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Axial and polar magnetism in hexagonal YMnO3
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Newly published diffraction data on hexagonal YMnO3 at a temperature of 10 K are shown to be consistent
with a trusted expression of the magnetic symmetry, although the data alone are not definitive [M. Ramakrishnan
et al., Phys. Rev. Res. 5, 013203 (2023)]. Howard et al. conclude from an exhaustive review of experimental data
that the symmetry of the antiferromagnetic motif of Mn ions is most likely P63

′cm′ [C. J. Howard et al., Acta
Crystallogr. B 69, 534 (2013).]. The data reported by Ramakrishnan et al. do not eliminate symmetry P63

′

from our calculated diffraction patterns, because the studied reflection vector is parallel to the common chiral
vector associated with each triangle of Mn axial dipole moments. Proposed diffraction patterns will give decisive
statements about the magnetic symmetry in future investigations using resonant x-ray and magnetic neutron
diffraction. To this end, both axial magnetism and polar magnetism in the multiferroic material are essential
in the analysis of diffraction patterns. We study polar magnetism in symmetry P63

′cm′ using Dirac multipoles,
including Mn anapoles. They also feature in amplitudes for magnetic neutron diffraction together with Dirac
quadrupoles, previously shown to account for diffraction by pseudogap phases of cuprate superconductors.

DOI: 10.1103/PhysRevB.108.104412

I. INTRODUCTION

Electronic and magnetic properties of hexagonal YMnO3

are topics of many experimental and theoretical investiga-
tions, one reason being that it belongs to the rare class of
multiferroic materials which exhibit both ferroelectricity and
(noncollinear) magnetic order. The manganese trioxide is
paraelectric at elevated temperatures and undergoes a single
structural transition at ≈ 1250 K from a (centrosymmetric)
to a (noncentrosymmetric) ferrielectric phase that is retained
through room temperature [1]. The hexagonal structure hosts
five- and sevenfold coordination polyhedra about Mn (Mn3+)
and Y (Y3+) ions, respectively. Ferroelectricity might arise
from buckling of the MnO5 bipyramids [2]. A magnetic tran-
sition at TN ≈ 70 K heralds a triangular antiferromagnetic
arrangement of Mn ions with a propagation vector k = 0
[3–5]. A magneto-elastic coupling is of current interest [6,7].

By and large, structural and magnetic properties of
hex-YMnO3 have been inferred from Bragg diffraction ex-
periments, although Fiebig et al. [3] demonstrate the value
of second harmonic generation in determining magnetic sym-
metry. In k = 0 structures, magnetic reflections arise below
TN at the same positions as the reflections of structural origin;
e.g., the magnetic scattering of neutrons in general coincides
with nuclear reflections. There are only a few pure magnetic
reflections where structural reflections are not allowed due
to the space group extinctions. The refinement of the crys-
tal and magnetic structures using overlapping nuclear and
magnetic intensities at the same reciprocal lattice positions
has the problem of separating magnetic and nuclear intensi-
ties and therefore leads to correlations between the magnetic
and structural parameters. Likewise with x-ray diffraction,
with overlapping Thomson and magnetic intensities. Not

withstanding the mentioned limitations, there is compelling
evidence that symmetry P63

′cm′ correctly expresses the or-
dered magnetic structure of hex-YMnO3 [5]. (Howard et al.
critically review the existence of an intermediate phase in the
transition from the paraelectric structure to the ferroelectric
structure [2,5].) Another contender for the ordered magnetic
structure of hex-YMnO3 with a reduced symmetry, P63

′, is
also surveyed [4,5].

Bragg diffraction patterns for P63
′cm′ appear not to have

been published. Analytic calculations reported in this pa-
per are informed by symmetry, and serve both neutron and
x-ray diffraction. Enhancement of Bragg spot intensities ob-
tained in resonant x-ray diffraction facilitates investigations
of nominally weak Bragg spots not of structural origin, i.e.,
basis-forbidden reflections. We present diffraction patterns
that include basis-forbidden reflections for chargelike, polar,
and Dirac (polar and magnetic) atomic entities; cf. Table I.
Many resonant x-ray diffraction studies using manganese K
and L edges have been published [8–13]. Recent experiments
on hex-YMnO3 exploit manganese L edges and a relatively
strong Bragg spot forbidden in the parent lattice P63cm (No.
185) [14,15]. Howard et al. include symmetry P63

