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Topological gapless phonons have been extensively studied both in crystal symmetry and materials realization
due to their spinless properties. Based on degeneracy and geometry, they can be categorized into the topological
nodal point, line, and surface as well as other complex topological phonons. However, the coexistence of more
than two types of topological phonons in a single material is rarely reported due to strict symmetry constraints.
By means of symmetry analysis, k · p model, and first-principles calculations, we found that the quadratic
Dirac point (QDP), type-III nodal ring (NR), and nodal surface (NS) can simultaneously emerge under the
symmetry protection of space group P63/mmc. We also predicted a series of candidate materials for experimental
realizations. As a representative, we performed a thorough investigation of BaNa2 in the C14 Laves phase,
analyzing its bulk phonon dispersion relationships, topological invariants, and topological surface states. We
unveiled the underlying mechanism for the coexistence of QDPs, NRs, and NSs. This study not only highlights
the significance of crystal symmetry in realizing novel topological phonons but also lays the foundation for the
analysis of topological materials with hybrid topological characteristics.
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I. INTRODUCTION

Topological quantum states of matter [1–3] are important
topics in condensed matter physics and materials science.
Numerous topological electronic materials [4–8], includ-
ing topological insulators [9–12], Dirac/Weyl semimetals
[13–17], and nodal line semimetals [18–21], have been theo-
retically proposed, with some already experimentally verified.
Due to their unique physical mechanisms and promising
device applications, topological electronic materials have re-
ceived considerable attention. Phonons [22], the most basic
emergent boson of the crystalline lattice, are a type of en-
ergy carrier and are closely correlated to thermal conductivity
and specific heat. Analogous to well-studied electronic sys-
tems, topological concepts have been extended to the field
of phonons as topological phonons (TPs). Unlike electrons,
phonons are bosons and obey the Bose-Einstein statistics.
Consequently, they can be experimentally detected throughout
the entire energy range. Nowadays, numerous types of TPs
have been theoretically predicted in real solid-state materials.
Using symmetry analysis, Yu et al. [23] conducted a sys-
tematic study on the emergent particles in three-dimensional
crystals, providing a comprehensive understanding of all pos-
sible novel particles in physical systems.

Based on the band crossing dimensions, TPs [23–27]
can be broadly classified into three types: (i) zero-
dimensional (0D) nodal points [28–33], including topological
Weyl phonons [34–45] and Dirac phonons [46,47]; (ii)
one-dimensional (1D) nodal lines [48–51], including the
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nodal straight lines [52–54], nodal rings [55–63], and complex
nodal lines such as nodal link [64], nodal chain [65–68], nodal
net [68,69], and nodal cage [70,71]; and (iii) two-dimensional
(2D) nodal surfaces [72–76]. Each type of TPs has been
predicted in different materials and the coexistences of TPs
have also been reported in materials with varying dimensions
[23,25,51,68]. For instance, triply degenerate points, Dirac
points, and Weyl nodal lines have been observed in SnO2

[28]. For the AgZr alloy, hybrid-type nodal ring and higher-
order quadratic nodal line phonons are found [58]. In the
high-pressure phase of CuCl [64], topological phononic nodal
hexahedron net and nodal links are observed. However, to
the best of our knowledge, the coexistence of three types of
TPs, particularly, 0D quadratic Dirac point (QDP), 1D type-III
nodal ring (NR), and 2D nodal surface (NS) has rarely been
reported owing to strict symmetry constraints.

In this regard, symmetry analysis enables us to investi-
gate the types of materials capable of hosting topological
phonons in three distinct dimensions. Here, by a combination
of symmetry analysis, k · p model [4,23,57,77–79], and first-
principles calculations, we systematically investigated TPs in
the hexagonal space group (SG) P63/mmc (No. 194), pro-
viding a comprehensive understanding of the coexistence of
0D QDPs, 1D type-III NRs, and 2D NSs, which are protected
by the inversion symmetry (P), time-reversal symmetry (T ),
mirror symmetry (M̃z), and screw symmetry (S).

This paper is organized as follows. In Sec. II A, we give a
symmetry analysis of QDPs, type-III NRs, and NSs. The de-
tails of our first-principles methods are presented in Sec. II B.
In Sec. III, we take BaNa2 as a representative to present our
results, including the phonon spectrum of BaNa2 (Sec. III A),
group theory analysis, and k · p model derivation for QDPs
(Sec. III B), type-III NRs (Sec. III C), and NSs (Sec. III D).
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FIG. 1. (a) Typical band structures of the Dirac point and
quadratic Dirac point in 3D crystals. (b) A 2D kagome lattice and
(c) the corresponding band structure. The arrow in panel (c) denotes
the change in the position of the flat band by varying the hopping
parameters. Note that the existence of the flat band (green line) is
required for the appearance of the type-III nodal ring (solid circles).
(d) Schematic band structure of the nodal surface, where all the
points on one reciprocal plane are twofold degenerate.

Section III E provides evidence for the emergence of nontriv-
ial surface states induced by the topological phases. Finally,
we summarize the key findings and present closing remarks
in Sec. IV.

II. SYMMETRY ANALYSIS AND
COMPUTATIONAL DETAILS

A. Symmetry analysis

Let us first analyze the symmetry properties of SG
P63/mmc to elucidate the underlying mechanism for QDPs,
type-III NRs, and NSs, respectively. Realizing these three
topological phases requires different degeneracies of phonon
branches. The nontrivial crossing points of these branches
are protected by specific crystal symmetries, which prevent
the presence of perturbation terms that could open up a
gap [46]. Based on the irreducible representations (IRs) and
symmetry constraints, we investigate fourfold degeneracy
at high-symmetry points (HSPs) for QDPs, as well as the
twofold degeneracy at high-symmetry planes for type-III NRs
and NSs, respectively.

First, we aim to study the QDPs at HSPs. Dirac phonons
exhibit a fourfold degeneracy and can be viewed as consisting
of two Weyl points with opposite chirality. From the disper-
sion, Dirac phonons can be categorized into two types: (1)
Dirac phonons with linear dispersion along all directions in
the 3D momentum space, as illustrated in the left panel of
Fig. 1(a), which follows the massless Dirac equation. (2) Dirac
points with quadratic dispersions, termed as QDPs, owing
to the dominance of second-order terms in the Hamiltonian.
The QDPs are more commonly found in phonon spectrum
of real materials and is visually represented on the right of

Fig. 1(a). Under the T symmetry, SG P63/mmc possesses
four-dimensional (4D) IR at A (0.0, 0.0, 0.5), where the QDPs
can be expected under the protection of nonsymmorphic sym-
metry. Notably, the topological charge of QDP is 0 due to the
presence of the PT symmetry.

