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We explore how disorder and interactions conspire in lattice models with sequentially activated hopping to
produce K-body (or many-body) localized phases. Specifically, we show the rich variety of dynamics produced
in the finely tuned interacting Floquet models considered recently [M. Wampler and I. Klich, SciPost Phys. 14,
145 (2023)] is stabilized prethermally (or via many-body localization in some cases) in regions in parameter
space near the special points where classical-like dynamics emerges. We also find additional parameter space
regions where approximate classical-like behavior can occur away from the special Diophantine points and
show how disorder may further stabilize them. Furthermore, the regions in parameter space where Hilbert space
fragmentation occurs in the clean system (leading to Krylov subspaces exhibiting frozen dynamics, cellular
automation, and subspaces exhibiting signs of ergodic behavior) may also be stabilized by the addition of
disorder.
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I. INTRODUCTION

Periodic driving of quantum systems has emerged as an
exciting tool that may be used to engineer otherwise ex-
otic behavior [1]. Furthermore, periodically driven (Floquet)
systems may support phases that are forbidden in systems
evolving under static Hamiltonians. Two prominent exam-
ples are discrete time crystals [2,3] and anomalous Floquet
topological insulators [4–6]. Time crystals are a proposed
phase [7] in which continuous time translation symmetry
of a system is spontaneously broken (in analogy with the
spontaneous breaking of spatial translation symmetry in the
formation of crystal lattices). Following a no-go theorem for
time crystals in static systems [8], it was discovered that it
is possible for the discrete time translation symmetry in peri-
odically driven systems to be spontaneously broken forming
discrete time crystals [9]. Anomalous Floquet topological in-
sulators take advantage of the inherently periodic nature of the
noninteracting quasienergy spectrum of periodically driven
systems to exhibit topological features in the band structure
that are impossible for static systems. This anomalous band
structure was realized in a model by Rudner-Lindner-Berg-
Levin (RLBL) [10]. By adding a disordered onsite potential
to the RLBL model, it was then found that the system
supports a robust, new topological phase called the anoma-
lous Floquet-Anderson topological insulator [4]. The physical
manifestation of this exotic, topological band structure is the
emergence of chiral edge modes existing alongside a fully
localized bulk. Both discrete time crystals and the anomalous
topological edge behavior of anomalous Floquet topological
insulators have been realized across a variety of physical
platforms [11–16].

A priori, it may be surprising that Floquet systems may
exhibit robust phases since energy may be indefinitely ab-
sorbed from the drive, eventually leading to a featureless,

infinite-temperature state [17–19]. However, this thermaliza-
tion may be combated using three main mechanisms: (1)
The driven system is connected to a reservoir, which acts
as a heat sink, leading to nontrivial nonequilibrium steady
states [20–23]. (2) Only systems where energy is absorbed
exponentially slowly from the drive are considered, leading
to a pseudostable “prethermal” phase [24–28]. (3) Disorder
is added to the system, resulting in a localizing effect, that
prevents thermalization. This phenomenon is referred to as
many-body localization (MBL) [19,29–37] and is an interact-
ing generalization of Anderson localization [38].

In constrained systems, there exists yet another route
towards ergodicity breaking: Hilbert space fragmentation
[39–42]. In this case, the full Hilbert space is broken into sub-
spaces that evolve independently. This leads to cases where
a system may have some Krylov subspaces that thermalize
while others do not. When the size of the nonthermal Krylov
subspaces scales polynomially with system size (i.e., only
representing a measure zero portion of the full Hilbert space),
the states in these subspaces are referred to as quantum many-
body scars [40,43,44].

In this work, we consider a broad class of Floquet mod-
els where hoppings between neighboring pairs of sites are
sequentially activated. A large number of Floquet systems
that have received theoretical and/or experimental attention
are contained within this class of models (e.g., [4–6,10,45–
49]). A recent investigation [50] found that the dynamics of
clean, interacting systems in this class of models may become
exactly solvable for certain driving frequencies and interaction
strengths. Specifically, these parameter values lead to evo-
lution of Fock states into Fock states. The special points in
parameter space where this occurs are found by solving an
emergent set of Diophantine equations [51]. At other points
in parameter space (also found via a set of Diophantine
equations), the Hilbert space is fragmented into subspaces
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supporting either frozen dynamics, classical cellular automa-
tion [52], or ergodic behavior.

Here, we add a disordered potential to the class of inter-
acting, Floquet systems considered in [50]. We find that the
disorder stabilizes, via K-body localization (described below)
[53], the dynamics of systems perturbed away from the spe-
cial, Diophantine points in parameter space, leading to robust
phases. The exotic dynamics of these phases may include,
for example, the spontaneous breaking of time translation
symmetry to form discrete time crystals.

Furthermore, we find that there are other regions in pa-
rameter space, away from any special, Diophantine points,
that also represent K-body localized phases. These regions are
given by values of interaction strength and driving frequency
that “almost” (see Sec. III) satisfy Diophantine conditions. In
addition, at the points in the clean model where Hilbert space
fragmentation occurs, the added disorder ensures that the
frozen and cellular automation Krylov subspaces are stable to
perturbations (in driving frequency and interaction strength)
away from the special points in parameter space. In some
cases the subspace is localized by the disorder. In other cases,
the cellular automation dynamics of the subspace is stabilized
over long timescales but is eventually expected to thermalize.

Note, the stability of our results hinges on K-body local-
ization instead of the full many-body localization. K-body
localization is a generalization of MBL where a system con-
taining up to a maximum number of particles, K , is localized
by disorder (thus MBL is given in the limit of K → ∞).
Unlike MBL, which has only been rigorously established in
one dimension, K-body localization is established in generic
dimensional systems [53]. However, K-body localized sys-
tems containing more than K particles will eventually be
thermalized via K + 1 particle correlations. Thus, in the ther-
modynamic limit, we expect our results describe the system
prethermally [except for cases, especially in one dimension
(1D), where full MBL may occur].

