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Out-of-equilibrium scaling behavior arising during round-trip protocols
across a quantum first-order transition
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We investigate the nonequilibrium dynamics of quantum spin chains during a round-trip protocol that slowly
drives the system across a quantum first-order transition. Out-of-equilibrium scaling behaviors à la Kibble-Zurek
for the single-passage protocol across the first-order transition have been previously determined. Here, we show
that such scaling relations persist when the driving protocol is inverted and the transition is approached again
by a far-from-equilibrium state. This results in a quasi-universality of the scaling functions, which keep some
dependence on the details of the protocol at the inversion time. We explicitly determine such quasi-universal
scaling functions by employing an effective two-level description of the many-body system near the transition.
We discuss the validity of this approximation and how this relates to the observed scaling regime. Although our
results apply to generic systems, we focus on the prototypical example of a 1D transverse field Ising model in
the ferromagnetic regime, which we drive across the first-order transitions through a time-dependent longitudinal
field.
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I. INTRODUCTION

Quantum spin chains featuring two quasi-degenerate vacua
in competition are recently attracting a great deal of attention
in the context of lattice gauge theories. One of the goals of
these studies is to shed light on some ununderstood high-
energy physics phenomena—such as the false vacuum decay
[1–6] or the confinement mechanisms [7–10]—in a control-
lable way, thanks to the impressive development of modern
quantum simulators. Out of equilibrium, these efforts pro-
vided, for instance, a characterization of the unusual spreading
of correlations and entanglement [10–17], as well as of the
thermalization [18–21], in condensed-matter analogs of con-
fined systems. A celebrated example is the Ising model in a
tilted magnetic field [22–27], where topological excitations in
the ferromagnetic phase are subject to an effective confining
force induced by the longitudinal field, which make them
behaving as toy version of mesonic excitations [28–31].

From a different perspective, it is well known that quasi-
degenerate vacua naturally arise in the context of quantum
phase transitions, after a spontaneous symmetry breaking.
Their behavior and coexistence in the noncritical regime is
governed by a first-order transition (FOT). FOTs are responsi-
ble for many important out-of-equilibrium effects, including
nucleations and metastability [32,33], coarsening [34], and
anomalous dependence on the boundary conditions [35–39].
Moreover, a nice analogous at first-order transitions of the
Kibble-Zurek mechanism [40–43] (see also Refs. [44–47] for
the classical formulation) has been proposed by Vicari et al.
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[48,49], recently reviewed in Refs. [50,51]. The essential idea
is that one can construct a finite-size scaling theory during
the slow driving of the noncritical model across the transition
upon replacing the diverging correlation length and time with
the corresponding typical scales characterizing the FOT.

Under this analogy, as well as the Kibble-Zurek mech-
anism captures the defects density generated across the
criticality from an initial equilibrium homogeneous state, out-
of-equilibrium finite-size scaling relations at the FOT quantify
the transition to the first excited level during the driving from
an initial (noncritical) ground state. However, understanding
whether similar scaling relations occur when the system is
driven across a quantum phase transition from an out-of-
equilibrium configuration is still not clear. So far, results are
limited to the recent Ref. [52], and yet unexplored for FOTs.
This is the scope of this paper. Below, we investigate the
emergence of finite-size scaling behaviors during a round-trip
driving across the first-order point. As result, we find that
out-of-equilibrium scaling behaviors are still observed (even
after several passages across the FOT), although the associ-
ated scaling functions develops a dependence on the details of
the driving protocol at the inversion time.

The paper is organized as follows. In Sec. II, we introduce
the model and briefly recall its phase diagram. Our focus will
be on the FOT line and on the finite-size scaling behavior
across it. Section III sets our notation for the driving protocol
across the quantum FOT. In particular, we shall consider the
case of a linear variation of the driving parameter with time
scale ts. In Sec. IV, we present the out-of-equilibrium scaling
hypothesis arising in the vicinity of the FOT when L → ∞
and ts → ∞. Numerical results for the many-body system
are shown to support the validity of the underlying scaling
theory. In Sec. V, we develop an effective description of the
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FOT

FIG. 1. Illustration of the phase diagram of the model (1). For
h⊥ < 1, the ground state is ferromagnetic, i.e., it features a nonvan-
ishing longitudinal magnetization (color map). This ferromagnet is
aligned with the direction of h‖ (FM↓ and FM↑ phases in the figure).
A line of quantum FOTs at h‖ = 0 separates these two ferromagnetic
phases (dashed vertical line). The protocol that will be discussed is a
passage across the quantum FOT at fixed h⊥ < 1 (green line).

quantum spin chain obtained by projecting the many-body
Hilbert space onto the subspace spanned by the lowest energy
levels competing across the FOT. With this approximation, we
determine an analytical expression of the out-of-equilibrium
scaling functions. In Sec. VI, we extend our analysis to the
case of periodic driving across the FOT. Finally, in Sec. VII
we provide a short summary of our results and draw some
conclusions. Appendices A and B contain the details on the
analytical calculation of the scaling functions at and out of
equilibrium, respectively.

II. THE MODEL AND THE FOT

As a prototypical quantum many-body system displaying a
FOT, we shall consider the one-dimensional Ising model in a
tilted magnetic field, whose Hamiltonian reads

Ĥ (h⊥, h‖) = −J
L−1∑
j=1

σ̂
(3)
j σ̂

(3)
j+1 −

L∑
j=1

(
h⊥σ̂

(1)
j + h‖σ̂

(3)
j

)
. (1)

Here, L is the system size, σ̂
(k=1,2,3)
j denotes standard Pauli

operators acting on site j, h⊥ (resp. h‖) is the transverse (resp.
longitudinal) component of the magnetic field, and J = 1 is
the overall energy scale, which is set to one from thereafter.

