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Time evolution of spread complexity and statistics of work done in quantum quenches
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We relate the probability distribution of the work done on a statistical system under a sudden quench to the
Lanczos coefficients corresponding to evolution under the postquench Hamiltonian. Using the general relation
between the moments and the cumulants of the probability distribution, we show that the Lanczos coefficients
can be identified with physical quantities associated with the distribution, e.g., the average work done on the
system and its variance, as well as the higher order cumulants. In a sense this gives an interpretation of the
Lanczos coefficients in terms of experimentally measurable quantities. Consequently, our approach provides
a way towards understanding spread complexity, a quantity that measures the spread of an initial state with
time in the Krylov basis generated by the postquench Hamiltonian, from a thermodynamical perspective. We
illustrate these relations with two examples. The first one involves quench done on a harmonic chain with periodic
boundary conditions and with nearest neighbor interactions. As a second example, we consider mass quench in
a free bosonic field theory in d spatial dimensions in the limit of large system size. In both cases, we find out the
time evolution of the spread complexity after the quench and relate the Lanczos coefficients with the cumulants
of the distribution of the work done on the system.
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I. INTRODUCTION

Physical quantities that are used to probe nonequilibrium
scenarios such as a sudden quench of a quantum mechanical
system [1] are broadly categorized into two different sets. The
first includes different correlation functions [2,3], entangle-
ment entropy [4], and out of time order correlators, as well as
the more recently introduced notions of complexity (studied in
the context of quantum quenches in, e.g., Refs. [5–8]). Time
evolution of these quantities after a quench generally show
some characteristic behavior at early as well as late times
and these can also be used to detect criticality in many-body
quantum systems that exhibit quantum phase transitions. The
second set is related to thermodynamics. Indeed, it has been
established that the problem of quantum quenches can be
viewed as a thermodynamic transformation [9,10]. This fact
offers a new way of looking at the physics after a quantum
quench in terms of quantities that are commonly used to
characterize standard thermodynamic processes, such as the
heat and entropy generated, as well as the work done on the
system [11].

In this work, our main focus will be a new measure of
the complexity of constructing a target wave function starting
from a reference one, namely the spread complexity (SC),
introduced in [12]. The complexity of a state is broadly a
measure of the minimum number of basis gates one requires
to construct that state, starting from a given reference state.
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There are various notions of this measure, such as the Nielsen
complexity (NC) [13–19], Fubini-Study complexity (FSC)
[20], bi-invariant complexity [21], complexity from covari-
ance matrix [22], complexity from information geometry [23],
path integral approach to circuit optimization [24], possible
extensions to conformal field theories [25,26], etc. (see the
recent review [27] and references therein). These studies have
gained a lot of attention in recent literature due to usefulness
of various notions’ complexity as probes of quantum phase
transitions [28–39] and quantum quenches [6,24,40–45], as
well as indicators of quantum chaotic evolution [46–48].

In a similar vein, the SC of a state under the evolution by a
unitary operator measures the spreading of the wave function
on the Hilbert space [12]. Intuitively the more it spreads over
the corresponding Hilbert space, the more difficult it is to
construct that state. The central idea of finding the SC of
a state lies in the construction of the Krylov basis by the
Hermitian operator that generates the flow, which is done by
the well-known Lanczos algorithm of constructing a tridiag-
onal form of a given matrix [49–51]. This process takes the
autocorrelation function of the final state and the initial state
as an input and gives two sets of coefficients, known as the
Lanczos coefficients (LC), as outputs. Using the discretized
version of the Schrödinger equation on the Krylov basis, it is
then possible to obtain the SC as the minimum value of the
associated cost for the Krylov basis, as was proven in [12].
There is a lot of recent attention on various aspects of the SC
and its corresponding operator version (Krylov complexity);
see, for example, works related to quantum phase transition
[7,8,52], operator scrambling [53,54], conformal field theory
[55–57], open systems [58–60], as a tool of probing delocal-
ization properties in nonchaotic quantum systems [61], and
other related contexts [57,62–79].
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In this paper our goal is to relate two of these quantities
from the above mentioned different sets, thereby offering a
new way of interpreting the evolution of a system after a
quantum quench. In particular, the two apparently distinct
quantities that we consider in this paper are (a) the LC used
to study the SC and (b) various cumulants of the probability
distribution of the work done on the system by suddenly
changing its parameters. That these two sets of numbers are
related to each other can, in some sense, be “guessed” by
noting that the characteristic function (CF) associated with
the distribution of the work done is related to the complex
conjugate of the autocorrelation function—a quantity whose
moments contain all the information about the LC. In this
paper we make this relation precise and quantify this with two
examples.

The rest of the paper is organized as follows. In Sec. II, we
first briefly review the two quantities mentioned above and
then obtain a relation between the LC and the cumulants of
the probability distribution by using Faà di Bruno’s formula.
We show that these quantities are related to each other via
the Bell polynomials. In Sec. III, we apply this formalism to
the time evolution of the SC after a single sudden quench of
the parameters of a harmonic chain with periodic boundary
conditions and provide a physical interpretation of the LC
when a critical quench is considered. Section IV elaborates
on our second example—the mass quench of a noninteracting
bosonic model in d-spatial dimensions in the limit of infinite
linear size of the system. Section V discusses the main out-
comes of our analysis.

II. STATISTICS OF WORK AND THE LANCZOS
COEFFICIENTS IN QUANTUM QUENCHES

In this section we first briefly review the formalism of the
statistics of work done under a sudden quantum quench and
the Lanczos algorithm of obtaining the LC from the autocor-
relation function of a time-evolved state.

A. Statistics of the work done under a quantum quench

It is well known that a quantum quench can be viewed
as a thermodynamic transformation [9,10]. Thus, apart from
the quantities related to time evolution of quantum correla-
tion functions and quantum information theoretic quantities
(such as the entanglement entropy or complexity), a funda-
mental way to characterize quantum quench is to consider
the statistics of the work done on a quantum system when
its parameters are changed suddenly [11]. The work done on
the system through a given quench protocol is defined as the
difference between the internal energies before and after the
quench. That we need a probability distribution function to
quantify the work done on the system can be understood from
the fact that due to the sudden change of the parameters of the
system Hamiltonian, even if we consider different realizations
of the same quench protocol, the measurement of the work
done will yield different results, i.e., it will show fluctuations.

To mathematically quantify the distribution of the work
done, we consider the simplest single quench protocol, where
the parameters of a quantum system, collectively denoted
by λ, are changed suddenly to a new set of values λ̃ at an

instant of time t = t0 (we will usually take t0 = 0). We denote
the energy eigenstate before and after the quench as |n(λ)〉
and |ñ(λ̃)〉, which correspond to energies En(λ) and Ẽn(λ̃),
respectively. The Hamiltonians before and after the quench
are denoted by H0 and H̃ .