To help illustrate our results throughout this work, we
will use a Hubbard interacting RLBL-like model on a square
lattice. In addition to the model being particularly clear for
expository purposes, it has also been the center of recent
interest in [6] where it was found that the model supports a
novel topological phase called a correlation-induced anoma-
lous Floquet insulator (CIAFI). The phase is characterized by
a hierarchy of topological invariants and supports quantized
magnetization density. We describe how these results may be
viewed from the perspective of this work and describe unique
insights into the system that the Diophantine framework pro-
vides.

The rest of this paper is structured as follows. In Sec. II,
we briefly review how Diophantine equations emerge in
clean, periodically driven systems and their implications for
the dynamics at special driving frequencies and interaction
strengths (as described in [50]). In Sec. III, we perturbatively
describe the evolution of these (so far clean) systems with
parameter values close to the special, Diophantine points. Sec-
tion IV describes how, once disorder is added, the evolution
in this perturbative regime becomes K-body localized. For
the example case of the Hubbard-RLBL model, we provide
a phase diagram for where this localization occurs. Section V
describes the stability of subspaces when Hilbert space frag-

FIG. 1. The RLBL model. Hopping is sequentially activated
among neighboring sites connected by the set Am, m = 1, . . . , 4.

mentation is weakly broken by perturbing away from points
where a few (but not all) of the conditions for Fock state to
Fock state evolution are satisfied. In Sec. VI, we corroborate
the above results with numerical evidence. Finally, in Sec. VII
we provide concluding remarks.

II. INTERACTING FLOQUET MODELS, DIOPHANTINE
EQUATIONS, AND HILBERT SPACE FRAGMENTATION

Here, we briefly review the identification of special evolu-
tion points following [50]. We look for conditions on fermion
models to evolve Fock states into Fock states deterministi-
cally. We consider periodically driven models where hopping
between neighboring sites is sequentially activated. Namely,
we divide the period T of the Floquet drive into M steps
where, during step m, particles are only allowed to hop be-
tween pairs of sites given by a set Am. Interactions are then
added to this free-hopping evolution, but we restrict ourselves
to interactions that do not contain terms connecting two (or
more) of the otherwise disjoint pairs with activated hopping.
Specifically, evolution during the Floquet period U (T ) is
given by

U (T ) = UM . . .U2U1, (1)

where Um = e−iτHm , τ = T
M , and

Hm = −thop

∑
(i, j)∈Am;σ

(a†
i,σ a j,σ + H.c.) + Hint(Vm), (2)

where Vm is a set of interaction parameters. For the rest of this
work, we will set thop = 1 unless otherwise noted.

As an example, consider the case of the RLBL model with
Hubbard interactions. In this case, we set M = 4, choose Am

as given in Fig. 1, and set

HHubbard
int (V ) = V

∑
i

ni,↑ni,↓ (3)

with ni,σ = a†
i,σ ai,σ . Note, the Hubbard interaction is onsite

and thus leaves the pairs connected by Am disjoint.
The next step is to find conditions for when individual,

activated hopping pairs map Fock states into Fock states.
Since the site pairs are disjoint, we may do this individually
for each pair during each step m of the evolution.
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In the Hubbard-RLBL model a two-site pair has 16 possi-
ble initial Fock states. Let us first consider the case of a single
spin up at one site with an empty neighbor. We can ignore the
interacting term, and compute directly the probability p for
the particle to hop to site 2. We have

p = |〈vac|a2eiτ (a†
1a2+a†

2a1 )a†
1|vac〉|2 = sin2 τ,

showing that when τ = π
2 � with � ∈ Z, the evolution maps

this particular Fock state to a Fock state. Namely, the particle
will remain at its initial site for τ with � even and hop to
the neighboring site when � is odd. We repeat this procedure
for the other 15 possible initial Fock states. The lines in the
following table summarize the conditions we find on τ and V
and the resulting type of evolution:

Particles τ V
1 or 3, frozen π

2 �, � even Arbitrary

1 or 3, swap π
2 �, � odd Arbitrary

2, opposite spins, frozen π
2

√
2mn − n2, n even 4(n−m)√

2mn−n2

2, opposite spins, swap π
2

√
2mn − n2, n odd 4(n−m)√

2mn−n2

Otherwise Any Any

(4)

where �, m, n ∈ Z, and 2mn − n2 > 0. The left column refers
to the number of particles in the initial state of the two-site
pair (spin up + spin down) and the type of evolution we get.
Thus, for example, if n is odd, and we start with a an up and
down pair (a doublon) sitting at site 1, the doublon will hop to
site 2. On the other hand, if n is even, the doublon will stay at
site 1.

For a generic Fock state in the full system to evolve to
another Fock state, we need every two-site activated pair to
evolve deterministically. Hence, we require all the conditions
in Eq. (4) to be satisfied simultaneously leading to a Diophan-
tine equation [50].

It is also shown in [50] that, by solving the Diophantine
equation, the following values of τ,V yield deterministic Fock
state to Fock state evolution in the Hubbard-RLBL model:

τ = π

2
d
(
w2

1 − w2
2

)
; V = 8w1w2∣∣w2

1 − w2
2

∣∣ , (5)

where w1,w2 ∈ Z, w1,w2 are coprime, and d ∈ 1
ξ
Z with ξ =

gcd[(w2
1 − w2

2 ), (w2
1 + w2

2 ), (w1 + w2)2]. Below, we refer to
the values of τ,V in (5) as Diophantine points.

