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We introduce a model to study magnon scattering in skyrmion crystals, sandwiched between ferromagnets,
which act as the source of magnons. Thanks to recent experimental advances, such a set-up can be realised
in quantum Hall heterojunctions, and it is interesting as skyrmions are topological objects while the skyrmion
crystals break internal and translational symmetries, thus allowing to study the interplay of topological and
symmetry breaking physics. Starting from a basis of holomorphic theta functions, we construct an appropriate
analytical ansatz for such a junction with finite spatially modulating topological charge density in the central
region and vanishing in the leads. We then construct a suitably defined energy functional for the junction in
terms of these spinors and derive the resulting equations of motion, which take the form of a Bogoliubov-de
Gennes-like equation. Using a combination of analytical techniques, field theory, heuristic models, and fully
microscopic recursive transfer-matrix numerics, we calculate the spectra and magnon transmission properties
of the skyrmion crystal. We find that magnon transmission can be understood via a combination of low-energy
Goldstone modes and effective emergent Landau levels at higher energies. The presence of the former manifests
in discrete low-energy peaks in the transmission spectrum and we show how the these features reflect the nature
of the Goldstone modes arising from symmetry breaking. In turn, the effective Landau levels, which reflect the
topology of the skyrmion crystal, lead to band-like transmission features, from the structure of which further de-
tails of the excitation spectrum of the skyrmion crystal can be inferred. Such characteristic transmission features
are not present in competing phases of either the quantum Hall phase diagram or in metallic magnets, and hence
provide direct and unique signatures of skyrmion crystal phases and their properties. We discuss experimental
considerations regarding the realisation of our model, which most directly apply to heterojunctions in monolayer
graphene with the central region doped slightly away from unit filling and the two ends exactly at unit filling, a
v=1:1=£46v:1 junction. Such physics is also relevant to junctions formed by metallic magnets, which host
skyrmion crystal phases, or partly in junctions with artificially realized and periodically modulated gauge fields.
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I. INTRODUCTION

Two central paradigms of condensed matter physics are
symmetry breaking and, more recently, topology [1,2]. The
concepts involved, down to the language describing them, are
quite distinct, and it is interesting to ask what happens in
“mixed situations” where emergent topology and symmetry
breaking are both present. One of these is provided by the
physics of skyrmions, which are topological objects, which
also carry a notion of symmetry breaking—most immediately
regarding internal spin degree of freedom. Natural questions
thus arise regarding the demands of the respective paradigms.
For instance, Goldstone’s theorem demands the existence of
stable quasiparticles, low energies, while topological phases
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tend to come with gapped spectra and low-lying excitations
living only at edges and interfaces. Moreover, the natural
excitations of topological systems can have quantum num-
bers, which are quite distinct from those of the underlying
electronic degrees of freedom.

A case in point is the SU(2)-invariant quantum Hall effect
at v = 1, where a quantized transport plateau coexists with
skyrmionic elementary excitations arising from the ferromag-
netic ground state. Quantum Hall skyrmions are special in that
they possess quantized electrical charge [3]. Tuning slightly
away from this filling is believed to lead to the formation of a
ground-state configuration of skyrmion crystals [4]. Skyrmion
crystals are like Wigner crystals of composite objects, each
of which comprises a group of textured spins and acts as a
topological defect [5]. Crucially, these crystals exhibit spatial
symmetry breaking on top of the internal symmetry break-
ing. Skyrmion crystals have also been heavily studied in
metallic magnets, where they arise due to the Dzyaloshinskii—
Moriya interaction, and their detection in such settings was
first reported in landmark neutron scattering [6] and electron
microscopy experiments [7]. While there has been some in-
direct evidence for the existence of a quantum Hall skyrmion
crystal, via NMR [8,9], heat capacity [10], Raman [11], and
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FIG. 1. Results for the quantum Hall ferromagnet (QHFM)-skyrmion crystal junction. (a) Schematic picture of the scattering problem and
the experimental setup—sharp interface drawn only for illustrative purposes. (b) Cartoon description of the spectrum of the skyrmion crystal
comprising higher nonuniform Landau levels and the lowest Riemann-Goldstone Landau level. (c) High-energy band-like transmission features
due to effective nonuniform Landau levels [generated due to spatially modulated topological charge density profile (with finite nonzero mean) in
(f) and not uniform applied external field]. (d) Low-energy transmission features due to presence of Goldstone modes in the Riemann-Goldstone
Landau level. Two sets of linearly separated peaks indicating linear dispersion and two distinct velocities of the modes. Small split in peaks
with larger spacing (velocity), implies two modes are almost degenerate [see Fig. 9(b) for spectrum]. (e) Spin profile of the junction, from
Eq. (6), generated by the truncated holomorphic theta function ansatz in Eq. (7). The tail of every arrow is a lattice site, its direction is the
projection on the z-x plane, and the color is the y component. (f) Topological charge density profile for the junction, obtained from Egs. (5)
and (6). Parameters used for (c)—(f) are g =0.8,J = 1,N = 140, and N' = 2

microwave spectroscopy [12] experiments, direct evidence,
such as that in an electron microscopy experiment imaging
the degree of crystalline order is still missing.

Experimental techniques to detect crystalline ordering and
to unveil the excitation spectra of ordered structures have a
long history in solid state physics. From Bragg scattering
of x-rays to detect crystalline structure of solids, to neutron
scattering and ARPES experiments to probe the excitation
spectra, with the advent of a new experimental technique, new
theoretical explorations are called for.

Recent magnon transport experiments in junctions of quan-
tum Hall states present one such exciting technique [13-17].
While traditional ARPES and neutron scattering experiments
are extremely challenging for thin nanomaterials such as
graphene, electron transport experiments provide a promising
route to probe quantum Hall physics [18,19], especially due
to the ability to tune carrier density with voltage in graphene.
However, electron transport experiments are largely insensi-
tive to the underlying spin structure of the ground states.

Pioneered in Ref. [13], magnon transport techniques in-
volve a coherent source of magnons, usually a quantum Hall
ferromagnet, which are injected into an insulating bulk sand-
wiched between the leads. These techniques allow us to probe
the spin structure of the bulk and have been used to study var-
ious ground states expected at different fillings of the zeroth
Landau level in monolayer graphene.

Applying these experimental techniques to questions in-
volving the topology-symmetry dichotomy has to face a
number of technically and conceptually unavoidable issues.

Concretely, constructing an interface between a skyrmion
crystal and a nontopological magnetic state cannot simply be
achieved by pasting the two subsystems together along a junc-
tion in the way one would, e.g., join a superconductor with a
normal metal to observe Andreev reflection. The reason is that
the skyrmion is a nonuniform and extended object. An inter-
face will thus minimally need a lateral extent set by the size of
the skyrmion itself. Moreover, such a problem is theoretically
interesting because skyrmions and their crystals are objects
that lie in complex projective spaces [CP?~! for SU(d)
systems], hence the interface problem becomes a nonlinear
problem as opposed to the conventional bulk-boundary corre-
spondence in quantum Hall and topological insulators [20,21].

Here, we devise and study a scattering problem, which
is motivated by, and amenable to, the above mentioned ex-
perimental methods. The set-up consists of a quantum Hall
heterojunction [Fig. 1(a)] of a skyrmion crystal sandwiched
between two simple quantum Hall ferromagnets, as might be
obtained by setting the filling of the outer regions to v =1
and doping (or, rather, gating) the central region slightly away
from such filling v = 1 £ §v. Such a setup has already been
realized in one of the quantum Hall junction experiments [22].

Our central result is that the energy dependence of
the magnon transmission amplitude reflects the topology-
symmetry dichotomy in exquisite detail, establishing such
magnon scattering experiments as an excellent platform
to probe this dichotomy. The topology of the skyrmion
crystal bequeaths an emergent Landau-level structure to the
response; while its lowest Landau level—which we christen
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Riemann-Goldstone Landau level—contains the physics
of the symmetry breaking itself. Remarkably, from the
magnon transmission, one can directly infer the nature of the
Goldstone modes, which is characteristic of the skyrmion
crystal as well as the effective Landau level structure of the
higher levels.

The physics of skyrmions is a very large field of re-
search spanning the fields of high-energy, metallic magnets/
spintronics, and quantum Hall physics. Skyrmion crystals,
however, appear only in the latter two. In the quantum Hall
community there have been previous papers studying the
dispersion of infinite skyrmion crystals [23,24]. Similar pa-
pers on infinite skyrmion crystals have also been undertaken
in metallic magnets, although the microscopic physics there
is entirely different and the skyrmions are not electrically
charged [25-27]. Moreover, two very influential papers in the
spintronics literature studied the interaction of a magnon ex-
citation of a single skyrmion with the skyrmion itself [28,29].
However, these magnon transport techniques present a com-
pletely different theoretical and physical problem, shifting
from dispersion calculations of infinite skyrmion crystals and
studies of skyrmion motion via magnon emission to the in-
teraction of ferromagnetic magnons with a finite skyrmion
crystal sandwiched between two ferromagnets. This complex
interaction between a boson and an electronic solid of quan-
tum Hall skyrmions serves as a novel framework to explore
the rich physics associated with the confluence of topology
and symmetry breaking. Moreover, on the macroscopic level,
such a theoretical approach is also important for metallic
magnets where people have started to explore spin transport
through textured domain walls between a ferromagnet and an
antiferromagnet [30] and also possibly for electronic trans-
port through periodically modulated regions of artificial gauge
fields [31].

A significant fraction of the following account details im-
portant technical advancements that we made to fully solve
this problem. We focus on advances which are transferable
and useful to other contexts and fields in the main text, and
discuss some more specific ones in the Appendices. First, we
introduce our completely analytical model of a ferromagnet-
skyrmion crystal-ferromagnet interface formed from a basis
of holomorphic theta functions, as well as a suitably defined
energy functional from which we derive our equations of
motion. Second, we introduce a method to discretize the topo-
logical charge density contributions to the energy functional.
Third, we explain our microscopic recursive transfer matrix
approach to calculate the full transmission and reflection ma-
trix of the skyrmion crystal scattering problem, even in the
presence of evanescent contributions. All these advances can
find applications in transport problems between interfaces of
such topologically trivial and nontrivial structures and pos-
sibly also in transport through regions of spatially varying
magnetic field.

For the less technically inclined readers, we supply some
simple heuristic models to account for the physical phenom-
ena that we have uncovered. While these do not capture the
full complexity of the topology-symmetry dichotomy, they
do provide a clear rationale for why the proposed set-up is
so well suited for studying this problem, and they yield a
transparent and intuitive framework for the interpretation of

the full results of our analysis. These heuristic models al-
ready provide some predictions which can be tested in future
skyrmion crystal junction experiments.

The remainder of our account is structured as follows.
Section II provides a short-hand self-contained and largely
nontechnical summary of our results. Section III contains
some general considerations of the dichotomic structure of the
problem which leads to an intuitive picture for the formalism
developed in later chapters, and for the interpretation of the
results thus obtained: a model of a particle in a heterostructure
comprising a modulated magnetic field sandwiched between
two zero-field regions provides a simple route to capturing
the topological features which are independent of the local
symmetry breaking. For the Goldstone sector, we consider a
simplified interface between a ferro- and an antiferromagnet
on a lattice, which allows us to study the simplest case of a
dispersion mismatch problem. We note that it has come as
quite a surprise to us that this dichotomy should be so neatly
resolvable by this pair of heuristic models.

Section IV is the most technical section of this paper.
In Sec. IV A, we introduce our holomorphic theta functions
ansatz and our energy functional. In Sec. IV B, we intro-
duce the method to discretize the topological charge density
contributions. We end this section with Sec. IV C, where we
explain our transfer matrix procedure for the magnon scat-
tering problem. In Sec. V, we present additional results for
the quantum Hall ferromagnet-skyrmion crystal-ferromagnet
problem which are not discussed in Sec. II, and we highlight
similarities with the heuristic models presented in Sec. III.
Finally, in Sec. VI, we end by discussing the experimental
relevance of our model (Sec. VI A) and further implications
of our work (Sec. VIB).

II. OVERVIEW OF RESULTS

Our main result is a calculation of the magnon transmission
spectrum across the skyrmion crystal. We find the following
characteristic set of signatures in the transmission spectrum
which reflect the topology-symmetry dichotomy:

(i) The high-energy transmission spectra comprises
sharp peaks in discrete bands of energies, with uniform
gaps between the bands as in Fig. 1(c). The sharp peaks
within each band arise as a consequence of Fabry-Perot like
resonances when the incoming magnon energy coincides
with bound states of the scattering problem. Remarkably,
these bound states have an emergent Landau-level structure.
These levels are emergent because they reflect the spatially
modulated topological charge density (which has a finite
nonzero mean) of the skyrmion crystal (instead of the applied
external constant magnetic field): magnons experience the
Berry flux of the spin texture in the central region as an
effective magnetic field.

(i) The lowest-emergent Landau level, which we call the
Riemann-Goldstone Landau level due to it arising from holo-
morphic constraints [32] (see Sec. IV A for details), hosts the
Goldstone modes associated with the symmetry breaking. The
transmission spectrum in this low-energy window exhibits
discrete sets of uniformly spaced peaks in a small energy
window as in Fig. 1(d).
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FIG. 2. Semiclassical analysis for heuristic model with constant magnetic field in the central region. All arguments and results in this
panel are for the Landau gauge (A, = 0). [(a)—-(c)] Qualitatively different effective potentials for different values of transverse momentum,
gy = 0 for (a), —eA,(00)/2 < q, < 0 for (b) and —eA,(c0) < g, < —eA,(00)/2 for (c), the g, < —eA,(00) case is a reflection of (a). Insets
of (a) and (b) show the constant magnetic field profile with smooth decay away from central region and the corresponding vector potential
in the Landau gauge respectively. d) Different qualitative regions of scattering in energy-transverse momenta parameter space with the labels
in each region indicating the x support of the corresponding semiclassical trajectories—we get two regions of full reflection, x €] — 00, x1]
or x € [xy, oo, one region with bound trajectories (x € [xp, x1]) and one region with full transmission (x €] — oo, oo[). [(e), (f)] Numerically
obtained transmission and reflection coefficients respectively for the quantum problem with Hamiltonian in Eq. (1) showing great qualitative
agreement with the semiclassical picture in (d). We only consider the case of a particle incident from the left which is why the reflection
coefficient in (f) is not fully symmetric as in (d) which considers both left and right incident processes.

