMI2 = 18 meV, and the magnon
current at the interface of FMI2 and NM2 is 6.53 × 10−4

eV; for antiparallel magnetization state, magnon potentials are
μFMI1 = −37 meV, μAFMI = 5.2 meV, μFMI2 = −36.8 meV,
and the magnon current at the interface of FMI2 and
NM2 is 4.79 × 10−7 eV. It shows near 100% magnon junc-
tion ratio, here magnon junction ratio is MJR = (Jm,↑↑ −
Jm,↑↓)/(Jm,↑↑ + Jm,↑↓), where Jm,↑↑ and Jm,↑↓ are output
magnon current of parallel magnetization and antiparallel
magnetization state.
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FIG. 5. Schematic diagram of magnon current driven by temper-
ature gradient transporting through a magnon junction.

IV. CONCLUSIONS

In conclusion, we propose a Green’s function formal-
ism as a comprehensive quantum theory for investigating
magnon transport in AFMIs or FIMIs, specifically tailored
for two-sublattice magnetic systems. We studied the spatial
distribution and temperature dependence of the magnon cur-
rent induced by temperature or spin chemical potential step in
FIMIs or AFMIs. Our results reveal that the magnon currents
in both sublattices exhibit a positive correlation with temper-
ature. Interestingly, in AFMI, the magnon currents generated
by temperature step in the two sublattices cancel each other
out. Furthermore, we numerically simulate the magnon junc-
tion effect using the Green’s function formalism, which yields
a near 100% magnon junction ratio. Our work demonstrates
the potential of employing comprehensive quantum theory
to unravel the intricacies of magnon transport in specific
magnonic devices.
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APPENDIX A: DERIVATION OF EQ. (2)

The Hamiltonian of FIMI or AFMI, considering the near-
est neighbor and next-nearest neighbor Heisenberg exchange
interactions, can be expressed as follows:

Ĥ = − JAB

∑
〈i,m〉

Ŝi · Ŝm − JA

∑
〈〈i, j〉〉

Ŝi · Ŝ j

− JB

∑
〈〈m,n〉〉

Ŝm · Ŝn − hext

(∑
i

μAŜz
i +

∑
m

μBŜz
m

)
,

(A1)

where 〈 〉 denotes summing over nearest sites, 〈〈 〉〉 denotes
summing over next-nearest sites. JABand JA(B) represent the
nearest and next-nearest Heisenberg exchange interactions
strength, respectively. Si(m) is the spin in A(B) sublattice,

μA(B) is the magnetic moment in A(B) sublattice. hext is
applied magnetic field along the z direction. Using Holstein-
Primakoff (HP) transformation, we can get

Ŝ+
i =

√
2SA − â†

i âiâi, Ŝ−
i = â†

i

√
2SA − â†

i âi,

Ŝz
i = SA − â†

i âi, Ŝ+
m = b̂†

m

√
2SB − b̂†

mb̂m,

Ŝ−
m =

√
2SB − b̂†

mb̂mb̂m, Ŝz
m = b̂†

mb̂m − SB, (A2)

where âi(b̂m), â†
i (b̂†

m) are magnon annihilation and creation
operators in A(B) sublattice, respectively. By substituting
Eq. (A2) into Eq. (A1), we can reform the Hamiltonian of
FIMI or AFMI using magnon annihilation and creation oper-
ators and get

Ĥ = − JAB
√

SASB

∑
〈i,m〉

(âib̂m + â†
i b̂†

m)−JA

∑
〈〈i, j〉〉

SA(âiâ
†
j +â†

i â j )

− JB

∑
〈〈m,n〉〉

SB(b̂†
mb̂n + b̂mb†

n)

−
∑

i

(JABSBNn − 2JASANnn − hextμA)â†
i âi

−
∑

m

(JABSANn − 2JBSBNnn + hextμB)b̂†
mb̂m + const,

(A3)

where Nn, Nnn are the numbers of nearest and the next-nearest
sites, respectively. In the case of a one-dimensional atomic
chain model, Nn = Nnn = 2. Using Fourier transformation for
magnon annihilation and creation operators