Importantly, note that the analysis leading to Eq. (5) was
independent of the fact that the driving procedure was RLBL.
Thus, any periodic drive with sequentially activated hopping
pairs, in any dimension, with Hubbard interactions will also
exhibit deterministic Fock state to Fock state evolution at the
special points in parameter space given by Eq. (5).

In summary, for each step m in the Floquet evolution, the
evolution at a special, Diophantine point given by an evolution
time τ0 and a set of interaction parameters V0,m is given by

Um(V0,m, τ0) = Pm, (6)

where Pm is a complex permutation matrix on Fock states. A
complex permutation matrix is a matrix where every row and

column has a single nonzero element whose modulus is 1 (i.e.,
it is a permutation times a diagonal unitary). Furthermore, for
local interactions, Pm deterministically updates the occupa-
tion of individual sites based on the occupation of neighboring
sites. Starting from a product state, the evolution under an
operator such as this, up to a phase, can be thought of as a
classical cellular automation. It is for this reason that evo-
lution such as this is sometimes referred to as “automation”
dynamics [54].

What happens if only some of the conditions for Fock state
to Fock state evolution are satisfied? In this case, the Hilbert
space will fragment into subspaces. States in some subspaces
will still evolve under cellular automation, while states in
other subspaces are, in general, expected to ergodically ex-
plore their subspace.

For example, consider a Hubbard-Floquet model with a
generic sequentially activated hopping. Like the Hubbard-
RLBL model, the conditions for Fock state to Fock state
evolution in this model are given by (4) [see discussion af-
ter Eq. (5)]. Now suppose only the fourth condition in (4)
is satisfied (for example, n = 3, m = 2 with τ =

√
3

2 π and

V = 4
√

3
3 ). This condition will state that an up-down pair at

neighboring sites will swap spins. Therefore, the subspace
of states with exactly one particle on each site (though the
spin of each particle is left generic) is invariant under the
evolution. Evolving any state in this subspace by Um will still
be equivalent to evolving it by Pm since there are no two-site
activated pairs with 1 or 3 particles in the system. This implies
that this exponentially large subspace will evolve as a classical
process of spin swaps. On the other hand, Fock states that
do have two-site pairs with 1 or 3 particles will evolve into
superpositions of Fock states under U . For general hopping
activation sequences, this leads to an ergodic exploration of
the complementary subspace. The full Hilbert space is thus
fragmented into independent subspaces exhibiting either cel-
lular automation or ergodic evolution.

III. QUANTUM DYNAMICS IN SLOW MOTION

We now investigate how the systems considered in the
previous section evolve when parameter values are perturbed
away from the special, Diophantine points. In this case the
evolutions Um involved in the dynamics are no longer Fock
state permutations. Rather, the evolution generates superposi-
tions of Fock states and therefore entanglement.

We will show that when the perturbation is sufficiently
small, the evolution during each Floquet period is given by
the permutation associated with the special point, augmented
with an evolution with an effective local Hamiltonian acting
during a reduced time compared with the original evolution
period. In other words, the correction to the classical cellular
automation is a “slow motion” quantum dynamics.

We demonstrate the slowed behavior on several types of
perturbations. For each perturbation type, we will present
the form of the effective local Hamiltonian that emerges for
the class of Floquet models represented by Eqs. (1) and (2).
To further illustrate this effective slow dynamics, we then
explicitly calculate the effective Hamiltonian for the Hubbard-
RLBL model recounted in the previous section.
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A. Perturbation in time

A simple perturbation to consider for a dynamical process
is if the duration of evolution time steps is not precise. We
therefore first consider a perturbation in the evolution time.

Consider a time τ0, where the evolution step Um =
e−iτ0Hm = Pm is an exact permutation. If the duration τ0 is
shortened or lengthened to τ0 + δτ , then we have the per-
turbed evolution

Um(V0,m, τ0 + δτ ) = Um(V0,m, τ0)Um(V0,m, δτ ) (7)

= Pme−iδτHm . (8)

In a process with M steps, each close to a permutation, the
evolution of the full Floquet period is given by Eq. (1) as

U = PMe−iδτHM . . . P2e−iδτH2P1e−iδτH1 . (9)

Defining the unperturbed permutation

P = PM . . . P2P1,

and the nonpermutative correction to the dynamics Uquantum as

Uquantum = e−iδτP†
1P

†
2P

†
M−1HMPM−1...P2P1 . . .

× e−iδτP†
1H2P1 e−iδτH1 . (10)

We have

U = PUquantum. (11)

When tracking the evolution of a cluster of initial particles
when the perturbation is small (δτ thop, δτV0,m 
 1), it is con-
venient to think of the quantum correction as

Uquantum = e−iδτHeff ,

where Heff is given to lowest order in δτ as

Heff �
M∑

m=1

P†
1P

†
2 . . .P†

m−1HmPm−1 . . .P2P1. (12)

We note that as long as the range of each permutation Pm is
finite, then the terms appearing in (12) will be local so long as
each Hm is local. Moreover, the generation of superpositions
of states is now governed by the slow timescale δτ . This
locality and slow development of superpositions will become
important for arguments in Sec. IV.

Near points of frozen dynamics where Pm = I , the correc-
tion Uquantum becomes the entire dynamics and, furthermore,
from (12) we simply have Heff � ∑

Hm. Let us again take
as an example the Hubbard-RLBL model to further illustrate
this slow-motion evolution governed by an effective local
Hamiltonian. In this case, the vicinity of frozen dynamics is
particularly simple and appealing. Here, the effective Hamil-
tonian becomes

Heff = thop

∑
(i, j);σ

(a†
i,σ a j,σ + H.c.) + 4V0

∑
i

ni,↑ni,↓, (13)

which is the static Hubbard Hamiltonian on the square lattice
with V → 4V0. This means that, to a good approximation,
we may rewrite the evolution for a Floquet period T as
U (T ) = e−iTHFloquet with HFloquet � δτ

T HHubbard(4V0). In other
words, the stroboscopic evolution in the system is that of a
slow-motion static Hubbard evolution, i.e., after N evolution

cycles, at time T N , the system will have evolved under a static
Hubbard Hamiltonian (with interaction 4V0) for a reduced
time δτN .

