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Differential isotropic model of ferromagnetic hysteresis
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This paper presents an alternative isotropic model of magnetization curves in ferromagnetic materials. It is
based on the well-known Jiles-Atherton model, but significantly modifies its assumptions to be consistent with
fundamental physical principles. As a result, the number of model parameters has been reduced to four. The
differential model couples the volume energy density of the sample with the external magnetic field and includes
the process of rigid and flexible overcoming of the pinning sites in the law of energy density conservation. The
magnetic moment magnitude is connected with coherent regions called magnetic clusters, which are smaller
than magnetic domains. The commonly used concept of anhysteretic magnetization, based on the Langevin
function, is modified by a parameter β, which represents the average mutual interaction among magnetic clusters.
The model was successfully tested on two isotropic materials: amorphous Fe77.5Si7.5B15 alloy and powdered
magnetite. The main advantages compared with previous models are the simpler model equation and a much
more convenient numerical and fitting procedure.
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I. INTRODUCTION

Scientists have been trying to explain and describe ferro-
magnetic hysteresis for more than 80 years. Over the decades,
numerous approaches have evolved. Micromagnetic methods
are used to determine minimum energy of a system in order
to find the orientation of magnetic moments; these methods
are limited to a small scale. The other extreme is to fit a mea-
sured curve with no physical background. Between these two
approaches lies an intermediate solution—a global estima-
tion of magnetic behavior based on the methods of statistical
physics, modulated by certain microstructural assumptions
[1]. The oldest generally known and widely used models in-
clude the Preisach model [2] and the Stoner-Wohlfarth model
[3]. Both of these models were modified and further devel-
oped during the following years, e.g., Refs. [4–7]. In the
second half of the 1980s, another model was proposed by
Jiles and Atherton [8,9]; it was based on Weiss’s original
ideas about the magnetic domains and effective magnetic field
inside a ferromagnetic material, and it used the key concept,
anhysteretic magnetization, based on the modified Langevin
function. Later, Harrison introduced a slightly different con-
cept for ferromagnetic hysteresis, with a new dimensionless
quantity called the domain coefficient [10]. All these models
use different approximations, and so are suitable for different
materials and applications [1].

In this paper, our attention is focused on the approach
used by Jiles and Atherton and by Venkataraman. Three main
forms of the isotropic Jiles-Atherton model can be found
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in the literature [11]. We designate the previous models by
Jiles and Atherton JA1986 [8] and JA1992 [9] and the model
by Venkataraman V1998 [12]. All these models have been
used for a long time and give adequate results. However,
the existence of three forms of the model, as well as recent
investigations [11,13], suggest that models are not entirely
satisfactory.

The use of the term anhysteretic magnetization (modi-
fied Langevin function) is ambiguous in the literature. This
function is determined by three parameters: saturation magne-
tization Ms, magnetic moment size (implicitly given by model
parameter a), and interaction coefficient α. It was suggested
in Ref. [8] that the magnetic moment size is given by the
average domain size. A simple estimation from the fitted data
leads to a magnetic moment size ≈104–106 of Bohr magne-
tons, which is about five orders higher than atomic magnetic
moments and also about seven orders lower than the magnetic
moment of the domain [14]. The interaction coefficient α is
usually treated as an “interdomain coupling” coefficient [8],
while some authors [10,12] claim it to be a “Weiss exchange
coefficient.” Again, there is a large difference in the value of
this parameter between these two approaches.

In previous models [8,9,12], the influence of the effec-
tive magnetic field is included twice in the energy density
equation—this corresponds to the interaction of the magnetic
moment with itself. Moreover, the domain wall flexibility was
described by parameter c, though this parameter was not un-
equivocally defined. The only derivation presented in Ref. [8]
is valid solely for small domain wall displacements; this is
definitely not valid near the material saturation point.