âi = 1√
N

∑
k

eik·Ri âk, â†
i = 1√

N

∑
k

e−ik·Ri â†
k,

b̂m = 1√
N

∑
k

e−ik·Rm b̂k, b̂†
m = 1√

N

∑
k

eik·Rm b̂†
k, (A4)

we can get

Ĥ =
∑

k

[−JAB
√

SASBγk,n(âk b̂k + â†
k b̂†

k )]

+
∑

k

(−2JASAγk,nnâ†
k âk − 2JBSBγk,nnb̂†

kb̂k )

+
∑

k

(−JABSBNn+2JASANnn + hextμA)â†
k âk

+
∑

k

(−JABSANn+2JbSbNnn − hextμb)b̂†
kb̂k + const

=
∑

k

(−2JASAγk,nn − JABSBNn+2JASANnn + hextμA)â†
k âk

+
∑

k

(−2JBSBγk,nn − JABSANn+2JBSBNnn−hextμB)b̂†
kb̂k

+
∑

k

[−JAB
√

SASBγk,n(âk b̂k + â†
k b̂†

k )] + const

≡
∑

k

[Akâ†
k âk + Bkb̂†

kb̂k + Ck (âk b̂k + â†
k b̂†

k )] + const,

(A5)
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where γk,n = ∑
δn

e−ik·δn , γk,nn = ∑
δnn

e−ik·δnn . For a one-
dimensional atomic chain model, γk,n = 2 cos(ka), γk,nn =
2 cos(2ka), where a is the distance between nearest sites,
Ak ≡ −2JASAγk,nn − JABSBNn + 2JASANnn + hextμA, Bk ≡
−2JBSBγk,nn − JABSANn + 2JBSBNnn−hextμB, and Ck≡−JAB√

SASBγk,n.
Using Bogoliubov transformation,

âk = ukα̂k + vkβ̂
†
k , â†

k = ukα̂
†
k + vkβ̂k,

b̂k = ukβ̂k + vkα̂
†
k , b̂†

k = ukβ̂
†
k + vkα̂k,

α̂k = ukâk − vkb̂†
k, α̂

†
k = ukâ†

k − vkb̂k,

β̂k = ukb̂k − vkâ†
k, β̂

†
k = ukb̂†

k − vkâk . (A6)

With commutation relationship [α̂k, α̂
†
k′ ] = [β̂k, β̂

†
k′ ] = δk,k′ ,

[α̂k, β̂
′
k] = [α̂k, β̂

†
k′ ] = [α̂†

k , β̂
′
k] = [α̂†

k , β̂
†
k′ ] = 0 and relation-

ship u2
k − v2

k = 1, we can get

Ĥ =
∑

k

[(
Aku2

k + Bkv
2
k +2Ckukvk

)
α̂

†
k α̂k

+ (
Akukvk + Bkukvk + Ck

(
u2

k + v2
k

))
α̂

†
k β̂

†
k

+ (
Akukvk + Bkukvk + Ck

(
u2

k + v2
k

))
α̂kβ̂k

+ (
Akv

2
k + Bku2

k+2Ckukvk
)
β̂

†
k β̂k

] + const. (A7)

Take

uk = −
√√√√1

2
+ Ak + Bk

2
√

(Ak + Bk )2 − 4C2
k

,

vk =
√√√√−1

2
+ Ak + Bk

2
√

(Ak + Bk )2 − 4C2
k

, (A8)

Ĥ =
∑

k

⎡
⎢⎣Ak − Bk

2
+

√(
A2

k + B2
k

) − 4C2
k

2

⎤
⎥⎦α̂

†
k α̂k

≡ +

⎡
⎢⎣−Ak + Bk

2
+

√(
A2

k + B2
k

) − 4C2
k

2

⎤
⎥⎦β̂

†
k β̂k + const

≡
∑

k

wα
k α̂

†
k α̂k + w

β

k β̂
†
k β̂k + const. (A9)