We set open boundary conditions (OBC) for the spin chain
(1). Notice that other choices of neutral boundary conditions
(i.e., not favoring any particular phase)—such as periodic
boundary conditions—will not alter our discussion below.
The case of non-neutral types of boundary is discussed in
Refs. [35–39,53].

We briefly recall the phase diagram of the model (1), de-
picted in Fig. 1. At (h⊥, h‖) = (1, 0), the Ising model develops
a critical behavior belonging to the 2D Ising universality class,
see e.g. [54]. For h‖ �= 0 instead, the system is always gapped.
Our focus is on the ferromagnetic phase h⊥ < 1, where the
model undergoes a quantum FOT at h‖ = 0. Across this FOT
point, the model remains noncritical and thus displays ex-
ponential decay of correlation functions. Nevertheless, it has
been shown that finite-size scaling (FSS) behaviors arise in
the limit L → ∞, h‖ → 0± [55], as argued below.

For h‖ = 0, the model (1) features a level crossing of the
two lowest-energy states in the infinite-volume limit, sepa-
rated by an exponentially closing energy gap for L → ∞ [56].
For OBC, this is

�(h⊥, L) = 2hL
⊥(1 − h2

⊥) [1 + O(h2L
⊥ )]. (2)

On the other hand, the presence of a small longitudinal
magnetic field |h‖| 	 1 induces a Zeeman-like gap in en-
ergy between the two lowest levels, thus introducing another
symmetry-breaking mechanism of the aforementioned degen-
eracy. The latter can be estimated using standard perturbation
theory in h‖ as [48]

E (h⊥, h‖, L)
h‖→0
 2h‖

L∑
j=1

∣∣〈σ̂ (3)
j

〉∣∣ 
 2h‖LM0(h⊥), (3)

where we approximated the longitudinal magnetization with
its value M0 = (1 − h2

⊥)1/8 attained when h‖ = 0 and L = ∞.
These two effects (2) and (3) do compete across a

quantum FOT (i.e., when h‖ → 0±, L → ∞), giving rise
to a FSS behavior controlled by the scaling variable κ =
E (h⊥, h‖, L)/�(h⊥, L) [55,57]. For instance, the longitudinal
magnetization

M(h⊥, h‖, L) = L−1
L∑

j=1

〈
σ̂

(3)
j

〉
(4)

satisfies the FSS for h‖ → 0±, L → ∞ [57,58]

M(h⊥, h‖, L) ∼ M0(h⊥) fM (κ ). (5)

Similarly, the energy gap between the two lowest levels
�E (h⊥, h‖, L) = E1 − E0 obeys the FSS

�E (h⊥, h‖, L) ∼ �(h⊥, L) fE (κ ). (6)

Note that the ground-state proprieties of the model (1) across
the quantum FOT are entirely controlled by the competition
of the two quasi-degenerate vacua. This enables the analytical
calculation of the scaling functions fM, fE in (5) and (6)
using an effective two-level description (see Appendix A and
Refs. [48,59–61] for details). The result is

fM (κ ) = κ√
1 + κ2

; fE (κ ) =
√

1 + κ2. (7)

The FSS behavior of Eqs. (5) and (6) is shown in Figs. 2
and 3.

In what follows, we investigate the out-of-equilibrium
finite-size scaling (OFSS) behaviors arising due to a slowly-
varying time-dependent longitudinal magnetic field h‖ that
drives the system across the quantum FOT at fixed h⊥ < 1.
We discuss the case of single and round-trip passage through
the transition, and we comment on the validity of the two-
level effective description of the many-body system during the
nonequilibrium dynamics.

III. DRIVING PROTOCOL

In our setting, the out-of-equilibrium dynamics is gener-
ated at fixed h⊥ < 1 by varying h‖ in the Ising Hamiltonian
(1) as a linear ramp in time [62]

h‖(t ) = t/ts, (8)
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FIG. 2. FSS of the longitudinal magnetization in Eq. (5). M/M0

shown as function of the scaling variable κ for different system sizes
up to L = 12 and h⊥ = 0.3. The data collapse to the scaling function
fM in Eq. (7).

where ts is a characteristic time scale. With this convention,
the model is prepared at ti < 0 in the many-body ground
state |�(ti )〉 = |�0[h‖(ti )]〉 corresponding to the initial value
of longitudinal field h‖ = ti/ts. At times t > ti, the system
evolves unitarily with time-dependent Ising Hamiltonian

i∂t |�(t )〉 = Ĥ (h⊥ < 1, t/ts) |�(t )〉 , (9)

crossing the quantum FOT when t = 0. A single-passage pro-
tocol stops at a final time t f > 0 while a round-trip protocol
is implemented by inverting the ramp (8) at t = t f so that we
can drive the system back to the value h‖(ti ) in a time window
2(t f − ti ); see Fig. 4 for an illustration.

IV. OUT-OF-EQUILIBRIUM FSS AT FOT

Below, we specify to the case of slow drivings, ts →
∞. For a single passage and at the critical point (h⊥ = 1),
this class of protocols would correspond to the standard
Kibble-Zurek setup, whose OFSS has been extensively dis-
cussed in literature, see e.g., Refs. [40–42,63–73] and [43,50]
for reviews. We also mention recent works, e.g. [74–76], on
the complete probability distribution of topological defects.

FIG. 3. FSS of the energy gap in Eq. (6). �E/� shown as func-
tion of the scaling variable κ for different system sizes up to L = 12
and h⊥ = 0.3. The data collapse to the scaling function fE in Eq. (7).

