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We study the asymptotic bipartite entanglement entropy of the quantum trajectories of a free-fermionic system,
when subject to a continuous nonlocal monitoring. The measurements are described by Gaussian-preserving
two-point operators, whose strength decays as a power law with exponent α. Different behaviors of the
entanglement entropy with the system size emerge: for α below a given threshold value a volume-law behavior
sets in, while for larger α we observe a transition from subvolume to area law, whose exact location depends
on the measurements rate and on the presence of a Hamiltonian dynamics. We also consider the expectation
probability distribution of the measurement operators, and find that this distribution features a transition from
a unimodal to a bimodal shape. We discuss the possible connections between this qualitative change of the
distribution and the entanglement transition points.
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I. INTRODUCTION

Nowadays it is widely believed that entanglement, alias a
kind of quantum correlations with no classical analog [1,2],
plays an important role in the equilibrium and the out-of-
equilibrium physics of quantum many-body systems [3]. A
prototypical example is that of the entanglement entropy for a
pure state, which is defined as the von Neumann entropy of the
reduced density matrix of a given portion of the full system.
Due to its peculiar scaling properties at the critical point [4,5],
it may act as a witness of the presence of quantum phase tran-
sitions. Moreover, in nonequilibrium conditions, it generally
increases linearly in time to eventually attain an asymptotic
value proportional to the system size [6–8], and the slope of
this scaling contains information on the thermalization prop-
erties of the system [9]. Such scenario changes qualitatively in
the presence of disorder: For example, in many-body localized
phases, the entanglement entropy undergoes a characteristic,
much slower, logarithmic increase in time (see Ref. [10] for a
review).

More recently, the focus has been moved to situations
beyond the unitary dynamics, which consider the evolution
of monitored systems. The interplay between the intrinsic
dynamics of the system and that induced by the quantum
measurement process can lead to a variety of scaling regimes
for the asymptotic entanglement entropy, giving rise to the
so called entanglement transitions. In this framework, an
extensive number of papers has been focusing on local mea-
surements (either discrete or continuous in time) performed
in monitored quantum circuits [11–30], as well as nonin-
teracting [17,31–46] and interacting [47–53] Hamiltonian
systems. Moreover, there exists a deep connection between
measurement-induced phases and the encoding/decoding
properties of a quantum channel [16,54–63]. Situations where
the dynamics is only induced by random measurements of
nonlocal string operators (measurement-only dynamics) have

been also considered, finding different scaling regimes of the
entanglement entropy, according to the statistics of the ran-
domly measured operators, and the range and the nature of
the strings [64,65].

Among the various theoretical models of monitored quan-
tum systems, considerable coverage has been dedicated to
the dynamics of fermionic Gaussian states, in the presence
of quadratic Hamiltonians and Gaussian-preserving measure-
ment processes (see, e.g., Refs. [31,34,36,39–46,66–68]), as
they are amenable to an accurate numerical treatment up
to relatively large sizes. In this framework, for short-range
Hamiltonians and local measurements, area-law (saturation to
a finite value) or logarithmic scaling of the asymptotic entan-
glement entropy with the system size have been reported. A
somewhat richer situation has been found for Hamiltonians
with extended power-law interactions, although keeping the
measurement operators on-site, where regimes with a power-
law scaling of the entanglement entropy with the system size
are possible [67,69]. Something similar has been considered
in the context of quantum circuits [70,71]. In a recent paper,
we have also shown that the measurement-only dynamics
through operators connecting two distant sites can give rise
to a nontrivial entanglement entropy dynamics, with a fast
growth with the system size of the asymptotic entanglement
entropy [72].

In this paper we deal with the quantum dynamics of a
Kitaev chain under continuous nonlocal monitoring, which
can be cast as a quantum state diffusion unraveling [73,74]
of a Lindblad master equation with long-range Lindblad
operators. Specifically, we consider two-point fermionic mea-
surement operators, suitably chosen to preserve Gaussianity,
where the coupling decays as a power law with some exponent
α > 0. In the context of dissipation engineering, similar kind
of dissipators have been already scrutinized in some recent
papers [75–78]; these can be realized with two-level atoms in
lossy cavity QED experiments, using a magnetic field gradient
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and a Raman drive with multiple sidebands [75]. In noninter-
acting spins monitored by infinite-range operators, an entan-
glement transition from area-law to sublogarithm scaling can
occur [79].