′cm′ used
here, and P63c′m′ in their group-subgroup relationships for
the crystal and magnetic structures (Fig. 3), together with
summaries of magnetic properties (Table I) [5]. Notably, weak
ferromagnetism and a magnetoelectric effect are allowed in
P63c′m′, and both these properties are forbidden by symmetry
in P63

′cm′.
Atomic Mn multipoles used in our diffraction amplitudes

possess discrete symmetries of space and time. Polar varieties
are permitted because Mn ions in hex-YMnO3 occupy sites
that do not possess a center of spatial inversion. Polar multi-
poles (parity odd and nonmagnetic) are allowed in diffraction
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TABLE I. A generic multipole 〈OK
Q〉 has integer rank K and

(2K + 1) projections Q in the interval − K � Q � K . Angular
brackets 〈· · · 〉 denote the expectation value, or time average, of
the enclosed spherical tensor operator. Parity (σπ ) and time (σθ )
signatures = ±1, e.g., 〈tK

Q〉 is parity even (σπ = +1) and time odd
(σθ = −1), and 〈UK

Q〉 is parity odd (σπ = −1) and time even (σθ =
+1). Special cases for neutron diffraction are a (Dirac dipole)
anapole 〈d〉 and Dirac quadrupole 〈H2〉 in Eqs. (C2) and (C5),
respectively.

Signature σπ σθ

Neutrons〈
tK
Q

〉 +1 −1

〈d〉 −1 −1

〈H2〉 −1 −1

Photons〈
TK

Q

〉 +1 (−1)K

〈
GK

Q

〉 −1 −1〈
UK

Q

〉 −1 +1

amplitudes for polar crystal structures, and they diffract x
rays, and likewise for magnetic multipoles that are either par-
ity even (conventional axial magnetism) or parity odd. Axial
Mn dipoles in hex-YMnO3 are depicted in Fig. 1 [16,17]. The
polar magnetic family, Dirac multipoles, include a magnetic
monopole formed with (S · R), where S and R are electronic
spin and position operators, respectively [18–20]. A generic
Mn multipole 〈OK

Q〉 has integer rank K, and angular brackets
〈· · · 〉 denote an expectation value. The (2K + 1) projections
Q are in the interval −K � Q � K . Conditions on K and Q
are imposed by both site and crystal symmetries, and the
interaction of the radiation with electrons. Restrictions on K
are imposed by the triangle rule in the case of resonant x-ray
diffraction, e.g., K = 1, 2, 3 for enhancement by an electric
dipole (E1)–electric quadrupole (E2) absorption event.

In the present case, site symmetry alone imposes the con-
straint that Mn axial multipoles are purely real for all K and

FIG. 1. Configuration of Mn axial dipoles in the (ab) plane of
hex-YMnO3. Oxygen (red) and yttrium (green) [1,5,6]. Reproduced
from MAGNDATA [17].

FIG. 2. Depiction of a toroidal dipole, also known as an anapole.
Figure prepared by V. Scagnoli [21].

Q. From this it follows that axial dipoles are constrained to
the (ac) plane, as we shall see in the next section. (Figure 1
depicts Mn dipoles without canting.) Likewise, manganese
Dirac multipoles are purely real (imaginary) for even K (odd)
for all Q, e.g., a magnetic monopole (K = Q = 0) is permit-
ted. Projections Q are constrained by the crystal structure,
however, when the reflection vector and the axis of rotation
symmetry parallel to the c axis coincide. In this case, Q = 3n
where n is an integer. Notably, multipoles with Q = ±3 are
octupoles (K = 3) and those of higher order. A signature of
symmetry P63

′cm′ is a condition on a Miller index, Q, and
the time signature of 〈OK

Q〉. By way of an example of its
consequences, axial magnetic dipoles are forbidden in bulk
magnetism (hex-YMnO3 is an antiferromagnet), while mag-
netic octupoles are permitted. An anapole depicted in Fig. 2
[18,21], perhaps the second-best known Dirac multipole be-
yond the magnetic monopole, also contributes to diffraction
patterns. All mentioned features of hex-YMnO3 flow from an
electronic structure factor, Eq. (A1), for Mn ions in a unit cell
with symmetry P63

′cm′. With it, diffraction patterns of x rays
and neutrons can be calculated [20,22–24]. Resonant x-ray
diffraction and magnetic neutron diffraction are treated in the
main text and Appendix C, respectively.