These discrepancies led us to propose another differen-
tial isotropic model of ferromagnetic hysteresis (DIMFH). In
this model, the transition from the paramagnetic Langevin
function to ferromagnetic Langevin function is achieved
via a magnetic cluster assumption. The unclear interaction
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coefficient α is replaced by a defined interaction coefficient β.
The double effect of the effective field is removed, which leads
to a more stable model equation solution and the coefficient
β obtains a different meaning. It is shown that the rigid and
flexible overcoming of pinning sites is for DIMFH indistin-
guishable (and should be even for the previous models) from
major curve fitting.

II. MODEL DERIVATION

The differential isotropic model of ferromagnetic hystere-
sis presented here is based on the following ideas:

(1) The exchange interaction of quantum-mechanical ori-
gin tends to align atomic magnetic moments, creating the
regions of coherent behavior called magnetic clusters.

(2) The existence of magnetic clusters leads to the def-
inition of parameter β as the average mutual interaction
among clusters. Magnetic domains can be formed by magnetic
clusters.

(3) Energy volume density in a sample is given by the
external magnetic field H . We claim that there is no physical
reason to replace the external field with the effective field He

as was suggested in Refs. [8,9].
(4) The general problem with domain wall flexibility pa-

rameter c is that it is not present in the energy density balance
equation. This inconsistency leads us to propose a different
parameter definition.

(5) We suppose that magnetic clusters are responsible for
the ferromagnetic behavior of the material, and we also expect
that their interaction with the pinning sites is responsible for
hysteresis (similarly as in Ref. [8]). We use a similar approach
to Ref. [8]; however, our definition of the hysteresis coefficient
is different.

A. Anhysteretic magnetization

The anhysteretic magnetization curve can be measured
experimentally, however, the measurements are difficult to
perform [15]. Nevertheless, the anhysteretic magnetization
curve is a convenient concept which is frequently used as the
basis for models of ferromagnetic hysteresis [8,10].

The functions suitable for anhysteretic magnetization func-
tion must have a sigmoidlike shape—odd, nondecreasing
functions, zero for zero field, and “converging” to +Ms for
a strong positive field and −Ms for a strong field of opposite
direction, where Ms is the saturation magnetization. There are
a number of functions which meet these conditions [15]. In
this paper, we focus only on anhysteretic magnetization based
on the Langevin function [8,9].

The Langevin function is derived by methods of classical
statistical physics for a set of continuously distributed, mu-
tually noninteracting magnetic moments. This approach was
originally used for paramagnetic materials, and some correc-
tions must be performed for ferromagnetic materials.

We focus solely on the isotropic case, so anisotropy energy
is not considered. Two significant contributions to energy
spectra remain: a classical dipole-dipole interaction and ex-
change interaction with a quantum-mechanical origin [16].
The exchange interaction aligns atomic magnetic moments
to the same direction and is far stronger than the dipole

interaction. This leads to the existence of regions consisting
of aligned magnetic moments.

The mutual interaction among these regions is classical.
Clusters are separated by a transitional region, similar to the
domain walls [16]. The exchange interaction is the same on
both sides of this transition; there is no significant influence
on cluster orientation from the exchange interaction.

The conclusion is that the exchange interaction binds
atomic magnetic moments together, resulting in a larger mag-
netic cluster with magnetic moment m, where all atomic
moments act collectively.

The average interaction among clusters is more difficult to
describe. We suppose that the interaction is proportional to
the state of saturation, described by the normalized parameter
f ≡ M/Ms, where M is the magnitude of magnetization. Since
Ms is constant, we can determine the angular dependence of
the energy,

Em = −μ0m · (H + βM), (1)

where H is the external magnetic field, M is the magne-
tization, and μ0 is the vacuum permeability. Parameter β

describes the average mutual interaction between magnetic
clusters. Both positive and negative values are allowed. In the
case of isotropic material, this parameter is close to zero. We
also define parameter a, which originates from the Langevin
function [16]

a ≡ kBT

μ0m
, (2)

where kB is the Boltzmann constant and T is the thermody-
namic temperature. The average value of the magnetic cluster
moment m is given by the temperature. This dependence is
the subject of further investigation. Using Eq. (1), we can
express the anhysteretic magnetization Man using the modified
Langevin function

Man = Ms

[
coth

(
H + βM )

a

)
− a

H + βM

]

= MsL
(

H + βM

a

)
. (3)

This derivation can be done only if ∂M
∂H → 0, otherwise Eq. (3)

leads to a differential equation with no solution suitable for
anhysteretic magnetization.