Indeed, the effects due to topology and symmetry break-
ing are delicately intertwined. At high energies, the width
of and gaps between these discrete bands of transmission
corresponds to the same of the emergent Landau levels, which
reflect the topology of the skyrmion crystal (see Fig. 9 and
Sec. V). Hence magnon transmission allows one to infer the
nature of the high-energy modes of the skyrmion crystal (i.e.,
modes just above the Goldstone spectrum). On increasing
energy the magnon transmission also exhibits a characteristic
angular dependence, with certain preferred angles of trans-
mission and a nonmonotonic dependence of transmission on
channel number. This dependence reflects the spatial sym-
metry breaking, i.e., it is a consequence of the crystalline
order of the skyrmions. Moreover, the modes in the Riemann-
Goldstone Landau level are associated with the SU(2) group
manifold acting on the CP' local order parameter manifold
of the skyrmion crystal. Notably, the uniform spacing within
each set of low-energy peaks, indicates the linear dispersion
of these Goldstone modes at small momenta. The number of
such sets of peaks also directly allows us to infer the presence
of three such modes. Hence, not only do these results unam-
biguously indicate the presence of a skyrmion crystal, they
also unveil the nature of its excitation spectrum, both at low
and at high energies. Figures 1 and 9 (see below) highlight
these points clearly.

Section IIT A presents a simplified heuristic model, which
accounts for the topological—but not the symmetry—aspects
of these results. We prepend this discussion, Sec. III A, to

the much more technical analysis by which it was motivated
(Sec. IV and Appendix A), where we found that the effective
description of the scattering problem bears some resemblance
to the problem of a particle scattering off of a region with
spatially varying magnetic field: We are led to study a (single)
particle scattering off a region with spatially varying magnetic
field.

To single out the effect of the variation of the magnetic
field, we first consider the problem of a constant magnetic
field and map out the transmission and reflection coefficients
in energy-momentum space as in Figs. 2(f)-2(h). We find that
such a problem is characterized by a critical-energy scale E,
below which there is no transmission, and regions of either
full transmission or full reflection with a smooth crossover
from one to the other. We also note that there are bound
states below E,, which play an important role on introducing
spatial modulations of the magnetic field. Also any nonzero
transmission is accompanied by an angular deviation which
we calculate as a function of incoming energy and present in
Fig. 5(a). These features can be accounted for in a picture of
semiclassical cyclotron orbits.

The physics becomes even richer on introducing mod-
ulations along the transverse direction, as is present, in a
skyrmion crystal. On doing so, we find that there are sharp
transmission peaks in the semiclassically forbidden region,
i.e., below E,. Moreover, we find that these peaks have a spe-
cial structure, they occur in certain energy windows, and these
windows have uniform gaps between them as in Fig. 3(a).
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FIG. 3. Qualitative arguments for heuristic model with spatially modulated magnetic field along y axis. (a) Continuous spectrum for
scattering and discrete spectrum for bound states. Modulation along transverse directions breaks g, conservation and periodic modulation
implies g, is conserved modulo 27 /a. Transmission below critical energy E, is possible if the energy of one of the channels coincides with
the bound state. (b) Pictorial description of the possibility of tunneling into other propagating channels due to crystalline order. Each channel
has its effective potential profile and regions of allowed transmission as in Fig. 2(c)-2(f). The presence of multiple propagating modes allows
transmission for an incoming magnon due to off-diagonal scattering. (c) Number of propagating modes in the @ — g, plane in the unfolded zone
scheme (for visual reasons). One can transfer this to the first Brillouin zone by standard folding techniques. Each color is for the two curves
2¢% and 2(gy; + A(00))?, such that in the region lying above both curves one gets an outgoing propagating mode for the ith channel, where
Gy = ¢\ 4 27 (i — 1)/a. For this figure we use By = 27 /a* and L = 20. (d) Pictorial description of nonmonotonicity of channel resolved
transmission from qualitative arguments presented in Sec. III B and figure (b) in this panel [not real data, see Fig 5(b)].

Such gaps correspond to the Landau level gaps in the spec-
trum and the energy windows occur due to the dispersion
in the Landau levels introduced by the spatial variation. We
also find that the heights of most of the transmission peaks
are suppressed. These phenomena are in turn accounted for
in terms of resonances from bound states, and interference
between more than one propagating mode, respectively.

This brings us to our analysis of the full ferromagnet-
skyrmion crystal-ferromagnet junction problem, the solution
to which requires several technical advancements. We include
three such advances in the main text (others are relegated to
Appendices) in Sec. IV, which are also applicable to other
problems in transport calculations of such junctions between
topologically trivial and nontrivial structures. These advance-
ments draw from a wide variety of fields and reflect the
richness of this problem.

First, in Sec. IV A, we address the difficult nonlinear
problem of constructing an interface between such topo-
logically trivial and nontrivial structures as mentioned in
the introduction. We use an analytical ansatz constructed
from truncated holomorphic theta functions to model our
ferromagnetic-skyrmion crystal-ferromagnetic junction. Us-
ing the theta functions in Eq. (7) as basis functions, we can
generate a textured skyrmion crystal with two skyrmions per
unit cell in the central region with similarly aligned ferromag-
nets on the two sides as shown in Fig. 1(e). On calculating the
topological charge density from these truncated theta func-
tions, using Eq. (5), as in Fig. 1(f), we see that we get periodic
modulations of the topological charge density in the central
region and a smooth decay to zero away from it. The region
across which we get a smooth decay defines the interface.
Similar holomorphic constructions can be used for other topo-
logical structures and can also be extended for fractional or
entanglement skyrmion crystals [33].

Using these theta functions, we reverse engineer an energy
functional with short range interactions and with the spin con-
figuration in Fig. 1(e) as the minima in the continuum limit.
We calculate the equations of motion for the excitations of this
using techniques from linear spin-wave theory in Appendix. It

is the form of the variation in the energy functional, given in
Eq. (11), which resembles the free particle problem discussed
in the previous paragraphs.

Any microscopic numerical calculation of the transport
properties of such junctions requires real-space discretization
of the continuum energy functional in Eq. (11). Discretizing
the exchange term is a standard exercise in finite differ-
ence methods; however, discretizing the change in topological
charge density is highly nontrivial task. In Sec. IVB we in-
troduce a geometrical method to do this discretization in a
completely analytical way. Our approach relies on the short-
range nature of our interaction, which allows us to express
the topological charge density in terms of the solid angle
subtended by the four geodesics connecting the four spin
vectors of a real-space plaquette on the Bloch sphere. Our
final result in Eq. (22) expresses the discretized form of the
second term in Eq. (11) as a tight-binding model with up to
second-nearest-neighbor hopping.

To calculate the full magnon transmission matrix, we use
a recursive transfer matrix approach explained in Sec. IV C.
First, we discretize the energy functional in real space us-
ing standard finite difference methods for the exchange term
and the topological charge discretization procedure given in
Sec. IV B. The usual recursive columnwise procedure involves
multiplying the transfer matrix at every column and forming
a product matrix which relates the left and right ends of the
problem. However, such an approach runs into problems in the
presence of evanescent contributions, which cause a numeri-
cal instability in obtaining the final product matrix. We resolve
this instability by adapting a method introduced by Pendry
for similar problems in optics [34]. This method allows us to
obtain the full transmission matrix for the magnon and hence
gives us access to channel resolved transmission coefficients.

Section V provides additional numerical results for the full
problem of the skyrmion crystal junction, as summarised at
the very beginning of this section, and using the technical
advancements made in Secs. IV A-IV C. We also obtain the
spectra of the high-energy modes and show how the trans-
mission energy windows correspond exactly to the energies
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of these emergent Landau levels. Further, we comment on
how the heuristic model of a particle scattering in a region
of spatially varying magnetic field qualitatively captures the
behavior in this energy regime. However, the transmission fea-
tures at low energies cannot be understood from that heuristic
framework, since that framework has no Goldstone modes.
We obtain the dispersion of these Goldstone modes, as in
Fig. 9(b) and show how the transmission varies on vary-
ing their dispersion. On increasing dispersion, the discrete
low-energy peaks in transmission shift in position and their
intensity increases as in Fig. 9(a). The transmission spectra
in this regime has qualitative similarities with the heuristic
model for the antiferromagnet sandwich, which we introduce
in Sec. III D and hence one can borrow our intuitive under-
standing from that analysis.

As a significant motivation of our paper were the experi-
mental advances described in the introduction, in Sec. VI A
we present arguments for how our theoretical predictions can
be experimentally testedinav =1 : 1 & v : 1 quantum Hall
junction on monolayer graphene. There are elements of our
model that might not be completely realistic such as absence
of anisotropies, delta function interaction potential, and a
smooth interface. In Sec. VI A, we comment on how the pres-
ence of realistic anisotropies might change some low-energy
signatures by gapping out a subset of the Goldstone modes but
some signatures of the remaining gapless modes shall remain.
We comment on how to realize short-range interaction using
metallic gates and finally we comment on situations where the
interface is sharper than in our model. We finally close with
an outlook in Sec. VIB.

III. HEURISTIC MAGNON SCATTERING

In this section we provide details of two heuristic mod-
els as mentioned in the earlier sections. In the first three
subsections we introduce and study a particle scattering off
a region with (i) a constant and then (ii) a spatially modu-
lated magnetic field. The spatial profile of the magnetic field
mimics that of the topological charge density in the skyrmion
crystal junction. This heuristic model turns out to be useful
since (as shown in the next section and in Appendix A) it
turns out to qualitatively describe (primarily the) topological
aspects of the skyrmion crystal problem. In the last subsec-
tion we introduce a simple model to discuss the coupling
between qualitatively different kinds of Goldstone modes,
namely a ferromagnet-antiferromagnet-ferromagnet junction.
Both these models allow us a simpler and intuitive understand-
ing of complementary parts of the difficult and technically
involved problem fleshed out in Secs. IV and V.

A. Particle scattering off a region of constant magnetic field

To isolate the effect of spatial modulations in the magnetic
field we first consider a constant magnetic field profile in the
central region, which exponentially decays to zero across the
interface as shown in the inset of Fig. 2(a). Such a system, in
the Landau gauge (A, = 0, B(x) = 0,A,(x)), has the Hamilto-
nian

1
H=%M+%+%mﬂ (1

We consider the following magnetic field profile B, =
By/2(tanh(x — L/2) — tanh(x 4+ L/2)) as in Fig. 2(a), where
By is the value of the magnetic field in the central region of
length L. Throughout this discussion, we use a gauge in which
A,(—00) =0 and A,(x) is a positive and increasing function
of x with a saturation value A,(o0) as shown in the inset of
Fig. 2(b).

Since we have translational invariance along y, we have
two degrees of freedom and two conserved quantities, the total
energy E and the transverse momentum g,. Hence, we have an
integrable system.

Let us understand the semiclassical trajectories for such
a system. Since ¢, is conserved we get a collection of one
dimensional models with an effective potential Vs (x, g,) =
(qy + €A, (x))*/(2m).

As a function of x, qualitatively, we have three different
types of effective potential depending on g,. (i) If g, > 0, Vegr
is monotonically increasing with Vi, = q% /(2m) and Vipax =
(qy + aAy(oo))z/(Zm) as in Fig. 2(a). For —eA,(o0) < g, <
0, by contrast, g, + eA,(00) changes sign at x, and we get two
types of potential curves, (ii) for —eA,(c0)/2 < g, < 0, as in
Fig. 2(b), and (iii) for —eA,(00) < g, < —eA,(00)/2, Vit is
as in Fig. 2(c). Finally for g, < —eA,(00), Vegr is monotoni-
cally decreasing and looks like the reflection of Fig. 2(a).

For each region, the support in x of the corresponding
trajectory depends on the incoming particle energy E. If
E < Viin, no scattering states exist, if Vipin < E < Vipax, the
classical trajectories are purely reflected, i.e., the radius of the
cyclotron orbits is less than the length of the central region.

Already at this simplistic level, we can see that if the
particle is transmitted, i.e., the radius of the cyclotron or-
bit is larger than the length of central region, then particle
will exit the central region with a velocity different from its
incoming velocity and its direction will be deflected. One
can calculate the angle of deflection easily: say the incoming
velocity is g, the outgoing velocity on the right end will be
q + A. In the Landau gauge, A, = 0, therefore, the outgoing
velocity will be g + A,(c0)y. Hence, the angle of deviation
is given by cos™'[g - (g + A;(00)9)/(Iqllg + A,(c0)7|)]. This
effect resembles that of the magnon Hall effect, studied in
magnon scattering off of single skyrmions in metallic magnets
[28,29].

The most interesting region is the low-energy regime 0 <
E < E,, where E, = (eA,(00)/2)*/(2m). In this case, the
semiclassical solutions (and also the corresponding eigen-
states for the quantum version) depend on g,, but there is no
extended state going from x = —oo to x = oo: the transmis-
sion coefficient across the central region exactly vanishes for
E < E,.However, in a window in the E — g, parameter space,
there exist classically bound trajectories (closed cyclotron or-
bits in the central region) for E < E,. In the quantum problem,
the bound states of the classical picture correspond to Landau
levels, which will play an important role once the magnetic
field in the central region is modulated, as is the case in the
actual skyrmion crystal junction.

To confirm this above picture, we calculate the reflection
and transmission probabilities starting from our Hamiltonian
in Eq. (1). We see that our numerical results in Figs. 2(e)-2(f)
agree very well with the semiclassical analysis in presented
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FIG. 4. Results for heuristic model with spatially varying magnetic field. (a) Transmission spectra for a particle scattering off a region
with periodic modulation, see main text, of magnetic field along y axis, where m is the parameter that controls the amplitude of modulation,
B = B.(sin(4ry/a)/m + 1), and B, is the magnetic field used in the last subsection. Small m implies large modulation and vice versa. The case
with m = 1 resembles the same amplitude of modulation along y axis as in the topological charge density profile in Fig. 1(f). (b) Transmission
spectra for the case of a magnetic field modulated along x and y axes, where m; has the same properties as m described, but for the x axis
in (a). The case with m = 1, m; = 1 resembles the same modulation along both axes as in the topological charge density profile in Fig. 1(f).
(c) Effect of modulation along y on Landau levels, adds bandwidth. (d) Effect of modulation along x on Landau levels, reduces gap. Black
lines in (c) and (d) are for the unmodulated magnetic field case, red for the case with large modulations only along y axis, and blue for the case

with large modulations along both x and y axis.

above and summarized in Fig. 2(d). There exists a minimum
energy E, below which there is no transmission, the threshold
energy for transmission depends on the transverse momentum
and as expected for the quantum problem there is a smooth
evolution from full reflection to full transmission on increas-
ing energy at fixed g,. Also, there is an angular deviation in
the region of full transmission as in Fig. 5(a).