We remark that when Pm �= I, the evolution is a sequence
of permutations followed by slowed, modified Hubbard evo-
lution. In the Hubbard-RLBL case, only the hopping terms are
modified by the permutations of lattice sites while the interac-
tion terms are unaffected (since HHubbard

int counts the number of
doublons, which is preserved under the freezing and swapping
operations generating the dynamics at the special Diophantine
points).

B. Perturbation in interaction strength

Now, suppose instead that we consider a perturbation in
interaction parameters Vm = V0,m + δVm. Here, δVm is a vec-
tor of displacements to the set of interaction parameters V0,m

that correspond to one of the special points with permutative
dynamics. In the case that τ0δVm 
 1 for all δVm ∈ δVm, we
expand

Um(V0,m + δVm, τ0)

≈ Pm

(
1 − i

∫ τ0

0
ds eisHm (V0,m )Hint(δVm)e−isHm (V0,m )

)

defining

Heff,m = 1

τ0

∫ τ0

0
ds eisHm (V0,m )Hint(δVm)e−isHm (V0,m )

we have

Um(V0,m + δVm, τ0) ≈ Pme−iτ0Heff,m . (14)

Thus, in a similar fashion to the perturbation in τ case, we find
that

U = PM . . .P2P1e−iτ0Heff (15)

with

Heff �
M∑

m=1

P†
1P

†
2 . . .P†

m−1Heff,mPm−1 . . . P2P1. (16)

Illustrating again with the Hubbard-RLBL model,
Heff,m may be written explicitly in terms of creation
and annihilation operators by directly integrating∫ τ0

0 ds eisHm (V0,m )Hint(δVm)e−isHm (V0,m ). This may be done
since each of the activated two-site hopping pairs are disjoint.
Thus, we may solve separately for each two-site pair and then
sum them all together, we find to lowest order in τ0δV that

Heff,m = δV
∑

i∈2-site pairs

n�2-part,ia
†
i T ain�2-part,i + n>2-part,i,

(17)

where we have defined

T = −1

16 + V 2
0

⎛
⎜⎜⎝

12 − V 2
0 −4 V0 V0

−4 12 − V 2
0 V0 V0

V0 V0 4 4
V0 V0 4 4

⎞
⎟⎟⎠, (18)

ai = (a2↑a2↓ a1↑a1↓ a1↑a2↓ a2↑a1↓)T (19)
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and n>2-part,i projects onto the subspace with the ith two-site
pair having more than two particles, i.e.,

n>2-part = 1 − n�2-part

=
∑

a, b, c ∈ {1 ↑, 1 ↓, 2 ↑, 2 ↓}
a �= b �= c

nanbnc. (20)

In other words, evolution under Heff,m corresponds to corre-
lated hopping for any two-site pairs containing two particles
and a δV energy cost of having a two-site pair with three or
more particles.

C. Away from special points

Slowed effective quantum dynamics corrections to classi-
cal Fock state permutations may also occur away from the
vicinity of the special Diophantine points. Here we explore
other regions in parameter space, far from special points,
where the conditions for Fock state to Fock state evolution are
approximately satisfied. Specifically, consider the evolution at
step m consisting of the set Am of the activated two-site pairs,
and let H(i, j) be the Hamiltonian for (i, j) ∈ Am.

Let us define

D(i, j) = inf
P(i, j)

||e−iτH(i, j) − P(i, j)||HS ; D = max
(i, j)

D(i, j), (21)

where || · ||HS is the Hilbert-Schmidt norm of the (i, j) sub-
space. P(i, j) is a complex permutation of Fock states within
the two-site pair (i, j). When D 
 1 we can say that the
conditions for Fock state to Fock state evolution are approxi-
mately satisfied for Hm and τ .

We may now choose a P(i, j) that minimizes D(i, j) and write

e−iτH(i, j) ≡ P(i, j)e
−iτHeff,(i, j) . (22)

It follows that e−iτHeff,(i, j) is close to the identity matrix when D
is small, therefore, the evolution corresponds to a permutation
augmented with slowed quantum dynamics. Using Eq. (22)
the evolution of the full system for step m is

Um =
⊗

(i, j)∈Am

e−iτH(i, j) = Pme−iτHeff,m , (23)

where we have defined

Pm =
⊗

(i, j)∈Am

P(i, j), (24)

Heff,m =
∑

(i, j)∈Am

Heff,(i, j). (25)

Equation (23) has the same general form as Eqs. (14) and (8),
and we find analogously that the evolution of the full Floquet
period is again given by (15) and (16).