II. MAGNETIC STRUCTURE

Vectors describing the hex-YMnO3 unit cell in Fig. 1 are
a = (a, 0, 0), b = (1/2) (−a, a

√
3, 0), and c = (0, 0, c) in an

orthonormal coordinate system. Cell lengths a ≈ 6.120 Å and
c ≈ 11.408 Å [6]. Local axes for Mn ions labeled (ξ , η, ζ )
match orthogonal vectors a, b∗ ∝ (a + 2b), and c, where b∗
is a vector in the reciprocal lattice.

Manganese ions occupy sites 6c (≈ 0.342, 0, 0) in space
group No. 185.200 (P63

′cm′, BNS [16]) that possess an-
timirror symmetry m′ along the tertiary symmetry di-
rection η = [1, 2, 0] [5]. A Mn multipole 〈OK

Q〉 obeys
(σπσθ2η )〈OK

Q〉 = [σπσθ (−1)K+Q]〈OK
−Q〉 = 〈OK

Q〉, where σπ

and σθ are signatures for parity and time, respec-
tively, and are used in Table I [18,20]. In a stan-
dard setting (−1)Q〈OK

−Q〉 = 〈OK
Q〉∗, where ∗ denotes com-

plex conjugation. Whence, diagonal (Q = 0) multipoles
are purely real. We use the phase convention 〈OK

Q〉 =
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[〈OK
Q〉′ + i〈OK

Q〉′′] for real (single prime) and imaginary
(double prime) components. Axial dipoles 〈T1〉, say, in
Table I are purely real, meaning 〈T 1

η 〉 = 0 and 〈T1〉 =
(〈T 1

ξ 〉, 0, 〈T 1
ζ 〉). Looking ahead, 〈T 1

ζ 〉 responsible for dipole
canting out of the basal plane, is directly observed in resonant
x-ray diffraction at basis-forbidden reflections; cf. Eq. (3).

Magnetic symmetry P63
′cm′ belongs to the magnetic

crystal class 6′mm′ that is polar and compatible with
the piezomagnetic effect. Ferromagnetism is not allowed.
The Landau free energy includes E , EHH , and HEE , where
E and H are electric and magnetic fields, respectively. The
magnetic crystal class 6′ possesses identical properties, and it
is correct for symmetry P63

′ in Sec. IV.
X-ray and neutron diffraction amplitudes can be derived

from an electronic structure factor,

�K
Q = [

exp(iκ · d)
〈
OK

Q

〉
d

]
, (1)

where the implied sum runs over the six Mn ions at sites d
in a unit cell. The reflection vector κ = (h, k, l ) with integer
Miller indices. Manganese sites in a cell of hex-YMnO3 are
related by threefold rotations about the c axis, and anti-sixfold
rotations about the c axis with translations c/2. Since rotations
about the c axis do not change Q, the electronic structure
factor is proportional to 〈OK

Q〉 at the cell origin. A complete
version of �K

Q for sites 6c in P63
′cm′ is given in Eq. (A1).

Evaluated for a reflection vector κ = (0, 0, l ) it reduces to

�K
Q (6c) = 〈

OK
Q

〉
[1 + σθ (−1)l+Q][1 + 2 cos(2πQ/3)], (2)

which is appropriate for experiments reported by Ramakrish-
nan et al. [14]. Later, we consider κ = (h, 0, l ). The second
bracket in Eq. (2) is different from zero for Q = 0, ±3, etc.
Conditions imposed on Q are the mentioned consequence of
the alignment of κ and a triad axis of rotation symmetry in
the crystal. Evidently, crystal and magnetic symmetries are
interrelated in a nonzero value of the first bracket. Nuclear
(K = 0) and Thomson multipoles are time even and σθ = +1.
Axial multipoles (σπ = +1) in resonant x-ray diffraction have
an even rank, but this restriction on K does not apply to Dirac
multipoles (σπ = −1).

III. RESONANT X-RAY DIFFRACTION

An atomic resonance in the x-ray absorption spectrum is
often a sharp feature [13,25]. In which case, it is meaningful
to assign an amplitude to the resonant contribution equal to its
energy-integrated intensity. The four amplitudes are labeled
by polarization states depicted in Fig. 3, and they can be devel-
oped in electronic multipoles introduced in Sec. I [19,20,26].
Analytic expressions for axial and Dirac multipoles for an
informative atomic model are listed by Lovesey and Scagnoli
[18]. In our notation, (π ′σ ) denotes a rotated amplitude, and
|(π ′σ )|2 the intensity of the Bragg spot enhanced by the
atomic resonance [18,20]. Universal expressions for diffrac-
tion amplitudes employed here are functions of the rotation of
the illuminated crystal about the reflection vector by an angle
ψ [26].