Here we first consider the asymptotic bipartite entangle-
ment entropy and find a rather rich phenomenology: For α

smaller than a threshold value α�
1, it obeys a volume law,

suggesting a strong entangling power of the long-range mea-
surement operators. For intermediate values of α, a crossover
region emerges, in which the entanglement entropy scales
nontrivially with the size. For α larger than α�

2 (> α�
1 ), we

recover the area-law scaling observed in the presence of
on-site measurements. The fact that 0.5 � α∗

1 � 1, indepen-
dently of the Hamiltonian parameters and of the coupling
with the measurement apparatus, is suggestive. Indeed, α = 1
corresponds to the threshold below which both the unitary
(Hamiltonian) long-range dynamics in one dimension [80,81]
and at least a single case of Lindblad long-range dynamics in
one dimension [78] are exactly described by the mean-field
approximation.

We also focus on a measurement-only dynamics, i.e.,
such that there is no Hamiltonian providing a unitary part
in the evolution. In that case, we still have evidence that
0.5 � α∗

1 � 1. Besides that we can locate the transition point
between subvolume and area-law behavior at α∗

2 ∼ 2, suggest-
ing an even more interesting comparison with the behavior
of long-range Hamiltonians, where the system behaves short
range above the threshold α = 2 [80,81].

Finally, we study the expectation probability distribution
of the measurement operators. When increasing α, the dis-
tribution over a single quantum trajectory of the expectation
values of such operators undergoes a transition from unimodal
(one maximum) to bimodal (two maxima), at a point ᾱ that
is not immediately related with the change of scaling for the
entanglement entropy. Such transition is reminiscent of the
bifurcations occurring in nonlinear-driven dissipative classical
dynamical systems, where a single stable stationary point
splits into two [82,83]. Here, due to the presence of quantum
fluctuations and classical noise, there are no stationary points,
and their equivalent are the maxima of the distribution that
move from being one to two. In view of this analogy, we
dub the unimodal-bimodal transition of the distribution of the
expectations as a “quantum bifurcation”.

The paper is organized as follows. In Sec. II, we define our
model, specifying both the Hamiltonian and the measurement
operators, together with the bipartite entanglement entropy we
are going to analyze. In Sec. III, we introduce the quantum
state diffusion unraveling of the Lindblad master equation and
discuss how to treat the time evolution of the system, pre-
serving the Gaussian form of the wavefunction. Section IV is
devoted to the presentation of our numerical findings sum-
marized above, for the entanglement entropy (Sec. IV A) and
for the expectation distribution of the measurement operators
(Sec. IV B). In Sec. V we draw our conclusions.

II. MODEL

We start from a system of spinless fermions on a one-
dimensional lattice with N sites, described by the Kitaev

Hamiltonian [84]

Ĥ =
∑

i

[J (ĉi − ĉ†
i )(ĉi+1 + ĉ†

i+1) + 2h ĉ†
i ĉi ]. (1)

The real constants J and h stand for, respectively, the nearest-
neighbor coupling and the chemical potential μ ≡ 2h, while
ĉ(†)

i are annihilation (creation) operators on the ith site
(i = 1, . . . , N), exhibiting canonical anticommutation rela-
tions. The Hamiltonian (1) is responsible for the unitary part
of the dynamics. We notice that this model can be mapped,
via a Jordan-Wigner transformation, onto a quantum Ising
chain in a transverse field [85,86]. Hereafter, we set J = 1 as
a energy scale and work in units of h̄ = 1.

We consider the Lindblad master equation

d

dt
ρ(t ) = −i[Ĥ, ρ(t )] + γ

2

∑
i

({�̂†
i �̂i, ρ} − 2 �̂iρ �̂

†
i ) (2)

with measurement operators

�̂i =
∑

j

fi j (ĉi − ĉ†
i )(ĉ j + ĉ†

j ), (3)

and focus on its quantum state diffusion unraveling. This
corresponds to a continuous time monitoring of the system,
which is described by the following stochastic Schrödinger
equation for the pure state |ψt 〉:

d |ψt 〉 = − iĤdt |ψt 〉 +
∑

i

(√
γ [�̂i − 〈�̂i〉t ]dW i

t

− γ

2
[�̂i − 〈�̂i〉t ]

2dt
)

|ψt 〉 , (4)

where γ > 0 is the coupling strength with the measurement
apparatus, 〈�̂i〉t = 〈ψt | �̂i |ψt 〉, and W i

t are independent Wiener
processes describing a quantum state diffusion process that
unravel the equation (2).