APPENDIX B: DERIVATION OF A2i+1 = B2i+1 = 0

Let’s take α mode magnon as an example, we will prove
A2i+1 = 0. Similarly, we can also prove B2i+1 = 0 by using
the same method. The expression for wα

k is

wα
k = Ak − Bk

2
+

√
(Ak + Bk )2 − 4C2

k

2
, (B1)

where

Ak ≡ −2JASAγk,nn − JABSBNn + 2JASANnn + hextμA,

Bk ≡ −2JBSBγk,nn − JABSANn + 2JBSBNnn − hextμB,

Ck ≡ −JAB
√

SASBγk,n. (B2)

JAB < 0 and JA(B) > 0 represent the nearest and next-nearest
exchange interactions in the A(B) sublattices, SA(B) is the spin
in A(B) sublattice, μA(B) is the magnetic moment in A(B)
sublattice. hext is applied magnetic field, Nn, Nnn are the num-
bers of nearest and the next-nearest sites. And in the case of
one-dimensional atomic chain model

γk,n = 2 cos(ka) and γk,nn = 2 cos(2ka). (B3)

Substitute Eq. (B2) and (B3) in (B1), we can get

wα
k = −4(JASA − JBSB) cos(2ka) − JAB(SB − SA)Nn + 2(JASA − JBSB)Nnn + hext (μA − μB)

2

+
√

[−4(JASA + JBSB) cos(2ka) − JAB(SB + SA)Nn + 2(JASA + JBSB)Nnn + hext (μA + μB)]2 − 8JASASB(cos(2ka) + 1)

2
.

(B4)

And we can see from Eq. (B4) that wα (π − x) = wα (x), since
cos(i(π − x)) = (−1)i cos(ix), we can get that

Ai = 1

2π

∫ π

−π

wα (π − t ) cos(i(π − t ))dt

= (−1)i 1

2π

∫ π

−π

wα (t ) cos(it )dt

= (−1)i 1

2π

[∫ 0

−π

wα (t ) cos(it )dt +
∫ π

0
wα (t ) cos(it )dt

]
.

(B5)

And
∫ 0
−π

wα (t )cos(it )dt = ∫ 2π

π
wα (t )cos(it )dt , so we can get

Ai = (−1)n 1

2π

∫ 2π

0
wα (t ) cos(it )dt = (−1)iAi. (B6)

So we can get A2i+1 = 0. Using the same method, we can
prove B2i+1 = 0.

APPENDIX C: CALCULATION OF MAGNON
JUNCTION EFFECT

The Hamiltonian of the magnon junction is composed of
five items

Ĥ = ĤFMI1 + ĤAFMI + ĤFMI2 + ĤFMI1,AFMI + ĤFMI2,AFMI.

(C1)

where ĤFMI1, ĤAFMI, ĤFMI2 are Hamiltonian of FMI1, AFMI
and FMI2, respectively, and ĤFMI1,AFMI, ĤFMI2,AFMI are
coupling between FMI1 and AFMI, FMI2 and AFMI, re-
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spectively. Only on-site and next-nearest transition energy are
considered. For parallel state,

ĤFMI1(2) =
∑
i, j

[(
AFMI1(2)

0 δi, j + AFMI1(2)
2 δi, j±2

)]
α̂

†
i α̂ j, (C2)

ĤAFMI =
∑
i, j

[(
AAFMI

0 δi, j + AAFMI
2 δi, j±2

)
α̂

†
i α̂ j

+ (
BAFMI

0 δi, j + BAFMI
2 δi, j±2

)
β̂

†
i β̂ j

]
, (C3)

ĤFMI1(2),AFMI = JFMI1(2),AFMI(α̂
†
end(1),FMI1(2)

α̂1(end),AFMI + α̂
†
end(1),FMI1(2)

β̂1(end),AFMI) + H.c., (C4)

and for antiparallel state, all the α̂ (α̂†) in Hamiltonian of
ĤFMI2 and α̂FMI2 (α̂†

FMI2) in Hamiltonian of ĤFMI2,AFMI are
replaced by β̂ (β̂†) and β̂FMI2 (β̂†

FMI2).
We can use Eqs. (11), (12), and (C1)–(C4)] to calcu-

late magnon currents in three parts of magnon junction.
The boundary conditions are set to be that magnon cur-
rents are continuous at interface between FMI1 and AFMI1,
between AFMI and FMI2. And the magnon current in-
jected from NM1 to FMI1 is set to be zero, which

excluded the influence of spin current injected from NM1
on output magnon current. The simulation parameters are
set to be on-site energy AFMI1