B. Effect of periodic modulation along y axis

Our analysis of semiclassical trajectories showed that a
constant magnetic field in the central region implies that there
is no transmission below a certain threshold E,, yielding dis-
tinct regions of full transmission and full reflection in E — g,
parameter space. Quantum mechanically, regions where the x
support of classical trajectories is infinite have a continuous
spectrum whereas the bound-state region, which has only a fi-
nite support [xo, x1], has a discrete Landau level spectrum. The
bound states have slightly bent dispersion because the local
potential wells around x, become very shallow as x, — 00,
see Fig. 3(a). In this and the following subsection we address
the effects of periodic modulation of B about its mean B
in the central region. Again, we examine the heuristic model
given by Eq. (1), but now, first with a periodic modulation of
B along the transverse (y) direction.

A periodic modulation of period a in the y direction breaks
qy conservation and hence generates matrix elements between
states with g, values differing by integer multiples of 27 /a.
This mechanism generates a tunneling amplitude to an order
N, in perturbation theory given approximately by 27N, /a ~
eAy(00) = BoL /¢, so N, =~ BoaL/(2m o), where By is the
average magnetic field in the central region and ¢y is the flux
quantum. If E lies in the gap of the bound-state spectrum,
since N, ~ L, the corresponding transmission amplitude will
be exponentially small in L. However, importantly there will
be some resonances for (qﬁo), E) values such that E coincides
with a bound state (i.e., a state of the Landau level) with
energy atg\" = ¢\ + 2nx /a,n € Z. Such resonances permit
transmission at energies below the threshold E,.

Once ¢, conservation is broken, the scattering problem
becomes a multichannel problem, where the number of chan-
nels depends on the discretization procedure. The presence

of multiple channels makes the problem very rich and we
devise a transfer matrix procedure, which calculates the full
transmission matrix, which allows us to obtain the channel
resolved transmission. Say, we consider an N channel problem
based on the discretization of the a x a unit cell into a/N x
a/N grids. Out of the N possible values of g,, some values
will represent propagating channels, Im(q, = 0), whereas, for
relevant energy scales and N values, most channels will be
evanescent, Im(g, # 0).

To extend our heuristic picture to this multichannel prob-
lem, one can examine the effective potentials, as in the
constant B case, for each of the g, channels. For energies
E,<E < Vmax(q;o)), in the constant magnetic field case there
is no transmission and hence full reflection, |T| =0, |R| =
1. However, for the modulated case, there exist channels
such that E, < Vpax(¢") < E, hence there will be trans-
mission through these channels. Moreover, there will be a
nonmonotonic dependence of the transmission amplitudes on
the channel number, with maximal transmission for n = n,., as
depicted pictorially in Fig. 3(d). Further, the channel number
of the maximally transmitted channel will increase on increas-
ing energy.

Following from this qualitative picture based on the mul-
tichannel scattering analysis, we proceed to implement the
above problem numerically using our transfer matrix ap-
proach described in Sec. IV C. In the Landau gauge the right
end of the junction had a finite nonzero vector potential
A, (0c0). However, in the actual experiment there is no such
vector potential in the ferromagnetic end, hence to enable di-
rect comparison we also implement a gauge fixing procedure
using a string of Aharanov-Bohm fluxes, aided by our problem
being discretized on a lattice, to ensure that the vector poten-
tial vanishes on the right end (see Appendix D for details).

We choose a magnetic field profile with sinusoidal
modulations along the y axis with period a/2, B=
B.(sin(4wy/a)/m + 1), where B, is the magnetic field used
in the last subsection. m controls the amplitude of transverse
modulation, with large m implying small modulations and
vice versa. From Fig. 4(a) we see that for small or negli-
gible variations along the y axis, there is no transmission
for the plotted energy range, since for these energies and
for this value of By, the incoming energy is lower than the
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critical energy required for transmission. For By = 87 /a?,
a =10, and L = 4a, we get E, = (16n/a)2/2 > 2, in units
of e =m =J =1 (see Sec. V A for reasoning for such values
of parameters). However, for large modulations, and more
importantly for modulations, which mimic the topological
charge modulations (in the y direction) of the SU(2) skyrmion
crystal [see Fig. 1(b)], we see a dramatic change in behavior,
characterized by the appearance of resonant peaks of finite
transmission. Moreover, these peaks appear in discrete regions
of energy centered around energies corresponding to the dif-
ferent Landau levels of the constant magnetic field problem.
This confirms the qualitative picture we developed in the last
section, in which finite transmission below the threshold en-
ergy takes place when the incoming particle energy coincides
with the bound-state energy for certain channels. The trans-
mission windows also allow one to infer the width of such
effective Landau level bound states.

Besides the resonant transmission features below the
critical energy, we also verify the nonmonotonic channel
dependence of transmission for energies above the critical
energy by plotting the channel-resolved transmission coeffi-
cients in Fig. 5(b). Similar nonmonotonic transmission and
angular dependence will be observed in skyrmion crystal
junctions. In Fig. 5(b), we see that in different energy win-
dows different channels dominate transmission, and there is a
nonmonotonic channel number dependence. Moreover, from
our intuitive picture of off diagonal scattering one can predict
exactly which channel dominates transmission in the different
energy windows. However, the details for which channel dom-
inates depend on the length of the skyrmion crystal region and
we leave that analysis for future more experimentally specific
work.

One surprising result that is not captured by our earlier
qualitative analysis is the varying height of the transmission
peaks corresponding to the different Landau levels. Some
peaks in the energy range of the higher Landau levels appear
to be suppressed. Such a suppression in peak height can be
understood as a consequence of interference between multi-
ple propagating channels in the central region. Appendix E
presents a detailed technical discussion of the effect of multi-
mode interference on the peak heights.

C. Effect of periodic modulation along x axis

From the above two subsections, we see that a periodic
modulation of the magnetic field along y axis induces res-
onant peaks of finite transmission at energies corresponding
to low-lying Landau level energies of the constant magnetic
field problem. Hence, due to the gap between Landau levels,
we also see a gap between regions of finite transmission as in
Fig. 4(a). We now complete the analogy of our heuristic model
with the skyrmion crystal by introducing its final ingredient,
the modulation of the magnetic field along the x axis on top of
the modulations along y. We use a similar sinusoidal variation
dependent on parameter m; (large m; corresponds to small
variation and vice versa).

Variations of the magnetic field along the x axis broaden
the Landau levels and hence the gap between the regions
of finite transmission decreases. This is shown in Figs. 4(b)
and 4(d), obtained from our numerics, where we see that for

FIG. 5. Channel dependence and angular deviation of transmis-
sion for the heuristic model in Secs. III A-III C. (a) Angular deviation
of particle scattering off a constant magnetic field region, similar to
magnon scattering off a single skyrmion. (b) Channel dependence
of transmission coefficient for spatially modulated magnetic field
(Bo =8n/a®>, L=20, m=1, m; = 1, ¢ = 0). Certain channels
dominate in certain energy regions, and there is a nonmonotonic de-
pendence of transmission coefficient on outgoing channel number 7,
where (" = ¢\’ + 2(n — 1) /a. For low energies, below E,, only
one propagating channel is present q;o). On increasing energy the
number of propagating channels increases as shown in Fig. 3(c), and
the particle can scatter into these channels (the transmission matrix
has nonzero off diagonal elements). This agrees with the qualitative
picture of tunneling into other propagating channels, as presented in
Sec. III and Fig. 3(b).

a modulation amplitude that mimics the topological charge
density modulation along the x axis of the skyrmion crystal
(i.e., for m; = 1), the gap is reduced. Hence a modulation of
the magnetic field along the x axis increases the energy range
of finite transmission due to Landau-level broadening.

D. Ferromagnet-antiferromagnet-ferromagnet junction—Effect
of dispersion mismatch

Our heuristic model in the previous three subsections did
not involve the physics of Goldstone modes arising from
symmetry-breaking of the skyrmion crystal. To highlight the
issues involved in the transmission properties of a magnon
through structures with not only different dispersion relations
but also a different number of collective modes, we con-
sider a very simple model of an antiferromagnet sandwiched
between two ferromagnets. The dispersion relation of a
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FIG. 6. Results for the ferromagnet-antiferromagnet-
ferromagnet quantum Hall junction heuristic model- parameters used
Jr = 1,Jur = 1, L; = 18a,, where a, is the lattice spacing along x.
(a) Lattice structure of the heuristic model with the y spacing for
the ferromagnet twice that of the x spacing. Such a simplification
is made to simplify the sublattice matching across the interface.
(b) Fabry-Perot resonance peaks at normal incidence (¢, = 0,6 = 0)
in the total transmission. (c) Transmission as a function of angle
of incidence and energy of incident magnon. At fixed angle of
incidence, there is a critical energy for transmission following which
there is a set of equally spaced peaks in the low-energy regime,
reflecting the linear nature of the antiferromagnetic Goldstone
modes. The cutoff energy at 6 =0, is a finite size effect, as we
increase the length of the middle region, this value will go closer to
zero.

ferromagnetic magnon is ~Jrk?> whereas that of an antifer-
romagnetic magnon is ~J4rk. Moreover, the antiferromagnet
has two branches of Goldstone modes as opposed to the single
one in the ferromagnet.

We construct a very simple sandwich structure, which
makes our calculations entirely analytically tractable. We con-
sider an antiferromagnet with half the lattice spacing in the
y direction of the ferromagnet, so that only the A sublattice
sites in the antiferromagnet are connected to the ferromagnet
[as shown in Fig. 6(a)]. We then solve the scattering problem
for a magnon injected from the ferromagnetic region on the
left with the following form of the complex wavefunction in
the ferromagnetic regions, x > L;, which describes the spin

deviation perpendicular to the equilibrium magnetization

Aeikxx-‘rikyy + Be—ikxx-i-ikyy; X < —L

onp(x,y) = Getksxtikyy @

whereas in the antiferromagnet, |x| < L;, due to the presence
of two modes, the same can be written as

(SnAF (x y) — Ceikux-i’ik)-y + De—ikn)(-H/g-y

+ Eelklt)f“rlkyy 4 Feftk21x+lkyy’ (3)

where x = —L; and x = L; are the positions of the interfaces,
k. and k, are the incoming parallel and transverse momenta
of the magnon, k(). are the parallel momenta of the two
modes in the antiferromagnetic region, and the capital letters
denote the amplitudes of the various left- and right-moving
waves. The transverse momentum k, is conserved and is
hence a good quantum number for the scattering process.
We then match the wavefunction across the two interfaces as
in standard scattering problems to get the transmission and
reflection amplitudes. The total transmission coefficient for
the outgoing magnon in the right ferromagnetic lead is given
by |T| = |G|?>/|A|? and the total reflection coefficient for the
reflected magnon in the left ferromagnetic lead is given by
IR| = |BI2/IAP

This very simple model already exhibits various qualitative
features, which carry over to the case of the skyrmion crystal
we are interested in. First, in much of the parameter space in
Fig. 6(c), transmission is suppressed. Second, at a fixed angle
of incidence of the incoming magnon, there is a cutoff energy
due to the dispersion mismatch below which the entire wave
is reflected for all angles. For low energies, this cutoff energy
can be rephrased as a cutoff angle above which one gets no
transmission.

Beyond the cutoff energy we get a series of peaks in the
transmission amplitude, which broaden on increasing energy.
These peaks are essentially Fabry-Perot interference peaks
due to multiple reflections within the sandwiched structure.
One can also verify that the width of these peaks depends on
the length of the sandwiched structure, as expected for Fabry-
Perot peaks. Also, at a fixed transverse momentum, or incident
angle, the low-energy peaks are equidistant. This reflects the
characteristic linear dispersion of the Goldstone modes in the
antiferromagnet. As we increase energy, the equidistant nature
disappears as the dispersion relation ceases to be linear.

In closing, we note that despite its simplicity, this model
reproduces similar qualitative features (the interference pat-
tern and critical angle curve) asthe v = 1 : 0 : 1 quantum Hall
junction, where the sandwiched structure hosts a canted an-
tiferromagnetic ground state, which was studied analytically
[35] and numerically [36] using Hartree-Fock methods.

IV. SETUP AND SOLUTION OF THE SCATTERING
PROBLEM FOR THE SKYRMION CRYSTAL JUNCTION

In this section, we present in turn the central technical as-
pects of our solution of the full scattering problem of magnons
off the symmetry-breaking skyrmion crystal.
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A. Basis for smoothly decaying topological charge—Truncated
theta functions

A quantum Hall junction with an SU(2) skyrmion crystal
sandwiched between two ferromagnets appears as the result
of an externally imposed spatial variation of the electrostatic
potential seen by electrons in the 2D layer. Neglecting all
anisotropic couplings in spin space, the total energy of the
quantum Hall ferromagnet is given by the following func-
tional [3,37]:

Em)=1J / [(@,m)* + (3yn)*]d’r

+ / (O(r) — Qo(®)V (r — r')(Q(")

— Qo(r'))d’r d*r', )

where the unit vector n(r) denotes the local spin orientation,
V(r —r’) is the two-body (possibly screened) Coulomb po-
tential, Q(r) is the local topological charge density (which
is proportional to the local charge density), and J is a local
exchange energy also due to Coulomb interactions. In the case
of unscreened Coulomb interactions, J = ¢2 / (32@613) in
Gaussian units, /g being the magnetic length, and € is the
dielectric constant. The presence of the imposed external po-
tential is taken into account through the background charge
Qo(r), which we assume to be significant in an infinite (along
x axis) slab of finite width parallel to the y axis. The topolog-
ical charge density is given by

o) = Ln - (0xm x dym) . (5)
4 :

Minimizing the above energy functional in the presence of
the prescribed background charge Qy is a difficult and highly
nonlinear problem. Casting this in an analytical form is yet
more challenging. Furthermore, in a given experimental set-
ting, determining precisely the actual Qy(r) is also not at all
straightforward.

For these reasons, and because our goal is to investigate
magnon dynamics, we start by constructing a plausible Ansatz
for the spin configuration n(r), which interpolates between a
region of finite and spatially modulating topological charge
for the skyrmion crystal in the middle to a zero-charge region
to the two ferromagnetic ends.

Skyrmion crystals with periodic boundary conditions were
previously studied using a basis of theta functions, which
are used to construct holomorphic spinors with values in the
complex projective space CP?~! [24]. Such theta functions
were first introduced by Haldane and Rezayi in the quantum
Hall setting for constructing Laughlin-Jastrow wavefunctions
under periodic boundary conditions [38].