In Eq. (3), the real prefactor fi j is assumed to algebraically
decay with the distance Di, j between site i and site j, such that

fi j = 1

N (α)

1

(1 + Di, j )α
, (α � 0). (5)

Here N (α) = (N − 1)−1 ∑
i, j (1 + Di, j )−α is a proper normal-

ization constant (the Kac factor), ensuring extensivity in the
system [87]. In what follows, we choose periodic bound-
ary conditions for fermions (such that ĉ(†)

j+N ≡ ĉ(†)
j , for any

j > N), consequently Di, j = min(|i − j|, N − |i − j|). No-
tice also that the �̂i are Hermitian, �̂i = �̂

†
i .

An important property of the operators �̂i is that

�̂2
i =

∑
j,l

fi j fi l (ĉ j + ĉ†
j )(ĉl + ĉ†

l ) =
∑

j

f 2
i j, (6)

where we used the anticommutation relations for fermions and
the fact that (ĉi − ĉ†

i )2 = −1. Thanks to this property, Eq. (4)
can be seen as a Schrödinger equation with a non-Hermitian
quadratic Hamiltonian. As a consequence, the state |ψt 〉 keeps
a simple Gaussian form, described by just N (N − 1)/2 com-
plex independent parameters, as we better discuss in Sec. III.
One can thus push the numerics to system sizes of some
hundreds of sites and investigate how the presence of power-
law decaying measurement operators affects the production of
entanglement during the quantum dynamics.
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To this purpose, we concentrate on the entanglement en-
tropy of a subchain of length l , averaged over different
quantum trajectories

Sl (t ) ≡ −Tr[ρl ln ρl ], (7)

where the logarithm is taken in the natural basis. Here,
ρl (t ) = TrN−l [|ψt 〉 〈ψt |] is the reduced density matrix of the
subchain and |ψt 〉 is the (pure) state of a single quantum
trajectory given by a single realization of the stochastic
Schrödinger equation dynamics in Eq. (4) (see also Sec. III).

To obtain the average entanglement entropy, we evalu-
ate it on each single stochastic quantum trajectory and then
ensemble-average over different realizations. In our analysis,
we will mostly focus on the asymptotic long-time value

Sl = lim
T →∞

∫ T

t∗
dt ′ Sl (t ′). (8)

As discussed in Ref. [88], for fermionic Gaussian states, the
entanglement entropy can be determined from the knowledge
of the correlation functions, that are introduced in the next
section.

III. DYNAMICS UNDER CONTINUOUS MONITORING

Equation (4) can be discretized in time and cast as a
sequence of Trotterized evolution steps that in the limit
�t → 0, converge back to Eq. (4) [31]. In each Trotterized
step, the measurement and the unitary part of the dynamics act
separately and in sequence,

|ψt+�t 〉 � C e
∑

i (Ai �̂i−γ �̂2
i �t ) e−iĤ�t |ψt 〉 , (9)

where we have defined

Ai ≡ √
γ �W i

t + 2γ 〈�̂i〉t �t, (10)

with �W i
t being independent real Gaussian random variables

with vanishing expectation value and variance �t .
Expression (9) can be further simplified by using Eq. (6).

In this way one can rewrite Eq. (9) in the simpler form

|ψt+�t 〉 � C̃ e
∑

i Ai �̂i e−iĤ�t |ψt 〉 , (11)

where the irrelevant constant exp ( − γ �t
∑

j f 2
i j ), coming

from the exponential of �̂2
i , has been absorbed into the nor-

malization prefactor C̃.
Being both �̂i and the Kitaev Hamiltonian quadratic in

the fermionic operators ĉ(†)
j , when starting from an initial

Gaussian state, the time evolution of Eq. (11) preserves
Gaussianity. In particular, the state |ψt 〉 can be cast as

|ψt 〉 = Nt exp

(
1

2

∑
j1, j2

[Zt ] j1, j2 ĉ†
j1

ĉ†
j2

)
|0〉, (12)

where |0〉 denotes the vacuum state of the ĉ fermions, and is
thus uniquely described by the N × N antisymmetric matrix
Zt [being Zt antisymmetric, it is described by N (N − 1)/2
complex parameters]. From the matrix Zt , one can easily
derive any two-point correlation functions. Defining

[Gt ] j,l ≡ 〈ψt |ĉ†
l ĉ j |ψt 〉 , [Ft ] j,l ≡ 〈ψt |ĉl ĉ j |ψt 〉 , (13)

the correlation matrices can be written in terms of the matrix
Zt as [89]

Gt = (1 + Zt Z†
t )−1Zt Z†

t , Ft = (1 + Zt Z†
t )−1Zt , (14)

where 1 is the N × N identity matrix. Being ZT
t = −Zt , we

see that Gt = GT
t and Ft = −FT

t .
In the next subsection we show a simple numerical

prescription (whose computational requirements scale poly-
nomially with N) to evaluate the matrix Zt after the
application of the unitary and the dissipative part of the
evolution step in Eq. (11) (and, therefore, the entanglement
entropy).