Next, we elucidate the protected mechanism of type-III
NRs. In general, the NRs can be protected by the PT sym-
metry, which requires the Berry phase along any closed path
circling the ring crossings must be quantized in units of π , pre-
venting any gap opening by weak perturbations that preserve
the PT symmetry. Once the ring splits, the Berry phase devi-
ates from the quantized π , thus breaking the topological pro-
tections provided by PT symmetry [80,81]. Furthermore, ad-
ditional crystal symmetry, such as mirror or rotation symme-
tries, can constrain NRs into high-symmetry lines or planes.
Here, we employ a simplified Hamiltonian to exemplify this
phenomenon. As for a general NR in a mirror plane, one
possible two-band Hamiltonian [55–57] can be expressed as

H (q) = t0q+q−σ0 + t1
(
q+q− − r2

0

)
σx + t2qzσz,

where qi, i = x, y, z are components of the reciprocal vector
q, q± = qx ± iqy, and ti, i = 0, 1, 2 are three real coefficients,
σ0 is the identity matrix, and σx and σz are two Pauli matrices.
The first term represents a tilt of the spectrum. The energy of
the two branches should be

ε± = T (q) ± U (q) = t0q+q− ±
√

t2
1

(
q+q− − r2

0

)2 + t2
2 q2

z ,

where T (q) and U (q) can be considered as the kinetic and
potential components of the energy spectrum. The low-energy
model describes a NR with a radius of r0 in the qz = 0 plane,
which is protected by mirror symmetryMz. In the qx-qy plane,
a flat band emerges when the kinetic energy T (q) equals the
potential energy U (q) at a critical condition (t0/t1 = 1),
which can also lead to the formation of the type-III nodal ring
[57]. As shown in Figs. 1(b) and 1(c), SG P63/mmc possesses
sixfold rotation symmetry and mirror symmetry, enabling it
to provide both triangular and kagome planes that can create
a perfectly flat band in the entire Brillouin zone (BZ). The
shift of the flat band results in the emergence of a type-III
nodal ring with opposite mirror eigenvalues (see more details
in Appendix A).

After investigating the 0D QDPs and 1D NRs, we now
focus on the symmetry analysis of 2D NSs formed by band
crossings. The simultaneous occurrence of twofold degener-
acy for all points on a BZ plane leads to the formation of the
topological NS [4], as illustrated in Fig. 1(d). Each point on
the surface is a crossing point between two bands, hosting
the linear dispersion along the surface normal direction. For
SG P63/mmc, the combination of screw symmetry S and
time-reversal symmetry T results in a Kramers’ degeneracy
condition on the plane at the BZ boundary. This guarantees
the emergence of the NS belonging to class-II NS, whose
presence and location solely depend on the symmetries.

Based on the above analysis, we obtained that SG
P63/mmc has the potential to facilitate the emergence of
all three types of topological phonons. Furthermore, we
employed a high-throughput screening strategy using our
topological phonon database [25,26] to realize the data-driven
design of topological phonons and predicted numerous can-
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didate materials. In the following, the BaNa2 served as a
prototype to demonstrate the coexistence of QDPs, type-III
NRs, and NSs.

B. Computational details

The first-principles calculations were performed using the
Vienna ab initio simulation package (VASP) [82–84] based
on the density functional theory (DFT) [85,86]. For the
exchange-correlation function, we adopted the generalized
gradient approximation (GGA) in the form of the Perdew-
Burke-Ernzerhof function (PBE) [87–89], which treats semi-
core valence electrons as valence electrons. A self-consistent
field method (tolerance 10−5 eV per unit cell) was employed
in conjunction with plane wave basis sets with a cutoff energy
of 550 eV. Atomic structure optimization was implemented
until the remanent Hellmann-Feynman forces on the ions were
less than 0.0001 eV/Å. A �-centered 11×11×7 k-mesh was
used to sample the BZ. Achieving stable phonon spectra re-
quires precise optimization of lattice constants by minimizing
the interionic forces to less than 0.0001 eV/Å. The force
constants were computed using the Phonopy package [90,91]
based on the density functional perturbation theory (DFPT)
[92]. We employed a 2×2×1 supercell with 48 atoms, which
was sufficiently large for describing the forces, to determine
the force constants. Dynamic matrices were then constructed
using stable second-order force constants as tight-binding pa-
rameters. The surface density of states (DOS) was obtained by
surface iteration Green’s function method [93] embedded in
TPHONON, and k · p model parameters were estimated using
particle swarm optimization (PSO).

III. RESULTS AND DISCUSSIONS

A. Structure and phononic band crossing points

The structure of BaNa2 is displayed in Fig. 2(a), which
belongs to the nonsymmorphic SG P63/mmc. The primitive
cell of BaNa2 contains 12 atoms, with all Ba atoms occupying
the 4 f position (1/3, 2/3, u) with u = 0.439 in an ABAB
stacking, while Na atoms occupying 2a position (0, 0, 0)
and 6h position (x, 2x, 1/4) with x = 0.169. As shown in
Figs. 2(a) and 7 of the Appendix, the Na2 atoms form the
kagome lattice, while the Na1 atoms form a 2D triangular
lattice. The atomic layers of Na1 and Na2 can assemble into a
hexahedron structure enclosing the Ba atoms. The optimized
lattice parameters are a = b = 7.301 Å and c = 11.841 Å,
which are in good agreement with experimental values [94]
of a = b = 7.393 Å and c = 11.999 Å. Figure 2(b) shows
both the bulk and surface Brillouin zones, where the orange
and light-blue planes represent the projections of (0001) and
(101̄0) surfaces, respectively. On the (0001) surface, � (A),
M (L), and K (H) are projected onto �, M̄, and K̄ , respec-
tively. On the (101̄0) surface, �, M, L, and A are projected
onto �̄, X̄ , M̄, and Ȳ , respectively. The phonon bands along
high-symmetry paths and the phonon DOS are shown in
Fig. 2(c). Clearly, all branches have no imaginary frequencies
throughout the whole BZ, verifying the dynamical stability
of BaNa2. As shown in Fig. 2(c), the little group of high-
symmetry point A has three distinct IRs noted as A2

1, A2
2,

and A4
3. All phonon branches should be degenerate at A with

FIG. 2. (a) Crystal structure of BaNa2, in which the green,
yellow, and purple spheres represent Ba, Na1, and Na2 atoms, re-
spectively. (b) Bulk BZ and surface BZs for the (0001) and (101̄0)
surfaces. The corresponding HSPs are marked by circles. (c) Phonon
band structure along the high-symmetry lines and phonon density of
states. The orange lines are twofold degenerate nodal lines, the red
lines represent the flat nodal ring, and the solid green circles denote
quadratic Dirac points.

twofold or fourfold degeneracy. In total, there are six QDPs
represented by solid green circles with IRs of A4

3. At approxi-
mately 3.93 THz, we observe a flat phonon branch that forms
a type-III nodal ring represented by the red lines. Moreover,
the twofold degeneracy of all bands along the A-H-L-A path,
represented by the orange lines, indicates the existence of
NS in the qz = π plane. In the following, based on the DFT
results, we systematically investigate the QDPs, type-III NRs
and NSs by detailed symmetry analysis and k · p models.