Now, if energy measurements before and after the quench
give the results Em and Ẽn, respectively, then the probabil-
ity distribution of the work done, W = Ẽn − Em, is given
by [80,81]

P(W ) =
∑
m,n

|〈m|ñ〉|2δ(W − (Ẽn − Em)). (1)

For the quench protocols considered in this paper, we shall
take the state before the quench to be the ground state of the
Hamiltonian. Hence the above distribution reduces to

P(W ) =
∑

n

|〈0|ñ〉|2δ(W − (Ẽn − E0)). (2)

Once we know the distribution of the work, it is useful to first
consider its CF defined as the Fourier transform

G(t ) = 〈e−iW t 〉 =
∫

e−iW t P(W )dW. (3)

The importance of this quantity in the context of quantum
quenches, as established in [81], is that the CF is actually the
correlation function

G(t ) = 〈0|eiH0(λ)t e−iH̃ (λ̃)t |0〉 = eiE0(λ)t 〈0|e−iH̃ (λ̃)t |0〉
= eiE0(λ)t 〈ψ0|�(t )〉, (4)

where |ψ0〉 = |0〉 is the state before the quench at t = 0. Now
it is easy to see that this quantity is just the conjugate of
the Loschmidt echo studied extensively in the context of the
quantum quenches and quantum chaos [82–85]. Furthermore,
we can see that it is related to the complex conjugate of the
autocorrelation function, apart from a trivial phase factor. This
is the first indication of a connection between the LC and the
CF, which we elaborate on below.

For future references, at this point it is useful to define the
cumulants (βn, n � 1) of the distribution as expansions of the
logarithm of the CF1

ln
(
G(t )

) =
∞∑

n=1

(−it )n

n!
βn, βn = (−i)−n dn ln G(t )

dtn

∣∣∣∣
t=0

.

(5)

Furthermore, we can also write down the expansion of the CF
in terms of the moments (Mn) of the distribution

G(t ) =
∞∑

n=0

t n

n!
Mn. (6)

Note that, since G(t = 0) = 1, here we have M0 = 1 by defi-
nition. Furthermore, the way we have defined the coefficients,
Mn’s are actually related to the average of W n with powers of
i, i.e., Mn = (−i)n

∫
W nP(W )dW . Using this along with the

1To be consistent with the notion of the quench and spread com-
plexity literature, we have defined the cumulant expansion with
factors of i.

104311-2



TIME EVOLUTION OF SPREAD COMPLEXITY AND … PHYSICAL REVIEW B 108, 104311 (2023)

expression in Eq. (2) for a quench from the ground state, we
obtain the following meaningful expression for the moments
in terms of products of the energy difference between energy
eigenstates before and after the quench and their overlap:

Mn = (−i)n
∑

j

|〈0| j̃〉|2(Ẽ j − E0)n. (7)

Here, | j̃〉 represents an eigenstate of a postquench Hamil-
tonian with energy Ẽ j . Therefore, we see that the moments
depend on the overlap between the initial state (here, the
ground state of the prequench Hamiltonian) and the eigen-
states of the postquench Hamiltonian, as well as the spacing
between energy levels of the postquench Hamiltonian with
that of the ground state energy of the initial Hamiltonian H0. In
Appendix A we illustrate an example of this formula, where
we obtain the moments for the case of a quench in a single
harmonic oscillator.

It is well known that the cumulants of a probability distri-
bution are related to its central moments. For example, the first
cumulant (β1) is the mean of the distribution (here 〈W 〉), the
second cumulant is its variance σ 2 (i.e., the second central mo-
ment; here 〈W 2〉 − 〈W 〉2), and the third cumulant is equal to
the third central moment, etc. All the other higher cumulants
are actually polynomial functions of the central moments with
integer coefficients.

The behavior of these quantities—the probability distri-
bution of the work done (PDWD) P(W ), CF G(t ), and the
moments—have been studied after sudden quenches in sys-
tems which show quantum phase transitions, e.g., in [11] and
[86], by taking the Ising chain and the Dicke model as pro-
totypical examples. In these references it was established that
the moments of the PDWD show diverging behavior when the
system is quenched through the critical points of the systems.
See also the recent works of [87,88], where the authors have
studied the work distribution of a quench across a quantum
phase transition and found universal scaling relations in such
cases.

In this paper, we relate the moments of the distributions
with the LC and study the properties of these moments (and
the cumulants) of the distribution when there is a zero mode
present in the dispersion relation, as well as in the limit of
infinite system size.

B. Lanczos coefficients and the Krylov basis construction

We now briefly review the Lanczos algorithm of construct-
ing the Krylov basis and the definition of the SC of an arbitrary
initial state under Hamiltonian evolution.

The central idea behind the construction of the Krylov
basis is to write the Hamiltonian in the tridiagonal basis in the
Lanczos algorithm. In this construction, a new basis is defined
from the old one as follows:

|Kn+1〉 = 1

bn+1
[(H − an)|Kn〉 − bn|Kn−1〉]. (8)

We take |K0〉 = |ψ (0)〉, i.e., the algorithm starts from the
reference state. The computation of the coefficients an, bn

(known as the LC) plays a key role in implementing the
Lanczos algorithm. It is important to note that informa-
tion about the LC is also encoded in the so called “return

amplitude,” which is defined as the overlap between the state
at any particular value of the circuit parameter t and the initial
state, i.e.,

S (t ) = 〈ψ (t )|ψ (0)〉. (9)

Once we have constructed the Krylov basis for the Hamilto-
nian evolution, we can expand the desired state in this basis
as

|ψ (t )〉 =
∑

n

φn(t )|Kn〉. (10)

It can be shown that the expansion coefficients φn(t ) satisfy
the following discrete Schrödinger equation:

iφ̇n(t ) = anφn(t ) + bnφn−1(t ) + bn+1φn+1(t ), (11)

where a dot denotes a derivative with respect to t . It was
recently proved that the Krylov basis as defined above min-
imizes the cost function CB(t ) = ∑

n n|〈ψ (t )|Bn〉|2, which
measures the spreading of the state under the desired evolution
[12]. Here, |Bn〉 is the particular basis which we use to evaluate
the spreading. We can write the above cost in the Krylov basis
as

C(t ) =
∑

n

n|φn(t )|2. (12)

This is the definition of the SC.
Next we briefly describe how the LC can be calculated

from the return amplitude and, subsequently, how the φn(t )
are obtained by solving Eq. (11). For calculating the LC from
the return amplitude, we first need to find the even and odd
moments from the expansion

S (t ) =
∞∑
n

M∗
n

tn

n!
. (13)

Here, M∗
n ’s are the expansion coefficients of the return ampli-

tude. After knowing the moments, we can find the full sets of
an’s and bn’s using the standard recursion methods available in
the literature for dynamics under Hermitian evolution [50,51]
that was recently extended for the case of open systems in
[59], which we briefly recall below.