It should be noted that the magnitude of the cluster mag-
netic moment is large enough so that no quantum effects
are significant and all the assumptions of the derivation of
the Langevin function are fulfilled. To demonstrate the in-
fluence of the magnetic moment magnitude, Fig. 1 presents
the ordinary Langevin function [Eq. (3) with β = 0] for three
magnetic moment magnitudes: the ferromagnetic domain
m = 1.1013μB (a ∼= 3.55×10−5 A/m) [14], the magnetic
cluster m = 1.105μB (a ∼= 3.55×103 A/m), and the atomic
magnetic moment m = 2μB (a ∼= 1.78×108 A/m), where μB
is the Bohr magneton.

From Fig. 1 is obvious that the magnetic moment magni-
tude m has a critical impact on the anhysteretic magnetization
curve slope and shape. Hysteretic curves inherit their slope
from the anhysteretic curve. Only the intermediate solution
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FIG. 1. Influence of parameter a on the anhysteretic Langevin
magnetization curve shape. Curve simulations were done by solv-
ing Eq. (3) with β = 0 and Ms = 106 A/m. The values of a
correspond to the ferromagnetic domain magnetic moment a ∼=
3.55×10−5 A/m, the cluster magnetic moment a ∼= 3.55×103 A/m,
and the atomic magnetic moment a ∼= 1.78×108 A/m.

using the magnetic cluster assumption corresponds to the
measured magnetization curve slopes, as shown later.

B. The pinning process

During the magnetization process, the orientation of the
magnetic moments of the magnetic clusters is changed. So
far, we have supposed that nothing other than temperature
excitation prevents cluster magnetic moments from aligning
to the external magnetic field. However, in a real material,
pinning sites are present [8]. We assume that pinning sites are
local stress centers, which are caused by different mechanisms
(dislocations, grain boundaries, etc.) and interact with mag-
netic moments through the magnetoelastic effect. The energy
dissipated by overcoming the pinning site (PS) is [8]

EPS = επ

2
(1 − cos ϕ), (4)

where επ is the maximum energy dissipated by the PS and ϕ is
the angle between the direction of the magnetization (given by
the external magnetic field direction) and the intrinsic cluster
magnetic moment direction (given by the PS orientation).

We assume a homogeneous distribution of pinning sites,
introducing PS volume density ρPS, and we substitute επ by
its average value 〈επ 〉. Then, the energy dissipated by pinning
can be expressed as

Epin =
∫

EPSρPS dVCR, (5)

where the element dVCR is the volume where the cluster ori-
entation has been changed. This volume is clearly related to
the change in magnetization.

For simplicity, we suppose that the part of the material with
volume V consists of two large areas with the same orientation
of magnetic moments with volumes V1 and V2. The atomic

FIG. 2. Part of the material with two areas with the same orien-
tation of magnetic moments (a) in a demagnetized state, and (b) with
an applied external magnetic field. The volume of the region with the
orientation parallel to the external magnetic field is increased.

magnetic moment of the material is μ and the density of
atomic magnetic moments is ρμ. If an external magnetic field
H is applied, the volume of the region with the orientation
parallel to the external magnetic field is increased by dVCR. In
an ideal case, μρμ = Ms.

Using Fig. 2, we can write

dM = μ′
1 + μ′

2

V
− μ1 + μ2

V

= 1

V
μρμ(1 − cos ϕ)dVCR. (6)

Using Eqs. (4)–(6), we can write the final statement for energy
density dissipated during the magnetization process as

wpin =
∫ 〈επ 〉

2

ρPS

μρμ

dM = k
∫

dM

dH
dH, (7)

where the coefficient k = 〈επ 〉
2

ρPS

μρμ
describes pinning. This

derivation of parameter k differs from that presented in
Ref. [8].