Evolution of the matrix Zt

It is possible to write a system of ordinary differential equa-
tions for the matrix Zt , describing the evolution in Eq. (12)
and efficiently solvable (an alternative derivation can be found
in Ref. [72]).

Both the action of the unitary step and the measurement
step in Eq. (11) can be described as the application, to a
Gaussian state of the form Eq. (12), of an operator of the form
e−ξ T̂ �, where

T̂ =
∑
i, j

(Di, j ĉ†
i ĉ j + Oi, j ĉ†

i ĉ†
j + H.c.) (15)

is a generic (Hermitian) quadratic operator, � is real, and
ξ = {i,−1} accounts for a dynamics in real or in imaginary
time, respectively. Let us define |ψ〉 as a Gaussian state
of the form (12), to which we apply the operator e−ξ T̂ �,
and Z the corresponding antisymmetric matrix. After this
operation the state |ψ ′〉 ≡ e−ξ T̂ � |ψ〉 [being |ψ〉 a generic
Gaussian state described by the matrix Z, as in Eq. (12)] is
still Gaussian, and its corresponding Z′ matrix is obtained by
integrating the system of ordinary differential equations

ξ
d

ds
Z(s) = 2[D · Z(s) + Z(s) · D + O + Z(s) · O · Z(s)],

(16)

from s = 0 to �, with initial conditions Z(0) ≡ Z, as shown
in Ref. [89].

The unitary step of Eq. (11) is obtained by posing ξ = i,
� = �t , and T̂ = Ĥ , such that

Di,i+1 = Di,i−1 = −J/2, Di,i = h,

Oi,i+1 = −Oi,i−1 = −J/2,
(17)

and zero otherwise. Analogously, the dissipative step can be
obtained by posing ξ = −1, � = 1, and T̂ = ∑

i Ai�̂i [Ai

are the real coefficients defined in Eq. (10)]. Using the an-
ticommutation relations and the symmetry of the couplings
fi j = f j i, we can write∑

i

Ai�̂i =
∑
i, j

[Ai fi j (ĉiĉ j + ĉ†
j ĉi ) + H.c.]

= 1

2

∑
i, j

[(Ai − Aj ) fi j ĉiĉ j + (Ai + Aj )ĉ
†
j ĉi + H.c.],

(18)
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so that in Eq. (16) one has

Di, j = −1

2
(Ai + Aj ) fi j Oi, j = −1

2
(Ai − Aj ) fi j . (19)

Defining N × N matrices U(s), V(s) such that

U†(s) Z(s) = −V†(s), (20)

we can show [90] that, if and only if Z(s) obeys Eq. (16),
then U(s) and V(s) satisfy the linear system of differential
equations

ξ
d

ds

(
U(s)
V(s)

)
=

(
D O

−O −D

)(
U(s)
V(s)

)
. (21)

This can be straightforwardly integrated to give [72,88](
U′
V′

)
= exp

[
−2ξ�

(
D O

−O −D

)](
U(0)
V(0)

)
, (22)

where U(0) and V(0) correspond to the initial condition Z(0)
for |ψ〉.

The above observation provides a direct and simple solu-
tion to the problem of finding how the matrix Z of a Gaussian
state, as that in Eq. (12), is modified after the evolution (11).
The latter is composed of a unitary step, followed by a dis-
sipative step: Any time a given operator of the form e−ξ T̂ �

is applied to the state (12), the matrix Z ≡ −[U†]−1 V† is
transformed into Z′ ≡ −[U′†]−1 V′†, the matrices U′ and V′
being expressed as in Eq. (22).

In the measurement step, to restore the normalization of the
state it is necessary to perform the QR decomposition(

U′
V′

)
=

(
UQ
VQ

)
R, (23)

where R is a L × L upper triangular matrix and UQ and VQ

obey the unitarity condition U†
QUQ + V†

QVQ = 1. From the
one side, the QR decomposition does not modify the ma-
trix Z that defines the state, since it is easy to check that
Z′ = −[U′†]−1 V′† = −[U†

Q]−1 V†
Q. From the other side, it

restores unitarity [31,72], allowing the evaluation of the cor-
relation matrices as

G′ = 1 − UQU†
Q, F′ = −UQV†

Q, (24)

as one can easily check by substituting Z′ = −[U†
Q]−1 V†

Q in
Eqs. (14) and by imposing the unitarity condition.