In the present paper, we focus on SU(2) spins described
by a two-component spinor field | (r)). The relation between
this local spinor and the spin orientation vector n(r) is given
by

(¥ (r)|a|y(r))
(Y@ly(r)

where 0¥, 0¥, and o% are the Pauli matrices. Because multi-
plying the local spinor by an arbitrary phase factor does not
change the physically observable spin orientation, | (r)) can

n(r) = (6)

be considered as an element of the complex projective space
CP!, which is the same manifold as the S2 sphere, which
is the d = 2 case, although the present construction easily
generalizes to arbitrary integer values of d.

In our model for the skyrmion crystal junction, we have
periodic boundary conditions in the y direction and open
boundary conditions in the x direction. To model the finite-x
support of the crystal we sharply truncate the theta functions
whose sum, instead of taken to infinity as is done for periodic
skyrmion crystals, is cutoff to the range of integers between
—N'— p/d and N' — p/d, where N’ € Z. For d skyrmions
in a b x a unit cell, the relevant truncated theta functions are
given by

N'—p/d
Z efnbd%(n+p/d)2+2n%(n+p/d)z , (7)

n=—N'—p/d

(N") _
0N)(z) =

where 7 = x 4 iy. The zeros of the theta function indicate
the position of skyrmion cores, and p runs from 0 to d — 1
in agreement with the Riemann-Roch theorem [32]. Usual 6
functions (corresponding to N’ infinite) are characterized by
the following relations:

Op(z + ia) = 6,(2), ®

O,(z + b) = eTHizg,, )

The different 6, functions are related by the following trans-
lation operators:

Opi1(2) = e~ 576,(z — b/d). (10)

At finite N’, translational symmetry along y is preserved,
but not along the x axis. Using these truncated 6 functions
we construct the holomorphic spinor defined by [y (r))g =
(GéN/)(z), Ol(N/)(z))T. From Eq. (6), this defines the reference
spin configuration ngy(r).

The minimal spin configuration and corresponding topo-
logical charge density profile for the ferromagnet-skyrmion
crystal-ferromagnet junction generated by these theta func-
tions, and using Eq. (5), is shown in Figs. 1(e) and 1(f). We
see that the topological charge density is nonzero and spatially
modulated along both x and y axes, with period a/2 in the cen-
tral region outside which it decays smoothly to zero. A sharp
cutoff in the theta functions thus leads to a smooth decay of the
topological charge density. This allows us to define the notion
of an interface for the junction as the region across which the
topological charge density goes to zero. Furthermore, one can
tune the length of the skyrmion crystal formed the by these
truncated theta functions by varying the cutoff N'.

In order to investigate magnon dynamics, we need to spec-
ify the energy functional, which is minimized by the reference
spin configuration ny(r). Because holomorphic spinors al-
ways generate local minima for the local exchange term, it
is sufficient to set the background charge Qy(r) in Eq. (4)
equal to the topological charge density of the reference con-
figuration no(r). In our calculations, we have replaced the
nonlocal Coulomb interaction in the second term of Eq. (4) by
a local “Coulomb interaction” (delta function in real space)
to simplify the calculations and make our problem partly
analytically tractable. Therefore, the corresponding functional
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becomes

Em)=J / [(8,n)* + (3,n)*]d°r

+g / (Q(r) — Qo(r))*d’r. (11
Moreover, such a delta function interaction term can be real-
ized in quantum Hall junction experiments in graphene with
metallic gates (see discussion in Sec. VI).

Without any interaction term, i.e., g = 0, all holomorphic
functions give the same exchange energy. This renders the
magnons nondispersive and localized, which motivated us
to call the collection of the corresponding set of states the
Riemann-Goldstone Landau level. This also shows that we
need g > 0 to get a finite dispersion of these Goldstone modes.
However, the phonon mode in our setup shall remain gapped
since the spatial modulations of the topological charge density
Qo(r) in our junction energy functional explicitly break trans-
lational symmetry. We comment more on the implications of
such a gapped magnetophonon in Sec. VI A where we discuss
various other experimental considerations.

Equation (11) is the starting point from which we de-
rive equations of motion using spin-wave theory techniques.
First we introduce small deviations én(r,t) about the ref-
erence configuration ny(r). We then express this deviation
in terms of local coordinates x;(r) and x,(r) and local or-
thonormal frames e;(r) and e,(r). Now on doing the usual
spin-wave theory calculations and imposing the holomorphic
constraint arising from minimizing the exchange energy at
fixed topological charge (see Appendices A—C for details of
the calculation), one can express the second-order variation in
the above energy functional due to this deviation as

SE® =g/8Q(r)2 +J/ [lidex +Acx|* + lidyx + Ayx|?

— (et + 2) 1x[*]dxay, (12)

where Ax/y = él . ax/yéz, Cix)y = él . 8x/yl10, and Cox/y = ég .
dy/yng. We find that the second-order variation of the ex-
change term can be interpreted as the energy of a quantum
particle described by a wavefunction x(r) = x;(r) + ix2(r),
X(r) = x1(r) —ix2(r) and subject to a vector potential A,
an effective magnetic field B = 4w Qy, and a scalar potential
¢} 4¢3, (see Appendices B and C for more details on the
effect of the holomorphic constraint and gauge invariance of
the energy functional). The local frames e;(r) and e;(r) are
two vectors orthogonal to each other and to ny(r). In the
ferromagnet, if one considers the spin to be polarized along
z axis, these frames are just the x and y axes; however, in the
skyrmion crystal region, these vectors depend on position. It
is in this region that the vector potentials gain a nonzero value,
since the dot product defining them is no longer zero as in the
ferromagnet.

The physical origin of this effective magnetic field comes
from the Berry phase picked up by the magnon when travers-
ing through the skyrmion crystal. Hence, while true that
magnons are neutral objects, the interesting physics arises
from the topological charge density acting as an effective
magnetic field, under which the magnons appear charged.
Moreover, in a ferromagnetic region the magnon has a dis-

(a) A . (b) 4 3,
Ny n,
A A A A
No+ Ny n,+dn, > 0 1
6 8
7

FIG. 7. (a) Change in solid angle between two geodesics on the
sphere. (b) Plaquette-wise discretization of topological charge. Tight-
binding model includes contributions of nearest and second-nearest
neighbors (shown here for site 0).

persion @ ~ k* similar to that of a massive particle in
nonrelativistic quantum mechanics. These points justify the
use of our heuristic model in Secs. I A-III C.

The resulting linearized Landau-Lifshitz equations of mo-
tion for such a system can be expressed as a time-dependent
Schrodinger equation

dx SE®
o— = 2i——
at ox

; 13)

where o = i/ (471[1_%) [3,37] assuming that the Landau level
filling factor v remains everywhere close to 1 (see details
in Appendix A). The above equation forms the basis of our
transfer matrix analysis.

B. Real-space discretization of topological charge
from geodesics

To calculate magnon transmission coefficients through the
skyrmion crystal we need to discretize the energy functional
in Eq. (11) on a finite grid, and hence in turn we need to
discretize the exchange and the topological charge density
terms. Discretizing the exchange term is a standard exer-
cise in finite difference methods (see Appendix F); however,
discretizing the variation in the topological charge density
is a highly nontrivial task. Here we present an geometrical
approach based on solid angles between geodesics. Such a
discretization procedure should carry over for similar settings
in metallic magnets hosting skyrmion crystals and could be
transferred to other topological spin textures.

We associate a topological charge to each plaquette with
the topological charge density being equal to to the solid angle
subtended by the four spin vectors associated with the vertices
of the plaquette. Before calculating the variation of such a
solid angle, let us first consider the much simpler problem
of the variation of the solid angle subtended by two spin
vectors on the sphere with spherical coordinates (8, ¢) and
ds> = (df)* + sin” 6 (d¢)*. The path between the end points
of the two spin vectors 7; and 71, on the sphere describes a
geodesic and the fluctuations in these spin vectors due to the
spin waves describe a new geodesic; hence, the problem re-
duces to finding the variation in solid angle between these two
geodesics, as shown in Fig. 7(a). The standard equations of
motion for geodesics are

6 = 1sin(20)¢°,

sin? 0 ¢ = const. (14)
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Without loss of generality (due to rotational invariance) we
can choose n and n; along the equator, so the corresponding
geodesic becomes

0@)=m/2; @)= ¢(0)+ (¢1 — Po)t. (15)
Considering the first-order variations in Eq. (14) we get
86 = cos(20)p>860 + sin(26)¢ 8,
sin(26)¢ 86 + sin® 6 5¢ = const. (16)

Focusing on the vicinity of geodesic we get

_ 86psin (a(1 — 1)) + 36, sin(ar)
- sin o ’
8¢ = 8¢o(1 —1t) + ot 17

60

where @ = ¢ — ¢y.

In a radial gauge A = a(f)d¢. This A is actually a one-
form on the unit sphere whose curl gives the solid angle, not
to be confused with A, which is the vector potential defined
in real space (a vector). The solid angle between two parallel
circles at 6 and 6 = d0 is equal to 27 sin d¢ and should be
equal to (via Stokes’ formula) 27 (a(6 + d6) — a(0)), there-
fore Z—g = sin 6. We require thata = 0 as 0 = 0, hence a(f) =
1 — cos(0). The first-order variation in §2 is equal to 9§ A
along the closed path formed by the parallelogram with ver-
tices as the four spin vectors (2 bare and 2 perturbed) and is
given by

! d So(t
5Q = f [(1 —cos (0 + 59(:)))M
0 dt
d
—(1 —cos@)d—f]+8¢o—8¢1, (18)
which after a bit of algebra can be written as
1 —cosa
8Q2 = —— (86 + 864). (19)
sin

To connect the above formula with the original spin vectors
no and n; we can also write the first-order variation as
nyp X N

5Q0 = —

1) ény), 20
1_}_”0."1("04- np) (20)

where we have defined the z axis such that ny x n; = sin« Z,
with o € [0, 7] and cosa = ng - n;, which in turn also im-
plies that §6; = —dmn; - 2

To tackle the problem of discrete | 8Q? we consider all
four plaquettes connected to a particular site 0. The variations
in the solid angle and hence the topological charge density
term that appears in the energy functional of Eq. (A4) has the
form

SEY = Zmé. (21)
0ed

On a plaquette with vertices i, j, k, and [ in anticlockwise
order SQijkl = (SQ,']‘ + SQJ']( + 6Q + §2;; with each term
being given by Eq. (20). Expanding these above terms and
keeping only terms including the vertex 0 we get [see Fig. 7(b)

for vertex numbering]
SED =803, 4 82, + 825 + 892, + 8901840
+ 62036250 + 056270 + 8076210
+ (8201 + 8€230) (3212 + 5€223)
+ (803 + 8R50)(8234 + 82s)
+ (8205 + 8270)(8S256 + 5267)
+ (8207 + 8€210)(8€278 + 6K251). (22)

We can view the above complicated expression in a tight-
binding formulation, which will help us for the transfer matrix
formalism. The first two lines in Eq. (22) include the on-site
energy terms, all the lines include nearest-neighbor-hopping
terms and the last two lines include second-nearest-neighbor-
hopping terms. While on-site and nearest-neighbor terms also
arise in the exchange part of the functional (see Appendix F),
second-nearest-neighbor contributions come only from the
variation in the topological charge density.

C. Recursive transfer matrix approach to calculate
magnon transmission

In the previous two sections, we have set up the machin-
ery needed to discretize the ferromagnet-skyrmion crystal-
ferromagnet quantum Hall junction problem on a real-space
grid. Now, to numerically obtain the transmission properties
of an incoming magnon from the left ferromagnetic end and
outgoing on the right end [as in Fig. 1(a)], one needs to
perform either a recursive transfer matrix or recursive Green’s
function calculation. For transfer matrices, one usually re-
cursively calculates the full transfer matrix of the system by
multiplying matrices column by column and then perform-
ing a rotation to obtain transmission and reflection matrices
[39]. For Green’s functions one does the same procedure and
then arrives at the conductivity using the Fisher-Lee relation
[40,41]. However, both these problems suffer from numeri-
cal instabilities due to the presence of (growing) evanescent
modes, which cause the product matrix to blow up. This
instability is common also in the optics community, where one
discretizes Maxwell’s equations on a real-space lattice. In this
section, we adapt a method proposed by Pendry [34] for the
optics problem, to obtain the full transmission and reflection
matrices of the problem despite the instability. All our trans-
mission and reflection matrices, unless explicitly mentioned,
are for a wave entering from the left and exiting on the right.

To calculate the magnon transmission across the junction
we discretize the unit cell of size a x a into N slices in the
x and the y direction. We then consider a semi-infinite strip
of unit-cell width along the y direction and impose periodic
boundary conditions along y. Now, consider a magnon en-
tering the skyrmion crystal region with incident energy o,
transverse momentum ¢y, and parallel momentum g,, which
are related by the standard ferromagnetic dispersion. Us-
ing the discretization procedure for the energy functional
in Eq. (11), we can recast the resulting time-dependent
Schrodinger equation (13) as a tight-binding equation, which
in turn can be written as a matrix equation of the form

DWWy +AgWx 1 +ALWx 1 =0, (23)
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FIG. 8. (a) Slice-wise recursive transfer matrix procedure for the
ferromagnet-skyrmion crystal-ferromagnet junction. The solid lines
highlight the real-space discretization and their intersection points
are the lattice sites. (b) Multiple scattering processes for propagating
transmission and reflection matrices. Calculate the transfer matrix
for the slab of length L, the usual way and then do successive slice-
wise rotation to propagate the transmission matrices using the infinite
series.

where Wy = (x(X, 1), x(X, 1), ..., x(X,N), x X, N)) is a
column vector for all the x, ¥ with x = X and the 2N x 2N
matrices, D, Ag, and A; are matrices of coefficients for the
wavefunctions at column X, X + 1, and X — 1 respectively
(see Appendix A and Sec. IV A for expressions for x and ¥
and Appendix F for expressions for matrix elements). Such an
equation can then be recast as a transfer matrix equation

a1 a1
Ty = [ Ap D Ay AL}, 24)

where TX is the 4N x 4N transfer matrix, which relates the
values of x in the nearest-neighboring columns. Using the
standard properties of transfer matrices we can propagate
the wavefunction from the left ferromagnet region at x = x,,
through the skyrmion lattice to the right ferromagnet region at
X = Xxg, column by column, resulting in the final equation

\IIJCR-FI — 7"- \IIXL-‘rl
v, v, I

XR
T=]]1 (25)
i=xy,
Since in Sec. III we use truncated theta functions to
smoothly interpolate between zero topological charge regions
on the two ends and a finite periodic topological charge in
the middle, we do not have sharp boundaries between the three
separate regions. Hence we start our transfer matrix procedure
on the left from a column in the region with zero topological
charge density and we end on a slice on the right, again deep
in the region, with zero topological charge density as shown
in Fig. 8(a).
The transfer matrix procedure as illustrated relates the val-
ues of the wavefunctions of the two end-point columns and

not the amplitudes we need to calculate the transmission and
reflection coefficients. To convert such a transfer matrix in the
tight-binding formulation to the transfer matrix, which relates
the amplitudes of the waves in the left region to those in the
right, we first need to express the wavefunction in terms of
these amplitudes using the standard scattering ansatz. For the
wavefunction in the starting column at x = x;, we can write

N
Koy = E Ai/equixL"‘l%'iy+Bi/e_l(/XixL+lq,v[y’

i=1

N
)_(xy — ZAi/,eiQxixl_+iQ}"iy + Bi,/e_iq,xixlﬁHq,\'iy’ (26)
i=1
where i =2i — 1 and i” = 2i, and g, g,; are the wavevec-
tors of the N different modes, with Ag, = 27 /a. Note here
that generally, x., # X;,,even though x = x1 +ix2 and ¥ =
X1 — ix2, because xi, xo € C as a result of complex phase
factors (further details on this are given in Appendix I). Using
the form of the scattering ansatz we can define the following
rotation relating the 4N sized column vectors:

[“Ijxu lIJJrL—l]T = [Xngl, ceey )_(XL—],N]
=0, [Alé'ikYl ,Azeik“ s aees

Boy_1e” ™ Boye™* T (27)

T

where Q,, isa4N x 4N matrix and k,; and k,; are the different
modes obtained from the discretization on the grid, ky; =
kyo + 27i/N, with i =0,.,N —1 and k; = w/2N*)(2 —
cos(ky;)). These wavevectors on the grid are related to the con-
tinuous ones by g,a = k,N. We can then express the transfer
matrix equation (25) in terms of the scattering amplitudes on
both ends as

Cl eik.rl A 1 eikxl
Czeikxl Azeikxl
=T : ,
Doy_je Boy_je
Doy etk Bon etk
7 -1
r=0,T0Oy (28)

where C;, D; represent the amplitudes for the wavefunction on
the rightmost slice at x = xg. The transmission and reflection
coefficients can be expressed from the elements of the rotated
transfer matrix 7', see Eq. (30).