Parity-even (E1−E1, E2−E2) Mn multipoles denoted
〈T K

Q 〉 satisfy (−1)Q〈T K
−Q〉 = 〈T K

Q 〉; i.e., multipoles are purely
real [σθ (−1)K = +1, σπ = +1 : E1−E1, K = 0 − 2;

FIG. 3. Primary (σ , π ) and secondary (σ ′, π ′) states of polariza-
tion. Corresponding wave vectors q and q′ subtend an angle 2θ . The
Bragg condition for diffraction is met when q − q′ coincides with a
vector τ (h, k, l ) of the reciprocal lattice. Crystal vectors a, b∗, and
c, which define local axes (ξ, η, ζ ) and the depicted Cartesian (x, y,
z) coincide in the nominal setting of the crystal.

E2−E2, K = 0 − 4 ]. Dirac multipoles 〈GK
Q〉 possess discrete

symmetries σπσθ = +1, whence E1−E2 multipoles are
purely real (imaginary) for even K (odd K). Specifically,
a magnetic charge (monopole 〈G0

0〉) that contributes in an
E1 − M1 event (K = 0 − 2) is allowed by site symmetry.

Returning to Eq. (2), we consider basis-forbidden reflec-
tions with odd l . Conditions for nonzero �K

Q are as follows:
E1−E1 and E2−E2; odd K + Q; E1 − M1 and E1−E2;
even K and Q = 0 for Dirac multipoles. Diagonal (Q = 0)
contributions to (0, 0, l ) x-ray diffraction amplitudes do not
depend on the azimuthal angle.

Unrotated E1−E1 amplitudes are zero for κ = (0, 0, l )
with odd l , i.e., (σ ′σ )11 = (π ′π )11 = 0. Whereas, (π ′σ )11 is
proportional to the axial dipole moment along the crystal c
axis, 〈T 1

ζ 〉. Specifically, (π ′σ )11 is purely imaginary with [26],

(π ′σ )11 = (i3
√

2) sin(θ )
〈
T 1

ζ

〉
, (3)

where θ is the Bragg angle depicted in Fig 3. An E2−E2
amplitude contains a hexadecapole; see below. Equal inten-
sities are observed in Bragg diffraction by hex-YMnO3 at
Mn L2 and L3 edges [14]. This result implies a null orbital
contribution from 3d (4p) electrons sampled in an E1−E1
(E2−E2) absorption event. The reasoning is as follows. Re-
duced matrix elements (RMEs) for both parity-even events
are (A + B) and (2A − B) for L2 and L3 edges, respectively
(e.g., [27] and Eq. (73) in Ref. [20]). Here, A is proportional
to the orbital angular momentum in the 3d or 4p states. On the
other hand, B includes expectation values of spin and hybrid
spin-orbital operators. RMEs for K edges are independent of
spin variables (B ≡ 0) [28]. More information on sum rules is
given in Appendix B.

Unrotated Dirac E1−E2 amplitudes are zero while, in
keeping with E1−E1,

(π ′σ )12 = (3/2
√

5)[1 − 3 cos(2θ )]
〈
G2

0

〉
. (4)

Note the 90◦ phase shift between E1−E1 and E1−E2 diffrac-
tion amplitudes. Intensities are in quadrature and interference
between E1−E1 and E1−E2 intensities does not exist.

An anapole, illustrated in Fig. 2, 〈G1
η〉 = −√

2〈G1
+1〉′′ con-

tributes to all (h, 0, l ) diffraction amplitudes, and we provide
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(σ ′σ )12 by way of an example. To this end, r = a/c, and

sin(β ) = rl
√

3/Z, cos(β ) = −2h/Z,

with Z =
√

4h2 + (rl
√

3)
2
. (5)

From the electronic structure factor, Eq. (A1), evaluated for
(h, 0, l ) and odd l ,

(σ ′σ )12

= i(2/5)
√

2 sin(2πhx) cos(θ ) cos(ψ )
[
3
〈
G1

+1

〉′′

+
√

5 cos(2β )
〈
G2

+1

〉′ + 5{2 + 18cos2(β )cos2(ψ )