IV. RESULTS

The results presented below have been obtained by initial-
izing the system in the ground state of the Hamiltonian Eq. (1)
with J = 1, hi = 100, and letting it evolve under continuous
monitoring after a sudden quench of the field to h = 0.5.
We checked that the asymptotic value of the entanglement
entropy, as well as the expectation probability distribution of
the measurement operators, are not affected by the choice of hi

and weakly depend on h. Therefore, without loss of generality,
hereafter we keep them fixed.

To compute the entanglement entropy, we choose a bal-
anced bipartition by taking l = N/2 [see Eq. (7)], and finally
perform the averages in Eqs. (7) and (8) over a given number
Nr of realizations of the stochastic process. On the other hand,

to obtain the expectation probability distribution of the mea-
surement operators, we evolve a single quantum trajectory up
to a long time T . Details on the convergence of our numerical
results are provided in Appendix A.

A. Entanglement entropy

1. Dynamics with unitary and measurement parts

We specifically address the behavior of the average asymp-
totic entanglement entropy [see Eq. (8)] as a function of the
system size N and of the power-law exponent α for the mea-
surement operator. We first consider a free-fermionic system
described by the Kitaev Hamiltonian Eq. (1), and continu-
ously monitored through the long-range operators Eq. (3).

In Fig. 1(a) we show SN/2 versus the system size N , for
different values of α (color gradient). We notice that, for
α � 1, it exhibits a volume-law scaling (i.e., it grows linearly
with N). When increasing the power-law exponent, the curves
bend to eventually show a flat profile, for very large α. This
behavior suggest the emergence of a volume-law behavior
in the long-range regime (α < 1) that, after a crossover for
intermediate values of α, turns into an area-law behavior at
short-range monitoring (α � 1).

This can be appreciated more clearly in Fig. 1(b), where we
plot the normalized asymptotic entanglement SN/2/N versus
the power-law exponent α. As expected, for α � 1 the curves
for different values of N collapse to a finite value, evidencing
a linear scaling with N . On the other hand, for α � 3.5, the
curves approach the zero value, thus signaling the onset of
a regime where the dependence of Sl with N is very weak,
if not absent (meaning area-law behavior). In the intermedi-
ate regime 1 � α � 3.5, we also observe a less-than-linear
dependence on the system size, which is more difficult to
characterize properly.

Further insight on the sublinear region (α � 1) can be ob-
tained after rescaling the entropy by ln(N ), as in Fig. 1(c). In
particular, looking at the inset, the curves for different system
sizes exhibit a crossing at α ∼ 3.2. This should correspond
to a value marking the transition between a more-than-
logarithmic and a sublogarithmic (most probably area-law)
dependence with N . At this point we should note that, since
for α > 2 the measurement operators have a short-range char-
acter, one cannot rule out the possibility to have a further tran-
sition in the intermediate region, from a power law (sublinear)
to a logarithmic scaling, before ending up into an area-law
region at α � 3.2. Although hardly visible from our numerical
data, the possible occurrence of a logarithmic scaling could be
of the same kind of those emerging in free-fermionic systems
in the presence of local monitoring [32,36,39,41].

Summarizing, we can locate two special points α�
1 and α�

2
separating three regions with qualitatively different behaviors
in the entropy scaling with N (increasing α, we have volume-
law, intermediate subvolume, and area-law scalings of Sl with
N). To the best of our numerics, for γ = 0.1 (corresponding
to the data reported in Fig. 1), the turning points correspond
to 0.5 � α�

1 � 1 and α�
2 ∼ 3.2. While the position of α�

1 is
quite robust when changing the Hamiltonian parameters, this
seems not to be the case for α�

2. In fact, we have performed
simulations for other values of γ (see, e.g., the data for
γ = 0.5 in Appendix B) and found that, while the three above
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FIG. 1. Behavior of the average long-time entanglement entropy SN/2 for a system of free fermions, governed by the interplay between the
Kitaev-Hamiltonian dynamics and the long-range monitoring. (a) The entanglement entropy SN/2 vs N , for different values of α (increasing
α corresponds to a darker color code, as indicated in the legend). (b) SN/2 divided by N vs α, for different sizes (increasing N corresponds
to darker markers). (c) SN/2 divided by ln N vs α, for different sizes [same sizes and markers as in panel (b)]. The inset is a magnification
of the same data around α = 3. We fix γ = 0.1, J = 1, and h : 100 → 0.5. Numerical parameters: �t = 5 × 10−3, Nr � 48, errorbars as in
Appendix A.

regimes (volume law, intermediate crossover, and area law)
are still present, the transition point from the intermediate to
the area-law behavior moves to different values of the power-
law exponent (namely, α�

2 decreases with increasing γ ). On
the opposite hand, we always find 0.5 � α�

1 � 1.