Such a columnwise multiplied transfer matrix procedure
runs into numerical instabilities due to growing evanescent
modes, which blow up on increasing the length of middle
region (largest eigenvalue >1) and are a common cause of
instability in such recursive transfer matrix methods. To over-
come this we use a method common in optics [34], in which
one uses the usual recursive approach up to a certain column
and then propagates the transmission and reflection matri-
ces columnwise thereon using multiple scattering, instead of
propagating the whole transfer matrix, as shown in Fig. 8(a).
Such an approach does not suffer from numerical instabilities
since the reflection and transmission matrices are bounded
because of unitarity of the scattering matrix. To obtain the
transmission and reflection matrices for a slab of length L,
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we perform the rotation shown above to obtain

-1 . Tt Tran
0, 11.Q=T1,= |:TL1,21 TL522:|’ (29)
where T, is the transfer matrix obtained relating the columns
at the two ends of the slab of length L. and Q is the rotation
matrix as defined earlier. One can obtain the transmission
matrices Tr(L,) and R(L.) for the slab from the 7j; ;- They
are given by

R(L) = T 5101,
Tr(Le) = Tron + T, HR(Le), (30)

where TLoij’ i, j € [1,2] are the 2N x 2N blocks in Eq. (29).
Say we have a situation in which we calculate the trans-
mission and reflection matrices, Tr(L.) and R(L.) for a slab
of length (L.) within numerical accuracy using the standard
recursive protocol. We can then propagate the transmission
and reflection matrices by summing up the infinite series from
multiple scattering events from the additional slice, as shown
in Fig. 8(b), to get

Tr(Le + 1) = Tr()(I — TiR(1))""Tr(L,),
R(L.+ 1) = R(L.) + LRI — TiR(1) ' Tr(L,), (31)

where Tr(1) and R(1) are the transmission and reflection
matrices for a wave incident from the left on the added slice,
obtained using the same procedure as in Egs. (29) and (30)
[but now with T (1) instead of T;.]. T}, T» are the reflection
and transmission matrices for a wave incident from the right
on the slab of length L. respectively [34]. Such an approach,
although more numerically expensive due to more matrix
inversions, resolves the numerical instabilities and allows one
to calculate the full transmission and reflection matrices.

V. MAGNON TRANSMISSION THROUGH
A SKYRMION CRYSTAL

Using the technical advancements described in Secs. V A—
VC, one can numerically solve the scattering problem
of magnon scattering in the ferromagnet-skyrmion crystal-
ferromagnet setup. The main results of the problem provide
a unique set of transport signatures for the skyrmion crystal.
They are summarized in the Sec. I and in Figs. 1(c) and 1(d).
In this section we provide some additional results of the scat-
tering problem that reflect the topology-symmetry dichotomy.

With the detailed analysis of our heuristic model of a
particle scattering in a magnetic field in hand, we return to
the full problem of the ferromagnet-skyrmion crystal energy
functional in Eq. (11). As pointed out earlier, the effect of a
nonzero coupling constant in the topological charge density
term is to provide some sense of stiffness to the skyrmion
crystal, and thereby inducing dispersion in the Goldstone
modes. To separate the dispersion effect first we look at the
g = 0 case in which all Goldstone modes are pinned to zero
and the Riemann-Goldstone Landau level is a zero-energy
flat band. From the full expression of the variation of the
energy functional in Eq. (12), one can see that for g = 0 the
expression resembles that of the heuristic model, as explained
in Sec. IV A. Hence, we can use the intuitive understanding
developed in Sec. III.

A. Similarities with heuristic picture—High-energy sector

For g = 0, based on our transfer matrix analysis, we see
that the transmission spectra in Fig. 9(c) reflects the under-
lying topology of the skyrmion crystal, since the nonzero
transmission occurs in energy regions, which reflect the
emergent Landau levels of the problem. We also note the re-
markable qualitative similarity of the response with that of the
heuristic model in Figs. 4(a) and 4(b). For two skyrmions in a
unit cell, we get four flux quanta acting on a spin-1 magnon,
which justifies our use of the analogous average magnetic
field By = 87'r/a2 for the results in Figs. 4(a) and 4(b) (see
Appendix A and [42]). We see that the transmission peaks
are suppressed, i.e., we do not get full transmission at these
resonant energies, and one can understand this using similar
multichannel interference arguments presented in Appendix E
for the heuristic model.

Besides calculating transmission coefficients we also ob-
tain the spectra for the skyrmion crystal from the energy
functional in Eq. (11). For the g = 0 “skyrmion crystal”, we
find that the high-energy modes resemble the dispersive Lan-
dau levels, similar to those observed in the heuristic model
for a spatially varying magnetic field. The transmission peaks
occur in energy regimes of the effective Landau levels and the
gaps in nonzero transmission correspond exactly to the gaps
in the Landau level dispersion.

The qualitative similarity with the heuristic model also
implies that magnon transmission at high energies will be
characterized by certain preferred angles of transmission and
a nonmonotonic dependence of transmission on the channel
momenta. Such a nonmonotonic dependence on channels and
corresponding angular spread is a clear consequence of crys-
talline order.

B. Effects of Goldstone mode dispersion—Low-Energy sector

The lowest-energy modes for the g = 0 case are pinned to
zero energy since one can deform ny(r) continuously in the
space of holomorphic textures while keeping the exchange
energy constant [first term in Eq. (11)]. Hence, for g =0
we get localized modes in the Riemann-Goldstone Landau
level. On introducing a finite g, we see from the Goldstone
mode spectra in Fig. 9(b) that the Goldstone modes acquire a
finite dispersion. We get three low-energy Goldstone modes,
as expected for an SU(2) skyrmion crystal. Out of these three,
two modes are almost degenerate and have a higher velocity
than the third. All these modes have a linear dispersion at low
g, as behooves an antiferromagnet. Note that remarkably, one
can infer all this information about the Goldstone modes just
by looking at the transmission spectra in Fig. 9(a). We see
that there are two sets of peaks, within each set, the peaks are
equally spaced and increase in height on increasing energy.

Such behavior is qualitatively consistent with our results
from the heuristic model of the ferromagnet-antiferromagnet-
ferromagnet junction [see Fig. 6(b)]. These two sets of peaks
correspond to the two Goldstone mode branches, and their
different peak positions imply that the velocity of these two
modes are different, as verified by our results of the Gold-
stone mode spectrum in Fig. 9(b). We also see that there is a
very small splitting in one set of peaks, indicating the fact
that the two higher-velocity modes are almost degenerate.
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FIG. 9. Transmission and energy spectra for the ferromagnet-skyrmion crystal-ferromagnet junction at normal incidence ¢, = 0 at g/J =
0.4 (red), 0.8 (blue), and 0 [magenta, only in (c), (d)]. The effect of increasing g in the second term of the energy functional in Eq. (11) on
(a) low-energy transmission, peaks shift and increase in height (b) Goldstone mode dispersion, modes become more dispersive and (c) high-
energy transmission, slight shift in position of peaks but no significant change in height (d) High-energy dispersion, slight shift in energy.

On increasing g, we see that the Goldstone modes become
more dispersive, as in Fig. 9(b) and one can also infer this by
looking a the transmission spectra, the peaks of which shift
and become more prominent, as in Fig. 9(a).

Hence, the magnon transmission spectra encode the nature
of the Goldstone mode spectra in the emergent Riemann-
Goldstone Landau level sector of the skyrmion crystal.

We also note from Fig. 9(d) that the peaks in the higher-
energy effective Landau levels are slightly shifted but the
heights are relatively unaffected on increasing g, which con-
firms that the physics of the Riemann-Goldstone Landau level,
associated with symmetry breaking, is indeed distinct from
that induced by the underlying topology of the spin texture.
Such separation of energy scales highlights the topology-
symmetry dichotomy of the problem and is very nicely
elucidated by the magnon transmission. Moreover, the qual-
itative similarities of the two heuristic models with the two
different energy sectors also presents a simplified and intuitive
understanding of this very rich problem.

We note that the Goldstone modes present in Fig. 9(b) do
not go down to exactly zero energy. This is a consequence of
real-space discretization and the holomorphic ansatz being an
exact minimum of the exchange terms only in the continuum
limit. Because of this, for a finite discretization scheme, the
Goldstone mode eigenvalues will actually have a small imag-
inary part (compared to the real part). We have plotted only
the real part of these eigenvalues in Fig. 9(b). However, as we
approach the continuum limit, the ansatz exactly minimises
the energy and so for larger values of N, the complex part be-
comes numerically insignificant and the real part of the modes
will go down to exactly 0 as ¢ — 0 in Fig. 9(b). The phonon
mode in our low-energy spectra, however, shall remain gapped
due to the nature of our energy functional: the spatial modula-
tions of the topological charge density Qy(r) explicitly break
translational symmetry. This gapped phonon branch appears
as the upper branch in Fig. 9(b). We comment more on the
implications and feasibility of the gapped magnetophonon in
the next section.

VI. DISCUSSION

A. Anisotropies and experimental considerations

In this paper we have used an effective continuous model
derived from a holomorphic ansatz motivated from the physics
of isotropic skyrmion crystals. This approach carries a long
way in terms of physical intuition, analytical control, and a

full qualitative understanding from such an effective theory.
However, there are features beyond the model that could be
present in experiment. In this section, we discuss how such
features could modify the results we presented. Just as impor-
tantly, we also discuss how the results from our model could
be realized in ongoing experiments.

The price we pay for using the holomorphic ansatz as a
starting point is the absence of anisotropies. While the energy
scale for anisotropies is smaller than that of the Coulomb
interaction, they still play a role in the low-energy physics
of monolayer graphene in the zeroth Landau level [43]. The
leading anisotropy in such systems would be the Zeeman term
giiupn - B. The dispersion for realistic models of skyrmion
crystals in graphene with such terms were studied in [23]
using Hartree-Fock methods. The authors showed that the
Zeeman term gaps out one of the three Goldstone modes.
Hence, we expect that the transmission signatures we predict
for the Goldstone modes can still be observed in experiments
on monolayer graphene, with the modification that the spacing
of the peaks would be less linear in the low-energy sector of
the transmission spectra. The higher-energy signatures from
the effective Landau levels should also be robust to the pres-
ence of any relevant anisotropies such as the Zeeman, or even
the lattice scale, terms. We also note, as briefly mentioned in
the section above, due to our energy functional being con-
structed to have our truncated theta-function ansatz as the
minima, the magnetophonon mode obtained from our spectra
in Fig. 9(b) is also gapped. In isotropic and fully periodic
skyrmion crystals such a mode is expected to be gapless and
have the characteristic ~¢> dispersion for short range and
¢*? dispersion for Coulomb interactions in two dimensions
[24]. However, one nonetheless expects the phonon mode to
be gapped in the presence of the junction between regions
of different filling. Moreover, anisotropies also gap out the
phonon mode [23], hence we do not expect its presence to
alter our results much. Besides anisotropies, there could also
be some positional distortion of the skyrmions arising from
background charges. One of the advantages of the formu-
lation of our theta function ansatz is that we could very
well construct an alternative ansatz, which has an irregular
structure along the parallel direction (x axis). However, if we
completely loose periodicity along the transverse direction (y
axis), then the scattering problem would be much harder to
solve numerically.

Another source of potential mismatch between experiment
and our theory would be the range of our interaction term.
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The interaction term in our effective energy functional is a
delta function (in real-space) terms, whereas the Coulomb
interaction is long range. However, such an interaction can
be engineered in graphene using metallic gates, which screen
the Coulomb interaction. A typical magnon transport exper-
iment on graphene involves a sheet of monolayer graphene
sandwiched in between hBN substrates and additional metal-
lic gates on top and bottom. The gate-screened potential in
momentum space is given by

> sinh (qd /<) sinh (qd’ /<)
4me \f \/7 (32)

Vig) = ’
VE€  gsinh (q(der/)\/Z:i)

where d and d’ are the distance from the top and bottom gates
to the graphene sample and €,, €, are the static in and out-of
plane permittivites of the hBN [44]. On tuning the parame-
ters d and d’, it is plausible to expect that one can realize
a potential structure that is fairly flat in momentum space,
leading to a localized delta function in real space. Moreover,
by tuning the strength of the interaction, one can also tune
the coupling constant g, which controls the dispersion of the
Goldstone modes and hence one can observe the variations in
the transmission spectra as mentioned in the previous section.