0 = AFMI2
0 = AAFMI

0 = BAFMI
0 =

0.5 eV, nearest transition energy AFMI1
1 = AFMI2

1 = −0.5 eV,
AAFMI

1 = BAFMI
1 = −0.25 eV, coupling energy of two types

of magnons JFMI1,AFMI = JFMI2,AFMI = 1 eV, spin chemical
potential of two NMs layer μNM1 = μNM2 = 0, tempera-
ture kBTNM1 = 0.026 eV, TFMI1 = 0.9TNM1, TAFMI = 0.8TNM1,
TFMI2 = 0.7TNM1, TNM2 = 0.6TNM1, total site number NFMI1 =
NAFMI = NFMI2 = 20, coupling with two NMs layers ηL(R) =
8 and Gilbert damping constant αFMI1 = αFMI2 = 0.01,
αAFMI = 0.001.

Boundary condition is a nonlinear system of first order
equations, and we can get a rough solution of μFMI1, μAFMI,
μFMI2. Here we use one-dimensional atomic chain model and
assume that the spin chemical potential affect the transport
of magnon in AFMI or FIMI through change the on-site
energy of magnons. Different part’s retarded self-energy has
the following formalism. For FMI1, the left, right and center
retarded self-energies are

ΣR
L,FMI1i, j (ε) = − iηL(ε − μNM1)

h̄
δi,1δ j,1, (C5)

	R
R, FMI1i, j (ε) = 2

J2
FMI1,AFMI(
AAFMI

2

)2

[
(ε − μAFMI)

2
±

√
(ε − μAFMI)2

4
− (

AAFMI
2

)2

]/
h̄δi,NFMI1δ j,NFMI1 . (C6)

The choice of solution is determined by the requirement that Im 	R
R, FMI1i, j (ε) < 0:

ΣR
C,FMI1i, j (ε) = − iαFMI1(ε − μFMI1)

h̄
δi, j . (C7)

For AFMI, the left, right, and center retarded self-energies are

ΣR
L,AFMIi, j (ε) = J2

FMI1,AFMI(
AFMI1

2

)2

[
(ε − μFMI1)

2
±

√
(ε − μFMI1)2

4
− (

AFMI1
2

)2

]/
h̄δi,1δ j,1, (C8)

	R
R,AFMIi, j (ε) = J2

FMI2,AFMI(
AFMI2

2

)2

[
(ε − μFMI2)

2
±

√
(ε − μFMI2)2

4
− (

AFMI2
2

)2

]/
h̄δi,NAFMIδ j,NAFMI . (C9)

The choice of solution is determined by the requirement that Im ΣR
L,AFMIi, j (ε) and Im 	R

R,AFMIi, j (ε) < 0.

ΣR
C,AFMIi, j (ε) = − iαAFMI(ε − μAFMI)

h̄
δi, j (C10)

For FMI2, the left, right, and center retarded self-energies are

	R
L,FMI2i, j (ε) = 2

J2
FMI2,AFMI(
AAFMI

2

)2

[
(ε − μAFMI)

2
±

√
(ε − μAFMI)2

4
− (

AAFMI
2

)2

]/
h̄δi,1δ j,1. (C11)

The choice of solution is determined by the requirement that Im 	R
L,FMI2i, j (ε) < 0.

	R
R,FMI2i, j (ε) = − iηR(ε − μNM2)

h̄
δi,NFMI2δ j,NFMI2 , (C12)

	R
C,FMI2i, j (ε) = − iαFMI2(ε − μFMI2)

h̄
δi, j . (C13)

104421-7



TIANYI ZHANG AND XIUFENG HAN PHYSICAL REVIEW B 108, 104421 (2023)

[1] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Magnon spintronics, Nat. Phys. 11, 453 (2015).

[2] H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan,
Quantum magnonics: When magnon spintronics meets quan-
tum information science, Phys. Rep. 965, 1 (2022).