B. Quadratic Dirac points

We begin by investigating the QDPs located at the
high-symmetry point A (0, 0, 0.5). Multifold crossings at
high-symmetry points commonly exhibit nonlinear disper-
sion, whereas the phonon crossings with linear dispersion
can be expected at general q-points. The nonsymmorphic
symmetries can protect the nontrivial crossings with fourfold
degeneracy from perturbations. Since phonons are bosonic
systems, we need to analyze the single-valued representations
of A with time-reversal symmetry (T 2 = 1). According to
Ref. [95], the abstract group of the high-symmetry point A in
SG P63/mmc belongs to G1

48 with three generating elements
including sixfold screw symmetry (S6z = {C+

6 |00 1
2 }), twofold

rotation symmetry (C′′
21 = {C2,110|000}), and space inversion

symmetry (P = {I|000}). Both 2D IRs (A2
1 and A2

2) and 4D IR
(A4

3) are responsible for the degeneracy of phonon branches.
The 4D IR A4

3 indicates the existence of QDPs.
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FIG. 3. (a), (b) Phonon dispersions around QDP along different paths, in which GP1 at (0.12, 0.12, 0.5) and GP2 at (0.2, 0.0, 0.4) are
off the high-symmetry momentum path. (c), (f) Comparison between DFT bands and bands from the k · p model around QDP along different
paths, and P1–P4 are the general points on each path. The dark gray lines correspond to DFT calculations, and the red dots correspond to
the k · p model. (c) Phonon dispersion along the high-symmetry path in the qz = π plane. (f) Phonon dispersion along a general path out of
the qz = π plane. (d) Phonon dispersion around the QDP on the qx-qy plane. (e) Phonon dispersion around the QDP on the qy-qz plane. All
dispersions in panels (d) and (e) are calculated within a range of 0.015 Å−1.

To analyze the feature of QDPs at A, we derived a four-
band model for BaNa2. For A in the hexagonal lattice, the
sixfold screw symmetry can generate the elements in the little
group. The transformation of the lattice coordinates under S6z

is given by

S6z : (x, y, z) −→ (x − y, x, z + 1/2).

As a result, S6
6z produces an integer lattice translation along

the (0, 0, qz) axis:

S6
6z = e−iqz ·3c,

here, c is the lattice constant. S6z = {C+
6 |00 1

2 }, where C+
6 de-

notes the sixfold rotation operator. The eigenvalues of S6z can
be expressed as En = ei2πn/6 · e−iqz ·c/2 (n = 0, 1, . . . , 5) (see
Appendix B). To construct the four-band effective k · p model,
we need to identify four linearly independent basis functions
from six eigenstates of S6z. From the table of abstract group
G1

48, we can obtain the following relations:

(S6z )12 = (C′′
21)2 = I2 = E , (1)

(S6z )11C′′
21 = C′′

21S6z, (2)

(S6z )7I = IS6z. (3)

Based on those relations, we derived the anticommutation and
commutation relations of the operators for A as follows:

{S6z,I} = 0, [C′′
21,I] = 0.

Considering T symmetry, we started from the eigenstates
|e±i π

6 〉 and |e±i 5π
6 〉 to simplify the effective model. The

representation of S6z is given by the diagonal matrix
diag{ei π

6 , e−i 5π
6 , e−i π

6 , ei 5π
6 }. The matrix representations of the

other two generators are C′′
21 = σ1 ⊗ σ0 and I = σ0 ⊗ σ1,

where σ1 is the Pauli matrix, and σ0 is the 2×2 identity matrix.
T is represented by T = σ1 ⊗ σ0K , where K is the com-
plex conjugate operator. These four states form a complete
orthonormal basis to represent the 4D IR.

The effective k · p Hamiltonian can be generated from the
above four operators as follows:

Heff(q) = [
E0 + t1q+q− + t2q2

z

] + t3qzσ3σ3

+ t4qz[(qx + qy)σ2 − (qx − qy)σ1]σ0

+ t5[q2
−(iσ1 − σ2) − q2

+(iσ1 + σ2)]σ1, (4)

where σ1,2,3 are three Pauli matrices, q± = qx ± iqy and qx,y,z

are momenta away from A, and E0 and tn are real coefficients
(n ∈ [1, 5]). Based on the above analysis, the 2D and 4D IRs
at A point yield two types of degenerate phonon branches
as shown in Fig. 2(c). Six QDPs are represented by solid
green circles in the whole frequency range. The 4D IR of A
guarantees the fourfold degeneracy.

To fit model parameters, we focused on the QDP at 3.396
THz. Figure 3 demonstrates phonon bands along different
paths and planes centered at A. We first concentrate on the
L-A-H path located in the qz = π plane displayed in Fig. 3(a).
The two bands that correspond to twofold degenerate branches
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TABLE I. k · p model parameters for QDPs.

Phonon branches 1–4 9–12 13–16 21–24 25–28 29–32

E0(THz) 0.572 1.708 2.028 2.625 3.168 3.396
t1(THzÅ2) 3.800 −1.20 3.600 0.400 −0.04 −1.19
t2(THzÅ2) 12.80 14.00 −1.20 0.200 0.100 0.040
t3(THzÅ) 1.900 0.700 0.180 1.050 0.800 0.060
t4(THzÅ2) 0.160 0.160 0.160 0.160 0.160 0.160
t5(THzÅ2) −0.60 0.800 3.000 0.300 0.450 0.500

are indicated by orange dotted and blue solid lines, respec-
tively. The dispersion has the shape of a Mexican hat. Two
doubly degenerate phonon bands merge at point A, as dictated
by the 4D IR. Figure 3(d) shows that both of them are twofold
degenerate on the qx-qy plane, confirming the existence of a
nodal surface on the qz = π plane. To investigate the phonon
dispersion beyond the high-symmetry line and the qz = π

plane, we plot the phonon bands along GP1-A-GP2 for the
general path presented in Fig. 3(b). The phonon bands re-
tain a twofold degeneracy throughout GP1-A, and they will
split into two individual branches along the path A-GP2. The
screw symmetry S6z can protect the twofold degeneracy at
the qz = π plane, which includes the GP1-A path. Since GP2
is a general point offset boundary plane, four separate phonon
branches can be captured along the path A-GP2. Figure 3(e) il-
lustrates the 3D phonon dispersion on the qy-qz plane. Clearly,
along the L-A path (qz = π line), the phonon branches exhibit
a twofold degeneracy.

Simultaneously, we employed the PSO method to get the
fitting parameters of the four-band model for QDPs at A.
Figures 3(c) and 3(f) present our results, where the k · p model
(red points) agreed well with the DFT calculations (dark-gray
lines). P1 and P2 are two general points in the qz = π plane,
with the gray lines representing twofold degenerate phonon
branches. This demonstrates that this model is capable of
producing twofold phonon degeneracy within the plane. Since
P3 and P4 are two general points out of the qz = π plane,
the k · p model can also produce four well-separated phonon
branches around A. We utilized our model to fit not only the
QDP at 3.396 THz but also the remaining five QDPs. All
parameters are summarized in Table I of Appendix B. The
in-plane and off-plane phonon dispersion for these QDPs are
shown in Fig. 8 and Fig. 9 of Appendix B. These results
exhibit the characteristics of QDP at A.

C. Type-III nodal ring

Next, we will focus on the type-III NRs at the qz = 0
plane. As well known, kagome lattices are an ideal platform
for hosting flat bands, as shown in Figs. 1(b) and 1(c). From
the perspective of the tight-binding model, the unit cell has
three atoms, and the nearest-neighbor (NN) hopping with t
can produce a flat band with an energy level of 2t . However, in
the case of BaNa2, the kagome lattice would be distorted if the
next-nearest-neighbor (NNN) atoms are taken into account,
as depicted in Fig. 2(a). The Na1 atom is located above one
of the centers of the triangular lattice formed by Na2 atoms.
Two different triangular lattices are shown in Figs. 1(b) and
7 of Appendix A. The position of the flat band can be tuned

from the bottom to the top of the three bands by changing the
hopping parameters [24]. Therefore, with varying local force
constants in different triangular lattices, a flat nodal ring can
be expected for the BaNa2 system.