For current experiments on graphene, the external field
Bext ~ 10T, hence Ig ~ 10 nm. In our model, we assume
that all spatial variations are on scales larger than the mag-
netic length. In particular, the two important scales are the
skyrmion crystal lattice constant and the interface width,
governed by electrostatics. In our ansatz these two length
scales are comparable. Hence, to exactly derive results from
our model for experiment, these two length scales should be
at least an order of magnitude larger than /. If, in experi-
ments the skyrmion period is of the order of I, or if the
ferromagnet-skyrmion crystal interface is much sharper then
one might need to resort to more microscopic time-dependent
Hartree-Fock treatments, which will likely change some quan-
titative details, but should retain the structure of transmission
from Goldstone modes in the Riemann-Goldstone Landau
level and higher-energy effective-Landau levels presented
here. Such qualitative similarity is fair to expect for low mo-
mentum physics given the early work on skyrmions, which
compared Hartree-Fock and effective continuous theory treat-
ments [3,4,37,45], and is also bolstered by the qualitative
similarities between our heuristic model for the ferromagnet-
antiferromagnet junction and a full Hartree-Fock calculation
for the junction with v = 0 sandwiched in the middle [36].

In our model, for theoretical purposes, the effective Landau
level gap is ~J, the exchange coupling constant. However, we
can estimate what this effective gap fiwg will be in experi-
ment. To do so we neglect the g terms since as we have seen in
the last section they only have a qualitative effect on the Gold-
stone modes. Now, we can use the similarity with the heuristic
model in Sec. 11, to consider a magnetic field B = 4w Qy with
Qo =6v/(2m ll%) where §v is the deviation from unit filling in
the central region. The spectral gap for the simplified energy
functional is 2JB. Using Eq. (13), we get awg = 4JB. Using
the values of « and B we can write fiwg = 327wJ5v. Now
using the standard value of J = ¢/ (32427 €ly) we obtain a

spectral gap hwg = \/g %8 v. The gap is linear in §v. This is
important as §v is easily tunable in experiment.

The experimental detection of our transmission signatures
would in principle require knowledge of the incoming magnon
energy distribution. There has been experimental progress
in this direction. For example, in the Supplement of [17],
the authors use noise measurements to infer the Poissonian
distribution of the magnon energies. Furthermore, as seen in
[36], one can use the incidence angle as an energy filter for
magnons. To obtain detailed information about the energy
distribution of such magnons one would need to know in detail
the mechanism behind magnon emission and absorption from
quantum Hall devices, which depend on edge state physics
[14]. Fortunately, there is no edge state reconstruction physics
in graphene [46] and hence we think this is an achievable task.
However, the energy resolved measurement of transmission is
still an experimental limitation and we hope our paper will
motivate experimental advances in this direction.

The experiment in [22], which was part of our motiva-
tion for this project, prepared a junction similar to the one
suggested in our paper and reported the observation of a
possible skyrmion crystal due to suppression of transmission
on doping slightly away from v = 1 in the central region. At
such a filling of the central region, theoretically one would
expect the formation of a skyrmion crystal [4], which has a
qualitatively different Goldstone mode dispersion compared
to the ferromagnet, and the observed suppression would agree
with the picture of magnon decay into some of these. This
experiment raised the important question of the nontrivial
interaction between ferromagnetic magnons and excitations
with qualitatively different dispersions.

While consistent with the hypothesis of the formation of
the skyrmion crystal, the reported suppression does not tell us
much about the nature of its Goldstone/high-energy modes.
Moreover, such suppression can also arise within the context
of elastic scattering, due to any other spin structure, which
hosts a qualitatively different dispersion as compared to the in-
coming magnon; for example, similar suppression is seen for
the case of the ferromagnet-antiferromagnet junction (Sec. III
and [35,36]). Our results provide concrete signatures in nonlo-
cal response, which are unique to the skyrmion crystal and as
far as we can see do not appear in any other phase in the quan-
tum Hall phase diagram. The combination of Landau-level
like transmission and equally spaced low-energy peaks due to
the linear nature of the Goldstone modes would elucidate both
the degree of crystalline order and the nature of the skyrmion
crystal. Further experiments in which the nonlocal response is
studied as a function of the incoming magnon energy should
be able to detect such signatures.

B. Outlook

We have shown how magnon transport through skyrmion
crystals probes the interplay of topology and symmetry
breaking. We have shown that the magnon transmission
spectra allows one to probe the topology arising from the high-
energy effective Landau level structure, which comes from
the texture of skyrmion crystal. Moreover, and perhaps more
interestingly, low-energy transmission spectra can also probe
the nature of the Goldstone modes in the Riemann-Goldstone

104401-16



MAGNON SCATTERING OFF QUANTUM HALL SKYRMION ...

PHYSICAL REVIEW B 108, 104401 (2023)

Landau level, which arises from a complex interplay of the
topology as well as SU(2) symmetry breaking. Therefore, not
only does our paper provide a rich example of the salient fea-
tures of the confluence of topology and symmetry breaking, it
also presents a set of results, which allow one to probe crys-
talline order and map out the excitation spectrum of a quantum
Hall skyrmion crystal—direct experimental evidence of which
has not been established conclusively—in current ongoing
experiments.

We have also provided a simpler tool set comprising two
heuristic models, which allow us to intuitively understand
parts of the complex problem. Moreover, to solve the complex
problem, we have made several technical advances, which are
easily transferable to analogous problems elsewhere. Firstly,
we have provided an analytical framework to study junctions
of topologically trivial and nontrivial structures. Secondly,
we have provided a novel method for the discretization of
topological charge in real space, of possible use in vari-
ous fields, including metallic magnets. Thirdly, inspired from
optics literature, we have provided a recursive method to
numerically obtain full transmission and reflection matrices
for generic scattering problems despite having instabilities
due to evanescent contributions. An alternate way to approach
such a scattering problem, especially for the Goldstone mode
sector would be to construct long-wavelength sigma model
descriptions of such junctions. However, such a problem is
complicated by the different order parameter manifolds of the
ferromagnet and skyrmion crystal. In Appendices J and K
we have also provided an example of the construction of a
type of nonlinear sigma model for such a junction-like struc-
ture between two different ground-state manifolds. Such a
construction and its extensions can also be used in metallic
magnets, where two magnetic materials with different col-
lective excitations are separated by domain walls. We have
kept this for the Appendix as it does not directly relate
to the rest of the content and is more a step for future
works.

Besides monolayer graphene, where quantum Hall
skyrmion crystals are expected to form near unit filling of
the zeroth Landau level, there are various other platforms,
which host skyrmion crystals. Metallic magnets in two and
three dimensions, for example, as mentioned in the main text
have been a rich source of skyrmion crystal physics. Besides
these usual suspects, with the advent of twistronics, spurred
by the experiments on twisted bilayer graphene [47,48], there
have been several proposals for the realization of skyrmion
crystal phases in such settings. For example, in twisted bilayer
graphene, skyrmions have been proposed as the lowest-energy
charged excitations of the insulating phase, and possibilities of
such skyrmions forming a crystal have also been put forward
[49-52]. Also, arecent experiment in twisted bilayer graphene
has used SQUID measurements to map out the inhomoge-
neous spatially varying Berry curvature-induced magnetism at
zero external field [53] near the magic angle. While we have
considered periodically varying effective magnetic fields in
our problem, one could extend this to incorporate disordered
profiles. Such profiles should have a distinct signature in the
magnon response. Hence, our paper motivates the possibil-
ity of the exploring the zero-field Chern mosaic in twisted
bilayer graphene using magnon transport. Besides graphene,

skyrmion crystal phases have also been proposed in other
twisted van der Waals magnets [54,55]. Our paper presents
a route to detect skyrmion crystals in all these systems using
magnon scattering.

One can also use our analytical ansatz to formulate the scat-
tering problem for other topologically nontrivial structures
such as meron or bimeron crystals [56]. Meron crystals have
a different collective mode dispersion [23], hence it would
be interesting to see how their transport signatures differ for
magnon scattering. Most of the theoretical work thus far has
focused on integer fillings in the central region. One could also
ask the question of what response ground states of fractional
fillings have in such magnon scattering. Our analytical ansatz
of the theta functions, as mentioned in the main text, is closely
related to the analytic part of the Laughlin-Jastrow wave-
functions under periodic boundary conditions [38]. Hence
using such truncated versions of similar holomorphic func-
tions could be a good starting point for such a theoretical
analysis. Moreover, fractionally charged skyrmions have also
been predicted near certain fractional fillings [57-60], and
similar suppression of the nonlocal response as for integer
charged skyrmion crystals was also observed [22]. Hence,
studying their response and comparing with our results would
be an interesting direction to pursue.

Another avenue of theoretical research would be to ex-
plore the scattering problem for crystals of entanglement
skyrmions. Entanglement skyrmions are textured of entangled
spin-valley degrees of freedom [33]. A recent paper has shown
that such skyrmions could be realized in monolayer graphene
under realistic values of anisotropies [61]. It would be inter-
esting to explore if the injection of spin waves could detect
the degree of entanglement between spin and valley degrees
of freedom. The nonlinear sigma model construction shown
in this paper would also be a much richer theoretical prob-
lem for the entangled skyrmion case due to the entanglement
skyrmions living in CP? space.

Moreover, as also mentioned in the main text, the pres-
ence of effective Landau levels for the magnons presents
such skyrmion crystals as a fertile platform for topological
magnonics, a point appreciated also in a recent work of a
skyrmion crystal in a three dimensional metallic magnet [27].
Such connections allow one to transfer the physics of Chern
bands, edge states, and bulk-boundary correspondence from
topological band theory to magnons. Besides quantum Hall
junctions, such junction like structures have also been consid-
ered for domain walls in two-dimensional magnets [62,63].
Two-dimensional antiferromagnets host stable skyrmions [64]
and recently, skyrmion domain walls between a ferromagnet
and antiferromagnet have also been considered [30]. Hence,
it would be interesting to study how the signatures of an
antiferromagnetic skyrmionic crystal would differ from our
results of a ferromagnetic one. Finally, another interesting
question is the influence of magnon interactions or thermal
fluctuations on this scattering problem; however, that is well
beyond the current scope and we leave it for future work.

Given the angular dependence of the transmission pre-
dicted in our paper for magnon scattering off skyrmion
crystals, several interesting experimental possibilities also
emerge. One could create geometrically optimized junctions
to maximize magnon transmission, and perhaps also place a
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series of such junctions to create a narrow beam of magnons
with very little angular spread.

Overall, the new experimental capacities are remarkably
well suited to study phenomena arising from the combination
of symmetry-breaking and topology in two-dimensional sys-
tems, and we hope this paper will motivate further studies of
this complex of questions in both theory and experiment.
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APPENDIX A: EQUATIONS OF MOTION AND MAPPING
TO SCHRODINGER EQUATION

In this Appendix we provide the details of the spin-wave
theory calculations starting from Eq. (11) in the main text.
Due to our construction of the energy functional, we have seen
that the holomorphic texture | (r))o and hence ny(r) forms a
locally stable minimum, so we have a well-defined collective
mode (magnon) spectrum for fluctuations around ny(r).

We introduce small deviations such that n(r, 1) = ny(r) +
én(r, t). First, we need to construct local coordinates x;(r)
and x,(r) around ny(r) on the sphere. To do so, we intro-
duce local orthonormal frames (ng, e, e;) such that ny(r) =
e (r) x ex(r), using which we can write

sn(r) = xi(r)e; (r) + xzea(r). (A1)

Since [n(r,1)|” = 1, we get no(r) - sn(r, 1) = 0. To study
collective modes, we need to expand the total energy to second
order in x;(r) and y,(r). Normalizing n(r) and then expand-
ing up to second order we get $n = dn" 4 §n®, with

sn@(r) = =[x (r)* + x2(r)*Ing(r).

Now, by expanding 9;n - 9;n to second order and using the fact
that ny(r) is a local minimum of the energy functional we get
the following expression for the energy functional:

(A2)

E =Ey +g/8Q(r)2 +J/[ax(5n“>)]2 + [3,(5n™)]?

— [(3:m9)* + (3ym)*1(x1(r)* + x2(r)?),

where §Q is the first-order variation of the topological charge
density. Using Eqgs. (A2) and (A3) and the holomorphic con-
straint arising from minimizing the exchange energy at fixed
topological charge, we can write the change in energy as

(A3)

SE® :g/ SQ(I')Z +J/ [liaxX +AXX|2 + lidyx +A)'X|2

— (cf, + ¢3,)|x *]dxdy, (A4)

where Ax/y = él . ax/yéz, Clx)y = é] . 8x/yn0, and Cox)y = éz .
dyx/yio. We find that the second-order variation of the ex-
change term can be interpreted as the energy of a quantum
particle described by a wavefunction x (r) = xi(r) + ixa(r),
x(r) = x1(r) — ix2(r) and subject to a vector potential A,
an effective magnetic field B = 47 Qy and a scalar potential
¢l +c3, (see Appendices B and C for more details on the
effect of the holomorphic constraint and gauge invariance of
the energy functional). The physical origin of this effective
magnetic field, as mentioned earlier, comes from the Berry
phase picked up by the magnon when traversing through the
skyrmion crystal.

In order to get linear equations of motion we now expand
the standard Landau-Lifshitz equations to first order in én.
Since SE /6n = 0 for the configuration ny(r), the linearized
version of the standard Landau-Lifshitz equations gives us

2)
aE(Sn“ = e“b"nbg, (A5)
ot 88n¢
where « = 1/ (4nl§), [3,37] assuming that the Landau level
filling factor v remains everywhere close to 1. Now, on us-
ing the equations derived in this section we can express the
linearized equation in matrix form as

Ax]_Jo —1[sE®/sx:
Yol T 11 0 |[SE@/sx, |

d SE
P (A6)
ot Sx
ax SE
oK = 9%
ot Sx

which is a time-dependent Schrodinger equation for the
Bogoliubov-de Gennes-like energy functional E.

APPENDIX B: EFFECT OF HOLOMORPHIC
CONSTRAINT

The holomorphic constraint results from minimizing the
exchange energy at fixed total topological charge. Let us see
how this arises. We denote v, = d.ny and v, = d,ng, both of
these quantities belong to the plane perpendicular to ng, so we
can regard them as two-component vectors.