To construct the full set of orthonormal Krylov basis on
the Hilbert space, we start from the given state |ψ (0)〉, i.e.,
this is the first Krylov state |K0〉 = |ψ (0)〉. Then the recur-
sion relation of Eq. (8) implies that the next basis is |K1〉 =
1
b1

[(H − a0)|K0〉]. Here we have used the fact that b0 = 0.
The condition that this state |K1〉 is orthogonal to the previous
state |K0〉 fixes the unknown coefficient a0 to be equal to
〈K0|H |K0〉. The other coefficient b1 ensures the normalization
of this state. We continue this recursive process to construct
the full set of basis and the general coefficients are given
as

an = 〈Kn|H |Kn〉, (14)

while bn’s fix the normalization at each step. However, in
practice, where the above process does not terminate after the
first few steps, it is more useful to implement the Lanczos
algorithm by means of two sets of auxiliary matrices L(n)

k

and M (n)
k constructed from the moments M∗

n of the return
amplitude defined in Eq. (13). The recursion relations then can
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be written down in terms of those L(n)
k ’s and M (n)

k ’s and finally

the LC are obtained as bn =
√

M (n)
n and an = −L(n)

n with the
initial conditions properly chosen (b0 = 0) [12,50]. This is a
standard procedure and we refer the reader to [50] for details.
Once we have the full set of LC, we have all the information
that is required to find the coefficients φn, by solving the
discrete Schrödinger equation in Eq. (11), and calculate the
spread complexity as a function of time.

C. Relation between the Lanczos coefficients and the cumulants

From the discussions of the previous two subsections, it
should be clear that we can relate the LC associated with
the Lanczos algorithm (and the Krylov basis) with fundamen-
tal physical quantities characterizing a sudden quench as a
thermodynamic transformation—such as the average work, its
variance, and higher order cumulants. To establish such a rela-
tion, we need to relate the cumulants of the expansion (which
have information of the average work, variance, etc,) with
the moments (from which we can obtain the LC). This can
be achieved using Faà di Bruno’s formula, which generalizes
the chain rule to the higher derivatives (see, e.g., Ref. [89]).
Here we briefly outline the derivation of this relation to use
the notation consistent with the ones used above and the rest
of this section. For details of the derivation, we refer to, e.g.,
Refs. [90,91].

First we define the partial Bell polynomials as the coeffi-
cients in the expansion of the following generating function of
two variables [92]:

	(t, u) = exp

(
u

∞∑
m=1

gm
tm

m!

)

= 1 +
∞∑

n=1

n∑
k=1

Bn,k (g1, . . . , gn−k+1)uk tn

n!
. (15)

The partial Bell polynomial Bn,k is a homogeneous polyno-
mial of degree k and weight n in the expansion coefficients gm.
Evaluating this at u = 1 we get the definition of the complete
Bell polynomials Yg1,...,gn as

	(t, 1) = exp

( ∞∑
m=1

gm
tm

m!

)

= 1 +
∞∑

n=1

Yn(g1, . . . , gn)
t n

n!
, (16)

so that the complete polynomials are related to the partial
polynomials through

Yn(g1, . . . , gn) =
n∑

k=1

Bn,k (g1, . . . , gn−k+1). (17)

Explicit expressions for both the partial and complete Bell
polynomials are known which are written as a sum over
all the partitions of n into k non-negative parts and all
the partitions of n into arbitrarily many non-negative parts,
respectively [91].

Now using Faà di Bruno’s formula we can obtain

ln

( ∞∑
n=0

Mn
tn

n!

)
= ln M0 +

∞∑
n=1

n∑
k=1

(−1)k−1(k − 1)!M−k
0 Bn,k

× (M1, . . . , Mn−k+1)
t n

n!
, (18)

where we have assumed M0 > 0. In fact, since we are consid-
ering the expansion of the CF around the start of the quench at
t = 0, here M0 = 1 and the first term in the above expansion
vanishes. We can now compare the right hand side with the
cumulant expansion in Eq. (5) to obtain the desired relation
between the cumulant of the PDWD (βn) and the moments
Mn, which carry the information of the LC as

βn =
n∑

k=1

(−1)k−1

(−i)n
(k − 1)!Bn,k (M1, . . . , Mn−k+1). (19)

This formula will be used in the next section to relate the
average and variance of the work done on the system through
a quench and the LC (such as a0 and b1, etc.) in a simple
manner.

It is also useful to obtain the inverse of the above relation.
This can be straightforwardly obtained using the definition of
the complete Bell polynomials given in Eq. (16) to be

Mn = (−i)nYn(β1, . . . , βn). (20)

The well known tabulated expressions for the Bell polyno-
mials can now be used to explicitly relate these two types of
expansion coefficients.

Once we know these moments in terms of the cumulants,
they can be used, following the procedure outlined in the
previous subsection, to obtain the LC. For example, we have
the following relations between a0 and the average work and
b1 and the variance of the work done:

a0 = iM1 = 〈W 〉, b2
1 = −M2 + M2

1 = 〈W 2〉 − 〈W 〉2.

(21)

Similarly, it is possible to write the coefficient a1 in terms of
〈W 3〉, variance, and the average of the work done, and it is
given by

a1 = 〈W 3〉 − 〈W 〉3

〈W 2〉 − 〈W 〉2
− 2〈W 〉. (22)

See Appendix B for a brief derivation of the last two equa-
tions. Other LC can similarly be written in terms of averages
of 〈W n〉; however, their expressions become increasingly
cumbersome and hence we avoid writing them here.

Since we have established that all the LC can be related
to the moments and cumulants of the PDWD, at this point, it
is important to comment on the measurements of PDWDs in
experimental setups. It is clear from its definition in Eq. (1)
that, to measure the work distribution, one needs to perform
two projective energy measurements on the system—one be-
fore the quench and the other after it. It is well known that it
is difficult to perform reliable projective measurements of en-
ergy in many-body quantum systems. However, for relatively
simple systems, there exist pioneering experiments where the
quantum work statistics have been measured. Examples of
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such systems include a spin-1/2 system undergoing closed
nonadiabatic evolution (which can be realized in NMR setups)
[93], driven oscillator systems which can be used to describe
the dynamics of trapped ions [94], or ultracold atoms [95].
Since the relations between the LC and the work distribution
we have obtained are very general (valid for any evolution
with any generic time-independent Hamiltonian), our results
can be applied to these cases as well. Therefore, in a sense,
relations of the kind given in Eqs. (21) and (22) can be thought
of as providing an interpretation of LC in terms of experimen-
tally measurable quantities.

Before concluding this section, here we mention an im-
portant relation between a universal behavior of the survival
probability at short times after quench (t << σ−1) and b1,
where σ is the variance of the PDWD under the quench (see
below for its definition). The expression for the survival prob-
ability, defined as the modulus square of the overlap between
the initial state and the time-evolved state, is given by

P (t ) = |〈ψ (0)|ψ (t )〉|2 =
∣∣∣∣∑

n

∣∣∣∣〈0|ñ〉|2e−iẼnt |2. (23)

Now from Eq. (7), we first write down the expressions for the
average and the variance of the PDWD under quench in terms
of the overlaps of pre- and postquench energy eigenstates:

〈W 〉 =
∑

j

|〈0| j̃〉|2(Ẽ j − E0), (24)

σ 2 =
∑

j

|〈0| j̃〉|2(Ẽ j − E0 − 〈W 〉)2. (25)

Next, we expand the above expression for the survival proba-
bility and for times t << σ−1 obtain [96]

P (t ) ≈ 1 − σ 2t2 ≈ 1 − b2
1t2. (26)

Therefore, as is well known, for a very short time after a
quench, the survival probability shows universal quadratic de-
cay in t [96]. Importantly, here we see that the rate of decay of
the survival probability is actually determined by b1. Since the
time behavior shown by the survival probability is universal,
this observation shows the important role played by b1 in
the early time evolution of a quenched quantum many-body
system.