Here, we demonstrated the existence of a flat nodal ring
around 3.93 THz at the qz = 0 plane in BaNa2. As shown
in Fig. 2(c), there are two band crossings along the �-K
and �-M paths. These degenerate points are not isolated but
rather lie on a ring centered at �. As proof, we investigated
the band crossings on the qz = 0 plane using a series of
paths from �-M to �-K [blue solid lines in Fig. 2(b)]. In
Fig. 4(a), the nodal ring is evidenced by the existence of
phonon crossings on all paths (�-M, �-Q, �-P, and �-K).
All four crossings arise at nearly the same energy level. The
energy variations for the lower branch of each path are less
than 0.03 THz, suggesting a flat band on the qz = 0 plane. To
identify the type-III NR, we present the 3D phonon dispersion
in Fig. 4(b). One of the two bands exhibits a flat energy band
that is responsible for generating the type-III nodal ring. The
energy difference between the two bands is also shown at
the bottom of Fig. 4(b). Specifically, one can observe that all
the gapless crossings form a closed ring (the brightness part),
centered at the � point on the qz = 0 plane, at approximately
3.93 THz.

For a NR system, we calculated the Berry phase to con-
firm their topological properties. The Berry phase is defined
as γn = ∮

C An(q) · dq, where An(q) = −i〈un(q)|∇q|un(q)〉 is
the Berry connection and un(q) is the Blöch wavefunction of
the n-th band. As Fig. 4(c) shows, for points on the high-
symmetry line K-�-M, we calculated the Berry phase by a
closed path along the qz direction (also known as the Zak
phase). The Berry phase equals 0 within the NR, but π outside
the NR. Therefore, the nontrivial topological surface states
can be observed outside the NR, as depicted in Fig. 6(b).
There are two independent symmetries that protect the flat
NR. The PT symmetry enforces the Berry phase to have a
quantized number of π , preventing the nodal ring to be gapped
with respect to perturbations, as long as the PT symmetry
is present. In addition, the mirror symmetry, M̃z = {Mz|00 1

2 },
will protect the two branches with opposite M̃z eigenvalues,
resulting in a flat NR lying on the qz = 0 plane.

We utilized a two-band k · p effective model to confirm the
presence of a type-III nodal ring around the � point within the
qz = 0 plane. The general two-band Hamiltonian for phonons,
described by

Heff(q) =
3∑

i=0

hi(q)σi, (5)
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FIG. 4. (a) Phonon dispersions along the �-M (Q, P, K) paths. (b) 3D representation of phonon bands correspond to the flat band within
the qz = 0 plane and the 2D projection of the phononic nodal ring within the same plane. (c) Variation of Berry phase along the K-�-M path
within the qz = 0 plane. (d)–(f) Comparison between DFT and k · p model of the type-III nodal ring along different paths, Q1–Q6 are the
general points on each path. The dark-gray lines correspond to DFT calculations, while the red dots represent the k · p results. (d) Phonon
dispersion along the high-symmetry path K-�-M. (e) Phonon dispersion along a general path that passes through the � point. (f) Phonon
dispersion along the high-symmetry path K-�-M when t1 = t5.

involves real functions hi(q) (i=0, 1, 2, 3), where q =
(qx, qy, qz ) represents the wave vector centered at �. Symme-
try analysis reveals that the 1D IRs for two branches of flat
nodal rings belong to A2u and A1g of the abstract group G5

24.
BaNa2 crystallizes in the SG P63/mmc, with symmetry at the
� point characterized by the D6h point group, including the

FIG. 5. (a) Schematic diagram of nodal surface states present in
the qz = π plane. (b) Phonon dispersions along the B0-A-C0 path.
Note that B0 is a general point within the qz = π plane, and C0 is a
general point out of the qz = π plane. (c) 3D phononic bands within
the qx-qz plane. (d) Comparison between DFT bands with the k · p
model bands for the nodal surface along P1-A-P2. P1 and P2 are two
general points at the C0-A and A-C1, respectively. Dark-gray lines
represent DFT calculations, and red dots represent the k · p results.
All points in panels (b) and (d) are labeled in panel (a).

inversion symmetryP and the mirror symmetry M̃z. Addition-
ally, the phonon system maintains the time-reversal symmetry
T . For points within the qz = 0 plane, these three operators
commute with each other (see details in Appendix C). We
chose the eigenstates of inversion symmetry as basis func-
tions, which is represented by σ3, indicating two crossing
bands with opposite parities.

FIG. 6. Phonon surface states of BaNa2. (a) Phonon LDOS pro-
jected on the (0001) surface. (c) Phonon LDOS projected on the
(101̄0) surface. The constant energy slices in panels (b) and (d) cor-
respond to the white dashed lines depicted in panels (a) and (c),
respectively.
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In the absence of spin-orbit coupling (SOC), T 2 = 1, and
T is represented by the matrix σ0K . Combining P and T
symmetries, the four real functions in effective Hamiltonian
Eq. (5) must satisfy the following constraints:

h1(q) = 0, h2(q) = −h2(−q), h0,3(q) = h0,3(−q). (6)

The eigenvalues ofHeff(q) are expressed as E±(q) = h0(q) ±√
h2

2(q) + h2
3(q). After expanding the effective Hamiltonian

to the second order, we determined the location of nodal
rings by the intersection line of two surfaces represented
by h2,3(q) = 0 (see Appendix C). However, the nodal ring
centered at � requires an additional mirror symmetry M̃z to
stay on the qz = 0 plane. The matrix representation of the
operator M̃z is σ3, since it commutes with the operator I (see
Appendix C). By applying M̃z to the system, we obtained the
effective Hamiltonian to the third order:

Heff(q) = (E0 + t1q+q−)I2

+ (
t2qz + t3q3

z

)
σ2 + (t4 + t5q+q−)σ3, (7)

where E0 and ti (i ∈[1, 5]) are real parameters. The Hamil-
tonian Heff(q) guarantees a nodal ring on the qz = 0 plane.
Specifically, the M̃z symmetry plays a crucial role in con-
straining the nodal ring to the qz = 0 plane, by satisfying
specific constraints on h2(q) [see Eq. (C8) of Appendix C].
By analyzing the eigenvalues of the effective Hamiltonian,
an exact flat band emerged at t1/t5 = 1. Fitting the effec-
tive Hamiltonian to DFT calculations for the flat nodal ring
in BaNa2, the following is obtained: E0 = 4.100 THz, t1 =
−1.180 THz Å2, t2 = −1.500 THz Å, t3 = −6.000 THz Å3,
t4 = 0.175 THz, and t5 = −1.095 THz Å2.

Figure 4 presents a comparison between the band struc-
tures predicted by the k · p model and those obtained from
DFT calculations. Q1 and Q2 are points located on the high-
symmetry lines K-� and M-�, respectively. A general point
on the qz = 0 plane, located outside the nodal ring, is denoted
by Q3 (0.23, 0.31, 0.0), while Q4 (0.0, 0.0, 0.27) indicates
a general point on the high-symmetry line �-A. Evidently,
in Figs. 4(d) and 4(e), the model reproduces the phonon dis-
persions accurately both in-plane and out-of-plane throughout
a broad range of reciprocal space. The third-order term in
Eq. (7) yields the nonlinear out-of-plane dispersion (further
details are provided in Appendix C). Due to the small disper-
sion of the nodal ring on the plane, t1/t5 is nearly equal to 1.
This effective Hamiltonian is capable of producing a perfectly
flat band under the critical condition of t1 = t5, as shown in
Fig. 4(f). Notably, the ratio of t1/t5, which corresponds to
the kinetic and potential energy ratios, can be manipulated to
control the flatness of the band.