The possible flexibility of the cluster structure can influ-
ence the interaction of clusters with pinning sites. In Ref. [8],
the authors derived a relation describing domain wall flex-
ibility, where the energy density “saved” from pinning is
proportional to the difference between anhysteretic and total
magnetization,

wrev ∝ c′(Man − M ). (8)

Coefficient c′ has a positive value. This relation is only valid
for small domain wall bulging. In later papers [9,12], coeffi-
cient c′ is replaced by coefficient c ∈ 〈0, 1〉, which describes
the reduction of energy dissipated on the pinning sites, with
no description of the mechanism.

A major problem with both coefficients is that they are not
present in the energy density balance equation, and therefore
they have no influence on the energy equilibrium. We also
believe that the pinning process is bound to the magnetic
clusters rather than domain walls.

The reduction of energy density dissipation wrev on a PS
can be described by

wrev � wpin → wrev = cwpin. (9)

It is obvious from Eqs. (9) and (7) that coefficients k and c
are bound together. Using Eq. (8) instead of Eq. (9) leads to
a comparable result. The effect of the flexible pinning process
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FIG. 3. Schematic proposition of a mechanism which reduces
energy dissipation on PS via flexible cluster structure behavior. The
expanding oriented region (gray) overcame the pinning site; however,
a small region around PS remained unchanged, so no dissipation via
PS breaking is present.

will be reflected in the magnetization curve as a reduction in
the number of PSs. In the case of a strong pinning effect,
even inflexible bulging is more efficient than breaking PS.
This would lead to PS evasion, with a small region remaining
unchanged, as shown schematically in Fig. 3. This possibility
is the subject of further investigation.

We also assume that the coefficient c is a function of the
state of magnetization f ≡ M

Ms
. For simplicity, we suppose in

the first approximation that the coefficient c is constant. If so,
it is impossible to distinguish the influence of coefficients k
and c on the curve shape from the measured major hysteresis
loop.

C. Model equation derivation

Energy density can be expressed from the area below the
magnetization curve as

w = μ0

∫
M dH = μ0

∫
M(H + βM )dH. (10)

This relation differs from w = μ0
∫

M dHe, used in previous
papers [8,9,12], because only the external magnetic field H
is applied to the material. The effective magnetic field in the
material is different [see Eq. (1)], and it is defined differently,
by the parameter β which characterizes the average mutual
interaction among clusters.

Now we can write the final energy density balance equa-
tion using Eqs. (3), (7), (9), and (10) as

w = wan − wpin + wrev,

μ0

∫
M dH = μ0

∫
Man dH −k

∫
dM

dH
dH+ck

∫
dM

dH
dH,

M = Man − δ
k

μ0
(1 − c)

dM

dH
, (11)

where δ represents the fact that the pinning always acts against
the external magnetic field. We define the parameter h ≡
k
μ0

(1 − c). If h = 0, Eq. (11) is reduced to the anhysteretic
case M = Man. In the case of a hysteresis curve (h �= 0),
we can write the final equation for the differential model of

FIG. 4. Influence of parameter β on magnetization curve shape.
Curve simulations were done by solving Eq. (12) with the Runge-
Kutta fourth-order solver, on 25 000 points of a simulated magnetic
field. The parameters were Ms = 1.2×106 A/m, a = 15 000 A/m,
and h = 500 A/m.

ferromagnetic hysteresis (DIMFH) using Eqs. (3) and (11) as

dM

dH
= Man − M

δh
= MsL

(H+βM
a

) − M

δh
. (12)

Compared to previous models [8,9,12], this equation has a
much simpler form and uses one fewer parameter.