FIG. 4. Illustration of the driving protocol. The longitudinal
magnetic field h‖(t ) is varied as a linear ramp (8) from a time ti < 0
to a time t f > 0 with slope t−1

s . With this convention, the system is
driven across the quantum FOT at t = 0. For a round-trip passage,
the ramp is inverted at t = t f and the system crosses the quantum
FOT also at t = 2t f .

Analogously, across the quantum FOT (h⊥ < 1, h‖ = 0),
one can formulate an OFSS ansatz as the limit L → ∞,
u ≡ tsL−1M−1

0 → ∞ with fixed scaling variables,

τ = t/
√

u, (10)

υ = u �(h⊥, L)2, (11)

where the longitudinal magnetization is expected to scale as

M(h⊥, t, ts, L) ∼ M0(h⊥) FM (τ, υ ) (12)

with OFSS function FM .
In Eq. (10), τ is a rescaled time and tKZ = √

u plays the
role of a Kibble-Zurek time, as commented in the follow-
ing section. Similar relations arise at classical FOT, see e.g.,
Refs. [77,78]. In this sense, we expect to assist to a breakdown
of adiabaticity when |τ | � 1. To quantitatively probe this ef-
fect during the driving, it is useful to introduce the adiabaticity
function

A(h⊥, t, ts, L) = |〈�0[h‖(t )]|�(t )〉|, (13)

defined as the modulus of the overlap coefficient between
the time-evolved wavefunction |�(t )〉 and the instantaneous
ground state |�0[h‖(t )]〉 of the time-dependent Hamiltonian
Ĥ (h⊥, t/ts). Initially, A(ti ) = 1 by construction, and it devi-
ates from unity when the adiabatic approximation of the state
|�(t )〉 breaks down near the quantum FOT point. In the OFSS
limit,

A(h⊥, t, ts, L) ∼ FA(τ, υ ). (14)

Finally, notice that the scaling variable κ (characterizing the
equilibrium FSS) is obtained from (10) and (11) as

κ = 2τ√
υ

. (15)

It is then easy to see that the energy gap

�E (h⊥, t, ts, L) ∼ �(h⊥, L) fE

(
2τ√
υ

)
(16)

in the OFSS limit.
In Figs. 5 and 6, we show the results for the OFSS of the

longitudinal magnetization [Eq. (12)] and of the adiabatic-
ity function [Eq. (14)]. The numerical data is obtained by
performing exact diagonalization of the spin chain (1) and
Runge-Kutta methods for time evolution. Notice that despite
our data are obtained for spin chains of modest system sizes,
the convergence to the thermodynamic limit is controlled by

104316-3



FRANCESCO TARANTELLI AND STEFANO SCOPA PHYSICAL REVIEW B 108, 104316 (2023)

FIG. 5. OFSS of the longitudinal magnetization in Eq. (12).
M(t )/M0 shown as a function of the rescaled time τ during a
round-trip protocol with |τi| = τ f = 2 (FOTs at τ = 0, 4). We show
different values of υ and h⊥ (different curves) and we vary the system
sizes up to L = 8. In the plot legend, “2 lev” refers to the scaling
functions FM (τ, υ ) obtained using the effective two-level description
discussed in Sec. V A.

the interplay of h⊥ and L, and thus it can be reached al-
ready for modest system sizes when h⊥ 	 1. For h⊥ closer
to one, larger values of L are required to observe OFSS, see
Refs. [48,57]. The convergence to the OFSS regime is shown
in Fig. 7 for different values of L and h⊥.

The OFSS for a single passage across the quantum FOT
has been discussed, e.g., in Refs. [79–84]. Here, we show that
such scaling behavior remains valid for a round-trip passage.
It is important to remark that the OFSS during a round-trip
protocol cannot be inferred from the observed OFSS for a
single passage. Indeed, while the first passage is responsible
for the formation of excitations from the adiabatic ground
state in the Kibble-Zurek sense, for t > t f the system is found
in a nonequilibrium state before approaching the transition for
the second time. Therefore, standard Kibble-Zurek arguments
do not apply.

FIG. 6. OFSS of the adiabaticity function in Eq. (14). A(t ) shown
as a function of the rescaled time τ during a round-trip protocol with
|τi| = τ f = 2 (FOTs at τ = 0, 4). We show different values of υ and
h⊥ (different curves) and we vary the system size up to L = 8. In the
plot legend, “2 lev” refers to the scaling functions FA(τ, υ ) obtained
using the effective two-level description discussed in Sec. V A.

FIG. 7. Convergence to the OFSS regime. Top: Longitudinal
magnetization M(t )/M0. Bottom: Adiabaticity function A(t ), both
shown for different L and h⊥ as function of the rescaled time τ during
a round-trip protocol with |τi| = τ f = 2 and υ = 1. The symbols
show the scaling functions FM , FA obtained using the effective
two-level description discussed in Sec. V A.

Interestingly, the OFSS during the round-trip protocol
shows a dependence on the initial condition τi, see Figs. 8
and 9. Such feature arises due to the magnetic field inversion
occurring at t = t f , i.e., when the system is already far from
equilibrium and thus unable to wash out such information
during the unitary evolution for t > t f . This is a qualitative
difference with respect to the single passage protocol. Given

FIG. 8. Quasi-universality of the OFSS behavior of M/M0 during
a round-trip protocol. We show the data collapse as function of τ at
fixed υ = 0.5, h⊥ = 0.2, and varying the system size up to L = 8.
Different curves refer to different values of |τi| = τ f (see legend).
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FIG. 9. Quasi-universality of the OFSS behavior of A during a
round-trip protocol. We show the data collapse as function of τ at
fixed υ = 0.5, h⊥ = 0.2, and varying the system size up to L = 8.
Different curves refer to different values of |τi| = τ f (see legend).

the dependence on τi, we refer to the OFSS functions FM and
FA for the round trip as quasi-universal.