D. Nodal surface

Here, we turn to investigate the NSs on the qz = π plane.
The NS indicates that all points on the plane are twofold
degenerate, as shown in Fig. 1(d). For BaNa2, degenerate
phonon bands exist along the high-symmetry line A-H-L-A on
the qz = π plane [see all the branches highlighted in orange
color in Fig. 2(c)]. In addition to the high-symmetry line,
the twofold degenerate band can also be observed along the
B0-A path of the plane qz = π [Fig. 5(b)]. However, on the

A-C0 out-of-plane path, the twofold degenerate bands split
into two single branches. Figure 5(c) displays the 3D phonon
dispersion of the wave vectors on the qx-qz plane. The two
phonon branches cross at the condition of qz = π , forming
a twofold degenerate band [see the yellow line in Fig. 5(c)].
This degeneracy supports that all phonon branches on the
qz = π plane are twofold degenerate, resulting in a nodal
surface on this plane.

Our symmetry analysis demonstrated that the combination
of a twofold screw symmetry S2z and T symmetry gives rise
to the nodal surface in SG P63/mmc. TheS2z can be generated
by combining mirror reflection M̃z and inversion symmetry P.
Furthermore, the nonsymmorphic symmetry S2z = {C2|00 1

2 }
produces a half-translation along the rotation axis that reverses
qx and qy in reciprocal space. Since the spinless phonon
system satisfies T 2 = 1, the TS2z operator preserves q on
the qz = π plane at the BZ boundary, giving the following
relationship:

(TS2z )2 = e−iqz . (8)

Applying TS2z twice results in a translation along the z
direction by a lattice constant. On the qz = π plane, sim-
ilar to Kramers’ degeneracy, (TS2z )2 = −1 indicates that
all phonon branches on this plane should be degenerate,
constrained by the antiunitary symmetry TS2z. The two de-
generate phonon branches can be labeled by eigenvalues ±i
of TS2z, and two related states of Kramers’ pair will have
the same eigenvalues forHeff(q). If this antiunitary symmetry
were broken, the twofold degenerate state would vanish along
the A-C0 out-of-plane path [Fig. 5(b)]. Therefore, the nodal
surface is only protected on the qz = π plane. Similar to the
type-III NRs, we found that the NS in BaNa2 exhibits a narrow
phonon dispersion. The dispersionless band is expected to
produce a large phononic DOS, which would, in turn, facil-
itate experimental observations.

We derived a two-band k · p model to clarify the topo-
logical feature of the nodal surface. We obtained that h0,3

should be even functions whereas h2 should be odd function,
as they share the same PT symmetry [see Eq. (6)]. In ad-
dition to the PT constraints, we must also consider two other
symmetries, mirror reflection M̃z, and rotation symmetry C2xy.
As [C2xy,I] = 0 and {M̃z,I} = 0 (see detailed derivations in
Appendix D), we chose C2xy = σ3 and M̃z = σ1. Applying
the two symmetry operations to the effective Hamiltonian
yielded:

Heff(q) = E0σ0 + t1qzσ2, (9)

where E0 and t1 are real parameters. By fitting the DFT
calculated fifth and sixth phonon branches (Fig. 2), we ob-
tained E0 = 0.969 THz and t1 = 2.380 THzÅ. Again, a good
agreement was achieved between model predictions and DFT
calculations [see Fig. 5(d)]. In particular, the model accurately
reproduced the linear dispersion of the bands that are not in the
qz = π plane and exhibited exact twofold degeneracy for the
bands on that plane. Additionally, the same model has been
used to describe other nodal surfaces (see Appendix D).
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E. Nontrivial surface states

As the nodal ring and nodal surface are characterized by the
existence of topological surface states, here we calculated the
surface states of (0001) and (101̄0) surfaces. Figure 6 shows
the calculated local density of states (LDOS) of phonons.
As illustrated in Fig. 6(a), nontrivial drumhead surface states
induced by topological nodal ring can be observed around the
high-symmetry points K̄ along the �̄-K̄-�̄ path. This was in
good agreement with our calculated Berry phase distributions
[Fig. 4(c)]. These nontrivial surface states originates from the
crossing points of the NR around 3.9 THz and have a large
dispersion up to 3.72 THz, which was beneficial to the ex-
perimental observation. Figure 6(b) presents the isofrequency
surface states for the (0001) surface. The LDOS on this isofre-
quency surface shows a good agreement with the phonon
surface states shown in Fig. 6(a). As anticipated, the surface
phonon arcs display hexagonal symmetry in the surface BZ,
arising from the sixfold rotation symmetry of BaNa2.

The NSs are located on the qz = π plane, so observing the
nontrivial surface states on the (0001) surface is challenging,
as these overlap with bulk states. Therefore, we presented the
LDOS on the (101̄0) surface BZ. Considering the frequency
range of dispersion, we focused on the nodal surface around
1.2 THz. The nodal surface was projected onto both the upper
and lower boundaries of the BZ. As shown in Fig. 6(c), the
nontrivial surface states with high LDOS are clearly visible
around X̄ and M̄. The isofrequency surface states of the (101̄0)
surface was also calculated and depicted in Fig. 6(d). Clearly,
the surface states go through the whole BZ and connect the
qz = ±π plane.

Identifying the surface states associated with DPs is also
difficult due to the overlap with bulk states (see Fig. 13 in
Appendix E). Although the nontrivial surface states of BaNa2

presented above are limited to specific phonon frequencies,
they should be observable for a wide range of frequencies
due to the wide distribution of symmetry-enforced topological
phonons.

IV. CONCLUSION

In summary, through the combination of symmetry anal-
ysis, k · p model, and first-principles calculations, we have
demonstrated that BaNa2 of the C14 Laves phase AB2 is an
ideal material for realizing the coexistence of QDPs, type-III
NRs, and NSs. This property is a consequence of the sym-
metry protection provided by the space group P63/mmc. The
existence of QDPs, which are protected by the nonsymmor-
phic symmetry S6z and C′′

21, as well as the PT symmetry,
is guaranteed by the 4D IR of A4

3. The type-III NRs asso-
ciated with flat bands are protected by the PT symmetry,
and the presence of mirror symmetry guarantees their location
on the reflection-invariant plane. The ideal NS, characterized
by twofold degenerate phonon bands, exists in the qz = π

plane, and its presence is protected by both screw rotation and
time-reversal symmetries. Based on the symmetry analysis,
we derived effective k · p models, which can accurately de-
scribe all the QDPs, type-III NRs, and NSs of BaNa2 across
a wide range of the BZ. We verified the nontrivial nature of
the nodal ring and nodal surface by identifying topological

TABLE II. k · p model parameters for NSs.