The exchange energy density is v? + v§ and the local topo-
logical energy density is 1/(4m)v, x vy, = 1/(4mw)J (vy) -
v, = —1/(@4m)v, - J'(vy), where J = (0,—1;1,0). Let us

minimize v? + vi at fixed v, x v, i.e., we extremize the

function (vy, vy) — (vi + v%)/2 — Av, X vy, where L isaLa-
grange multiplier. We get

v, + AJ (vy) =0,

v, — A (v,) =0, B
which implies that v2 + A2J?(v,) = O and (1 — A%)v, = 0, so
A = %£1. Since v, = AJ'(vy) and vy, x vy, = AJ(vy) - J'(vy),
A = 1(—1) implies a positive (negative) local topological

charge density. In our case Q is positive, therefore the holo-
morphic constraint corresponds to A = 1. This implies v, =

J'(vy), so
Cly)\ _ [ —Cox
()= () =
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where ¢(1,2)x/y) = €(12) - Ox/y)o as in the main text. There-
fore

1
Qo(r) = —no - (3o x 3,m0)

= H(Clxcéy - ClyCZX)

1

= _(C%x + C%x)'

4 (B3)

APPENDIX C: CHECKS FOR GAUGE-INVARIANCE

In our choice of local frames in the spin-wave theory
calculations, we have gauge freedom. Instead of choosing
e, e, we could also choose €] = cos (A(r))e; + sin (A(r))e»
and e}, = — sin (A(r))e; + cos (A(r))e,. Then we would have

@) _ (cos(rr)  —sin (M) (x{()
x2(r) sin(v)  cosa@) @)
x(r) =™y (r),

where x = x; +ix2 as in the main text. Under the gauge
transformation above, (ciy, ¢2,)” and (cyy, ¢2,)" transform as
(x1, x2)T. The relations in Eqs. (B2) and (B3) expressing
the holomorphic nature of ny(r) are preserved under gauge
transformations, since J’ commutes with R(1) (the rotation
matrix in the top line of the above equation). Now we look
at the influence of a gauge transformation on the terms in the
energy functional in Eq. (A4),

Al =é)| - 0.€, = e - (—€|0,1 — sin(1)d,e; + cos(r)d,er)
= —0A +A,, (C2)

and the same result holds for A,. Together with Eq. (C1) this
implies that

Vx —iAx = e*(Vyx' —id'x), (C3)

which ensures that the all the exchange terms in the energy
functional are gauge invariant. To show the gauge invariance
of the §Q terms let us first expand 8Q to first order in sn'"
[see Eq. (A1) for expression]. We can write

478Q =8n'V - (dumg x dyng) + ng - (3,6nV x dyng)

+ng - (d,m9 x 3,6n1). (C4)

The first term vanishes, since d,19 and dyn, are both orthogo-
nal to ng as well as to r'V. To evaluate the last two terms we
need to project 3,6n‘" on the plane orthogonal to ng, which is
equal to (d,x1 + Ay x2)er + (0 x2 — Ay x1)ez. Using this and
Eq. (B2) we can write the second term in the above equation as

ng - (3,6n'Y x d,np)

_ a)er + AxXZ

—Cox
8XX2 _AxX1 Clx

= c1x(0x X1 +Axx2) + c2x (O x2 — Axx1)-
Similarly, once can also write the third term as

ng - (d,mp x 3,6nV)

(©5)

_ Clx ayXI +AyX2
Cox 8yX2 _AyXI

= (A x2 + Ay x1) — (A x1 + Ay x2). (Co)

Now, we can use Eq. (C3) to show that (0, x1 + Axx2, dx X2 —
Ax)T and (3yx1 +Ayx2, dyx2 — Ayx1)"  transform like
(x1, x2)T. This ensures the gauge invariance of Egs. (C5) and
(C6), since the determinant between two column vectors is
invariant under rotations. Hence, this also ensures the gauge
invariance of the §Q term in the energy functional

APPENDIX D: GAUGE-FIXING PROCEDURE

To mirror the problem of the experimentally relevant
situation of a skyrmion crystal sandwiched between two ferro-
magnets, our heuristic model has to comprise a junction with
zero vector potential on either side with a finite and varying
vector potential in the central region. The heuristic model
Hamiltonian with a finite and modulating magnetic field in the
central region induces a vector potential, which increases from
zero to a nonzero finite value. However, one can make a gauge
transformation to ensure that the vector potential vanishes in
the both the ends. In the Landau gauge

Ay(xv y) = /

while this vector potential has the same periodicity in y as
the magnetic field, A,(co, y) # 0 and is also dependent on y.
One can fix this, while keeping the same y — period a/2 of
the magnetic field, provided the total flux within an infinite
strip along x of width a/2 along y is an integer p (in units
of the flux quantum). Such a procedure is only required for
the heuristic model and not the actual skyrmion crystal prob-
lem, since in the latter we can choose local frames e; »(r)
such that the associated vector potential vanishes far away
from interfaces inside both ferromagnetic regions. We also
note that in a skyrmion crystal the condition for integer units
of flux quantum within an infinite strip of half period is
satisfied.

For the procedure, we introduce the following notations
for the lattice discretization of the problem. We define the
magnetic field associated with a plaquette as

B, y)dx', A, =0, D1)

B(x,y) = Ac(x,y) +Ay(x + 1 y) = Ac(x, y + 1) = Ay(x, y),
D2)

where A(y/y) is the vector field along the £/$ direction on the
link originating from the lattice point (x, y) [refer to Fig. 10(b)
for sign convention]. Now, we put flux tubes each carrying
flux —1 at x =x¢p and y =y; +ma/2, with 0 < y; <y, <
... <yp < a/2— 1, xy the midpoint of the central region and
m an arbitrary integer. This singular flux configuration is de-
scribed by the vector potential

SAx(xay)ZO, x;éx(ﬁ

8A,(x,y) =0, x < xo,

8Ay(x,y) = —Ay(00,y), x=xo+ L (D3)
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8A(x0,2)

—— -Ay(eo)y) flux

— /'/ tubes

8A(x0,1)

8A,(x0,4)

y 8A,(%,3)

L BA(x02)

8A.{xo0,1)

X, = Xcentre of
0~ ]
skyrmion crystal

p=1q=4
'Ax(xly+1)
(b)

'Ay(xly) Ay(X+1’Y)

(xy)  Adxy)

FIG. 10. Gauge fixing procedure to ensure zero vector potential
in the left and right ends. (a) Illustration of the procedure explained
in this section for the case p =1, g = 4. (b) Sign convention and
notation for components of vector potential.

The condition on fluxes reads

8A,(xg,y) — 6A(x0,y +1) —A,(00,y)
== Z p Z 8y, yitmq-
i=1 m

Starting from an arbitrary 6A,(xp, y), these equations deter-
mine successively 8A,(xp,y £ 1), A, (xg, ¥y =2) and so on.
See Fig. 10(a) for a pictorial description of the flux addition
procedure.

(D4)

APPENDIX E: MULTICHANNEL SCATTERING—ROLE
OF INTERFERENCE

To understand the role of interference between channels,
for simplicity, we will consider a 1D system with coordinate
x and N internal states (transverse positions, for example).
Consider N-component wave functions W(x) € CV, subjected
to the Hamiltonian

L= _1 - .
H = 5(0y +iA(X)M ™ (x)(0, +iA(x)) +V(x), (ED)

where M (x) is a positive definite, real and symmetric N x N
matrix, a space-dependent effective mass. V (x) = V' (x) plays
the role of a local potential together with “hopping terms”
in the transverse direction. Then A(x) = AT(x) encodes an
orbital generalized magnetic field.

Let W satisfy HUV=EWV with E € R. Then, we
—
have a current J(x)= 5 (W ()M~ (x)(3; +iA)¥(x)—
W (x)(5; — iA)M " (x)W(x)), which is independent of x.

The Schrodinger equation Hyr = E'y is linear and second
order in -, therefore it has a 2N-dimensional space of solu-
tions. For any point x, a solution is uniquely determined by
specifying W(x) and % in CV. The current J(x) may be
seen as a Hermitian form

1 «—
J:EW Y3, —iA))

0 —iM1 ¥
X(iM" 0 )(@)HAW)' 2

The linear map (Y, 3,%)" — (¥, (3, + iA)¥)! is one-to-
one, so as a Hermitian form, J has the same signature as the
middle matrix in the above equation. In a basis where M~!
is diagonal, we see that the eigenvalues of the matrix are
+my, ..., £my, where m; > 0 for 1 <i < N. So we get the
important result that the signature of J is of the type (N, N),
at every point, independently of possible spatial variations of
M (x) and A(x).

For a translationally invariant medium, we can look for
plane-wave solutions ¥ (x) = ¢*y, with k € C. ¢ € CV sat-
isfies the eigenvalue equation

11V + AM ™ kIV + Ay +Vy = Ev. (E3)

Let us consider the current carried by such eigenstates. Since
the current is conserved, it vanishes unless the wavevector is
real. However, we can also get a finite current from evanes-
cent modes if we take linear superpositions v (x) = e*1¥yr; +
e"kﬂtpz when k; = k5. Since J has signature (N, N), we have
2p propagating modes (0 < p < N), with p carrying a posi-
tive current and the other p carrying a negative current. The
remaining 2(N — p) evanescent modes are grouped in pairs of
modes with complex conjugate momenta.

The propagating modes with positive current have mo-
menta ki, ...,k, and those with negative current have
momenta ki, k;, In a time-reversal invariant effective
medium (as it is the case when the vector potential vanishes),
it is possible to label these momenta so that k; + k; = 0.
But in the presence of a nonzero vector potential, as in-
side a skyrmion crystal, there is no simple relation between
the sets of k; and of k values. For evanescent modes, the
corresponding momenta form pairs (k;, k}) with k; = kj for
p+ 1< j<N.We shall always assume that J(k;) > O for
such modes.

A general scattering solution at energy E can then be
written in terms of 2N complex amplitudes A;, B; where
I<j<Nas

Yx) =

N N
D AN+ Bty (E4)
j=1 j=1

It is possible to normalize the eigenstates ;, w; such that

W Iy =1=—-,Jy)) 1 <j<p,
W) =1=W;Jy)ip+1<j<N, (ES)
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(@ A (in) (out) x,  (b)
i > AUBL _— A B AR BR)
o 1
B, (out) (in) B
B | B L-interface R-interface

FIG. 11. Incoming and outgoing amplitudes for (a) a single in-
terface problem and (b) a double interface problem.

and all other bilinears vanish. Then, using this normalization
one gets

p N
W Jv) =Y (A7 = IBjI")+ Y (A3B; + BjA;). (E6)
Jj=1 j=p+1

Let us first consider the problem of a single interface as shown
in Fig. 11(a). While the sign of the current determines the
incoming and outgoing waves for the propagating channels,
for evanescent channels we choose the waves, which decay
towards the interface as incoming and the ones, which decay
away from the interface as outgoing. The scattering matrix is
then defined as

» ter Tpe Ap n Top Tpe B,

A, lep  Tpp) \Ae ’”;p ree ) \B. ’

B I B/

") = AP, (E7)
Be ée B/e

Imposing (¢, Jy¥) = (¥', J'¢") for any choice of incoming
amplitudes and using Eq. (E6) gives the unitarity relations,

~
S =
S N
S
\/
PSS
PN
L
\-/
+
NSRS
ST s
~ ~

tpp + r oo = 1,
Tpp = Tep, (E8)

— i
petP‘-’ +r rPE‘ - r€€+ree’

t t,,,,+r

top [7[7 + rﬁptpp =0,
4/
pe pp + rpetpp - tep’
4t
pp pe +r pptpe - te
+rit =t t’ (E9)

pe pe pe’ pe ee

For the relevant problem of two interfaces [Fig. 11(b)], one

can write down a composition rule. To keep track of the
distance L between the two interfaces we write Ae’*™ as

Ae*lekx=L) We may write

kLA _ PO RO kLA
KLp ) T\ 0 J Gk OLp() |

In particular B = e~ *Lr"e*lA = r)(L)A, if B”) = 0. Our
choice J(k;) > 0 and Ts(k}) = —3(k;) < 0 for evanescent
channels ensures that r)(L), r{)(L), and r{}(L) decay ex-
ponentially with L. This is also the case for z{,'(L) whereas

t(’)(L) oscillates with L.
The general composition law reads

t =1Ly —rOrwy .

(E10)

(E11)

In the limit where LJ(k;) > 1 forall p+ 1 < j < N, we get

for large L,

t A t(r)(L)l_[,,( Q) (V)(L)) H,,t(]),

P[’ 1’1’

(E12)

where we have introduced the rank p projector I, on the
subset of propagating channels inside the intermediate region.
From the above equation we can directly see that if p =0,
i.e., all channels are evanescent, in the large L limit, there
is no transmission. Moreover, if there is only one propagat-
ing channel, p = 1, and |r())| and |r(})| are close to 1, sharp
resonances with maximal transmlssmn are possible. However,
when p > 2, interference between the various propagating
channels in the intermediate region decreases the maximal
transmission at resonances.

To illustrate this point further, we note that the unitary
relations (E8) and (E9) imply that the scattering submatrix S,
associated to an interface and defined by

/
— <r pp tpp)
pp — t
r Tpp
is unitary.

From Eq. (E12), we see that resonances may occur when
) (r) ; : ;
Ty and 1, are small. When ¢ is small, we can write a unitary
(1 —3™)

scattering matrix as
g~ (70 ; —rot'r}
- t (L= 3eMYrg)

where rp and r{ are unitary matrices and all entries of ¢
are small of order €. Then S'S =1 4 O(e?). Using this
parametrization for S'}) and S{/) and dropping the pp subscript
for notational convenience, Eq. (E12) becomes

t =t (1 — (1 —1

14, (r)\ kLY~ 1 (L)
37O D),

(E13)

(E14)

DfHD) 1) /D=L 1)

x (1 — (E15)

So, the condition for resonance now selects the energies at
which the unitary matrix r)"e=* Ly *EL hag an eigen-
value equal to 1. When the number of propagating channels
is at least two, we expect that the behavior of the transmis-
sion near these resonances is going to be significantly more

complex than for a single propagating channel.