In the following sections, we derive an effective descrip-
tion of the many-body system during the driving protocol
(8). In this way, we determine analytical expressions for the
quasi-universal OFSS functions characterizing the round-trip
protocol.

V. EFFECTIVE DESCRIPTION IN THE OFSS REGIME

Let us consider the following formal expansion of the
many-body wavefunction:

|�(t )〉 =
2L−1∑
n=0

Cn(t )e−iϑn (t ) |ψn(t )〉 (17)

where |ψn(t )〉 is the instantaneous eigenbasis of the
Hamiltonian at fixed time t satisfying

Ĥ (t ) |ψn(t )〉 = En(t ) |ψn(t )〉 , (18)

and

ϑn(t ) =
∫ t

t0

ds En(s) (19)

is the associated dynamical phase. Using (17), the time evolu-
tion generated by the Schrödinger equation (9) can be reduced
to the set of equations for the overlap coefficients

dCk

dt
= −

∑
n

Cn(t )

〈
ψk (t )

∣∣∣∣∂ψn(t )

∂t

〉
ei(ϑn(t )−ϑk (t )), (20)

which is solved imposing the initial condition Ck (ti ) = δ0,k .
Differentiating Eq. (18), one obtains

〈ψm(t )| ∂t Ĥ |ψn(t )〉

+ (Em(t ) − En(t ))
〈
ψm(t )

∣∣∣∣∂ψn(t )

∂t

〉
= dEm

dt
δm,n (21)

from which one can write Eq. (20) as

dCk (t )

dt
= −

〈
ψk (t )

∣∣∣∣∂ψk (t )

∂t

〉
Ck (t )

+
∑
n �=k

Cn(t )
〈ψk (t )| ∂t Ĥ |ψn(t )〉

(En(t ) − Ek (t ))
ei(ϑn(t )−ϑk (t )). (22)

This formal expression for the coefficients is exact. Specifying
it to the Ising Hamiltonian (1) with ramp (8), we have

〈ψk (t )| ∂t Ĥ |ψn(t )〉
(En(t ) − Ek (t ))

= Mk,n(t )

tsL−1(En(t ) − Ek (t ))
, (23)

where Mk,n(t ) = L−1 〈ψk (t )| ∑L
j=1 σ̂

(3)
j |ψn(t )〉.

The adiabatic limit corresponds to the limit ts → ∞
(regardless the value of L). In such limit the off-diagonal terms
in Eq. (22) vanish and the system remains in the adiabatic
ground state with h‖(t ) at any time t . Conversely, in the OFSS
limit considered, a breakdown of the adiabatic approximation
is observed (cf Fig. 6). In particular, it is easy to show that
the contribution coming from the first excited level is non-
negligible since

tsL
−1(E1(t ) − E0(t )) ∼ √

u υ M0 fE (κ ) (24)

and υ is fixed in the OFSS regime. This means that the time
scale of the transition to the first excited level is of the order
of tKZ = √

u, and it starts to be populated at rescaled times
τ ∼ O(1), in agreement with the OFSS arguments above and
with the numerical results of Figs. 5 and 6.

Higher energy levels are not expected to contribute to the
early stages of the nonequilibrium dynamics as we now argue.
In the OFSS regime, we can approximate the energy gaps for
n � 2 as

En(t ) − E0(t ) ≈ (En − E0)|h‖=0 (25)

since the presence of a weak longitudinal field do not signifi-
cantly alter higher excited levels. Considering that

(En − E0)|h‖=0 � (E2 − E0)|h‖=0 = 2(1 − h⊥) + O(L−2)

(26)

for OBC [56], and that En − E1 
 En − E0 up to exponen-
tially small corrections in L, we conclude that OFSS regime is
restricted within the Hilbert space spanned by the two lowest
levels of the Hamiltonian, up to large-time corrections that
occur at rescaled times of order τ ∼ O(tKZ).

In order to further check the validity of this argument, we
introduce the quantity

B(h⊥, t, ts, L) = |〈�1[h‖(t )]|�(t )〉|, (27)

where |�1[h‖(t )]〉 is the instantaneous first excited state as-
sociated with the Hamiltonian Ĥ (h⊥, t/ts) in (1). Alongside
with the adiabaticity function (13), the time evolution of B(t )
is able to probe the validity of the two-level approximation
during the driving. In this sense, introducing totality function

T (t ) =
√

A2(t ) + B2(t ), (28)

the distance variable

D(t ) = 1 − T (t ) (29)
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FIG. 10. OFSS of the function D(t ) as a function of the rescaled
time τ during a round-trip protocol with |τi| = τ f = 2 (FOTs at
τ = 0, 4). We set υ = 0.5, h⊥ = 0.2 and different system sizes up
to L = 8.

gives an estimate of the error arising from the projection of
the many-body state |�(t )〉 onto a two-dimensional Hilbert
space spanned by {|�0[h‖(t )]〉 ; |�1[h‖(t )]〉 } . In particular,
the closer D(t ) is to zero, the more accurate the two-level
approximation is. The time evolution of D(t ) for the driving
of Figs. 5 and 6 is shown in Fig. 10. As one can see, the dis-
tance D(t ) remains extremely close to zero during the whole
driving. In Fig. 11, we show the time evolution of the func-
tions A(t ) and B(t ), which undergo (as expected) a nontrivial
dynamics characterized by a breakdown of adiabaticity close
to the quantum FOT.