[3] F. Bloch, Zur theorie des ferromagnetismus, Z. Phys. 61, 206
(1930).

[4] J. Xiao, G. E. W. Bauer, K.-c. Uchida, E. Saitoh, and S.
Maekawa, Theory of magnon-driven spin seebeck effect, Phys.
Rev. B 81, 214418 (2010).

[5] J. D. Adam, Analog signal processing with microwave magnet-
ics, Proc. IEEE 76, 159 (1988).

[6] V. Cherepanov, I. Kolokolov, and V. L’vov, The saga of
yig: Spectra, thermodynamics, interaction and relaxation of
magnons in a complex magnet, Phys. Rep. 229, 81 (1993).

[7] J. M. Owens, J. H. Collins, and R. L. Carter, System appli-
cations of magnetostatic wave devices, Circuits Syst. Signal
Process 4, 317 (1985).

[8] T. Balashov, P. Buczek, L. Sandratskii, A. Ernst, and W.
Wulfhekel, Magnon dispersion in thin magnetic films, J. Phys.:
Condens. Matter 26, 394007 (2014).

[9] T.-H. Chuang, Kh. Zakeri, A. Ernst, Y. Zhang, H. J. Qin, Y.
Meng, Y.-J. Chen, and J. Kirschner, Magnetic properties and
magnon excitations in Fe(001) films grown on Ir(001), Phys.
Rev. B 89, 174404 (2014).

[10] T. Schneider, A. A. Serga, T. Neumann, B. Hillebrands, and
M. P. Kostylev, Phase reciprocity of spin-wave excitation by a
microstrip antenna, Phys. Rev. B 77, 214411 (2008).

[11] M. Jamali, J. H. Kwon, S. M. Seo, K. J. Lee, and H. Yang, Spin
wave nonreciprocity for logic device applications, Sci. Rep. 3,
3160 (2013).

[12] V. E. Demidov, M. P. Kostylev, K. Rott, P. Krzysteczko, G.
Reiss, and S. O. Demokritov, Excitation of microwaveguide
modes by a stripe antenna, Appl. Phys. Lett. 95, 112509 (2009).

[13] J.-i. Ohe, H. Adachi, S. Takahashi, and S. Maekawa, Numerical
study on the spin seebeck effect, Phys. Rev. B 83, 115118
(2011).

[14] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Spin caloritron-
ics, Nat. Mater. 11, 391 (2012).

[15] H. Yu, S. D. Brechet, and J.-P. Ansermet, Spin caloritronics,
origin and outlook, Phys. Lett. A 381, 825 (2017).

[16] S. M. Rezende, R. L. Rodríguez-Suárez, R. O. Cunha, A. R.
Rodrigues, F. L. A. Machado, G. A. Fonseca Guerra, J. C.
Lopez Ortiz, and A. Azevedo, Magnon spin-current theory for
the longitudinal spin-Seebeck effect, Phys. Rev. B 89, 014416
(2014).

[17] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.
Jungwirth, Spin hall effects, Rev. Mod. Phys. 87, 1213 (2015).

[18] S. O. Demokritov, B. Hillebrands, and A. N. Slavin, Brillouin
light scattering studies of confined spin waves: linear and non-
linear confinement, Phys. Rep. 348, 441 (2001).

[19] L. K. Werake, B. A. Ruzicka, and H. Zhao, Observation of
Intrinsic Inverse Spin Hall Effect, Phys. Rev. Lett. 106, 107205
(2011).

[20] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Conversion
of spin current into charge current at room temperature: Inverse
spin-hall effect, Appl. Phys. Lett. 88, 182509 (2006).

[21] S. S.-L. Zhang and S. Zhang, Magnon Mediated Electric Cur-
rent Drag Across a Ferromagnetic Insulator Layer, Phys. Rev.
Lett. 109, 096603 (2012).

[22] H. Wu, C. H. Wan, X. Zhang, Z. H. Yuan, Q. T. Zhang, J. Y. Qin,
H. X. Wei, X. F. Han, and S. Zhang, Observation of magnon-
mediated electric current drag at room temperature, Phys. Rev.
B 93, 060403 (2016).