APPENDIX F: TIGHT-BINDING MODEL AND FORMS
OF THE MATRIX ELEMENTS

In the main text we saw that the Schrodinger equa-
tion could be expressed as a tight-binding equation relating
the wavefunctions of a slice to those to its left and right.
On discretizing the energy functional and then taking the
derivative we get a tight-binding problem with nearest- and
next-nearest-neighbor hoppings. In this section we give illus-
trative examples of how the matrix elements for the matrices
relating the different slices look. The nearest and next-nearest
neighbor from the right contributions will enter as matrix ele-
ments in the Ag matrix, similar contributions from the left will
enter in the A; matrix and on-site contributions and nearest-
neighbor contributions from above and below will enter in the
D matrix. Let us look at some of the forms of these matrix
elements.
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First consider the exchange term. One can discretize this
term by simply writing the contribution from the ith site as

Eji =J(n; — nip ), (F1)

expanding the above equation we get constants plus an n; -
n;.; term. One can expand this term by expressing the n;
in terms of x; and yx, by using Egs. (Al) and (A2) in Ap-
pendix A. On doing so, and keeping up to O( Xlz/z) terms one
finds that

ani

— =ny; -ngjx1i — e1; - (x1je1; + x2j€2;), (F2)

X1

O

Do =no; - nojx2 — €2 - (X1j€1; + X2j€2))- (F3)
2i

From the above two equations one can directly read out the
nearest-neighbor and on-site contributions from the coeffi-
cients of xi,5; and x;,; respectively. The exchange term
does not induce next-nearest-neighbor hopping. Now, after
discretizing the topological charge terms as in the main text,
we obtained a tight-binding model with hopping terms up to
second-nearest neighbors. Let us consider one term from the
first line in Eq. (22) of the main text. The derivative of this
term can be expressed as

DR _ i 28,
dx10 dx10
= 26Q01( — funZo1 - €10). (F4)

where  fy,, = sin(ap)/(1 +cos(ap1)), and ny x n; =
sin(oo1 )Zo1- One can then expand 82, using Eq. (20) in
the main text, and then read off the coefficients same as
above. A similar procedure can be used for all the other terms
in Eq. (22).

APPENDIX G: SCALING FUNCTIONS
FOR DISCRETIZATION

The real-space discretization procedure outlined in the
main text requires each coupling constant to be scaled by a
factor, so that the results are independent of N is the large N
limit.

From the standard finite-difference type discretization
scheme for the exchange terms, we know that the denominator
will be (a/N)? because of the double derivative, where a/N is
the grid size. Therefore, to get the correct continuum limit J
should be multiplied by (N/a)?. Similarly from the expression
of the topological charge density, we can see that the denomi-
nator will be (a/N)*, hence g should be multiplied by (N/a)*.

While the argument above for the exchange term is pretty
well known, the argument for the scaling of the g term might
be a bit too simplistic. In which case one can also come up
with a more sophisticated argument with the same result. Let
us denote the topological charge of the n field generated by
the theta functions in Sec. III, over a plaquette, to be Q. If we
change n( to ny + n;, where n; is some small deviation such
that ng - ny = 0 everywhere, O is changed into O + AQn,

where
3”0
AQp = —%no <n1 X —)du (G1)

Here, the integral is taken along the boundary of the above
square plaquette and u is an arbitrary parameter on this
boundary. It is convenient to write ny = v(r) x ny(r), where
v(r) is an infinitesimal rotation vector. Using the fact that
ng - dngy/ou = 0, we get

a
AQQO = —% ﬂdu

Using Green’s equation one can express the above as an inte-
gral over the whole plaquette as

1 v v v 9
AQD:4_//dxdy<—v.—”——”-ﬂ). (G3)
7 JJo

dx dy dy Ox
As in the next section we check that if v is constant in space
(global rotation in spin space), AQy = 0. Also, we see that
AQQ is expected to be proportional to the plaquette area
(a/N )2, when N is large and ny and v are smooth fields.
Therefore, we may write

(G2)

AQn = 8p(a/N)?, (G4)

with §p being the variation of the local topological charge
density. Therefore, the first term in Eq. (A4) should scale as
(in the large N limit, which is the relevant limit for numerics)

o wslea (] 2

plaq

2
~ 8/Z(AQD)2<]£V> .

plag

(G5)

Hence, we see that the scaled version should be ¢ = g(N/a)*

APPENDIX H: TEST FOR TOPOLOGICAL CHARGE
DISCRETIZATION SCHEME

To test whether our geodesic scheme for discretizing the
topological charge density is correct, we perform the fol-
lowing nontrivial check. As in the last section we take an
infinitesimal rotation vector v, constant in space, and rotate
the ground-state spin vector ny(r). On doing so, we can define
new variables x; and x;, which are related to the old variables
by

xi(r) =v-exr),

X)) = —v-e(r). (HI)

Using the above expressions we form a column vector of the
X'(r) = Xi(r) + ix3(r) and 7'(r) = x;(r)() — ix(r) from all
the sites. We then right multiply the Hamiltonian constructed
from only the topological charge density term (J = 0) and
multiply it with this vector. If the discretization scheme is
correct, then this product should be zero, since an infinitesimal
global rotation should not induce any variation of the topolog-
ical charge density. We have checked this in our calculations
and indeed it does return a column of values, which are for all
intents and purposes zero [O(le — 16)].
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TABLE I. Different properties of the bulk in the ferromagnet and skyrmion crystal highlighting the different order parameter manifolds.
The most general form of coupling between these two that respects the individual properties shown in this table are given in Eqgs. (J7) and

1.

Property Ferromagnet Skyrmion crystal
Number of zero-energy 2 3
deformations
Ground-state manifold Spheren -n =1 SO(3) group parameterized by
X1 X2, X3
Total angular momentum on L~n#0 L=0,(r,m, 3 =0)

ground-state manifold
Dynamical variables

n with {i’ll‘, n/} = €jkNk;
1 <nm,nj,m <3

X1, X2, X3, 7Ty, T2, T35
{xi, x;} = {mi, m;} = 05
{xi, m;} =&

APPENDIX I: BOUNDARY CONDITIONS FOR SPECTRA
AND RELATION BETWEEN y AND x

To obtain the spectra of the skyrmion crystal, we consid-
ered periodic boundary conditions along both x and y axes
of an a x a unit cell. For the tight-binding model after taking
the derivative of the discretized energy functional, this implies
that the for the right(left)-most site, the right(left)-nearest-
neighbor contribution will pick up a e'%(e~4x%) phase factor
and similarly for the top(bottom)-most site, the top(bottom)-
nearest-neighbor contribution will pick up a e/“(e~%) phase
factor. The phase factors encode how the momentum depen-
dence enters the Hamiltonian matrix. The Hamiltonian is con-
structed in the site basis, so if there are N rows and columns
each in the unit cell, the Hamiltonian has a size 2N? x 2N2,
where the factor of 2 comes because of the presence of both
x and x. Each diagonal 2N x 2N block of the Hamiltonian
comprises the on-site, right- and left-nearest-neighbor contri-
butions that come from that particular row. The off-diagonal
blocks comprise the up- and down-nearest-neighbor terms as
well as the second-nearest-neighbor contributions.

An important point to note while doing these calculations
for the spectra and the scattering problem is that y and j
are not always complex conjugates of one another. To see
this remember that from Appendix A, x = x; +ix2 and j =
X1 — ix2; however, both x; and x, pickup complex phase
factors e*/4% due to the boundary conditions as described
above. For ¢y, g, = 0, the relation x = x* holds since x; and
X2 are real. However, generally, this is not the case, since
X1, X2 € C,and so x # x*.

APPENDIX J: COUPLING BETWEEN GOLDTSONE
MODES—RECIPE FOR A NONLINEAR SIGMA MODEL

On top of the microscopic numerical calculations of the
scattering problem, facilitated by the earlier developments, it
is desirable to have a long-wavelength description for such
junctions. Such a construction provides an analytical coarse-
grained framework without delving into the specifics of the
microscopic structure. These coarse-grained constructions
usually take the form of nonlinear sigma models in magnetic
systems. However, the construction of such a nonlinear sigma
model for our problem is complicated by the presence of
coupling between the ferromagnet and the skyrmion crystal
at the interface, since both have different order parameter

manifolds (see Table I). To understand what kind of couplings
may arise at the interface of such a junction, one has to first
construct a good parametrization of SO(3) to express the total
angular momentum L in the x;, 7r; variables (see Table I). Such
a parametrization will allow us to construct SO(3) invariant
Hamiltonians in the vicinity of the degenerate ground-state
manifold of the noncollinear skyrmion crystal, and will help
us find ways to couple it to 7 in an SO(3) invariant way.

We start by writing rotation matrices in terms of SU(2)
matrices. Consider the family of such rotation matrices of the

form
— x2 1
U(x)z[”. ¥+ ixs
ix; — x

=v1—-x21+ix-o.

Since SO(3) is non-Abelian we have two distinct actions of
SU(2) on itself, either by left or right multiplication. Note
that any left multiplication commutes with any right multi-
plication, U(VW) = (UV )W ; however, two left or two right
multiplications do not commute. We choose left actions to
correspond to global SO(3) symmetries, and generators of
right actions therefore, to commute with generators of global
symmetries—they can be used to construct effective low-
energy Hamiltonians.

Let us first study the left action. Consider an infinitesimal
rotation exp(—i5 - ) where € is a small vector in R3. Now,

x| + x i|

vl—xz—ix3 (Jl)

(1 i 0>U(x) — U + X)) + 0()

X(x) = —/1—x25 4

2

When € — 0, X.(x) may be seen as a tangent vector to the
SO(3) group manifold at point x, so x — X(x) is a vector
field associated to the infinitesimal rotation.

Vector fields form a Lie algebra under the Lie bracket.
We can check that [X,, X;] = X, which is the Lie-algebra
structure of SO(3) in R? (see Appendix K for details). Now,
coming to the right action of the rotation matrix, we find that

€ XX

J2)

U(x)(]l n i% : or) = Ux + Y.(x)) + O(e2)

Y.x) = V1 —x2§ MRl

2

a3)

104401-23



CHAKRABORTY, MOESSNER, AND DOUCOT

PHYSICAL REVIEW B 108, 104401 (2023)

We can recover the same Lie-algebra structure as for the left
action here as well.

In Hamiltonian mechanics, angular momentum defined by
L=g¢ kX7, generates rotations in phase space owing to its
commutation relations with the x and m variables. From the
equations of X, and Y, one can show that the left action is
generated by € - L where

L= 3(—/1—x’m + L), (J4)

and the right action is generated by € - R, where

R =iW1—x2m + L. Js)

These functions satisfy the commutation relations {L;, L;} =
EijkLk’ {R,’, R]} = E,'ijk and {Ll', R,} =0.

For the uniform (¢ = 0) sector, the noncollinear skyrmion
crystal Hamiltonian contains only a kinetic term, which we
take to be quadratic in the R; variables, since R; = 0 identi-
cally on the degenerate ground-state manifold and R; deviates
linearly from zero when 7;’s are small. We can write this term
as

1 —1
Hy =3 Xb:[ab R.Ry, J6)

where I, is a positive definite symmetric matrix with real
entries, which may be regarded as a generalized inertia matrix
for a kind of top.

The simplest left-invariant coupling between the ferromag-
netic magnetization n and the skyrmion crystal system is given
by

He =gen-L, dn

where g, is some coupling constant.

Since the coupling terms occur at the interface one can also
consider coupling n to a fraction of the spins composing the
skyrmion crystal (those belonging to the interface) in an SU(2)
invariant way. So we should be able to construct triples of
functions over the SU(2) group manifold (with x coordinates),
which transform as the three components of the usual vectors
under usual SO(3) rotations. To express this in the coordinates
obtained for SU(2), we use the Heisenberg picture for observ-
ables. We set o(x) = U (x)oU (x). Now, let us change x to
x + X, where a’ is an infinitesimal vector. By construction,
this amounts to sending U (x) to exp(—i% -a)U (x). Using the
above and the relations [0}, 0] = 2i€;jx0r and [a’ - 0, 0] =
—2ia’ x o, one gets that

o(x+Xy)=0(x)+d x o)+ 0@?). J8)

We can then choose any density matrix py (with p = p¥,
positive eigenvalues and Trpy = 1) and form a vector-valued
function

(), : SUQ) — R?,
Ux) — (0),, = Tr(o(x)po). d9)
Then, Eq. (J8) implies that

(O +Xa)) gy = (0(x)) g +@ X (0(x)) - (J10)

Hence, one can write down a second kind of coupling term

Hp =gn - (0(x) . J1n

where g is some other coupling constant. Therefore the full
sigma model Hamiltonian including the standard gradient po-
tential terms for the bulk would be

Hy, = Hpux + Hx + Hey + Heo, J12)

where the coupling terms would be evaluated at the coordi-
nates of the interface. One can use this model to calculate
the equations of motion and the corresponding transmission
coefficients. Following this, one can fit the results to the values
obtained numerically from our transfer matrix calculations to
get the values of all the coupling constants in the sigma model.
However, we leave a detailed analysis of such sigma models
for future work.

APPENDIX K: LIE-ALGEBRA STRUCTURE
IN NONLINEAR SIGMA MODEL

In this Appendix we give details on some of the calcu-
lations to show the Lie-algebra structure of the vector fields
mentioned in Appendix J. We showed that x — X, is a vec-
tor field associated to the infinitesimal left rotation exp(—ie -
0/2). We know that vector fields form a Lie algebra under the
Lie bracket. The Lie bracket is defined as

Lix yi(f) = (LxLy — LyLx)f

for any arbitrary function f, where Ly f = Y, X'9; f denotes
the Lie derivative of f along vector field X. We can write the
Lie derivative as

(LxLy — LyLx)f
=X'0;(Y70;f) — Y70;(X"8;f)

therefore we get [X,Y]=X-VY-Y . -VX=Y'(X)-—
X'(Y) where X’ denotes the Jacobian matrix (X ’){ = §;X/.
Now, let us compute [X, X;]. Using Eq. (J2) from the main
text we can write

x € € n
—_— I —x2- — - xx|=
1 —x2 2 2 2

—gx <\/1—x2§—§><x>

(K1)

X)X =—

=_%((x.e)n+mnxe—nx(exx))-
(K3)

Similarly one can also write

X.(X, = —%((x~11)e+\/1 —x2exn—€x (g xx)).
(K4)
Using the above two equations one gets

1
[Xe. Xy = 7 (- e = (x-€)y) + 2V —x%exq

—(ex (1 xx)—n X (€ XX)))
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€X
2

=+1—x2

1
—z(exn)xx

:ane, (KS)

and, hence, we recover the Lie-algebra structure of SO(3).
Similarly for the right action we get

[Y€1 Yﬂ] = _Ye><7] = YﬂXE' (K6)

Let us examine the correspondence between Poisson brack-
ets {g h} and Lie brackets [X,, X;] of their associated
Hamiltonian vector fields X, and X,. Hamilton’s equa-
tions, relating X, to g, are equivalent to requiring Ly f =
{f, g} for any function f over phase space. Then we have

that
LXgLXh(f) = {{fv h}v g}v

hence, one can express the Lie bracket as
L[XX,X;(](f) = {{fv h}’ g} + {{g7 f}v h} = _{{h7 g}s f}
= {f’ {hr g}} = LX(h,g) (f)v (K8)

[Xg, Xi] = X, g,

where in the second equality of the first line in the above
equation we have used the Jacobi identity.
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