D. Influence of β

In models JA1986, JA1992 and V1998, low values of
parameter α have a low impact on the magnetization curve
shape, whereas larger values of α lead to curve instability and
the “artificial limit” dM

dH → − 1
α

.
The DIMFH uses parameter β and appears to be more

stable and without an artificial limit. Figure 4 shows the in-
fluence of parameter β on the magnetization curve. Negative
β decreases the slope of the curve, while positive β leads to a
significant increase in coercivity.

The solution of Eq. (12) is found using the well-known
Runge-Kutta fourth-order solver with the initial condition
M(H = 0) = 0. This initial condition is the same for all curve
simulations. The alternation of δ is performed in the curve
turning points.

III. EXPERIMENTAL CURVE FITTING
AND COMPARISON OF MODELS

The applicability of the proposed model was tested on two
types of experimental samples: an amorphous Fe77.5Si7.5B15

alloy [17] prepared in the form of a 20-µm-thick ribbon using
planar flow casting technology, and homogenized magnetite
powder (Precheza Prerov, Czech Republic) with an average
gain size of approximately 1 µm. Both samples meet the con-
dition of isotropic materials well. The magnetization curves
of ribbon and powder samples at room temperature were fitted
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TABLE I. Comparison of the fitted parameters of the DIMFH with models based on the Jiles-Atherton approach. The room-temperature
magnetization curves were measured on the Fe77.5Si7.5B15 ribbon (321 measured points) and powder magnetite (945 measured points).

Amorphous Fe77.5Si7.5B15 ribbon

Model Ms (A/m) a (A/m) k (A/m) α (−) c (−) c′ (−) h (A/m) β (−) S (A/m) r2 (−)

JA1986 1373103 2366 297.7 0.000384 133.9 6115 0.999979
JA1992 1372000 2309 123.9 0.000067 0.551 7448 0.999969
V1998 1372237 2337 126.0 0.000162 0.554 7142 0.999971
DIMFH 1374714 2602 93.0 0.001071 4834 0.999987

Magnetite powder

JA1986 62813 30831 15552 0.07319 0 1246 0.99911
JA1992 63946 38568 17162 0.48234 0.1719 1178 0.99920
V1998 63942 38555 16467 0.47980 0.0467 1175 0.99921
DIMFH 62964 32258 14391 0.1612 1123 0.99928

by proposed DIMFH as well as by other models based on the
Jiles-Atherton approach [8,9,12]. The results are summarized
in Table I. The quality of the fit is controlled by parameter S,
defined as

S =
√∑N

i (Mi − Mexpt,i )2

N
, (13)

where Mexpt,i are measured curve points, N is the number of
measured curve points, and Mi are simulated points corre-
sponding to Mexpt,i.

To express the relative accuracy of the fit, the r2 coefficient
is implemented,

r2 = 1 −
∑N

i (Mi − Mexpt,i )2∑N
i (Mexpt − Mexpt,i )2

, (14)

where Mexpt is the arithmetic average of the measured magne-
tization points.

FIG. 5. The measured (crosses) and fitted (solid line) magnetiza-
tion curve of an amorphous Fe77.5Si7.5B15 ribbon using the DIMFH.
The measured curve consists of 321 points and its simulation was
done by the Runge-Kutta fourth-order solver. To improve the fit accu-
racy n = 86 interpolated points were inserted between two measured
points. The resulting parameters are summarized in Table I.

To maintain accuracy in the simulated curve, n additional
magnetic field values are inserted between every two mea-
sured magnetic field values. The number n increases until
the simulated curve is considered stable. By fitting a series
of curves, the following stability criterion was found: The
average coercive field difference between two adjacent values
of n must be lower than 0.5 A/m.

Figure 5 shows the measured room-temperature magneti-
zation curve of the Fe77.5Si7.5B15 ribbon and the correspond-
ing fitted curve using the DIMFH. Comparing the DIMFH
with other models (see the upper part of Table I), the param-
eters Ms and a are very similar, as is also the accuracy of the
fit. From the fitted values of parameter a and from Eq. (3), it
is possible to calculate the number of Bohr magnetons cor-
responding to magnetic moment m. The result is ≈104–106,
which is about five orders higher than the atomic magnetic
moments and also about seven orders lower than the mag-
netic moment of the ferromagnetic domain. This supports the
proposed cluster mechanism. We can conclude that the fitted
values of parameter a were determined correctly in the previ-
ous models [8,9,12], however, the physical interpretation of m
does not correspond to the magnetic domain moment. More-
over, magnetic domains do not meet the assumptions of the
Langevin function. The mentioned discrepancy in the value of
magnetic moment m was not identified by any of the authors.