Phonon t0 t1 Phonon t0 t1

branches (THz) (THzÅ) branches (THz) (THzÅ)
1–2 0.572 2.000 3–4 0.572 2.020
5–6 0.969 2.380 7–8 1.618 0.880
9–10 1.707 0.800 11–12 1.707 0.810
13–14 2.028 0.018 15–16 2.028 0.020
17–18 2.392 0.036 19–20 2.439 1.000
21–22 2.625 1.140 23–24 2.625 1.142
25–26 3.168 0.860 27–28 3.168 0.858
29–30 3.395 0.022 31–32 3.395 0.023
33–34 3.567 2.100 35–36 4.437 0.600

surface states through the LDOS calculations. Considering
that BaNa2 single crystals can be experimentally synthesized
[94], exhibit stability under ambient conditions, and possess
weak metallic bonding that facilitates the exfoliation of atom-
ically sharp surfaces, we anticipate that our findings regarding
BaNa2 will inspire experimental investigations and detections.
Finally, based on our established topological phonon database
[25,26], we screened out nine additional materials that can
also host QDPs, type-III NRs, and NSs simultaneously. The
phonon dispersion relationships of these materials are given
in Fig. 14 of Appendix F. Our work showcases the important
role of crystal symmetry in the exploration of materials ex-
hibiting fascinating topological phonons, and paves the way
for investigating topological phononic materials that possess
hybrid topological features.
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APPENDIX A: CRYSTAL STRUCTURE OF BaNa2

Figure 7 displays thedetailed crystal structure of BaNa2.
Na1 atoms are arranged in 2D triangular lattices, whereas Na2
atoms are in kagome lattices, as shown in Figs. 7(a) and 7(b).
All Na atoms form the hexahedron illustrated in Fig. 7(c). The
eigenvectors of the dynamical matrix provide the vibrational
modes of the flat band. Na1 and Na2 atoms vibrate in opposite
directions along the z axis, which disturbs the local force
constants of a perfect kagome lattice. As a result, the intrinsic
flat band position in the kagome lattice changes, producing a
critical condition where a flat nodal ring (type-III nodal ring)
can be anticipated.
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FIG. 7. (a) Crystal structure of BaNa2. (b) Kagome lattice formed by Na2 atoms, which are affected by Na1 atoms arranged in a triangular
lattice. (c) Hexahedron of Na atoms where two layers of Na atoms vibrate in opposite directions.

APPENDIX B: k · p MODEL FOR QUADRATIC
DIRAC POINT

In this Appendix, we present the detailed symmetry anal-
ysis and derivation of low-energy effective models for SG
P63/mmc (No.194). As discussed in the main text, the four-
fold degenerate crossings at high-symmetry point A (0, 0,
0.5) are QDPs with quadratic dispersion. The little group at
A contains three generating elements: a sixfold screw rota-
tion S6z = {C+

6 |00 1
2 }, a twofold rotation C′′

21 = {C+
2 |000}, and

inversion symmetry P = {I|000}. The system also contains
time-reversal symmetry T . Based on the relations of abstract
group G1

48, the symmetry operations satisfy the following al-
gebraic relations at A:

(S6z )12 = (C′′
21)2 = I2 = E , (B1)

(S6z )11C′′
21 = C′′

21S6z, (B2)

(S6z )7I = IS6z, (B3)

S6zT = TS6z, (B4)
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FIG. 8. Comparison between DFT bands and the results from the
k · p model around the QDP along different paths, P1-P8 are the
general points on each path. Dark-gray lines come from DFT calcu-
lations, and red dots come from the k · p model. Phonon dispersion
along (a) the high-symmetry path and off (b) the high-symmetry path
in qz = π plane. (c, d) Phonon bands along general paths out of the
qz = π plane.

where E is the unit operator. Using these equations, we can
derive the commutation and anticommutation relations of the
symmetry operations.

Here, the sixfold screw symmetry S6z is along the z axis
with a fractional translation vector. Consequently, applying
the operation six times yields S6

6z = {E |3c}, which induces
a phase factor in the Bloch wavefunction ϕq(r) as

S6
6zϕq(r) = {E |3c}ϕq(r) = e−iqz ·3cϕq(r),

which indicates e−iqz ·3c is the eigenvalue ofS6
6z. For the sixfold

rotation symmetry C+
6 , its eigenvalues are expressed as ei2πn/6

(n = 0, 1, . . . , 5). Therefore, the eigenvalues of S6z can be
expressed as ei2πn/6e−iqz ·c/2 (n = 0, 1, . . . , 5). We selected
four linearly independent eigenstates of S6z as basis functions
(denoted as |c6z〉) for the point A (0, 0, 0.5). The representation
of S6z is expressed by

S6z =

⎡
⎢⎢⎢⎣

ei π
6 0 0 0

0 e−i 5π
6 0 0

0 0 e−i π
6 0

0 0 0 ei 5π
6

⎤
⎥⎥⎥⎦.

By utilizing Eqs. (B2) and (B3), we derived

(S6z )−1C′′
21 = C′′

21S6z, (B5)

IS6z = −S6zI. (B6)

The formula of the time-reversal symmetry T under
the screw rotational representation S6z was obtained from
Eq. (B4):

S6zT |ei π
6 〉 = TS6z|ei π

6 〉,
S6zT |ei π

6 〉 = ei π
6 T |e−i π

6 〉. (B7)

For the twofold rotation symmetry C′′
21, we can obtain the

following relations from Eq. (B5):

(S6z )−1C′′
21|ei π

6 〉 = C′′
21S6z|ei π

6 〉,
S6zC

′′
21|ei π

6 〉 = e−i π
6 C′′

21|ei π
6 〉. (B8)

Additionally, Eq. (B6) enables us to derive the inversion sym-
metry P by applying it to the eigenstates |c6z〉:

S6zI|ei π
6 〉 = −IS6z|ei π

6 〉,
S6zI|ei π

6 〉 = e−i 5π
6 I|ei π

6 〉. (B9)
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FIG. 9. Comparison between DFT and k · p bands of the QDP along different paths, P1 and P2 are the general points on each path.
Dark-gray lines represent the DFT calculation results, and red dots represent the k · p model results. (a–f) Phonon dispersion for QDP along
various paths.

By applying the three operators on |ei 5π
6 〉, we also got simi-

lar results. Combining results of Eqs. (B7)–(B9), we obtained
the following relationships:

T |ei π
6 〉 = |e−i π

6 〉,T |ei 5π
6 〉 = |e−i 5π

6 〉,
C′′

21|ei π
6 〉 = |e−i π

6 〉,C′′
21|ei 5π

6 〉 = |e−i 5π
6 〉,

I|ei π
6 〉 = |e−i 5π

6 〉,I|e−i π
6 〉 = |ei 5π

6 〉.
Therefore, we can get the matrix representation of the gen-

erators as C′′
21 = σ1 ⊗ σ0, I = σ0 ⊗ σ1, and T=σ1 ⊗ σ0K ,

FIG. 10. The comparison between the DFT and k · p bands
(t1 	= t5) of the type-III nodal ring along different paths, Q1–Q9 are
the general points on each path. The DFT bands are depicted as
dark-gray lines, while k · p bands are denoted by red dots. (a) Phonon
dispersion along the high-symmetry path K-�-M. (b) Phonon disper-
sion along the high-symmetry path M-�-A. (c) Phonon dispersion
along a general path intersects with the type-III nodal ring off the
� point. (d) Phonon dispersion along a general path passing through
the � point.