− 13cos2(β ) − 3cos2(ψ )}〈G3
+1

〉′′]
. (6)

The amplitude (π ′σ )12 in the rotated channel of polariza-
tion has contributions proportional to [sin(2β )〈G2

+1〉′] and
[sin(2β )〈G3

+1〉′′] in addition. Reflections of the type h = 3n
are weak for hex-YMnO3 since the general coordinate x is
close to 1/3. When the azimuthal angle ψ = 0 the crystal
axis b and η coincide. The diffraction condition (h, 0, l ) with
odd l is not satisfied at Mn L edges (L2 ≈ 0.649 keV and
L3 ≈ 0.638 keV), and it is at the K edge (≈ 6.537 keV) for
a range of h and l .

There is no diffraction by polar E1−E2 multipoles 〈U K
Q 〉

for odd l . Likewise for the rotated channel of polarization and
(0, 0, l ) with even l . Diagonal polar multipoles with odd K
diffract in the unrotated channels, however. The dipole 〈U 1

0 〉
is the average displacement of the Mn ion along the crystal c
axis, and for a reflection vector (0, 0, l ) with even l ,

(σ ′σ )12 ∝ i sin (θ )
[√

3
〈
U 1

0

〉 − √
2
〈
U 3

0

〉]
,

(π ′π )12 ∝ i
[√

3 sin (3θ )
〈
U 1

0

〉

+
√

2 sin (θ )
{
1 + cos2(θ )

}〈
U 3

0

〉
.
]

(7)

Amplitudes do not depend on the azimuthal angle, as ex-
pected.

Returning to κ = (0, 0, l ) with odd l , the E2−E2 ampli-
tude (π ′σ )22 possesses a signature of the triad axis of rotation
symmetry along the c axis, in that (π ′σ )22 is threefold periodic
in the azimuthal angle ψ . An E2 absorption event at the L
edges uses electronic states 2p → 4p, and a hexadecapole
〈T 4

+3〉′ is permitted. Specifically,

(π ′σ )22 = (3/
√

10)
( − i

{
sin (3θ )

〈
T 1

ζ

〉

+ sin (θ )
[
2 − 3cos2(θ )

]〈
T 3

0

〉}

+
√

5cos3(θ ) cos (3ψ )
〈
T 4

+3

〉′)
. (8)

The azimuthal angle scan starts with the crystal axis a normal
to the plane of scattering. Notably, magnetic and chargelike
contributions to (π ′σ )22 differ by a 90◦ phase and intensities
are in quadrature.

IV. REDUCED SYMMETRY

Howard et al. reject symmetry P63
′ for hex-YMnO3 for

several reasons, and to further refine the debate about its
relevance we survey the diffraction properties of P63

′ (No.
173.131 BNS) [4,5]. The c-glide plane perpendicular to

[1, 0, 0] (and [0, 1, 0] and [−1,−1, 0]) and mirror plane per-
pendicular to [1,−1, 0] (and [1, 2, 0] and [−2,−1, 0]) are lost
in P63

′, and the chiral vector parallel to the c axis associated
with each triangle of Mn dipoles is all that is retained of
P63

′cm′. The reduced symmetry leaves Mn dipole moments
at arbitrary angles to the crystallographic axes, because Mn
ions in sites 6c are not constrained by any symmetry.

Scattering amplitudes for the reflection (0, 0, l ) with odd l
are identical in P63

′ and P63
′cm′, and Eqs. (3) and (4) are valid

with reduced symmetry; this is not so for (h, 0, l ) and odd l .
We demonstrate distinguishing features of reduced symmetry
by revisiting E1−E2 diffraction and the unrotated amplitude,
Eq. (6). At the level of anapoles and quadrupoles,

(σ ′σ )12 = Eq. (6) + i(2/5)
√

2 sin (2πhx) cos (θ ) sin (ψ )

× sin (β )
[
3
〈
G1

+1

〉′ + √
5
〈
G2

+1

〉′′ + · · ·], (9)

with 〈G1
ξ 〉 = −√

2〈G1
+1〉′, and β is defined in Eq. (5). Dirac

multipoles forbidden in the higher symmetry P63
′cm′ have a

different dependence on the azimuthal angle and β.