To illustrate the appearance of slow dynamics parame-
ter space regions away from special points, in Fig. 2 we
plot regions where the Diophantine conditions are approxi-
mately satisfied in the Hubbard-RLBL model. Namely, we
plot regions where the Hilbert-Schmidt norm of the difference
between the evolution of an activated pair and a SWAP or
identity permutation is less than some small cutoff (D(i, j) <

0.1). We further note that, since the Hamiltonian H(i, j) is
particle number preserving, we may consider separately the

FIG. 2. Parameter space regions where the Diophantine condi-
tions (4) are approximately satisfied. The special, Diophantine points
where evolution is exactly a Fock state permutation are marked with
a black “X .” Also plotted are the points numerically investigated in
Fig. 3.

cases where the pair (i, j) contains 0, 1, 2, 3, or 4 parti-
cles. In other words, we may analyze a separate D(a)

(i, j) for
each of the particle-number subspaces a ∈ {0, 1, 2, 3, 4}, with∑

a D(a)
(i, j) = D(i, j). In the Hubbard-RLBL model, evolution of

a pair with 0 or 4 particles is trivially the identity by Pauli
exclusion (i.e., D(a)

(i, j) = 0 in these subspaces). Furthermore,
evolution of a two-site pair with a single particle is equivalent
to the evolution of a hole in a two-site pair with three particles.
Thus, D(1)

(i, j) = D(3)
(i, j). In Fig. 2, we therefore plot when D(1)

(i, j)

and when D(2)
(i, j) are smaller than the cutoff. We refer to these as

the single-particle and doublon sectors, respectively. We also
use a color code to differentiate which permutation P (a)

(i, j) of

the pair (i, j) within the subspace a minimizes D(a)
(i, j). Specifi-

cally, parameters where pairs with one or three particles are
approximately frozen (perfect swapping) are colored green
(yellow) while parameters where pairs with two particles of
opposite spin1 are approximately frozen (perfect swapping)
are colored blue (red). Thus, D(i, j) (and subsequently, D)
is small only in regions of overlapping colors. Note that
each special, Diophantine point is surrounded by a region of
overlapping colors, but not all regions of overlapping colors
contain a special point.

A couple of remarks are in order. Note that in the Hubbard-
RLBL model, special points are only found when all activated
two-site pairs are frozen or when all the pairs are perfect
swapping (see [50]). Indeed, in Fig. 2 the special points
(represented by x) appear only when both single-particle and
doublon sectors are simultaneously perfectly swapping (or
simultaneously perfectly frozen). However, Fig. 2 also shows
that it is possible to approximately have perfect swapping
in the one- and three-particle sector while pairs with two
particles are approximately frozen (and vice versa).

Another thing to note is that when only some of the
Diophantine conditions are approximately satisfied, the frag-
mented Krylov subspaces that would emerge if the conditions
were perfectly satisfied may become connected by the slowed

1If the two particles have the same spin, the evolution is trivially
the identity by Pauli exclusion.
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dynamics Heff. We remark further on the importance of this in
Sec. V.

We note that an alternative measure for how far the evo-
lution is from permutative is presented in [50], based on the
function

Fp,q(U ) = − log
||U ||p,q

dim(U )1/q
= −1

q
log

∑
n,m |Un,m|p

dim(U )
(26)

defined on unitary matrices where dim(U ) is the dimen-
sionality, and ||U ||p,q = (

∑
n,m |Un,m|p)1/q is the p, q matrix

entrywise norm. It is straightforward to check that for p >

2, q > 0, the function F reaches its minimum Fp,q(U ) = 0 if
and only if U is a complex permutation matrix. However, in
Fig. 2 we wanted to distinguish between the different types
of permutative behavior (frozen vs perfect swapping) and so
instead focused on using (21).

In the next section, we add disorder to the system and find
that the slowed dynamics is (in some cases) either K-body or
many-body localized by the disorder. This then stabilizes the
cellular automation dynamics in regions where the conditions
for Fock state to Fock state evolution are approximately satis-
fied leading to robust phases.

IV. STABILIZING CLASSICAL EVOLUTION
WITH DISORDER

We now add disorder to the periodically driven, interacting
models considered above. Specifically, we investigate Floquet
drives of the form

U (T ) = UdisUM . . .U2U1, (27)

where we take Udis to be evolution under a disordered onsite
potential with no hopping, i.e.,

Udis = e−iτHdis, (28)

where

Hdis =
∑
i,σ

vini,σ (29)

with vi uniformly distributed in [−W,W ]. However, the exact
form of disorder does not play a role in the argument.2

For Floquet systems of this type, sufficiently strong dis-
order will (either K-body or many-body) localize the slowed
dynamics but leave the cellular automation dynamics unaf-
fected. This happens when the Fock state permutation has
a finite order and when the disorder is large compared to
the slowed evolution. This leads to the emergence of robust
phases with stabilized permutative dynamics.

A. Dynamics with disorder close to P = I

To illustrate how this occurs, we begin with the simpler
case of when the permutation of the full Floquet period

2Note, for example, if Hdis is included as a constant term throughout
the evolution instead of only being applied during the Udis portion of
the drive, then all our results still hold [6]. In this case, the strength
of the disorder during the first four steps of the Floquet drive must be
kept small. The strength during the fifth, disorder only, step may be
made large by lengthening the time that Udis is applied.

(though not necessarily each step m of the drive) is the iden-
tity, i.e.,

PM . . . P2P1 ≡ P = I, (30)

where P is the permutation associated with a full Floquet pe-
riod. Examples with permutations of this type include frozen
dynamics and the perfect swapping Hubbard-RLBL model
with periodic boundary conditions (e.g., τ = π

2 , V = 0 or
τ = 3π

2 , V = 16
3 ).

Using (15) we find that, for parameters where the Diophan-
tine conditions are approximately satisfied, the evolution of
one Floquet period T may be written

U = UdisPe−iτHeff (31)

= Udise
−iτHeff (32)

≈ Udis

(
1 − i

∫ τ

0
dt eitHdisHeff(t )e−itHdis

)
(33)

= T e−i
∫ τ

0 dt H(t ), (34)

where

Heff(t ) = e−itHdisHeffe
itHdis , (35)

H(t ) = Hdis + Heff(t ). (36)

Therefore, in order to show that the permutation (in this case
P = I) is stable, we must show that the Hamiltonian (36) is
localized.