D. Lanczos coefficients in quench of a general system of length
L in d dimensions

Before moving on to describe particular examples of the
formalism discussed till now, in this subsection we consider
a fairly general case of quench in a closed system placed
in a d-dimensional box of length L with periodic boundary
conditions. We assume that a sudden quench is performed in
such a system prepared in an initial state at zero temperature.
Work statistics and its CF for quenches done in such scenarios
have been studied previously in [97–99].

In such a quench scenario, the expressions for the PDWD
and its CF are the ones given in Eqs. (2) and (4), respectively.
Now we consider performing a Wick rotation from time t to
the imaginary time −iτ on the amplitude 〈0|e−iH̃t |0〉. The
transformed amplitude 〈0|e−H̃τ |0〉 can be thought of as the
partition function of a (d + 1) dimensional classical system

with Hamiltonian H̃ , defined on a strip of thickness τ [97].
The boundaries of the strip are described by the boundary
states |0〉. Using techniques used in the studies of the critical
Casimir effect, it is possible to evaluate partition functions of
such geometries, so that continuing back to real time τ = it ,
the expression for the CF can be conveniently written as the
sum of three terms

ln G(t ) = −Ld [i fbt + 2 fs + fC (it )]. (27)

Here, in the first term, which is linearly dependent on time,
fb = Ẽ0−E0

Ld is the difference between the ground state ener-
gies of the Hamiltonians after and before the quench, per
unit volume. Clearly, this term comes from a linearly time
dependent overall phase factor to the CF. On the other hand,
the second term, which is the surface free energy associated
with each of the two boundaries of the strip geometry, is time
independent. This quantity is actually related to the fidelity
between the ground states of the Hamiltonians before and after
the quench through the relation fs = −Ld ln |〈0̃|0〉| [97,98].
The third term in Eq. (27) has nontrivial time dependence and
represents an effective interaction between two boundaries.

Using the general formula for the CF written above, let us
now calculate the cumulants and hence relate the correspond-
ing LC to the probability distribution. We have the expression
for the cumulants as

βn =
⎧⎨
⎩

−iLd
[
i fb + dfc (it )

dt

∣∣
t=0

]
for n = 1,

−inLd dn fc (it )
dtn

∣∣
t=0 for n �= 1.

(28)

Since, in the second term, the contribution of the surface
free energy of the boundary is time independent, it does
not contribute to the expressions for the moments. Thus the
ground state fidelity or its higher order derivatives, which
are widely used to study quantum quenches and quantum
phase transitions, are insensitive to the behavior of the LC
in a quench problem. Furthermore, the first term has only
an additive contribution in β1, i.e., the first LC, a0. In most
cases, we can omit the first term since one usually measures
the work done W starting from δEgs = Ẽ0 − E0 [98]. In fact,
most of the literature on the Lanczos algorithm which uses
the autocorrelation function [the complex conjugate of the CF
defined in Eq. (4)] neglects the constant phase factor in the
definition of the CF in Eq. (4). In the example of quench in
a harmonic chain considered in the next section we will also
neglect this phase factor.

Thus the cumulants, moments of the PDWD, and hence the
LC of the quench problem under consideration are determined
by the time dependence of the third term in the expression for
the CF, namely, fc(it ). If we now assume that the time deriva-
tive of this function is zero for n = k + 1, then βk+1 = 0, and
as we can see from the explicit expressions for the complete
Bell polynomials Yn(β1, . . . , βn), all the higher order moments
are determined by the first βk cumulants. In Sec. IV, we will
discuss the limit L → ∞ of the quench problem considered in
this section and explicit expressions for the time dependence
of the function fC will be obtained to find out the cumulants
and moments of the work distribution.
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III. LANCZOS COEFFICIENTS, SPREAD COMPLEXITY,
AND STATISTICS OF WORK IN QUENCH

OF A HARMONIC CHAIN

In this section we first discuss the time evolution of the
SC after a single sudden quench of the parameters of a har-
monic chain with periodic boundary conditions. Then we
study the relation between the PDWD under the quench and
the corresponding LC, with particular emphasis given on the
case of the critical quench, i.e., when the final (or the initial)
frequency of the oscillators of the harmonic chain vanishes.

The protocol for the quench we consider is the following.
At t = 0, we change the initial Hamiltonian (denoted as H0)
to a new one H1, which has different values of the frequency
and interaction strengths than H0. Subsequent evolution of the
system is governed by the new Hamiltonian H1. We calculate
the SC by taking the state at t = 0 as the initial state, i.e.,
the first state of the Krylov basis, and the target state as the
time-evolved state after the quench. For our purposes, in this
section we assume that the reference state, i.e., the state before
the quench, is the ground state of the initial Hamiltonian H0.

We denote the Hamiltonian before the quench (i.e., for
t < 0) as H0, which is given by

H0 = 1

2

[ N∑
j=1

(
p2

0 j + λ2
0x2

0 j

) +
N∑

j=1

k0(x0 j − x0( j+1))
2

]

= 1

2

[ N∑
j=1

p2
0 j + X T

0 · K0 · X0

]
.

Here λ0 is the frequency of each oscillator before the quench
and k0 is the nearest neighbor interaction strength. Further-
more, X0 = (x01, x02, . . . , x0N )T denotes the column matrix
for the collective position of each oscillator and K0 is a real
symmetric matrix whose eigenvalues are denoted as ω0 j . It is
assumed that periodic boundary conditions are imposed on the
chain. We diagonalize this Hamiltonian by performing an or-
thogonal transformation U0, which changes the coordinates to
Y0 = (y01, y02, . . . , y0N )T = U0X0. Denoting the transformed
momenta as P0k , the diagonal form for the Hamiltonian is
therefore given by

H0(y0k, P0k ) = 1

2

N∑
k=1

[
P2

0k + ω2
0ky2

0k

]

=
N∑

k=1

ω0k

[
a†

0ka0k + 1

2

]
=

N∑
k=1

H0k (y0k, P0k, t ),

(29)

where ω2
0k = λ2

0 + 2k0[1 − cos ( 2πk
N )] is the kth normal mode

frequency, and in the second equality we have introduced the
usual creation and annihilation operators for the individual
modes. We assume that, by the quench, only the frequency
of all the oscillators λ0 are changed simultaneously to a new
value λ1, while keeping the interaction strength fixed. After
the quench, the Hamiltonian of the harmonic chain can sim-
ilarly be diagonalized in terms of a new set of creation and

annihilation operators as

H1(y1k, P1k ) = 1

2

N∑
k=1

[
P2

1k + ω2
1ky2

1k

]

=
N∑

k=1

ω1k

[
a†

1ka1k + 1

2

]
=

N∑
k=1

H1k (y1k, P1k ),

(30)

where the expressions for the normal mode frequencies are
now given by

ω2
1k = λ2

1 + 2k1

[
1 − cos

(
2πk

N

)]
, (31)

where k1 is the nearest neighbor interaction strength after the
quench, and here we assume that it is fixed, i.e., k1 = k0 for
the quench protocol we consider.