[23] H. Wu, L. Huang, C. Fang, B. S. Yang, C. H. Wan, G. Q. Yu, J. F.
Feng, H. X. Wei, and X. F. Han, Magnon Valve Effect between
Two Magnetic Insulators, Phys. Rev. Lett. 120, 097205 (2018).

[24] L. J. Cornelissen, J. Liu, B. J. van Wees, and R. A. Duine,
Spin-Current-Controlled Modulation of the Magnon Spin Con-
ductance in a Three-Terminal Magnon Transistor, Phys. Rev.
Lett. 120, 097702 (2018).

[25] J. Cramer, F. Fuhrmann, U. Ritzmann, V. Gall, T. Niizeki, R.
Ramos, Z. Qiu, D. Hou, T. Kikkawa, J. Sinova, U. Nowak, E.
Saitoh, and M. Klui, Magnon detection using a ferroic collinear
multilayer spin valve, Nat. Commun. 9, 1089 (2018).

[26] J. Zheng, A. Rückriegel, S. A. Bender, and R. A. Duine, Ellip-
ticity and dissipation effects in magnon spin valves, Phys. Rev.
B 101, 094402 (2020).

[27] C. Y. Guo, C. H. Wan, X. Wang, C. Fang, P. Tang, W. J. Kong,
M. K. Zhao, L. N. Jiang, B. S. Tao, G. Q. Yu, and X. F. Han,
Magnon valves based on YIG/NiO/YIG all-insulating magnon
junctions, Phys. Rev. B 98, 134426 (2018).

[28] U. Ritzmann, D. Hinzke, and U. Nowak, Propagation of ther-
mally induced magnonic spin currents, Phys. Rev. B 89, 024409
(2014).

[29] U. Ritzmann, D. Hinzke, and U. Nowak, Thermally induced
magnon accumulation in two-sublattice magnets, Phys. Rev. B
95, 054411 (2017).

[30] T. L. Gilbert, Classics in magnetics a phenomenological theory
of damping in ferromagnetic materials, IEEE Trans. Magn. 40,
3443 (2004).

[31] P. Yan, X. S. Wang, and X. R. Wang, All-Magnonic Spin-
Transfer Torque and Domain Wall Propagation, Phys. Rev. Lett.
107, 177207 (2011).

[32] W. Wang, M. Albert, M. Beg, M.-A. Bisotti, D. Chernyshenko,
D. Cortés-Ortuño, I. Hawke, and H. Fangohr, Magnon-Driven
Domain-Wall Motion with the Dzyaloshinskii-Moriya Interac-
tion, Phys. Rev. Lett. 114, 087203 (2015).

[33] J. Lan, W. Yu, R. Wu, and J. Xiao, Spin-Wave Diode, Phys. Rev.
X 5, 041049 (2015).

[34] C. Jia, D. Ma, A. F. Schffer, and J. Berakdar, Twisted magnon
beams carrying orbital angular momentum, Nat. Commun. 10,
2077 (2019).

[35] W. Yu, J. Lan, R. Wu, and J. Xiao, Magnetic snell’s law and
spin-wave fiber with dzyaloshinskii-moriya interaction, Phys.
Rev. B 94, 140410(R) (2016).

[36] Y. W. Xing, Z. R. Yan, and X. F. Han, Magnon valve effect and
resonant transmission in a one-dimensional magnonic crystal,
Phys. Rev. B 103, 054425 (2021).

[37] Z. Wang, Y. Cao, and P. Yan, Goos-Hänchen effect of spin
waves at heterochiral interfaces, Phys. Rev. B 100, 064421
(2019).

[38] S.-J. Lee, J.-H. Moon, H.-W. Lee, and K.-J. Lee, Spin-wave
propagation in the presence of inhomogeneous dzyaloshinskii-
moriya interactions, Phys. Rev. B 96, 184433 (2017).

[39] A. Manchon and S. Zhang, Theory of nonequilibrium intrinsic
spin torque in a single nanomagnet, Phys. Rev. B 78, 212405
(2008).