To see when this is the case, we rewrite (36) as

H(t ) = H(0) + V (t ), (37)

where
H(0) = Hdis + Heff(t ), (38)

V (t ) = Heff(t ) − Heff(t ); V (t ) = 0 (39)

with f (t ) = 1
τ

∫ τ

0 ds f (s) the time average and V (t ) is the
strictly time-dependent part of H(t ).

We note that Heff is a sum of local Hamiltonians sand-
wiched by Pm [Eq. (16)] and is thus also local. This implies
that V (t ) is local as well and may be written

V (t ) =
∑

i

Vi(t ). (40)

Whenever H(0) is MBL, we may use a theorem by Abanin,
De Roeck, and Huveneers [35] to show that the weak, local
drive V (t ) will not ruin the localization of H(0). Namely, that
the Hamiltonian (36) will be MBL whenever

τ ||Vi(t )||HS 
 1 and
τ ||Vi(t )||2HS

W

 1. (41)

Note that τ ||Heff,i||HS 
 1 implies τ ||Vi(t )||HS 
 1. Hence,
for sufficiently strong disorder, the Hamiltonian (36) will be
MBL so long as H(0) is MBL. A corollary of this result is
that (36) will be K-body localized so long as H(0) is K-body
localized.3

3This is because [35] uses a KAM-type scheme to, order by order,
find exactly the dressed � bits of the Hamiltonian and thus prove it is
MBL. This procedure may thus be stopped at some order K to show
K-body localization.
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We have thus reduced the problem to asking whether the
static Hamiltonian H(0) is localized. For 1D systems, we
expect H(0) to be MBL. This is because, using a Kolmogorov-
Arnold-Moser (KAM)-type scheme, it has been shown that
models of this type (i.e., Hamiltonians with a disordered term
plus a weak, local interacting term) are MBL in 1D under
the weak assumption of limited level attraction (see [34]). In
higher dimensions, rare regions of weak disorder can cause an
avalanche effect that ruins the MBL [55–58]. This delocaliza-
tion, however, happens on exponentially long timescales and
thus the system is prethermally localized. Furthermore, these
systems are expected to be K-body localized. This is because
the probability that the K-particle energy spectrum features
the accidental resonances that ruin localization goes to zero in
the thermodynamic limit [53].

In summary, we have shown that when disorder is added
to a Floquet system near a special point with P = I , then the
dynamics is stabilized by (many-body or K-body) localization
and thus corresponds to a robust prethermal phase. We expect
that as we move further away from special points, the effective
evolution would resemble that of random local unitaries in
which spreading has been studied in, e.g., [59].

B. Discrete time crystals

We now consider a Floquet drive that corresponds to a
perfect cellular automation with some finite order � 1, i.e.,

PO = I; O ∈ N. (42)

Such dynamics, when stable to disorder and O > 1, is often
called a discrete time crystal. Indeed, the original time transla-
tion symmetry of the Floquet drive T has been spontaneously
broken in these interacting, localized Floquet phases that now
have OT time translation symmetry. Let us consider the evo-
lution after O Floquet periods given by

UO = [UdisPe−iτHeff ]O (43)

= [UdisP]Oe−iτHO,eff , (44)

where, to first order in τ ||Heff,(i, j)||HS,

HO,eff =
O−1∑
a=0

(P†U †
dis)aHeff(UdisP )a. (45)

Now, note that since P is a cellular automation (and thus
updates the occupancy of sites based on the occupancy of
nearby sites), it transforms the number operator of a site i in
the following way:

P†niP =
∑

i1

Pi1 ni1 +
∑
i1,i2

Pi1i2 ni1 ni2

+ · · · +
∑

i1,i2,...,iλ

Pi1i2...iλni1 ni2 . . . niλ , (46)

where the coefficients Pi1 , Pi1i2 , . . . , Pi1i2...iλ are only nonzero
when all the sites i1, i2, . . . , iλ are within some finite region
surrounding site i. This implies that

[UdisP]Oe−iτHO,eff = POe−iτHloc e−iτHO,eff

= e−iτHloc e−iτHO,eff , (47)

where

Hloc =
O−1∑
a=0

PaHdisPa. (48)

Note that Hloc is a sum of local terms as in (46). We now
repeat the steps (32) to (37) to find that

UO = T e−i
∫ τ

0 dt H(t ) (49)

with

H(t ) = H(0) + V (t ) (50)

and

H(0) = Hloc + HO,eff(t ), (51)

V (t ) = HO,eff(t ) − HO,eff(t ), (52)

HO,eff(t ) = e−itHlocHO,effe
itHloc . (53)

Again using [35], we find that (50) is K-body (many-body)
localized whenever H(0) is K-body (many-body) localized
and (41) are satisfied. Again, since H(0) is a fully MBL
term plus a weak, local interacting term, we expect it to be
K-body (many-body) localized as discussed in the paragraph
following (41).

We remark that the range of HO,eff, and thus ||Vi(t )||HS,
increases with increasing O. By (41), this implies that the
region in parameter space where the system is localized
will shrink rapidly for increasing O, however, the region
will remain finite so long as O is finite. This also suggests
that general cellular automations without finite order are not
likely to be stabilized by the disorder. For example, for the
perfect swapping RLBL model, the bulk permutation has
order 1 while the permutation at the edge has infinite or-
der (since particles are transported chirally along the edge).
This is another way of viewing why the edge modes of an
interacting, perfect-swapping RLBL model thermalize [5,6]
even while the system with periodic boundary conditions
does not.

V. STABILIZED SUBSPACES

We now investigate when interacting models with sequen-
tially activated hopping may exhibit stabilized permutative
dynamics in Krylov subspaces even when the full Hilbert
space does not support such dynamics. Namely, we consider
two main situations where this may occur.