The time-evolved state at an arbitrary time t after the
quench is given by

|�(t )〉 = e−iH1t |�0〉 = e−iH1t |K0〉. (32)

Here |�0〉 is the state before the first quench and, as we have
mentioned before, this is the first state of the Krylov basis.
Here we take the ground state of the initial Hamiltonian H0 to
be the initial state |�0〉 = |0〉 = ∏N

k=1 |0〉k .
Since we have separated the Hamiltonian into individual

modes [see Eqs. (29) and (30)], we can write the time-evolved
state after the quench as a product of each individual time-
evolved mode

|�(t )〉k = e−iH1kt |0〉k, (33)

so that the SC of the state |�(t )〉 is the sum of individual SCs
of N such modes. Below we illustrate the calculation of SC of
an individual time-evolved mode |�(t )〉k .

A. Autocorrelation function

Since the annihilation and creation operators before
the quench, i.e., (a0k, a†

0k ), respectively, are related to the
operators after the quench (a1k, a†

1k ) through Bogoliubov
transformations, the postquench Hamiltonian H1 can be ex-
pressed in the following way in terms of the prequench
operators as [8,41]

H1 = 2
N∑

k=1

ω1k
[
U1kV1kK+

k + (
U2

1k + V2
1k

)
K0

k + U1kV1kK−
k

]
,

(34)

where the Bogoliubov coefficients U jk and V jk are given by

U1k = ω1k + ω0k

2
√

ω1kω0k
, V1k = ω1k − ω0k

2
√

ω1kω0k
. (35)

Derivations of the above two equations have been provided in
many references dealing with quenches of harmonic oscilla-
tors; see, e.g., Refs. [8,41]. For details of these derivations, we
refer the reader to these works and omit them here for brevity.

The operators K(+,−,0)
k defined above are related to the

creation and annihilation operators before the quench through
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the following relations:

K+
k = 1

2 a†
0ka†

0k, K0
k = 1

4 (a†
0ka0k + a0ka†

0k ),

K−
k = 1

2 a0ka0k . (36)

Utilizing the standard commutation relations for the bosonic
operators we can see that operators K(+,−,0)

k provide a single-
mode bosonic representation of the su(1, 1) Lie algebra; thus
they satisfy the following commutation relations:

[K+
k , K−

k ] = −2K0
k ,

[
K0

k , K±
k

] = ±K±
k . (37)

The Casimir operator corresponding to the algebra, defined
through the relation

K2 = K2
0 − 1

2

(
K+K− + K−K+

)
, (38)

commutes with all three generators and satisfies the eigen-
value equation

K2| j, h〉 = h(h − 1)| j, h〉. (39)

The constant h is known as the Bargmann index of the algebra
and j takes values 0, 1, 2, . . .. For the single-mode bosonic
representation of the su(1, 1) Lie algebra, h can take values
1/4 or 3/4 (see [100]). In this paper we take h to be 1/4,
for which the basis corresponding to a unitary irreducible
representation of su(1, 1) algebra is the set of states with
an even number of bosons. Furthermore, the operations of
the generators Ki on the states | j, h〉 are given by standard
formulas; see, e.g., Ref. [100].

From the identification that the operators K(+,−,0)
k satisfy a

su(1, 1) algebra, we see that the Hamiltonian after the quench
is actually an element of this algebra. Thus the time-evolved
state is a generalized coherent state (CS) associated with the
SU (1, 1) group. Hence the autocorrelation function (for each
mode), given by

Sk (t ) = k〈�(t )|�(t = 0)〉k = k〈0|eiH1kt |0〉k, (40)

can be thought of as an overlap of a SU (1, 1) CS with the
ground state before the quench [101]. Our first goal in the rest
of this section is to quantify the spread of the time-evolved
CS with respect to the state before quench in terms of Krylov
basis elements.

We first obtain an analytical formula for the autocorrelation
function defined above. This is conveniently done by using
the standard decomposition formula for the su(1, 1) algebra
(see, e.g., Ref. [102] for derivations of a collection of such
well known relations). Using such decomposition formulas,
we obtain the expression for a time-evolved state to be

|�(t )〉k = exp[A+
1k (t )K+

k ] exp
[

ln
(
A0

1k (t )
)
K0

k

]
× exp[A−

1k (t )K−
k ]|0〉k. (41)

The expressions for time-dependent functions A0
1(t ) and A+

1 (t )
appearing in the time-evolved state above are given by2

A0
1(t ) = [cos(ω1t ) + i
1 sin(ω1t )]−2 = f1(t )−2,

A+
1 (t ) = i
̃1 sin(ω1t ) f1(t )−1, (42)

2Since we are working with single mode wave functions, from now
on we remove the mode index k for the rest of this section, unless
otherwise specified explicitly. The total complexity is given by the
sum over all the modes.

where we have defined


1 = ω2
0 + ω2

1

2ω0ω1
, 
̃1 = ω2

0 − ω2
1

2ω0ω1
. (43)

The time-evolved state given in Eq. (41) can therefore be
written in the form

|�(t )〉 = (
A0

1(t )
)1/4

∞∑
j=0

(A+
1 (t )) j

j!
(K+) j |0〉

= (
A0

1(t )
)1/4

∞∑
j=0

√
�

(
j + 1

2

)
j!
√

π
(A+

1 (t )) j | j, h〉, (44)

where in the last expression we have used the fact that here
h = 1/4 and the states | j, h〉 have been defined in Eq. (39).
From this expression, it is then straightforward to obtain the
autocorrelation function to be

S (t ) = 〈�(t )|�(t = 0)〉 = (
A0

1(t )
)∗1/4

, (45)

with the expression for the time-dependent function A0
1(t )

given in Eq. (42) above. Note that to obtain this autocor-
relation function, we have neglected a phase factor which
corresponds to the difference between the ground state en-
ergies before and after the quench. This factor is usually
neglected in the discussion of the characteristics function
and the corresponding PDWD, as we have mentioned before.
Furthermore, using this autocorrelation function, or using the
coherent state method of [12,103], we obtain the LC to be

an = (
2n + 1

2

)

1 ω1, n = 0, 1, 2, . . . ,

bl = 1
2

√
2(2l2 − l )
̃1ω1, l = 1, 2, 3, . . . . (46)

B. Evolution of the spread complexity

Now since the postquenched time-evolved state is a
SU (1, 1) CS, to determine the expansion coefficients φn(t )
required in the computation of the SC, we can use the ge-
ometric method proposed in [103] and [12], respectively, in
the context of the Krylov and spread complexity. Using the
procedure explained in these references, we obtain the exact
expressions for the expansion coefficients to be

φn(t ) = Nnφ0(t )(A+
1 (t ))n, with φ0(t ) = (

A0
1(t )

)1/4
,

Nn =
√

�
(
n + 1

2

)
n!