2. Measurement-only dynamics

We now switch to the study of a measurement-only dy-
namics, i.e., for the case without a Hamiltonian providing a
unitary part in the dynamics (J = h = 0). The plot of SN/2/N
versus α is provided in Fig. 2(a) [corresponding to Fig. 1(b)

FIG. 2. Average long-time entanglement entropy for the case of
measuring-only dynamics (no Hamiltonian, J =h = 0). (a) SN/2/N
vs α for different system sizes. (b) SN/2/ ln N versus α for different
system sizes. The inset is a magnification of the same data around
α = 2. Numerical parameters: γ�t = 5 · 10−4, Nr � 48, errorbars as
in Appendix A, same initial state as in Fig. 1.

for the case with Hamiltonian], and SN/2/ ln N versus α can
be found in Fig. 2(b) [corresponding to Fig. 1(c) for the case
with Hamiltonian].

We notice that the behavior in the small α dynamics is
quite stable and, in particular, it exhibits a volume-law scaling
with L, for α � 1. This suggests that the transition point
at 0.5 � α�

1 � 1 should not depend on the presence of a
Hamiltonian and that it is a property of the measurement
operators only. There is still an intermediate region featuring
a subvolume scaling that vanishes at α�

2 ∼ 1.9, corresponding
to the intersection point of the curves SN/2/ ln N [c.f., the
crossing point for the curves in the inset of Fig. 2(b)].

The fact that α∗
1 appears to be independent of the

system parameters suggests us a comparison with other long-
range systems. From one side, it is known that long-range
Hermitian Hamiltonians in one dimension behave mean field
for N → ∞ for α < 1, short range for α > 2, and for
1 < α < 2 there is an intermediate regime where the excited
states of the system can break a symmetry, but in a non-
mean-field way [80,81]. In the case without Hamiltonian, the
dynamics is provided by a long-range noisy (pseudo) Hamil-
tonian in imaginary time [see Eq. (4)], and it is interesting
that the transition points of the dynamics (0.5 � α∗

1 � 1 and
α∗

2 ∼ 1.9) approximately coincide with those of the unitary
dynamics. We also recall that, at least in one case [78], α = 1
is the threshold below which a mean-field description is exact
for N → ∞ in a Lindblad dynamics in one dimension with
long-range Lindbladians.

We conclude the section with a remark on the behavior of
α∗

2 . Considering that the measurement-only case corresponds
to the limit of infinite γ (more precisely γ � h, J), we find
that α∗

2 decreases with γ , as we can see in Table I.

TABLE I. Values of α∗
2 vs γ . (h = 0.5, J = 1 for the first two

rows). More details on the case γ = 0.5 in Appendix B.

γ α∗
2

0.1 ∼3.5
0.5 ∼2.4
∞ (measurement only) ∼1.9
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FIG. 3. Probability distributions of the expectations � of mea-
surement operators, over the sites ( j) and the discretized time (t),
for various system sizes (see legend), The four panels correspond
to different values of α = 0, 2, 3, 4. Here we fix γ = 0.1, J = 1,
and h : 100 → 0.5. Averages over one single quantum trajectory,
evolution up to T = 104, other numerical parameters as in Fig. 1.

B. Expectation probability distribution of the
measurement operators

We now consider the statistics of the expectations of the
measurement operators, a quantity that is experimentally more
relevant, being provided by the expectation values of a phys-
ically observable operator. Recent studies have pointed out
that, for local measurements, the different properties of this
distribution or related quantities may be connected to the
entanglement transitions [45,91,92].

Operatively, we consider a single quantum trajectory,
evolve it up to a time T with a given discretization time
�t , and evaluate all the expectations 〈�̂ j〉tn

, for the different
discrete times tn = n �t , (n = 1, . . . , T /�t), and the different
sites j = 1, . . . , N . Then we arrange these data into a normal-
ized histogram. This is the distribution of the expectations of
the measurement operators and we call it P(�).

In Fig. 3 we show, for the dynamics of the monitored
Kitaev chain with γ = 0.1, the histograms of the probability
of � for α = 0 (a), α = 2 (b), α = 3 (c), and α = 4 (d). The
various curves in each panel are for different system sizes
(color gradient—see legend). The distributions for α > 1 tend
to a limit for increasing system size, while for α � 1 there is a
rescaling (i.e., in the latter case, the distributions converge to
a limit, if appropriately rescaled).