First, we can have all the Diophantine conditions ap-
proximately satisfied, but the corresponding permutation has
infinite order when acting on some states (e.g., edge states
in the RLBL model). However, some initial Fock states may
exhibit finite orbits under the cellular automation (we give
such an example using the Hubbard-RLBL model later in
this section). As we will soon show, these orbits may then be
stabilized by disorder.

Another possibility is when only some of the Diophantine
conditions are approximately satisfied. Here, the Hilbert space
fragmentation (that occurs when a few of the Diophantine
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conditions are perfectly satisfied [50]) may be stabilized by
the disorder.

In both these cases, we are thus interested in Floquet evo-
lution that may be written

U (T ) = UdisUPe−iτHeff . (54)

Here UP maps number states to number states only in a sub-
space N associated with satisfied conditions. Let us consider
cases where

UO
P |N 〉 = |N 〉 (55)

for some finite O ∈ N.
We now ask whether the subspace N is localized under the

evolution U (T ). We first specialize to the situation where the
subspace N is closed under the evolution of U (T ), i.e.,

U (T )|N 〉 = |N ′〉 ∀ |N 〉 ∈ N , (56)

where |N ′〉 ∈ N . A simple example when this (approxi-
mately) happens is when starting with a few particles far away
from the edge in the RLBL model. A more elaborate example
will be discussed below.

When N is closed under the evolution, U (T ) is block
diagonal with

U (T ) =
(

UN c 0
0 UN

)
, (57)

where UN acts on the space N and UN c acts on its comple-
ment N c.

Now, using (54) and (55) and repeating the steps (43)
through (49), we have that UO

N is localized.
We again illustrate our point using the Hubbard-RLBL

model. Consider the case where activated pairs with one
or three particles are approximately perfect swapping while
pairs with two particles of opposite spin are approximately
frozen (i.e., regions in Fig. 2 where yellow and blue overlap).
Here, the corresponding cellular automation has infinite or-
der. However, the cellular automation does have finite order
when acting on subspaces with a fixed, finite number of par-
ticles. Furthermore, note that the Hubbard-RLBL evolution
is U(1) symmetric, thus the finite particle number subspaces
are closed under U (T ). Therefore, by the arguments of this
section, we have that the cellular automation will be stabilized
by disorder for any initial state with a fixed, finite number of
particles.

For cases where the subspace N is not closed under the
evolution U (T ) it might be expected, in general, that the
system will fail to localize. This is because, as soon as the
initial state evolves outside the subspace N , the operator UP
will act to delocalize the state. However, we investigate such
cases numerically in the next section and find that initial
states within N may still remain localized on prethermal
timescales.

VI. NUMERICAL RESULTS

In this section, we numerically investigate the evolution
of several example interacting Floquet systems both with and
without disorder. Namely, we investigate the stabilizing effect
when disorder is added and if the evolution is consistent with
localization dynamics.

As a measure of localization, we use the inverse participa-
tion ratio (IPR). Given any state |	〉, and letting |n〉 be the
number-state basis in real space, the IPR is defined as

IPR =
∑

n

|〈	|n〉|4. (58)

The IPR is 1 for any |	〉 that is a Fock state and goes as 1
N2

(where N is the dimension of the Hilbert space) for an equal
superposition of number states.

In Fig. 3(a), we plot the IPR as a function of time for three
example values of V, τ in the Hubbard-RLBL model starting
from the initial Fock state of a doublon localized in the center
of the system.

In the first case, the second and fourth conditions in (4) are
approximately satisfied with V = 16

3 − 0.05, τ = 3π
2 + 0.05,

i.e., we have perturbed both V, τ away from the special
point V = 16

3 , τ = 3π
2 where both single particles and dou-

blons evolve with swapping. Without disorder, the system will
evolve with the effective slowed, interacting dynamics as dis-
cussed in Sec. III since it is near a special point. However, the
doublon under this dynamics may still generate superpositions
and spread throughout the system. Thus, the IPR decreases.
Note, however, that the Fock state permutation at the special,
Diophantine point has finite order (namely, order 1 since the
perfect swapping RLBL model acts as the identity in the bulk
of the system). Therefore, by the analysis of Sec. IV, it is
expected that disorder will K-body (in this case, two-body) lo-
calize the evolution. Consistent with this result, it can be seen
in Fig. 3(a) that the IPR approaches a constant value (∼0.8)
when disorder is included. In Fig. 3(b), the average density of
spin-up particles4 at each site is plotted after 10 000 Floquet
periods. Without disorder, the particle spreads throughout the
entire system. With disorder, it remains localized around its
initial location.

In the second case, we evolve under Hubbard-RLBL with
the parameters V = 7.9, τ = 2π + 0.1. This point in parame-
ter space is not in the vicinity of any Diophantine points, but,
nonetheless, the first and fourth conditions (single particles
frozen, doublons swapping) in (4) are approximately satisfied
(since the point is in an overlapping red and green region in
Fig. 2). Similar to the first case, the evolution without disorder
exhibits slowed, effective dynamics with the IPR decreas-
ing over time [Fig. 3(a)]. When disorder is added, the IPR
again converges to a constant value (∼0.8). Note, the Fock
state permutation corresponding to single particles frozen and
doublons swapping does not have finite order. However, it
does have finite orbits in the two-particle subspace, and, fur-
thermore, the evolution is U(1) symmetric. Thus, evolution
is confined to the two-particle subspace. This implies that,
consistent with the numerics, disorder is again expected to
localize the system by the arguments of Sec. V.