Motivated by this evidence, in the next section we develop
a two-level effective description of the dynamics to determine
the OFSS functions FM , FA appearing in Eqs. (12) and (14).

A. Two-level model

By projecting the Ising Hamiltonian (1) onto the
two-dimensional Hilbert space spanned by {|�0[h‖(t )]〉 ;
|�1[h‖(t )]〉 }, we obtain (up to an unimportant energy shift)

FIG. 11. Behavior of A(t ), B(t ), and D(t ) as function of the
rescaled time τ for a fixed system size L = 7 during a round-trip
protocol with |τi| = τ f = 2 (FOTs at τ = 0, 4). We set υ = 0.5 and
h⊥ = 0.2.

the following effective two-level model:

Ĥeff(t ) = 1
2 (�(h⊥, L) σ̂ (1) − E (h⊥, t, ts, L) σ̂ (3) ), (30)

with E given by Eq. (3) with longitudinal field (8). Here, we
choose the basis {|ψ0〉 , |ψ1〉} such that E σ̂ (3) is the pertur-
bation induced by h‖, and the off-diagonal terms encode the
gap (2) between the two quasi-degenerate levels at finite sizes
[48]. Higher-order perturbative effects in h⊥ generating large
bubbles of true vacuum onto the metastable state can be stud-
ied using a multilevel effective model, see Ref. [80] for details.
Notice that Eq. (30) is equivalent to truncate the expansion of
the many-body wavefunction in the instantaneous eigenbasis
(17) with the two lowest overlap coefficients

|�(t )〉 = C0(t ) |�0[h‖(t )]〉 + C1(t ) |�1[h‖(t )]〉 + O
(
t−2
KZ

)
= c0(t ) |ψ0〉 + c1(t ) |ψ1〉 + O

(
t−2
KZ

)
, (31)

since |ψ0,1〉 
 |�0,1[h‖(t0)]〉 for |t0| � 1. The two sets of
coefficients are then related via the rotation(

C0(t )
C1(t )

)
=

(
cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)(
c0(t )
c1(t )

)
(32)

with angle α = arctan(
√

υ

2τ
) [cf Eq. (15) and Appendix A].

Under this approximation, Eq. (20) reduces to a finite-
time Landau-Zener-Stückelberg (LZS) problem in the interval
t ∈ [ti, t f ] [85,86],

i
d

dt

(
c0(t )
c1(t )

)
= 1

2

(−E (t ) �

� E (t )

)(
c0(t )
c1(t )

)
. (33)

In terms of the OFSS variables (10) and (11),

i
d

dτ

(
c0(τ, υ )
c1(τ, υ )

)
=

(
−τ

√
υ

2√
υ

2 τ

)(
c0(τ, υ )
c1(τ, υ )

)
, (34)

which can be solved imposing that (c0(τi, υ ); c1(τi, υ )) =
(1; 0), see Appendix B for details on the calculation. We write
the result in terms of the 2×2 Hermitian matrix U (τ, τi ),(

c0(τ )
c1(τ )

)
= U (τ, τi )

(
1
0

)
(35)

from which the OFSS functions in Eqs. (12) and (14) during
a single-passage protocol are obtained as [79]

FM (τ, υ ) = 2|c1(τ, υ )|2 − 1

= υ

4
e− πυ

16
∣∣D−1+ iυ

8

(√
2ei 3π

4 τ
)∣∣2 − 1 (36)

FA(τ, υ ) = |C0(τ, υ )|

= e− πυ
32

∣∣∣∣∣
√

1

2
+ |τ |√

4τ 2 + υ
D iu

8
(
√

2ei 3π
4 τ )

−
√

υe− iπ
4

2
√

2

√
1

2
− |τ |√

4τ 2 + υ
D−1+ iu

8
(
√

2ei 3π
4 τ )

∣∣∣∣∣
(37)

and similarly for other quantities. Here, Dν (z) denotes the
parabolic cylinder function.
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FIG. 12. Convergence to the OFSS of the longitudinal magne-
tization. Symbols show the quantity �(M/M0 ) = |M/M0 − FM | for
fixed L = 8, υ = 0.5, |τi| = τ f = 2 (FOTs at τ = 0, 4) and for dif-
ferent values of τ = 1, 3, 5 (different panels) as function of

√
u.

Dashed line: power-law ansatz f (u) = b/(
√

u)a with parameters a, b
extracted from a fit of the numerical data.

For the round-trip protocol, we can solve the associated
LZS problem in the time window t ∈ [t f , 2t f + |ti|] obtaining(

c0(τ )
c1(τ )

)
= Ũ (τ, τ f )U (τ f , τi )

(
1
0

)
, (38)

where Ũ (τ, τ f ) is the evolution matrix with inverted time
ramp (8), see Appendix B for the analytical expression of
its elements. From (38), the OFSS functions during the
round-trip protocol are straightforwardly obtained as FM =
2|c1(τ, υ )|2 − 1 and FA = |C0(τ, υ )| respectively, although
their analytical expression is cumbersome and therefore de-
ferred to Appendix B. The important outcome of their
calculation is that they display a nontrivial dependence on τi,
in contrast with (36) and (37) obtained for a single passage
(cf. Figs. 8 and 9).

In Figs. 5 and 6, the OFSS functions obtained from the so-
lution of the LZS problem are plotted as dashed lines against
the rescaled numerical data for the Ising model (1), showing
an overall excellent agreement. Small deviations from the
OFSS functions computed in the two-level approximation go
monotonically to zero on increasing tKZ = √

u, see Figs. 12
and 13.