It is evident that the shape of such distribution exhibits a
crossover from a unimodal to a bimodal character, depend-
ing on the value of α. As we have already emphasized, this
is reminiscent of bifurcations in nonlinear classical driven-
dissipative dynamical systems [82,83], where one stationary

FIG. 4. (a) Absolute value of the position of the maximum of
the distributions of the � versus α, for different values of N . The
inset shows the variance of the distribution vs α, for different sizes.
(b) Absolute maximum of the distribution vs α for different sizes.
Same parameters as in Fig. 3.

point splits into two. Here we have also quantum fluctuations
and classical noise, so instead of having stationary points,
we have maxima that move to be one (unimodal) to be two
(bimodal).

To locate the turning point ᾱ, in the main panel of Fig. 4(a)
we plot the absolute value of the position of the maximum
|�( max[P(�)] )| versus α. The latter starts deviating from
zero at ᾱ � 2, that is far from both the crossover points
we identified from the entanglement dynamics (0.5 � α�

1 � 1
and α�

2 ∼ 3.2, for γ = 0.1). The inset of Fig. 4(a) shows the
variance of the distribution (logarithmic scale on the y-axis).
For α � 1 the variance is size dependent, meaning that the
distribution shrinks when increasing N . This dependence is
still present for 1 < α � 2, but it seems to disappear for larger
system sizes. For α > 2, no size dependence is observed and,
according to the bimodal character of the distribution, the
variance becomes sensitively larger.

Different information can be extracted by looking at the
value of the absolute maximum of the distribution, max[P(�)],
shown in Fig. 4(b) (logarithmic scale on the y axis). The first
observation is that, in accordance with the variance behavior,
the absolute maximum exhibits a strong size dependence for
any α � 1. This size dependence is still present at small N for
1 < α � 2 to eventually disappear for larger power-law expo-
nents. Then we notice that max[P(�)] shows a nonmonotonic
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behavior in α. The absolute minimum occurs not far from the
α�

2 value at which we observed the transition to the area-law
regime of the entanglement entropy. Since we do not have
any theoretical insight, we do not make any direct connection
between the two transitions.

We finally comment that a different scenario emerges for
the measurement-only dynamics. In fact, in this case we ob-
serve the transition from unimodal to bimodal character at
ᾱ ∼ 1. As discussed in Sec. IV A, this value corresponds to
that of α�

1, at which we observe the crossover of the entan-
glement entropy from the volume-law to the subvolume-law
phase (c.f. Fig. 2). This result is consistent with the hypoth-
esis that the interplay with the Hamiltonian can generate an
intermediate region displaying more complex features. No
clear information can be extracted by the analysis of the
maxima nor of the moments of the distribution (e.g., the
variance).

V. CONCLUSIONS

We have studied the dynamics of the entanglement entropy
of a fermionic Kitaev chain undergoing a quantum state dif-
fusion evolution, as a result of a continuous measurement
process generated by two-point power-law decaying opera-
tors. This dynamics preserves the Gaussianity of the state,
allowing us to simulate systems up to few hundreds of sites.

First, we focused on the asymptotic entanglement entropy,
averaged over the different stochastic measurement processes,
both as a function of the system size and of the power-
law measurement exponent α. We found three regimes: For
α < α�

1 (with 0.5 � α�
1 � 1), the entanglement scales linearly

with the system size N , that is, as a volume law; on the oppo-
site hand, for α > α�

2 (with α�
2 dependent on the parameters of

the system). it exhibits a sublogarithmic (probably area-law)
scaling.

A similar behavior emerges when considering the
measurement-only dynamics. In this case, the transition from
volume-law to the nontrivial phase roughly occurs at the
same value of 0.5 � α�

1 � 1 observed for the full Hamil-
tonian and measurement-induced evolution, suggesting that
this transition is an effect of the measurement process only.
The other transition point at α�

2, from the subvolume to
the area-law phase, shifts to a smaller power-law exponent.
These findings suggest a comparison with the case of one-
dimensional long-range Hamiltonians, where also two values
of α marking a dynamical transition are present: The inves-
tigation of a possible connection between the unitary case
and our non-Hermitian dynamics may be the focus of future
research.