In the third case, we consider evolution at V = √
2 − 0.01,

τ = √
2π + 0.01. Here, only the third condition in (4) is ap-

proximately satisfied (doublons frozen). If the third condition

4Due to the up-down symmetry of the evolution, the average
density of spin-down particles is equivalent to the average density
of spin-up particles and thus the spin-down density plots are not
included.
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FIG. 3. Localization in Hubbard-RLBL: (a) Evolution of the inverse participation ratio (IPR) in the Hubbard-RLBL model for a doublon
initially localized in the center of the system when disorder either is or is not present. From left to right, the figures correspond to the second
and fourth conditions in (4) being approximately satisfied (both particles and doublons are swapping), the first and fourth conditions being
approximately satisfied (particles are frozen and doublons are swapping), and solely the third condition being approximately satisfied (doublons
are frozen). The location of each example in parameter space is plotted in Fig. 2. Disordered runs are averaged over 500 realizations of W = 10
with the range from the 25th to the 75th percentiles filled in with light blue. Consistent with the theoretical arguments of Secs. IV and V, the
numerics suggest that disorder fully localizes the evolution in the first two cases and stabilizes the classical dynamics over exponentially long
timescales in the third case. (b) Average density of spin-up particles per site after 10 000 driving periods from an initial doublon localized in
the center of the system. For each value of V, τ , the densities after evolution without disorder (left) and with disorder (right) are plotted.

was exactly satisfied, the Hilbert space fragments leaving any
configuration of doublons frozen while other particle config-
urations may thermalize. However, since the third condition
is only approximately satisfied, doublons have a small chance
to separate into a spin-up and -down particle. This was not a
problem in cases 1 and 2 as the dynamics of single particles
was also approximately permutative, implying that each of
the single particles from the split doublon would continue
to exhibit localized dynamics on their own in the presence
of disorder. In contrast, the single-particle dynamics is delo-
calized in this case, even in the presence of disorder. Thus,
as soon as a doublon splits, the resulting pair of single par-
ticles will delocalize the system. In the language of Sec. V,
the perturbation allows the system to evolve out of the Fock
state permutation subspace and disorder is not guaranteed to
localize the evolution. This is reflected in Fig. 3(a) where the
IPR no longer converges once disorder is added. However,
the disorder does help to stabilize the frozen dynamics of
the doublon over long timescales. The difference from the
first two cases is also apparent when considering the aver-
age particle density Fig. 3(b). Here, the doublon is still with
high probability localized near its initial location, but once it
splits (thereby leaving the frozen subspace) the single parti-
cles may travel throughout the system. This creates a nonzero
background in the average particle density even far from the
initial doublon location.

VII. SUMMARY AND DISCUSSION

In this work, we have shown that interacting Floquet mod-
els with periodically activated pairs exhibit classical cellular
automation dynamics corrected by a slowed, effective inter-
acting evolution when a given set of conditions [e.g., (4)]
are approximately satisfied. Furthermore, when disorder is
added to the system, these regions with approximately satis-
fied conditions become robust prethermal phases. If only a few
of the Diophantine conditions are satisfied, the Hilbert space
fragments into cellular automation subspaces and ergodic sub-
spaces. When the same conditions are instead approximately
satisfied, the disorder stabilizes the dynamics in the cellular
automation subspace for long, but not infinite, timescales. On
the other hand, these subspaces may still support localization
if the subspace is closed under the evolution.

The existence of these stabilized cellular automation
phases opens the door to a systematic investigation into their
properties. For example, in [6] the disordered Hubbard-RLBL
model was investigated at τ = π

2 with V approaching 0 and
V approaching infinity. It was found that, in this regime, the
system belongs to a class of anomalous Floquet topologi-
cal insulators, called correlation-induced anomalous Floquet
insulators (CIAFI), labeled by a hierarchy of topological
invariants. The two different values of V correspond to topo-
logical insulators with two differing topological invariants.
From the perspective of our work, this corresponds to the
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cases where single particles and doublons are approximately
swapping (conditions two and four approximately satisfied)
for V near 0 and correspond to single particles swapping
and doublons frozen (conditions two and three approximately
satisfied) for V large. Thus, any parameter space region with
those Diophantine conditions approximately satisfied will also
correspond to a CIAFI with the corresponding topological
invariants. Similarly, when other Diophantine conditions are
approximately satisfied, we expect the system to again corre-
spond to a CIAFI with different topological invariants. This
is just one example of the interesting phenomena that may
occur in systems with stabilized cellular automation dynamics
and an exciting direction for future work is the investigation
of possible exotic behavior found in systems stabilizing other
cellular automata. For example, it would be interesting to con-
sider interacting Floquet drives without U(1) symmetry such
that the corresponding cellular automation may not preserve
particle number.

One restriction used in this work to show localization was
the finite order of the cellular automation. It is an open ques-
tion as to whether there are any systems where this constraint
may be relaxed. Another interesting possibility is the general-
ization of the models discussed in this work to aperiodically

driven systems. If this is possible, the prospective stabilized
cellular automation corresponding to the evolution of such
a drive would necessarily be aperiodic as well and therefore
allow for more general stabilized cellular automata. Recent
work has suggested the existence of prethermal phases for
aperiodically driven systems [60,61].

Instead of periodic drives, it is also possible to restrict
hopping to between pairs of sites via measurements. Recently,
it was shown that, in this way, it is possible to mimic the RLBL
procedure to produce protected edge transport alongside a
local bulk via measurements alone [62]. Due to the nonuni-
tary nature of the measurements, the analysis in this paper
does not directly apply in the measurement-induced setting.
A possible avenue for future investigations is determining if
the stabilized cellular automation dynamics is also possible
for measurement-induced systems and, if so, what similarities
and differences does the dynamics have with the Floquet
systems considered here.
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