where σi (i = 1, 2, 3) are three Pauli matrices, and σ0 is
the 2×2 identity matrix. Using these four operators, we
constructed the effective k · p model for the QDP at point
A. The Hamiltonian Heff(q) is required to be invariant under
these symmetry transformations Ô,

ÔHeff(q)Ô−1 = Heff(Rq), (B10)

where q is measured from the QDP, R is the corresponding
matrix representation. With the constraint in Eq. (B10), we
expressed the effective model up to second-order expansion as

FIG. 11. Comparison of DFT calculation and k · p model results
when t1 = t5 of the type-III nodal ring along different paths, Q1-Q9
are the general points on each path. Dark-gray lines come from DFT
calculations, and red dots come from the k · p model. (a) Phonon dis-
persion along the K-�-M path. (b) Phonon dispersion along M-�-A
path. (c) Phonon dispersion along a general path intersects with the
type-III nodal ring off the � point. (d) Phonon dispersion along a
general path passes through the � point.
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FIG. 12. Comparison between DFT bands and the bands from the k · p model of the nodal surface along different paths, where P1 and P2
are the general points on each path. Dark-gray lines represent the DFT calculations, and red dots represent the k · p model results. (a)–(r) The
phonon dispersions for nodal surfaces along different paths.

follows:

Heff(q) =

⎡
⎢⎢⎣

E0 + t1q2
x + t1q2

y + t2q2
z + t3qz 0 t4qxqz (−1 − i) + t4qyqz (1 − i) it5q2

x + 2t5qxqy − it5q2
y

0 E0 + t1q2
x + t1q2

y + t2q2
z − t3qz it5q2

x + 2t5qxqy − it5q2
y t4qxqz (−1 − i) + t4qyqz (1 − i)

t4qxqz (−1 + i) + t4qyqz (1 + i) −it5q2
x + 2t5qxqy + it5q2

y E0 + t1q2
x + t1q2

y + t2q2
z − t3qz 0

−it5q2
x + 2t5qxqy + it5q2

y t4qxqz (−1 + i) + t4qyqz (1 + i) 0 E0 + t1q2
x + t1q2

y + t2q2
z + t3qz

⎤
⎥⎥⎦,

(B11)

where qx,y,z are momentum offset relative to point A, E0 is
the frequency of fitted branches at point A, and tn (n ∈[1, 5])
are real coefficients. The symmetry-allowed effective Hamil-
tonian Heff(q) in Eq. (B11) can be used to reproduce the
dispersion features of QDP at point A.

We selected the QDP around 3.396 THz as the target
point to verify the validity of our model. The eigenvalues of
1000 q points around point A have been used as input for
model fitting by the PSO method. To get the ideal model,
we randomly generated these 1000 points within the BZ. The
fitted parameters are E0 = 3.396 THz, t1 = −1.190 THzÅ2,
t2 = 0.040 THzÅ2, t3 = 0.060 THzÅ, t4 = 0.160 THzÅ2, and
t5 = 0.500 THzÅ2.

As shown in Fig. 8, the phonon dispersions around the
QDP at point A have been obtained from both DFT calcula-
tions (dark-gray lines) and the k · p model (red dots). Clearly,
the k · p model after PSO fitting accurately reproduces
the phonon dispersions, revealing the symmetry-constrained
states both in degeneracy and frequency. To systematically
study the QDPs, the k · p model was used to fit the other
five QDPs. The fitting parameters for these six QDPs are
summarized in Table I. From the fitting results, we observed
that t4 is a constant that is related to the dispersion along the qz

direction. Therefore, we can expect a linear dispersion along
the qz direction, which is also verified in the model for the NS.

To verify the generality of our model, the phonon disper-
sions for all QDPs at A point are shown in Fig. 9. P1 refers
to a general point out of the plane, whereas P2 is a point in
the qz = π plane. The paths P1-A and P2-A illustrate the main
feature of the QDP: (i) the fourfold degeneracy at A; (ii) the

quadratic dispersion around A; (iii) the twofold degeneracy
for branches in the qz = π plane. The k · p model accurately
reproduces the DFT results for each QDP. Notably, t1 deter-
mines both the quadratic dispersion orientation and magnitude
of the dispersion slope.

APPENDIX C: k · p MODEL FOR TYPE-III NODAL RING

In this Appendix, we present details for deriving a two-
band k · p effective Hamiltonian to get a deeper understanding
of the flat nodal ring (type-III nodal ring). We begin with a
general two-band model described by

Heff(q) =
3∑

i=0

hi(q)σi

=
[

h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

]
, (C1)

where hi(q) (i ∈ [0, 3]) are real functions, and q = (qx, qy, qz )
represents the momentum in the BZ. In this Appendix, we
use symmetry operations on the general model to derive an
effective two-band Hamiltonian. Based on these symmetry
arguments, we found that the abstract group of the � point in
SG P63/mmc belongs to G5

24. Moreover, the D6h point group
can provides us with the inversion symmetryP = {I|000} and
mirror symmetry M̃z = {Mz|00 1

2 }. Additionally, the phonon
system obeys time-reversal symmetry T . We begin with two
basic symmetries, P and T , that satisfy I2 = T 2 = 1.

Here, we selected σ3 as the matrix representation of P
symmetry, which corresponds to opposite parities of the two
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FIG. 13. Phonon surface states of the quadratic Dirac point at
around 3.396 THz. (a) Phonon LDOS projected on the (0001)
surface. (b) Phonon LDOS projected on the (101̄0) surface. The
isofrequency surface states in panels (c) and (d) correspond to the
white dashed lines depicted in panels (a) and (c), respectively.

bands. Due to the commutation relation between P and T ,
[P,T ] = 0. The matrix representation of T operator under
the parity representation can be expressed as T = σ0K .

Applying these two operators to the model Hamiltonian
yields the following results:

H (Iq) = IH (q)I−1, (C2)

H (Tq) = TH (q)T−1. (C3)

Equation (C2) reveals the even and odd properties of real
functions hi given by

h1,2(q) = −h1,2(−q),

h0,3(q) = h0,3(−q).

Similarly, Eq. (C3) verifies the even and odd properties of real
functions hi under T symmetry given by

h0,1,3(q) = h0,1,3(−q),

h2(q) = −h2(−q).

According to the above relations, it is evident that h1 = 0, h2

is an odd function, and h0,3 are even functions of q. Therefore,
the symmetry-allowed hi(q) functions up to second-order
terms are represented as

h1(q) = 0,

h2(q) =
∑

i=x,y,z

tiqi,

h0,3(q) = m0 +
∑

i=x,y,z

miq
2
i , (C4)

where ti (i = x, y, z) are three real parameters, and m0 and mi

(i = x, y, z) are also real parameters. The phonon dispersions
of the two-band Hamiltonian Eq. (C1) around the � point are

E (q) = h0(q) ±
√

h2
2(q) + h2

3(q).

Based on the above analysis, the location of phonon cross-
ings is determined by the conditions h2(q) = 0 and h3(q) = 0.
Due to the power of expansion, the nodal ring can be expected
by the intersection of a plane and a closed surface, both of
which are centered at � point. It is restricted by additional
symmetry to the �-M-K plane.