Second, we considered the expectation probability distri-
bution of the measurement operators. For both the cases of
dynamics with and without the Hamiltonian, we have seen
that such distribution exhibits a transition from a unimodal to a
bimodal behavior, when increasing α above a given threshold
ᾱ. However, while for the measurement-only dynamics this
transition occurs in correspondence of the α�

1 at which the
entanglement entropy exhibits a transition from volume to
subvolume scaling, in the additional presence of the Kitaev
Hamiltonian this correspondence disappears. The absolute

FIG. 5. Behavior of the entanglement entropy in time for differ-
ent system sizes (color scale), γ = 0.1, h = 0.5, and α = 2. After a
transient, the entanglement entropy saturates to a value that depends
on the system size.

maximum of the distribution, however, behaves nonmonoton-
ically in α and exhibits a minimum occurring at a power-law
exponent that is compatible with the transition from the
subvolume to the area-law phase. Nevertheless, this phe-
nomenon is very interesting in itself, being a quantum analog
of the bifurcations occurring in classical driven-dissipative
dynamical systems. For that reason we dub it a “quantum
bifurcation”.

In view of the apparently large finite-size effects, to have
a confirmation of the stability of the different system behav-
iors with α, one could look at other quantities as the mutual
information or the correlation functions. It would be also
tempting to investigate the dependence of these results on
the specific unraveling. For example, one can check whether
the α�

1 threshold is robust to the stochastic process chosen to
simulate the Lindblad master equation, i.e., whether it is a
property of the operator itself, as discussed in [78]. Moreover
the effects of long-range measurement operators can be tested
in others systems, as quantum circuits [15].

From an experimental perspective, it is important to
investigate the connection between the transition of the
entanglement entropy and the quantum bifurcation of the dis-
tribution.

Before concluding, we mention that a remarkably similar
phenomenology has been observed in [93], where a system
of monitored two coupled chains of free fermions is consid-
ered. In this paper it is shown that it is possible to induce
non-Markovian effects on one of the two chains, referred
as the system by performing Markovian measurements on
the other one, referred as the bath. This non-Markovianity
is reflected in the entanglement dynamics that exhibits three
different regimes: An area-law scaling, a logarithmic scal-
ing, and a mixed (logarithmic-volume) scaling. Although it
could be interesting to investigate the connection between this
non-Markovianity and our non-locality, we leave it to future
studies.
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FIG. 6. Average long-time entanglement entropy for the case
with Hamiltonian (J = 1, h = 0.5) and coupling with the environ-
ment γ = 0.5. (a) SN/2/N vs α for different system sizes. The inset
shows a comparison of the curves, for fixed size N=64, with γ = 0.5
and γ = 0.1. (b) SN/2/ ln N vs α for different system sizes. The inset
is a magnification of the same data around α = 2.5. Other numerical
parameters and initial state as in Fig. 1.
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APPENDIX A: CONVERGENCE OF THE NUMERICAL
RESULTS

All the results have been derived by fixing as integration
step �t = 5 × 10−3. This value has been chosen after a con-
vergence check.

The entanglement entropy is defined in Eq. (7), we evaluate
its average SN/2—defined in Eq. (8)—considering a finite-
averaging time T , which has been chosen so that convergence
is attained. In Fig. 5 we show the characteristic behavior of
SN/2(t ) in time for different system sizes (color scale) and
α = 2. From this figure it is clear that convergence is reached
in reasonable times.

The ensemble average is evaluated over Nr � 48 trajecto-
ries. The inequality means that for small system sizes we can
easily average over Nr = O(102) trajectories, while for larger
N the numerical effort required for the simulations does not
allow to go beyond Nr = 48.

However, we checked that all the results are consistent
inside the error bars δSN/2, evaluated as

δSN/2 = 1√
Nr

√
lim

T →∞

∫ T

t∗
dt ′S 2

N/2(t ′) − S 2
N/2. (A1)

About the numerical implementation, using a FORTRAN
code parallelized with Open MPI, in order to get a time trace
of the entanglement entropy on a Intel i7 processor with 8
cores of a laptop, for N = 128 and Nr = 48, one needs more or
less three days. Because we needed to do these computations
for many points in the parameter space, and also for system
sizes larger than N = 128, the use of the cluster mentioned in
the acknowledgments was more suitable for us.

APPENDIX B: CASE WITH HAMILTONIAN AND γ = 0.5

Here we provide results for a case similar to the one consid-
ered in Fig. 1, with the only difference that now γ = 0.5. The
corresponding numerical data are shown in Fig. 6. Looking at
the plot of SN/2/N versus α, we see that the volume law still
persists for small α values, up to 0.5 � α∗

1 � 1 [Fig. 6(a)].
From the data in inset at fixed size, notice also that, for
γ = 0.5, the entanglement generally drops faster than for
γ = 0.1.

On the other hand, the transition from subvolume law to
sublogarithm law occurs for a different value of α∗

2 (α∗
2 ∼ 2.4)

as we can see from the crossing of the curves of SN/2/ ln N
versus α for different sizes N [Fig. 6(b) inset].
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