√
π

. (47)

The sum in the SC expression is performed exactly and the
final expression for SC of a single mode is given by (here
we have restored the mode index k to emphasize that this
expression represents the SC of a single mode evolution)

Ck (t ) = |φ1k (t )|2
(1 − Fk (t ))3/2

, where Fk (t ) = |A+
1k (t )|2. (48)

Using the expression for the A+
1k (t ) given in Eq. (42), we

obtain the following simplified expression for the kth mode
contribution to the total SC:

Ck (t ) = 1

2

̃2

1k sin2(ω1kt ) =
(
ω2

0k − ω2
1k

)2

8ω2
0kω

2
1k

sin2(ω1kt ). (49)
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C. Lanczos coefficients and the cumulants of the distribution
of the work done

We now illustrate the general relation between the LC and
the cumulants derived in Sec. II for the single global quench
of the harmonic chain considered in this section. In fact, since
in this case the analytical expression for the autocorrelation
function is relatively simple [see Eq. (45)], we can derive the
first few relations between the LC and the cumulants directly
without using the general relations in Eqs. (19) and (20).

First consider the cumulant β1 which, from Eqs. (45) and
(42), is obtained to be equal to β1 = 1

2ω1
1. Now from the
expressions for an given in Eq. (46) we see that this is exactly
equal to the first of an’s, i.e., β1 = a0 = 〈W 〉.3 Similarly, we
calculate the second cumulant from the expression for the
autocorrelation function to be equal to β2 = 1

2 (
2
1 − 1)ω2

1 =
1
2 
̃2

1ω
2
1. On the other hand, from the expression for the coef-

ficients bn, we see that b2
1 = β2 = 〈W 2〉 − 〈W 〉2. These two

relations indicate an alternative interpretation for the LC in
terms of the moments of the thermodynamic quantity—the
work W done on the system through the quench. In fact the
first element of the first set of LC a0 is equal to the aver-
age work done on the system through the process of sudden
quench, while the first element of the second set of LC, i.e., b1,
is the standard deviation of this work done from the average
value. Similarly, it is possible to write all the higher LC as
polynomials of the moments of the distribution of the work
done with integer coefficients. If we want to obtain the higher
order relations, it is useful to directly use the general formula
Eqs. (19) and (20) given in the previous section.

Interpretation for critical quenches

To understand the above relations between the LC and
various moments of the PDWD more clearly, we consider a
special case of the single quench scenario, namely, we con-
sider a critical quench where the final (or the initial) value
of the frequency of the oscillators vanishes. As discussed
previously in [8,42,45], when one considers a critical quench,
both the Nielsen complexity and the SC show characteristic
behaviors different from noncritical quenches. In particular,
the divergence of the complexity at late times can be attributed
to the presence of the zero modes originated through the criti-
cal quench of the system [42]. Here we discuss its connection
with the divergence of the average work done on the system
in such critical quenches.

First we write down the contribution of the N th mode to-
wards the total SC. From Eq. (49), we obtain this contribution
to be (the subscript N refers to the fact that these quantities
correspond to mode number N)

CN (t ) = 1

2

̃2

1N sin2(ω1Nt ) =
(
ω2

0N − ω2
1N

)2

8ω2
0Nω2

1N

sin2(ω1Nt ),

(50)

3Note that here 〈W 〉 is actually 〈Wk〉, i.e., work done on an individ-
ual mode. Since the harmonic chain is diagonalized in normal modes,
the total work is the sum of works done on these individual modes.
This is true for higher moments as well.

where ω0N and ω1N are the N th mode normal frequencies
before and after the quench.

We first consider the case when the frequency λ1 of the
individual oscillators vanishes after the quench. In this case it
is easy to see that the contribution of the N th mode (which is
in fact a zero mode for the critical quench) grows quadratically
with time, i.e.,

CN (t )|λ1→0 = 1
8λ2

0t2. (51)

On the other hand, in the opposite case when the frequency
before the quench is zero, we see that the SC is divergent at
all times. These behaviors of the SC for critical quenches can
be understood from the point of view of the average work
done on the system due to the quench. First we note that,
when the frequency before the quench vanishes, all the LC are
divergent [see Eq. (46)]. Next, from the identifications a0 =
〈W 〉 = 1

2ω1
1 and b2
1 = 〈W 2〉 − 〈W 〉2 = 1

2 
̃2
1ω

2
1, we see that

in this case the average work as well as its variance diverge.
This divergent behavior of these two quantities is very similar
to what is observed when a quantum system is quenched from
criticality [86].

The divergence of the average work done on the system
(and the higher cumulants) is explained by observing that,
when there is a zero mode present in the system before the
quench, it corresponds to a free particle and the spread of
the initial wave function of this free particle in an su(1, 1)
basis is infinity—and hence the SC diverges. Instead, when
the system is quenched in such a way that the frequency after
the quench is zero it does not result in any divergence in the
average work done on the system, since in this case the zero
mode (i.e., the free particle) results from an initially localized
harmonic oscillator. Therefore, we conclude that when there
is a zero mode present in the system before a sudden quench it
corresponds to a divergent average work as well as a divergent
SC. We also note that the growth rate of the zero mode com-
plexity when λ1 = 0 is proportional to the square of the initial
frequency, whereas the average work corresponding to that
mode is also proportional to the initial frequency. Hence, if
we consider two different critical quench protocols where the
initial frequencies are different, then the protocol with higher
frequency will correspond to greater average work and higher
growth rate of the SC. This discussion thus provides a direct
connection between the growth of SC in critical quenches and
the average work done on the system.

Next, we graphically study the evolution of the SC for crit-
ical quench when the frequency after the quench vanishes. In
Fig. 1, we have plotted the contributions from zero mode (de-
noted by C0) and the sum of the rest of the modes (denoted by
Cr) towards the SC separately. We see that, for early times, just
after the quench, the contribution of the zero mode towards
the total complexity is smaller than some of the other modes.
However, after a particular value of time (which depends on
the initial value of the frequency) the zero mode complexity
becomes equal to the sum of other mode contributions and
continues to grow with time (whereas the total complexity of
the nonzero modes oscillates with time). The quadratic growth
of the zero mode SC is therefore responsible for the overall
quadratic growth of the SC with time.

Before concluding this section, we notice an impor-
tant point regarding the nature of the time-evolved wave
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FIG. 1. Time evolution of the SC of the zero mode (red) and
the sum of the nonzero mode contributions (brown). Here λ0 = 5,

k = 2, and N = 350. At large times the contribution of the zero
mode always dominates.

function, the CS, and the associated LC. For the problem
considered in this section—quantum quench in a harmonic
chain—the time-evolved state is a generalized SU (1, 1) CS.
Hence the associated Krylov basis is infinite dimensional and
we have an infinite number of LC an and bn. Here we have
explicitly related only the first few LC with the cumulants
of the work distribution. On the other hand, when the time-
evolved state belongs to a finite dimensional group, such as
SU (2), there are only finite numbers of Krylov basis elements
and an associated finite number of nonzero LC. In that case, it
is possible to obtain explicit relations between all the LC with
the cumulants of the work distribution.