[40] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A.
Duine, and B. J. van Wees, Magnon spin transport driven by

104421-8

https://doi.org/10.1038/nphys3347
https://doi.org/10.1016/j.physrep.2022.03.002
https://doi.org/10.1007/BF01339661
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1109/5.4392
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1007/BF01600088
https://doi.org/10.1088/0953-8984/26/39/394007
https://doi.org/10.1103/PhysRevB.89.174404
https://doi.org/10.1103/PhysRevB.77.214411
https://doi.org/10.1038/srep03160
https://doi.org/10.1063/1.3231875
https://doi.org/10.1103/PhysRevB.83.115118
https://doi.org/10.1038/nmat3301
https://doi.org/10.1016/j.physleta.2016.12.038
https://doi.org/10.1103/PhysRevB.89.014416
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1016/S0370-1573(00)00116-2
https://doi.org/10.1103/PhysRevLett.106.107205
https://doi.org/10.1063/1.2199473
https://doi.org/10.1103/PhysRevLett.109.096603
https://doi.org/10.1103/PhysRevB.93.060403
https://doi.org/10.1103/PhysRevLett.120.097205
https://doi.org/10.1103/PhysRevLett.120.097702
https://doi.org/10.1038/s41467-018-03485-5
https://doi.org/10.1103/PhysRevB.101.094402
https://doi.org/10.1103/PhysRevB.98.134426
https://doi.org/10.1103/PhysRevB.89.024409
https://doi.org/10.1103/PhysRevB.95.054411
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevLett.107.177207
https://doi.org/10.1103/PhysRevLett.114.087203
https://doi.org/10.1103/PhysRevX.5.041049
https://doi.org/10.1038/s41467-019-10008-3
https://doi.org/10.1103/PhysRevB.94.140410
https://doi.org/10.1103/PhysRevB.103.054425
https://doi.org/10.1103/PhysRevB.100.064421
https://doi.org/10.1103/PhysRevB.96.184433
https://doi.org/10.1103/PhysRevB.78.212405


FULL QUANTUM THEORY FOR MAGNON TRANSPORT IN … PHYSICAL REVIEW B 108, 104421 (2023)

the magnon chemical potential in a magnetic insulator, Phys.
Rev. B 94, 014412 (2016).

[41] T. Liu, W. Wang, and J. Zhang, Collective induced antidiffusion
effect and general magnon boltzmann transport theory, Phys.
Rev. B 99, 214407 (2019).

[42] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
A. H. MacDonald, Universal Intrinsic Spin Hall Effect, Phys.
Rev. Lett. 92, 126603 (2004).

[43] W. P. Sterk, H. Y. Yuan, A. Rückriegel, B. Z. Rameshti,
and R. A. Duine, Green’s function formalism for nonlo-
cal elliptical magnon transport, Phys. Rev. B 104, 174404
(2021).

[44] J. Zheng, S. Bender, J. Armaitis, R. E. Troncoso, and R. A.
Duine, Green’s function formalism for spin transport in metal-

insulator-metal heterostructures, Phys. Rev. B 96, 174422
(2017).

[45] D. Ködderitzsch, W. Hergert, W. M. Temmerman, Z. Szotek, A.
Ernst, and H. Winter, Exchange interactions in NiO and at the
NiO(100) surface, Phys. Rev. B 66, 064434 (2002).

[46] W.-B. Zhang, Y.-L. Hu, K.-L. Han, and B.-Y. Tang, Pressure
dependence of exchange interactions in NiO, Phys. Rev. B 74,
054421 (2006).

[47] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Enhanced
Gilbert Damping in Thin Ferromagnetic Films, Phys. Rev. Lett.
88, 117601 (2002).

[48] T. Moriyama, K. Hayashi, K. Yamada, M. Shima, Y. Ohya, and
T. Ono, Intrinsic and extrinsic antiferromagnetic damping in
NiO, Phys. Rev. Mater. 3, 051402(R) (2019).

104421-9

https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.99.214407
https://doi.org/10.1103/PhysRevLett.92.126603
https://doi.org/10.1103/PhysRevB.104.174404
https://doi.org/10.1103/PhysRevB.96.174422
https://doi.org/10.1103/PhysRevB.66.064434
https://doi.org/10.1103/PhysRevB.74.054421
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevMaterials.3.051402