Next, we will consider the nonsymmorphic symmetry M̃z.
In real space, the mirror symmetry M̃z = {Mz|00 1

2 } and inver-
sion symmetry P change the coordinates as

I : (x, y, z) 
→ (−x,−y,−z),

M̃z : (x, y, z) 
→ (
x, y,−z + 1

2

)
. (C5)

From the above conditions, we know that

IM̃z : (x, y, z) 
→ (−x,−y, z − 1
2

)
, (C6)

M̃zI : (x, y, z) 
→ (−x,−y, z + 1
2

)
. (C7)

This implies that IM̃z = eiqz ·2π M̃zI. M̃z and I operators will
commute with each other on the qz = 0 plane, [I, M̃z] = 0.
Under the parity representation, we can express M̃z as σ3 in
terms of the irreducible representations ±1 of M̃z. Conse-
quently, we obtain

H (M̃zq) = M̃zH (q)M̃−1
z .

The transformation matrix for M̃z is represented as⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦.

Substituting M̃z with σ3 yields additional constraints on hi

functions, expressed as follows:

h0,3(qx, qy, qz ) = h0,3(qx, qy,−qz ),

h1,2(qx, qy, qz ) = −h1,2(qx, qy,−qz ). (C8)

To achieve the target nodal ring on the qz = 0 plane, the
coefficients of qx,y items in h1,2 should be excluded, and the
q2

z items in h0,3 can also be omitted. Hence, the two-band
effective model, expanded up to the third order of q around
the � point, was given by

Heff(q) = (E0 + t1q+q−)I2 + (t2qz + t3q3
z )σ2

+ (t4 + t5q+q−)σ3. (C9)

When the two bands cross, h2(qz) is identically zero on the
qz = 0 plane, and consequently, it confines the nodal ring to
the qx-qy plane centered at the � point. From the eigenvalues
of this model, we know that t1 and t5 coefficients would
determine whether the nodal ring is flat in the energy space.

To obtain the nodal ring around 3.93 THz, we used the
eigenvalues of 1000 q-points around the � point as input
for model fitting by using the PSO method. The optimal
model was obtained by randomly generating 1000 points
within the BZ, and the parameters giving the best fit for
the model are: E0 = 4.100 THz, t1 = −1.243 THz Å2, t2 =
−1.500 THz Å, t3 = −6.000 THz Å3, t4 = 0.175 THz, and
t5 = −1.055 THz Å2. Figure 10 shows the comparison be-
tween DFT results and k · p bands. The phonon dispersions
around the nodal ring at the � point were obtained from both
DFT calculations (represented by dark-gray lines) and k · p
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FIG. 14. Phonon dispersion relationships and density of states of all predicted candidate materials that can host quadratic Dirac point,
type-III nodal ring, and nodal surface phonons simultaneously. The solid green circles represent quadratic Dirac points, the red lines correspond
to the bands forming the type-III nodal ring, and the orange lines are twofold degenerated, indicating the nodal surfaces.

model (represented by red dots). The model results were in
good agreement with the DFT results, and the degeneracy
feature in the qz = 0 plane was well-reproduced.

To attain a profound understanding of the flat nodal ring,
we tuned the parameters of the model to showcase the gen-
eration of the type-III nodal ring. Figure 10 shows that our
model accurately reproduces the nearly flat band in a wide
range of BZ, compared to the DFT results. In this condition,
a t1/t5 ratio of 1.17 could cause a minor fluctuation in energy.
The exact flat band emerged from the eigenvalues of this
model when t1/t5 = 1. As shown in Fig. 11, the fitted param-
eters were E0 = 4.097 THz, t1 = t5 = −1.200 THz Å2, t2 =
−1.500 THzÅ, t3 = −6.000 THz Å3, and t4 = 0.180 THz.
The completely flat band can be seen clearly in the qz = 0
plane where the kinetic energy equals the potential energy.

APPENDIX D: k · p MODEL FOR NODAL SURFACE

In this Appendix, we discuss the derivation of an effec-
tive model for the nodal surface. First, we explore P and T
symmetries, which play similar roles for the nodal ring in
SG P63/mmc. Consequently, the expressions for hi(q) that
satisfy the symmetry requirements share the same formula as
Eq. (C4).

However, the nonsymmorphic symmetry M̃z has a different
matrix representation. From Eqs. (C6) and (C7), we know that
the M̃z symmetry should anticommute with I, {M̃z,I} = 0,
for q-points on qz = π plane. We further considered other
symmetry operations required for the nodal surface. Particu-
larly, the twofold rotation symmetry C2xy = {2110|000}, which
commutes with I, [C2xy,I] = 0. C2xy satisfies the following
in the real space:

C2xy : (x, y, z) 
→ (y, x,−z).

Combining it with Eq. (C5), we obtained

C2xyM̃z : (x, y, z) 
→ (y, x, z − 1
2 ),

M̃zC2xy : (x, y, z) 
→ (y, x, z + 1
2 ).

Therefore, we found that C2xyM̃z = eiqz ·2πM̃zC2xy. For points
on the qz = π plane, C2xy must anticommute with M̃z,
{C2xy, M̃z} = 0.

Based on the relations of M̃z, C2xy, and I, we chose M̃z

as σ1 and C2xy as σ3 under the parity representation. The C2xy

transformation matrix is⎡
⎣0 1 0

1 0 0
0 0 −1

⎤
⎦.
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By applying M̃z and C2xy operators on the effective model, the
final k · p effective Hamiltonian was derived as

Heff(q) = t0σ0 + t1qzσ2. (D1)

Our model produced a flat nodal surface on the qz = π plane
and a linear dispersion along the qz direction.

The primitive cell of BaNa2 contains 12 atoms and a total
of 36 phonon branches that can be categorized into 18 nodal
surfaces. We systematically studied the nodal surface and used
the k · p model in Eq. (D1) to fit all phonon branches. The
results are summarized in Table II.

To verify the generality of our model, the phonon disper-
sions for all nodal surfaces at qz = π plane are shown in
Fig. 12. Around the A point, the k · p results can fit the DFT
results well, both in plane and out of plane. The two bands
will degenerate in the plane and split into two independent
branches along the right path of the figure. Notably, the dis-
persions along the qz direction are linear, and it agrees well
with the results from the effective Hamiltonian for QDPs.

APPENDIX E: SURFACE STATES FOR
THE QUADRATIC DIRAC POINTS

This Appendix presents the surface states associated with
the quadratic Dirac points. As a result of the quadratic Dirac

point, the topological phonon surface states can be obtained
at the � point of the (0001) plane or the Y point of the (101̄0)
plane. Unfortunately, the overlapping with the bulk states
makes it challenging to distinguish the surface states. We
examined the phonon surface states around the six quadratic
Dirac points and illustrated the surface states of the QDP close
to 3.396 THz, as shown in Fig. 13.

APPENDIX F: OTHER CANDIDATE MATERIALS

Using our established topological phonon database
[25,26], we identified additional candidates that possess
quadratic Dirac point, type-III nodal ring, and nodal surface
phonons simultaneously. Figure 14 exhibits the phonon bands
along high-symmetry lines and the phonon density of states
in the whole frequency range for three typical compounds,
namely ABC2, AB, and AB2. All of them are dynamically
stable phases of SG P63/mmc and can be experimentally
synthesized. Similar to Fig. 2(c), the quadratic Dirac points
are represented by solid green circles. The flat phonon branch
forms a type-III nodal ring indicated by the red lines. Along
the A-H-L-A path, all orange branches are twofold degenerate,
indicating the nodal surface of the qz = π plane.
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