IV. MASS QUENCH OF A BOSONIC SCALAR FIELD IN D
DIMENSIONS—LANCZOS COEFFICIENTS

AND COMPLEXITY

In this section, we consider the mass quench of a nonin-
teracting bosonic model in d-spatial dimensions and study
corresponding cumulants of the work distribution, the LC,
and the relation between them in the limit that the linear size
of the system L → ∞. In this case, the general formula for
the CF discussed in Sec. II D is applied and the explicit time
dependence of the function fC can be obtained.

The Hamiltonian of the system under consideration is that
of a bosonic field φ of mass m and is given by the following
expression when written in a diagonalized form in terms of
individual momentum modes [97,98]:

H (m) = 1

2

∫
k

[
πkπ−k + ω2

k (m)φkφ−k
]
, (52)

where the modes φk and their conjugates satisfy the commuta-
tion relations [φk, πk′ ] = i(2π )dδk,k′ and ωk (m) = √

k2 + m2.
Furthermore, for the continuum model, the integral is over all
the d dimensional space

∫
k = 
d

(2π )d

∫ ∞
0 dk kd−1. The above

Hamiltonian can be obtained, e.g., in the small interaction
limit of the sine-Gordon model—one of the most popu-
lar models used to study nonlinearly interacting quantum
systems.

We consider a mass quench in the model in Eq. (52),
where we change the mass m0 of the field to a new value
m1 suddenly at t = 0. This quench corresponds to a change
in the dispersion relation, so that the mode frequencies before
and after the quench are ω0k and ω1k , respectively. The CF
corresponding to each mode (with momentum k) was obtained
in [98], so that the CF is given by

G(t ) =
∏

k

Gk (t ) =
∏

k

e
i
2 (ω0k−ω1k )

√
1 − η2

k

1 − η2
k e−2iω1kt

,

where ηk = ω0k − ω1k

ω0k + ω1k
. (53)

Notice that, apart from an unimportant phase factor, this CF
for individual momentum modes is the same as the one we
have derived in Eq. (45) for a harmonic chain. The modulus
squared of the two expressions are therefore identical.

Now taking the L → ∞ limit of the logarithm of the CF
and replacing the sum over all the momentum modes with an
integral over k, we obtain

ln G(t )

Ld
= − it

2

∫
k
(ω1k − ω0k ) + 1

2

∫
k

(
1 − η2

k

)
− 1

2

∫
k

(
1 − η2

k e−2iω1kt
)
. (54)

Comparing this with the general expression for the CF for a
general d-dimensional system of length L given in Eq. (4),
we can easily identify the expressions for the three functions
fb, fs, and fC . As mentioned before, in the calculation of the
cumulants and the moments, the contribution of the first term
coming from the phase factor in the CF will be neglected.

The expressions for the first three cumulants calculated
from the above CF [see Eq. (28)] have been obtained in [98]
for different spatial dimensions. For some values of d , these
expressions are UV divergent. The average of the work done
on the system through the quench is expressed as 〈W 〉 =
〈0|H (m) − H (m0)|0〉 which, apart from a trivial shift by an
amount equal to the ground state energy of the prequench
Hamiltonian, is just the first LC, i.e., a0. Thus, once again,
like the case of the harmonic chain considered in the previous
section, for the bosonic field quench setup, the LC a0 is the
average work done on the system due to the quench. This is
true for this model for any value of the space dimension d .

Next, as it was noticed in [98], since ln G(t ) is an extensive
quantity (it is proportional to Ld ), all the cumulants calculated
from it using the formula Eq. (4) are also extensive. Thus
we can define the probability distribution for the intensive
work w = W/Ld and, since all the higher order cumulants
apart from β1 and β2 go to zero as O( 1

L2d ) or faster in the
limit L → ∞, the distribution P(w) is Gaussian, with mean
β1 = γ1 and variance β2 = γ2/Ld , where γ1 and γ2 are con-
stants, independent of L. The CF G̃(t ) corresponding to P(w)
is also Gaussian and can thus be written as

G̃(t ) = exp

[
− itγ1 − t2

2Ld
γ2 + O

(
1

L2d

)]
. (55)

Now, using this form for the CF and the explicit expres-
sions for the complete Bell polynomials [92] in Eq. (20), we
can obtain the moments of the distribution of the intensive
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work done on the system. To obtain a compact expression
for these moments in the L → ∞ limit, it is instructive
to first consider expressions for the Bell polynomials Yn

as a function of β1, β2, . . . , βn. For example, we have
Y4(β1, β2, β3, β4) = β4

1 + 6β2
1β2 + 4β1β3 + 3β2

2 + β4 and
Y5(β1, β2, β3, β4, β5) = β5

1 + 10β2β
3
1 + 15β2

2β1 + 10β3
3β2

1 +
10β3β2 + 5β4β1 + β5. From these two expressions, as well
as the expressions for the higher order Bell polynomials,
we see that there are only two terms which are either O(1)
or O(1/Ld ), i.e., survive in the limit L → ∞. The first one
is equal to βn

1 and the second one is proportional to β2 and
has coefficient Nn−2β

n−2
1 for a sequence of positive numbers

Nn. Apart from these two terms, all the other terms in the
expression for the complete Bell polynomials Yn are O( 1

L2d ) or
smaller and hence it is possible to neglect them in the L → ∞
limit.

Therefore, from Eq. (20) we have the expression for the
moments to be

Mn = (−i)n

[
γ n

1 + Nn−2

Ld
γ n−2

1 γ2

]
, (56)

where the expression for the polynomial Nn is given by Nn =
1
2 (n2 + 2n + 3).

Next, to find out the LC corresponding to these moments
and the autocorrelation function G̃(t )∗ [with G̃(t ) given in
Eq. (55) above], we note that, as observed in [103] and [12],
the Gaussian CF corresponds to a particle moving in the Weyl-
Heisenberg group with the Hamiltonian of the form

H = �(a† + a) + 
a†a + δI, (57)

where �, 
, and δ are constants. When 
 � 1, so that in the
CF contributions of O(
2) and higher can be neglected, then
the CF (of the particle moving in the Weyl-Heisenberg group),
which is equal to the coefficient of |K0〉 in the expansion of the
time-evolved state in terms of the Krylov basis, is a Gaussian
function of time of the form given in Eq. (55). In our case,

we can identify, δ = γ1 and � =
√

γ2

Ld . Furthermore, here


 ≈ O( 1
L2d ) and hence in the limit L → ∞, 
 → 0. In this

limit, it is possible to write the LC approximately as [12,103]

an ≈ γ1, bn =
√

γ2n

Ld
. (58)

In the exact expressions for the LC an’s for a particle moving
in the Weyl-Heisenberg group, there is an additional addi-
tive term, which increases with n. However, since this term
is proportional to 
, we have neglected it here and the an

coefficients are just constants. This term will contribute only
at the n → ∞ limit.