The fitting program was written in the MATLAB environ-
ment, and the code is freely available in the Supplemental
Material [18]. The fitting speed is very good. On a standard
desktop personal computer (used parameters: 64-bit MAT-
LAB, Windows 8.1, AMD Radeon R7 4×3.5 GHz, RAM
8 GB), the fitting time of one loop is about 30 s. All fitted
parameters (Ms, a, h, β) as per Sec. II have a clear physical
meaning. A similarly good agreement between the experi-
mental data and the fit can be observed in the case of the
magnetite powder (see the lower part of Table I). Figure 6
shows the measured room-temperature magnetization curve
of the magnetite powder and the corresponding fitted curve
using the DIMFH.

IV. CONCLUSION

In this paper, we have proposed a differential isotropic
model of ferromagnetic hysteresis (DIMFH) that is based on
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FIG. 6. The measured (crosses) and fitted (solid line) magnetiza-
tion curve of a powdered magnetite using the DIMFH. The measured
curve consists of 945 points and its simulation was done by the
Runge-Kutta fourth-order solver. To improve the fit accuracy n = 29
interpolated points were inserted between two measured points. The
resulting parameters are summarized in Table I.

two assumptions: (1) The energy density [Eq. (10)] forms
the energy density balance equation [Eq. (11)]. (2) The ideal
anhysteretic curve [Eq. (3)] is modified by overcoming the
pinning sites in the material [Eq. (7)].

In this model, ferromagnetic behavior is given by an inter-
action of nonclassical origin, which results in the formation of
magnetic clusters. The average size of the magnetic clusters is
included in parameter a, while the mutual average interaction
among the clusters is described by parameter β. Both rigid
and flexible overcoming of the pinning sites is described by
parameter h.

The proposed differential isotropic model of ferromagnetic
hysteresis remains in full generality, but in comparison to
the previous models it has the following advantages: (1) The
model has a far simpler form, as can be seen from the final
Eq. (12). (2) Only four model parameters are used (Ms, a, h,
and β). (3) Numerical processing and fitting are much more
convenient.

Nevertheless, several matters still remain unresolved: (1)
An extension of the model to anisotropic materials is cur-
rently in preparation. (2) The approach based on the major
anhysteretic curve is valid only for the major magnetization
curve. To cover minor hysteresis loops, an adjustment to the
model needs to be performed. (3) No description exists for
the flexible overcoming of the pinning sites near the material
saturation point. The dependence of parameter c on the state
of magnetization is not yet known. (4) The temperature depen-
dence of saturation magnetization Ms and the average cluster
size moment m are not yet solved.

ACKNOWLEDGMENT

This work was funded by the Ministry of Education, Youth
and Sports of the Czech Republic under Projects No. SP
2023/036 and No. CZ.02.1.01/0.0/0.0/17_048/0007399.

[1] F. Liorzou, B. Phelps, and D. Atherton, Macroscopic models of
magnetization, IEEE Trans. Magn. 36, 418 (2000).

[2] F. Preisach, Über die magnetische nachwirkung, Z. Phys. 94,
277 (1935).

[3] E. C. Stoner and E. P. Wohlfarth, A mechanism of magnetic hys-
teresis in heterogeneous alloys, Philos. Trans. R. Soc. London
Ser. A 240, 599 (1948).

[4] I. Mayergoyz, Mathematical models of hysteresis, IEEE Trans.
Magn. 22, 603 (1986).

[5] H. A. J. Cramer, A moving Preisach vector hysteresis model
for magnetic recording media, J. Magn. Magn. Mater. 88, 194
(1990).