In these plots, our numerical analysis reveals a convergence
to the OFSS behavior that is compatible with a power-law in√

u. Further investigations on this aspect go beyond the scope
of this work and thus are delivered to subsequent studies.

B. Breakdown of the effective description

In this section, we show the breakdown of the OFSS regime
(and consequently of the two-level effective description) dis-
cussed in Sec. IV.

As argued in Sec. V, the OFSS regime is able to capture
the nonequilibrium dynamics arising by a slow driving across
the quantum FOT for a time window where the dynamics
involves the lowest two energy levels only. Corrections to
the scaling behavior are expected when τ ∼ O(tKZ). This is
shown in Fig. 14 for the adiabaticity function and in Fig. 15
for the distance measure. Here, υ = 0.01 and tKZ 
 1.29 for

FIG. 13. Convergence to the OFSS of the adiabaticity function.
Symbols show the quantity �A = |A − FA| for fixed L = 8, υ = 0.5,
|τi| = τ f = 2 (FOTs at τ = 0, 4) and for different values of τ =
1, 3, 5 (different panels) as function of

√
u. Dashed line: power-law

ansatz f (u) = b/(
√

u)a with parameters a, b extracted from a fit of
the numerical data.

FIG. 14. Adiabaticity function as a function of the rescaled time
τ during a round-trip protocol with |τi| = τ f = 2 (FOTs at τ = 0, 4).
We set υ = 0.01 and h⊥ = 0.8 and we vary the system size up to
L = 10. The dashed line shows the scaling function FA(τ, υ ) for the
effective two-level model (see Sec. V A).

FIG. 15. Behavior of A(t ), B(t ), and D(t ) as function of the
rescaled time τ for a fixed system size L = 10 during a round-trip
protocol with |τi| = τ f = 2 (FOTs at τ = 0, 4). We set υ = 0.01 and
h⊥ = 0.8.
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FIG. 16. OFSS during a Floquet driving of the Ising model (1)
across the quantum FOT (top: M/M0; bottom: A) as function of the
rescaled time τ . We set τ0 = 2 (nc = 4 round-trip cycles), υ = 1,
h⊥ = 0.3, and we vary the system size up to L = 8. Dashed lines
show the OFSS functions computed using the solution of the LZS
problem (38).

our choice of parameters, and we see that D(τ > tKZ) �= 0, as
expected. For other choice of parameters such that υ ∼ O(1)
and tKZ � 1, we would observe the same qualitative behavior
but occurring at larger time scales [cf. Eq. (24)].

VI. FLOQUET DRIVING ACROSS A QUANTUM FOT

As a natural extension of our setup, one can consider a
Floquet driving of the Ising model (1) across the quantum
FOT, realized by a periodic repetition of the round-trip pro-
tocol discussed above. For sake of simplicity, we focus on the
symmetric case |ti| = t f ≡ t0 with time ramp

h‖(t mod 4t0) =
{

t/ts, t ∈ [−t0, t0];
(2t0 − t )/ts, t ∈ [t0, 3t0]. (39)

Based on the arguments of Sec. V B, the validity of the two-
level approximation is controlled by the energy injected in the
model during the driving (and thus by the total duration of
the protocol) rather than on the number of passages across the
quantum FOT.

Therefore, we test the OFSS relations of Eqs. (12) and (14)
during the Floquet driving (39) of the Ising Hamiltonian (1).
The results are shown in Fig. 16, with OFSS functions com-
puted by repeatedly applying the LZS solution (38) outlined in
Sec. V A. The figures show a good data collapse for different
values of the system’s parameters, with deviations from the

0

0

FIG. 17. Stroboscopic evolution of M/M0 (top) and of A
(bottom) as function of n [corresponding to times t = t0(4n − 1)] at
fixed L = 6, τ0 = 2, and for three different values of υ, h⊥ (different
symbols). For each set of parameters, the filled symbols show the
stroboscopic evolution in the two-level approximation.

OFSS functions (dashed lines) that increase with time. This
behavior is compatible with the nonuniform convergence to
the OFSS regime with time (i.e., larger values of τ require
larger values of u), discussed in Secs. V A and V B.

We also notice that the system is driven extremely close to
its initial state at time τrec 
 14 for our choice of parameters
(corresponding to a two periods driving). Interestingly, this
recurrence time is independent on the system size in terms of
the OFSS variables. For τ > τrec, the pattern for the nonequi-
librium dynamics of the quantities in Fig. 16 is repeated. This
means that if we choose a sufficiently large (but finite) value
of tKZ, the two-level effective model of Sec. V A can provide
a quite accurate description of the many-body system at any
stage during the periodic driving.

Finally, it is interesting to consider the evolution after
n periods, i.e., to look at the time-evolved wavefunction at
stroboscopic times tn = t0(4n − 1). In the two-level approxi-
mation, this is given by

|�(tn)〉 ≈
[

(UF )n

(
1
0

)]T (|�0[h‖(t0)]〉
|�1[h‖(t0)]〉

)
, (40)

with Floquet evolution matrix UF = Ũ (3τ0, τ0) U (τ0,−τ0).
In Fig. 17, we show the results for M(tn) and A(tn), for a

time window of n = 10 periods. By comparing our numerical
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0

=1
=2

FIG. 18. Matrix elements of (UF (τ0, υ ))n as function of τ0, ob-
tained from the analytical results of Appendix B. In the panels, we
set υ = 1 and n = 1 (top), n = 2 (bottom).

data with the two-level prediction (filled symbols), we observe
an excellent agreement during the whole driving. In particular,
we see that the convergence of our numerical data for the
many-body system to the two-level prediction improves for
fixed υ and L on decreasing h⊥ (i.e., on increasing the time
scale ts), as expected from the scaling arguments of Secs. IV
and V. This is also confirmed by the curves obtained for
υ = 0.05 and h⊥ = 0.4 (square symbols), for which the value
of tKZ is much smaller. Accordingly, the curves initially show
a good agreement with the OFSS theory but, for n � 8, they
significantly deviates from the OFSS functions.