V. DISCUSSION AND CONCLUSIONS

In summary, we have studied a magnetic symmetry
(P63

′cm′) that is a well-established description of hex-YMnO3

[5]. New diffraction data provide motivation to add to the ex-
tensive literature on the multiferroic material [14]. Curiously,
the diffraction pattern of symmetry P63

′cm′ has not been pub-
lished. In keeping with previous studies, it allows canting of
axial Mn dipoles out of the hexagonal plane [29,30]. Here,
patterns for magnetic neutron and resonant x-ray diffraction
are derived from the electronic structure factor, Eq. (A1),
for Mn ions in sites 6c, which hosts axial and polar (Dirac)
magnetism. We exploit elementary magnetic crystallography,
whereby symmetries of occupied sites and the magnetic unit
cell are paramount. Encapsulating atomic properties of a ma-
terial in electronic multipoles with discrete symmetries, in
both space and time, enables symmetry informed calculations
of diffraction patterns that can be confronted with observa-
tions; cf. Table I.

The chiral vector in P63
′cm′ parallel to the c axis as-

sociated with each triangle of Mn axial dipoles (Fig. 1)
dictates the diffraction pattern for reflection vectors (0, 0, l ).
Specifically, it fixes angular anisotropy labeled by projections
Q of the atomic multipoles 〈T K

Q 〉 with integer rank K and
−K � Q � K (Table I). The result Q = 3n is self-evident,
and scattering amplitudes for x-ray diffraction enhanced by an
electric dipole–electric dipole (E1−E1; K = 0, 1, 2) absorp-
tion event use Q = 0. In consequence, Bragg spot intensities
do not change with rotation of the crystal about the reflection
vector (an azimuthal angle scan). We find no intensity in
unrotated channels of polarization (Fig. 3) and Eq. (3) for
the rotated channel; both findings are consistent with data
gathered on hex-YMnO3 at a temperature of 10 K at the
space group forbidden reflection (0, 0, 1) [14]. Moreover,
intensities measured at the L2,3 absorption edges are equal, to
a good approximation [14]. The observation implies that Mn
orbital states are negligible in the dipole 〈T 1

ζ 〉 if intensities
are enhanced by an E1−E1 event, and appropriate sum rules
are examined in Appendix B. Dirac multipoles contribute to
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FIG. 4. Radial integrals for 3d4 (Mn3+) displayed as a function
of the magnitude of the reflection vector κ = 4πs with s = sin(θ )/λ
( Å−1), Bragg angle θ , and neutron wavelength λ. Also, a dimension-
less variable w = 3aoκ where ao is the Bohr radius and κ is in units of
Å−1. Black and purple lines are standard radial integrals 〈 j0(κ )〉 and
〈 j2(κ )〉 that occur in the axial dipole, Eq. (C1). Red, green, and blue
curves are radial integrals in the polar dipole, Eq. (C2). Two integrals
(g1) and ( j0 ) diverge in the forward direction of scattering, and
quantities w(g1) and w( j0 ) are displayed for this reason. Calculations
were performed with Cowan’s atomic code [36,37], and figure was
made by G. van der Laan.

diffraction enhanced by a parity-odd E1−E2 event. As with
parity-even E1−E1, unrotated amplitudes are zero. Equation
(4) for the rotated amplitude is proportional to the diagonal
component of the Dirac quadrupole and independent of the
azimuthal angle. E1−E1 and E1−E2 amplitudes differ with
respect to phase and the Bragg angle. Nonmagnetic polar
multipoles that are signatures of the polar character of the
space group have zero amplitudes for (0, 0, l ) with odd l .
Looking ahead to future experiments, an anapole depicted
in Fig. 2 parallel to the tertiary symmetry direction [1, 2, 0]
contributes to all E1−E2 amplitudes with a reflection vector
(h, 0, l ) with odd l , e.g., Eq. (6).

Magnetic neutron diffraction by space group P63
′cm′ is

discussed in Appendix C using (h, 0, l ) with odd l . Unlike
x-ray diffraction, multipoles for neutron diffraction depend
on the magnitude of the reflection vector. It takes the form
of weighted averages of the atomic radial wave function.
Figure 4 depicts all radial integrals pertinent to our discussion
of diffraction by Mn ions. Two appear in the transition-metal
dipole (C1), and the anapole (C2) contains three, two of
which diverge in the forward direction. Diffraction by axial
multipoles includes a dipole parallel to the ξ axis [1, 0, 0] that
is likely the dominant feature at small wave vectors κ ≈ 0;
cf. Fig. 4. A quadrupole due to the correlation of the spin
anapole (S × n) and orbital n operators enters at around κ ≈
6 Å−1. Notable features of diffraction by Dirac multipoles are
contributions by quadrupoles 〈H2〉 ∝ [(h1)〈{S ⊗ n}2〉], with

the radial integral (h1) depicted in Fig. 4. The exact same
quadrupoles explain neutron diffraction from high−Tc com-
pounds Hg1201 and YBCO [23,24].