[6] W. Wernsdorfer, E. B. Orozco, B. Bonet, B. Barbara, K.
Hasselbach, A. Benoit, D. Mailly, B. Doudin, J. Meier, J. E.
Wegrowe, J.-P. Ansermet, N. Demoncy, H. Pascard, A. Loiseau,
L. Francois, N. Duxin, and M. P. Pileni, Mesoscopic effects in
magnetism: Submicron to nanometer size single particle mea-
surements, J. Appl. Phys. 81, 5543 (1997).

[7] A. P. Roberts, D. Heslop, X. Zhao, and C. R. Pike, Un-
derstanding fine magnetic particle systems through use of
first-order reversal curve diagrams, Rev. Geophys. 52, 557
(2014).

[8] D. C. Jiles and D. Atherton, Theory of ferromagnetic hysteresis,
J. Magn. Magn. Mater. 61, 48 (1986).

[9] D. C. Jiles, J. Thoelke, and M. Devine, Numerical determination
of hysteresis parameters for the modeling of magnetic proper-
ties using the theory of ferromagnetic hysteresis, IEEE Trans.
Magn. 28, 27 (1992).

[10] R. G. Harrison, A physical model of spin ferromagnetism,
IEEE Trans. Magn. 39, 950 (2003).

[11] R. Szewczyk and P. Cheng, Open source implementation of dif-
ferent variants of Jiles-Atherton model of magnetic hysteresis
loops, Acta Phys. Pol. A 133, 654 (2018).

[12] R. Venkataraman and P. Krishnaprasad, Qualitative analysis of a
bulk ferromagnetic hysteresis model, in Proceedings of the 37th
IEEE Conference on Decision and Control (IEEE, New York,
1998), Vol. 3, pp. 2443–2448.

[13] J. B. Padilha, P. Kuo-Peng, N. Sadowski, J. Leite, and N.
Batistela, Restriction in the determination of the Jiles-Atherton
hysteresis model parameters, J. Magn. Magn. Mater. 442, 8
(2017).

[14] D. C. Jiles, Introduction to Magnetism and Magnetic Materials,
1st ed. (Springer, Berlin, 1991).

[15] M. Nowicki, R. Szewczyk, and P. Nowak, Experimental veri-
fication of isotropic and anisotropic anhysteretic magnetization
models, Materials 12, 1549 (2019).

[16] K. M. Krishnan, Fundamentals and Applications of Magnetic
Materials (Oxford University Press, Oxford, UK, 2016).

104414-6

https://doi.org/10.1109/20.825802
https://doi.org/10.1007/BF01349418
https://doi.org/10.1098/rsta.1948.0007
https://doi.org/10.1109/TMAG.1986.1064347
https://doi.org/10.1016/S0304-8853(97)90029-9
https://doi.org/10.1063/1.364656
https://doi.org/10.1002/2014RG000462
https://doi.org/10.1016/0304-8853(86)90066-1
https://doi.org/10.1109/20.119813
https://doi.org/10.1109/TMAG.2003.808590
https://doi.org/10.12693/APhysPolA.133.654
https://doi.org/10.1016/j.jmmm.2017.06.033
https://doi.org/10.3390/ma12091549


DIFFERENTIAL ISOTROPIC MODEL OF FERROMAGNETIC … PHYSICAL REVIEW B 108, 104414 (2023)

[17] O. Zivotsky, A. Titov, Y. Jiraskova, J. Bursik, J. Kalbacova, D.
Janickovic, and P. Svec, Full-scale magnetic, microstructural,
and physical properties of bilayered CoSiB/FeSiB ribbons,
J. Alloys Compd. 581, 685 (2013)

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.104414 for code made to fit experi-
mental magnetization curve with DIMFH model, using basic
MATLAB functions.

104414-7

https://doi.org/10.1016/j.jallcom.2013.07.126
http://link.aps.org/supplemental/10.1103/PhysRevB.108.104414