Now the SC of this bosonic field system after the mass
quench in the limit L → ∞ can also be obtained by taking
the 
 → 0 limit of the general formula for the SC for a
particle moving in the Weyl-Heisenberg group. We obtain the
corresponding expression for the SC to be

C(t )|L→∞ ≈ �2t2 = γ2

Ld
t2. (59)

This is the leading contribution to the SC, with all the sublead-
ing contributions being O( 1

L2d ) and smaller, and thus SC grows
quadratically with time after quench in noninteracting bosonic

field theory. However, since γ2 is finite and we are considering
the limit L → ∞, this quadratic growth will be apparent only
when we study the system a long time after the quench.
Furthermore, for higher spatial dimension of the system, this
growth may be smaller than that with lower spatial dimension,
even at late times. This example therefore makes it clear that,
whenever the PDWD of a system due to a sudden quench is
Gaussian, the associated CF is also a Gaussian function of
time, so that the corresponding SC grows quadratically with
time, with the coefficient of the growth being proportional
to the variance of the distribution. This conclusion is true
irrespective of the details of the system under consideration.

This example also nicely illustrates the usefulness of con-
necting the SC with the PDWD. To reiterate, due to the close
relationship between the CF and work distribution, the former
is fixed whenever the distribution of work under a quench is
specified. Hence the LC and the SC obtained from the CF
are also determined and can only have the same form for
different systems that might have similar work distribution
under a quench. Furthermore, this simple example of quench
in a noninteracting bosonic field theory can be used as the
starting point for studying the SC evolution in quenches of
general interacting field theories. Presumably, in the presence
of interaction, one needs to consider work distribution which
deviates from the Gaussian one for the noninteracting case and
SC will grow with a more intricate pattern compared to the
simple quadratic growth obtained here. This is an interesting
problem and we leave it for a future study.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have provided a generic relation be-
tween the statistics of work done on a quantum system under
a sudden quantum quench and the LC associated with the
Krylov basis constructed using the postquench Hamiltonian.
By using the relation between moments of the autocorrelation
function and the corresponding cumulants of the probability
distribution, we have shown that it is possible to express the
LC in terms of the physically measurable quantities, such
as the average, variance, and higher order cumulants of the
work done on the system through the quench. We believe
that this should be an important step towards understanding
the significance of these coefficients, specifically in a quench
scenario and circuit evolution in general.

We have applied our findings to two realistic examples,
with the first being the time evolution of the SC in a quenched
harmonic chain with nearest neighbor interaction. We have
shown that a0 is equal to the average of the work done on
the system, while b1 represents the standard deviation of this
work from the corresponding average. Using this observation,
we can explain the fact that SC for time evolution under a
critically quenched Hamiltonian diverges at all times, since
the corresponding average work diverges as well.

Similarly, for the second example we consider—a mass
quench in a bosonic scalar field theory in the limit of large
system size—we verified the same relation between the LC
and cumulants of the work done on the system. Since, in this
limit, the probability distribution is Gaussian, the SC is seen
to be growing quadratically with time. As we have discussed,
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this feature shown by the SC is true whenever this distribution
and hence the CF is Gaussian.

We conclude by pointing out a few potential future ap-
plications of the results presented here. First, as discussed
in the Introduction, our goal is to provide a unified descrip-
tion of observables studied in quantum quenches by relating
quantities from two different sets of such observables. Here
we have illustrated one such connection between a ther-
modynamic quantity (work distribution) and an information
theoretic measure (complexity of spread of a time-evolved
state) by relating the moments of the work distribution with
the LC corresponding to the postquench Hamiltonian evo-
lution. As an application, these relations can be useful to
understand the characteristics’ features of SC evolution and
the pattern of the LC in a chaotic system [12], as well as
the phenomena of information scrambling in such systems.
Furthermore, it will be interesting to see whether similar rela-
tions can be established between other information theoretic
quantities which are commonly studied in quenches, such as
the entanglement entropy or the out-of-time order correlator,
and thermodynamic quantities, e.g., the entropy or the heat
generated, etc.

Secondly, in this paper we have considered sudden
quenches in bosonic systems which can be diagonalized
via normal modes and, therefore, are noninteracting in na-
ture. As a future application, one can consider quenches
in realistic interacting many-body quantum systems, and
quenches in fermionic field theories, and see whether the
kind of relations between the work statistics and the LC
that we have established here are also valid in more general
quench scenarios as well [104]. This should further our un-
derstanding of the SC and LC in terms of thermodynamic
quantities.

Finally, the results presented in this paper offer the first
steps of understanding the significance of the LC, as well as
the SC, for time evolution after a sudden quantum quench.
Though here we have considered time evolution after a
quantum quench only, a similar construction can be envis-
aged for any general circuit evolution as well. In this case,
the relation between LC and the quantities analogous to
the average and variance of the work done can shed light
on understanding the link between the Krylov basis con-
struction, the SC, and the geometric formulation of circuit
complexity [13–16]. We hope to report on this in the near
future [105].
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APPENDIX A: MOMENTS FOR QUENCH IN A SINGLE
HARMONIC OSCILLATOR

In this Appendix we illustrate the use of the general for-
mula for the moments in Eq. (7) for quench in a single
harmonic oscillator with frequency ω0 to a new frequency ω.
This can then be easily generalized to the case of the quench
in a harmonic chain discussed in Sec. III.

To use the formula in Eq. (7) we need to evaluate the
overlap between the ground state before the quench and an
arbitrary number state |ñ〉 after the quench. For a quench in a
harmonic oscillator, this is given by [98]

〈
ñ|0〉 =

⎧⎨
⎩

[ (−η)n

U
(n−1)!!

n!!

]1/2
for n = 0, 2, 4, . . . ,

0 for n = 1, 3, 5, . . . .
(A1)

Here we have defined4

η = ω0 − ω

ω0 + ω
, U = ω0 + ω

2
√

ω0ω
. (A2)

Substituting this overlap in Eq. (7), we have the expression for
the moments of the work distribution for a quench in a single
harmonic oscillator as

Mn = (−i)n
∑

j=even

[
(η) j

U
( j − 1)!!

j!!

][(
j + 1

2

)
ω − 1

2
ω0

]n

.

(A3)

APPENDIX B: DERIVATION OF THE EXPRESSION FOR a1

In this Appendix we briefly describe the derivation of the
expressions in Eqs. (21) and (22) for the first three LC in terms
of averages of various powers of the work done W . First, we
write down the expressions for a0, a1, and b1 in terms of the
moments of the work distribution:

a0 = iM1, b2
1 = −M2 + M2

1 , a1 = iM3
1 − iM3

M2
1 − M2

− 2iM1.

(B1)

We have taken these expressions from well known tabulated
relations between the moments of the LC (see, e.g., Table 4.2
on p. 37 of [50]). Now, from Eq. (3), since G(t ) = 〈e−iW t 〉, we
get the expressions for the first three moments to be

M1 = −i〈W 〉, M2 = −〈W 2〉, M3 = i〈W 3〉. (B2)

Substituting these in Eq. (B1) above, we get the relations
given in Eqs. (21) and (22). An entirely similar procedure
can be used to obtain the expression for other LCs in terms
of averages of various powers of the work done using the
tabulated relations between the LC and the moments of the
CF.

4For convenience here we assume that ω0 < ω, i.e., η is negative.
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