Resonant x-ray diffraction presented by the magnetic struc-
ture P63

′ is discussed in Sec. IV; it is in the history of
hex-YMnO3 [4,5]. Manganese ions occupy sites in P63

′ that
have no symmetry. Even so, patterns for P63

′ and P63
′cm′

are identical for reflections (0, 0, l ) with odd l . Scope to
observe the reduced symmetry in P63

′ exists in reflections
(h, 0, l ) and odd l . To this end, we give the E1−E2 unrotated
amplitude Eq. (9).
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APPENDIX A: ELECTRONIC STRUCTURE FACTOR

The electronic structure factor is defined by Eq. (1). Let
� = σθ (−1)l+Q, with � = −(−1)l+Q for Dirac multipoles,
and � = (−1)l+K+Q for E1−E1 and E2−E2. For a reflection
vector (h, k, l ) and sites 6c in symmetry P63

′cm′,

�K
Q (6c) = 〈

OK
Q

〉
[α + α∗� + exp (i2πQ/3){β + β∗�}

+ exp (−i2πQ/3)�{αβ + α∗β∗�}]. (A1)

Here, α = exp(i2πhx) and β = exp(i2πkx), with x ≈ 0.342
[6]. As the material is ferroelectric (polarization along the c
axis), the structure factor is arbitrary to within a phase that we
set equal to unity (z = 0).

APPENDIX B: SUM RULES

Subsequent results are L edge reduced matrix elements
(RMEs) of electronic multipoles (χ ||OK ||χ ′), where χ is a
composite label for necessary quantum numbers excluding
projections Q. An expectation value 〈OK

Q〉 is a sum of RMEs
each multiplied by a 3 j symbol that is the sole bearer of Q
(Wigner-Eckart theorem). Furthermore, an RME is written
in terms of standard unit tensors W (a,b)K with spin variable
a = 0 or 1, an orbital variable b, and even (a + b + K) [20].
There are equivalent operators for unit tensors that expose
their physical content. Equivalent operators for dipoles are
W (1,0)1 ∝ S, W (0,1)1 ∝ L, and W (1,2)1 ∝ [S(R · R) − 3R(S ·
R)] where R is the position operator conjugate to L. For the
E1−E1 dipole 〈T1〉,

A = −
√

(1/30)W(0,1)1,

B = 1/(3
√

15)[W(1,0)1 −
√

35W(1,2)1]. (B1)

The coefficients are correct for L edges and d-like valence
states. Turning to RMEs for E2−E2 and 2p → 4p, A is the
same as for E1−E1 with 〈T1〉 an expectation value of Mn 4p
states. Orbital B is the sum of a dipole and an octupole W (1, 2)3
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that determines 〈T 3
0 〉 in (π ′σ )22. For an E2−E2 event,

B = −1/(3
√

5)[W(1,0)1 − W(1,2)1]

−
√

(2/15)W(1,2)3, (B2)

with 〈T 3
0 〉∝ 〈W (1,2)3〉0 ∝ 〈[5Sζ R2

ζ−2Sζ (R · R) − Rζ (S · R)]〉.
RMEs for an E1−E2 event are listed by Lovesey and

Balcar [31].

APPENDIX C: MAGNETIC NEUTRON DIFFRACTION

Magnetic multipoles in neutron diffraction depend on the
magnitude of the reflection vector, κ [22,33,34]. A nominal
Mn electronic configuration 3d4 (Mn3+) with a high-spin
configuration S = L = 2 and total angular momentum J = 0
is used for RMEs of parity-even neutron multipoles; cf. Table I
of Ref. [22].