Notice also that the numerical analysis of Fig. 17 clearly
shows a two-period recurrence for both the longitudinal
magnetization and the adiabaticity function. Such a peculiar
behavior of the OFSS regime can be analytically investigated
in the two-level approximation. Using the matrix elements of
Appendix B, it is easy to show that the equation

(UF (τ0, υ ))n = ±1 (41)

has solution for n = 2, υ = 1 when τ0 = 2, in agreement with
what observed in Figs. 16 and 17. In general, there exists a
series of exceptional values of τ0 = τ�(n, υ ) for which the
system shows recurrence after n periods, see Fig. 18. For
instance, τ�(1, 1) 
 1.4 for one round-trip protocol. Surpris-

ingly, this means that the phases �(τ0, υ ) conferring to the
system a nontrivial dependence on τ0 (see Appendix B) can
combine for some special values τ0 = τ�(n, υ ) to restore the
initial state of the system after n periods. In this perspective,
the aforementioned quasi-universality of OFSS regime can be
exploited to engineer shortcuts to adiabaticity.

VII. SUMMARY AND CONCLUSION

We investigate the unitary evolution of a 1D Ising model
in a tilted magnetic field (1), in the presence of a time-
dependent longitudinal field h‖ = t/ts, ts � 1 is the time scale
that drives the system through the quantum FOT in a round-
trip fashion. We formulate the OFSS regime as the limit
L → ∞, u ≡ tsL−1M−1

0 → ∞ where the time-dependent ex-
pectation values of local observables are proportional to
quasi-universal OFSS functions of the variables τ = t/

√
u

and υ = u�2(h⊥, L). Here, the meaning of quasi-universality
stands for the residual dependence of the OFSS functions
on the details of the driving protocol at the inversion time.
Numerical results for the many-body system confirm the va-
lidity of our scaling hypothesis (Figs. 5 and 6). In Sec. V,
we further probe the validity of the OFSS regime using time-
dependent perturbation theory, relating it to the emergence of
an effective two-level description, which involves the lowest
two states near the FOT. With this effective description, we
reduce the driving protocol to a series of LZS transitions and
we determine an analytical expression of the OFSS functions.
Lastly, we extend the setup to the case of periodic driving
across the quantum FOT, and we comment on the validity of
the OFSS after several crossings. Although our focus is on
the Hamiltonian in Eq. (1), we expect our results to apply
to generic spin chains undergoing a quantum FOT, e.g., to
quantum Potts chains [57] or to spin chains with staggering
magnetic fields [87].

An interesting follow-up of this paper is the study of the
round-trip protocol in the presence of weak dissipations, e.g.,
in the form of a Lindblad dynamics for the quantum spin
chain [84,88–91]. In this way, it might be possible to induce
a relaxation of the system after each crossing and thus to
investigate the OFSS of hysteresis cycles, similarly to what
has been done, e.g., in Refs. [77,78] for a thermal FOT under
relaxational dynamics.
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APPENDIX A: EQUILIBRIUM FSS FUNCTIONS

In this Appendix, we derive the FSS functions (7) for the
Ising model (1) at h⊥ < 1, in the limit h‖ → 0±, L → ∞. As
noticed in Ref. [48], the quantum FOT is controlled by the
competition of the two lowest energy levels. Therefore, it is
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possible to write down an effective two-level Hamiltonian by
restricting the many-body system to the Hilbert space spanned
by the ground state |ψ0〉 and the first excited state |ψ1〉,
obtaining

Ĥeff = E01̂2×2 + 1
2 (�(h⊥, L)σ̂ (1) − E (h⊥, h‖, L)σ̂ (3) ),

(A1)

where E0 is the ground-state energy of the degenerate vacua
at h‖ = 0, L = ∞. This Hamiltonian is readily diagonalized
in the basis

|+〉 = sin

(
α

2

)
|ψ0〉 + cos

(
α

2

)
|ψ1〉 (A2)

|−〉 = cos

(
α

2

)
|ψ0〉 − sin

(
α

2

)
|ψ1〉 (A3)

with

tan(α) = κ−1 = �(h⊥, L)

E (h⊥, h‖, L)
, 0 < α � π

2
. (A4)

It follows that the energy eigenvalues are given by

E± = E0 ± 1

2

√
E2 + �2 (A5)

and, therefore, the energy gap (6) reads as

�E (h⊥, h‖, L) = �(h⊥, L)
√

1 + κ2 (A6)

from which one has fE (κ ) = √
1 + κ2 [cf Eq. (7)]. The longi-

tudinal magnetization is

M(h⊥, h‖, L) = M0(h⊥)〈−|σ̂ (3)|−〉

= M0(h⊥)

(
cos2

(
α

2

)
− sin2

(
α

2

))
, (A7)

from which one finds the FSS function [cf. Eq. (7)]

fM (κ ) = cos(α) = κ√
1 + κ2

. (A8)

APPENDIX B: OFSS FUNCTIONS

In this Appendix, we focus on the solution of the finite-time
LZS problem characterizing the linear driving of the Ising
model (1) across a quantum FOT, see Sec. V A. For a better
exposition, the case of single and of round-trip passages are
treated in different subsections.