An axial dipole 〈T1〉 contains 〈 j0(κ )〉 and 〈 j2(κ )〉, which
are averages of spherical Bessel functions of order 0 and
2 with respect to the radial density of the open shell. By
definition, 〈 j0(0)〉 = 1 and 〈 j2(0)〉 = 0, and results in Fig. 4
are illustrative of their dependence on κ [34]. A guide to the
transition-metal dipole,

〈t1〉 ≈ (〈μ〉/3)[〈 j0(κ )〉 + 〈 j2(κ )〉(g − 2)/g], (C1)

is often used [32,35]. Here, the magnetic moment 〈μ〉 = g〈S〉
and the orbital moment 〈L〉 = [(g − 2)〈S〉]. The coefficient of
〈L〉 in Eq. (C1) is approximate, while 〈T1〉 = (1/3)〈2S + L〉
for κ → 0 is an exact result. Multipoles with even K arise
from electron spin and spatial degrees of freedom; e.g.,
〈t2

0 〉 ∝ [〈 j2(κ )〉〈(S × n)0n0〉] with n = R/R, and a maximum
of 〈 j2(κ )〉 around κ ≈ 6 Å−1 [22]. Axial multipoles have
ranks K = 1 − 5 for d-type ions. Intensity of a magnetic
Bragg spot = |〈Q⊥〉|2 when the neutron beam is unpolarized
[22,32]. In more detail, 〈Q⊥〉(±) = [e × (〈Q〉(±) × e)] with a
unit vector e = κ/κ , and superscripts refer to axial (+) and
Dirac (−) multipoles. The intermediate amplitude 〈Q〉(+) is
proportional to the axial magnetic moment 〈μ〉 in the forward
direction of scattering, with 〈Q〉(+) = 〈μ〉/2 for κ = 0, while

the dipole in 〈Q〉(−) can be related to anapoles [22,36]. In
place of Eq. (C1), the Dirac dipole 〈d〉 depends on three radial
integrals,

〈d〉 = (1/2)[i(g1)〈n〉 + 3(h1)〈S×n〉 − ( j0)〈�〉]. (C2)

Radial integrals (g1) and ( j0) depicted in Fig. 4 diverge in the
forward direction of scattering. Not so for (h1) that accompa-
nies a spin anapole 〈S × n〉. It is also the κ dependence of the
Dirac quadrupole 〈H2〉 ∝ [(h1)〈{S ⊗ n}2〉] observed in neu-
tron diffraction from high−Tc compounds Hg1201 and YBCO
[23,24]. Returning to Eq. (C2), 〈�〉 = [〈L×n〉−〈n×L〉] is an
orbital anapole (toroidal dipole), depicted in Fig. 2.

Neutron scattering amplitudes for κ = (0, 0, l ) with odd
l are identically zero, for both axial and Dirac multipoles.
Results for (h, 0, l ) and odd l are complicated and we limit
results to low-order multipoles K = 1, 2, 3. Amplitudes have
a common factor [2isin(2πhx)] that we omit from the follow-
ing results. With e = (eξ , eη, eζ ) = (h

√
3, h, rl

√
3)/Z and

e · e = 1,

〈Qξ 〉(+) ≈ (9/4)
〈
t1
ξ

〉 + (3/2)
√

3e2
ζ

〈
t2
+1

〉′′
+ (3/16)

√
21

(
3 − 7e2

ζ

)〈
t3
+1

〉′
,

〈
Qη

〉(+) ≈ (3/4)
√

3
〈
t1
ξ

〉 + (3/2)e2
ζ + 〈

t2
+1

〉′′

+ (3/4)
√

7
(
7e2

η − 1
)〈

t3
+1

〉′
,

〈Qζ 〉(+) ≈ −6eηeζ

(〈
t2
+1

〉′′ + √
7
〈
t3
+1

〉′)
. (C3)

The intensity for (h, 0, l ) with odd l ,

|〈Q⊥〉(+)|2 ≈ (9/4)
√

3e2
ζ

〈
t1
ξ

〉[√
3
〈
t1
ξ

〉 + 16e2
η

〈
t2
+1

〉′′]
, (C4)

to a good approximation at a level of dipoles and quadrupoles.
The equivalent intensity for diffraction by the Mn anapole and
Dirac quadrupole 〈H2

+1〉′ is

|〈Q⊥〉(−)|2 ≈ 3(2e2
ζ + 1)

[〈dη〉 + (3/
√

5)
(
2e2

ζ − 1
)〈

H2
+1

〉′]2
.

(C5)
Both intensities vanish for h = 0 by virtue of a common factor
[sin(2πhx)]2 not shown explicitly.
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