1. Single passage

For a single passage through the quantum FOT starting
at τi < 0, the finite-time LZS problem has an analytical
solution—first derived in Ref. [92]. The standard procedure is
to decouple the set of equations (35) by taking a time deriva-
tive. In this way, the differential equation, e.g., for c0(τ, υ )
takes the form of a Weber differential equation

d2

dτ 2
c0(τ, υ ) +

(
τ 2 + υ

4
− i

)
c0(τ, υ ) = 0, (B1)

which is solved in terms of parabolic cylinder functions. It
follows that the 2×2 evolution matrix U (τ, τi ) in (35) has
elements

U00 = �(1 − iυ
8 )√

2π

[
D−1+ iυ

8
(
√

2ei 3π
4 τi )D iυ

8
(
√

2e−i π
4 τ )

+D−1+ iυ
8

(
√

2e−i π
4 τi )D iυ

8
(
√

2ei 3π
4 τ )

]
, (B2a)

U01 = 2�(1 − iυ
8 )√

πυ
ei π

4
[
D iυ

8
(
√

2e−i π
4 τi )D iυ

8
(
√

2ei 3π
4 τ )

−D iυ
8

(
√

2ei 3π
4 τi )D iυ

8
(
√

2e−i π
4 τ )

]
, (B2b)

with U10 = −U ∗
01 and U11 = U ∗

00, �(z) is the Euler gamma
function.

In the limit |τi| � 1, these expressions can be simplified
using known relations for Dν (z), reading as

U00(|τi| � 1) 
 ei�(τi,υ )e− πυ
32 D iυ

8
(
√

2ei 3π
4 τ ), (B3a)

U10(|τi| � 1) 
 ei�(τi,υ )

√
υ

8
e−i π

4 e− πυ
32 D−1+ iυ

8
(
√

2ei 3π
4 τ ),

(B3b)

and the dependence on the initial condition τi drops out every-
where but in the phase

�(q, υ ) = −q2 − υ

4
log(

√
2|q|). (B4)

One can then easily obtain the expressions in Eqs. (36) and
(37) for the OFSS functions. The latter does not show any
dependence on the initial condition τi. It is interesting to note
that by taking the limit τ → ∞ in Eq. (36), one obtains the
Landau-Zener prediction for the defects abundance

FM (τ → ∞, υ ) = 1 − 2e− πυ
4 , (B5)

in agreement with standard Kibble-Zurek arguments [43].

2. Round trip

With a similar strategy, it is possible to extend the solution
of Appendix B 1 to the round-trip protocol, by solving the
two-level problem in the interval t ∈ [t f , 2t f + |ti|]. Denoting
with

x = t f + |ti| − t√
u

, (B6)

one finds the following elements of the 2×2 evolution matrix
Ũ (τ, τ f ) in (38):

Ũ00 = �(1 − iυ
8 )√

2π

[
D iυ

8
(
√

2ei 3π
4 |τi|)D−1+ iυ

8
(
√

2e−i π
4 x)

+D iυ
8

(
√

2e−i π
4 |τi|)D−1+ iυ

8
(
√

2ei 3π
4 x)

]
, (B7a)

Ũ10 = 2�(1 − iυ
8 )√

πυ
ei π

4
[
D iυ

8
(
√

2ei 3π
4 |τi|)D iυ

8
(
√

2e−i π
4 x)

−D iυ
8

(
√

2e−i π
4 |τi|)D iυ

8
(
√

2ei 3π
4 x)

]
, (B7b)

with Ũ01 = −Ũ ∗
10 and Ũ11 = Ũ ∗

00.

104316-10



OUT-OF-EQUILIBRIUM SCALING BEHAVIOR ARISING … PHYSICAL REVIEW B 108, 104316 (2023)

Similarly to the previous case, these expressions simplify
in the limit |τi| � 1,

Ũ11(|τi| � 1) 
 ei�(τi,υ )e− πυ
32 D iυ

8
(
√

2e−i π
4 x), (B8a)

Ũ01(|τi| � 1) 
 ei�(τi,υ )

√
υ

8
e−i π

4 e− πυ
32 D−1+ iυ

8
(
√

2e−i π
4 x).

(B8b)

From these equations [together with (B3)], one finds

c0 = e− πυ
16

{
D iυ

8
(
√

2ei 3π
4 τ f )[D iυ

8
(
√

2e−i π
4 x)]∗

− iυ

8
e2i�(τi,υ )D−1+ iυ

8
(
√

2ei 3π
4 τ f )D−1+ iυ

8
(
√

2e−i π
4 x)

}
,

(B9a)

c1 = e− πυ
16

√
υ

8
ei π

4
{ − D iυ

8
(
√

2ei 3π
4 τ f )[D−1+ iυ

8
(
√

2e−i π
4 x)]∗

−ie2i�(τi,υ )D−1+ iυ
8

(
√

2ei 3π
4 τ f )D iυ

8
(
√

2e−i π
4 x)

}
, (B9b)

and determines the OFSS functions as detailed in the main
text.

Notice that the coefficients (B9a) and (B9b) (hence the
OFSS functions) keep a nontrivial dependence on the initial
condition τi during the nonequilibrium dynamics via the phase
(B4). This is not surprising given that xi ≡ |τi| is the time
at which the ramp is inverted after the first passage across
the quantum FOT. At this time, the system is far from equi-
librium and hence unable to wash out the memory on its
initial (nonequilibrium) condition before being driven across
the quantum FOT for the second time.
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