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Statistical mechanics of monitored dissipative random circuits
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Dissipation is inevitable in realistic quantum circuits. We examine the effects of dissipation on a class
of monitored random circuits that exhibit a measurement-induced entanglement phase transition. This
transition has previously been understood as an order-to-disorder transition of an effective classical spin
model. We extend this mapping to include on-site dissipation described by the dephasing and ampli-
tude damping channel and study the corresponding 2D Ising model with generalized interactions and
develop diagrammatic methods for the exact Boltzmann weights of the bonds in terms of probability of
measurement p, the dissipation rate �, and the on-site Hilbert space dimension q. The dissipation plays the role of
Z2-symmetry-breaking interactions, while small measurement rates reduces the ratio of the symmetry-breaking
interactions to the pairwise interactions, conducive to long-range order. We analyze the dynamical regimes of
the Rényi mutual information and find that the joint action of monitored measurements and dissipation yields
short time, intermediate time and steady-state behavior that can be understood in terms of crossovers between
different classical domain wall configurations. The presented analysis applies to monitored open or Lindbladian
quantum systems and provides a tool to understand entanglement dynamics in realistic dissipative settings and
achievable system sizes.
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I. INTRODUCTION

A defining feature of many-body quantum systems in
contrast with the classical world is the phenomenon of en-
tanglement. The study of entanglement ranges from the
cosmic-scale objects such as black holes [1–4] to subatomic
particles that constitute everyday materials [5–8]. The entan-
glement entropy quantifies quantum correlations of a pure
quantum state, so a detailed understanding of its behavior
in realistic setups is essential to prepare states and ap-
paratus suitable for information storage, teleportation, and
quantum computation. Holographic entanglement entropy has
also received much attention in high-energy theory, partly
because it is challenging to define entanglement in a UV
complete field theory [9] and partly because within AdS/CFT
correspondence, the entanglement entropy of a state in a
strongly-coupled gauge theory is conjectured to be equal to
the area of an extremal surface in its dual gravity theory
[3,10–12].

Recently, random quantum circuits [Fig. 1(a)] have been
studied extensively due to their tractable representation of a
wide range of entanglement phenomena as well as equiva-
lences to other statistical physics problems [13–15]. Random
unitary circuits and driven systems can exhibit extensive
entanglement entropy and ballistic information spreading
[16–18]. The resulting highly entangled state was shown to
persist per quantum trajectory even when local monitored
measurements are made with a sufficiently small rate, and in-
formation remains encoded nonlocally. Remarkably, however,

*yl244@sas.upenn.edu

a transition from volume law to area-law entanglement has
been observed upon further increasing the probability of mea-
surement over a critical threshold. This transition is known
as the entanglement phase transition or measurement-induced
phase transition (MPT), and has been understood in terms of
a bond percolation transition through first mapping the nth
Rényi entropy to the partition function of an n!-state Potts
model on a triangular lattice [Fig. 1(b)] in the q → ∞ limit,
and then taking the replica limit n → 1, where a Potts model
turns into a bond percolation problem [19]. In the percolation
picture, the quantum volume-law phase corresponds to the
existence of a spanning cluster of the underlying lattice and
the area-law phase to the lack thereof [14,15,20].

Realistic implementations of monitored circuits in noisy
intermediate scale quantum (NISQ) devices necessarily in-
volve unwanted interactions with the environment. These can
be equivalently regarded as subjecting the qubits to nonunitary
quantum channels or Lindbladians, or as monitoring only a
subset of measurements while averaging over the rest of the
measurement outcomes. The volume-to-area-law transition as
a function of monitored measurements disappears in the pres-
ence of dissipation [21], which can be understood analytically
via dissipation explicitly breaking the replica symmetry that
needs to be spontaneously broken in the effective classical
theory [15,22–25]. At the same time, an understanding of the
transient entanglement dynamics prior to reaching the long-
time steady state remains important, to reveal limitations for
time scales and circuit depths for which useful computations
can be performed. The coarse-grained dynamics of random
unitary circuit has been under theoretical scrutiny through
the Kardar-Parisi-Zhang equation that describes the surface
growth in the effective classical theory [16–18], and how
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FIG. 1. (a) Brick-wall structure of the random circuits. Each or-
ange rectangle is a 2-qubit random Haar unitary gate. Grey diamonds
denote independent dissipation with fixed rate � and green circles are
independent measurement with probability p. Ancilla are not shown
in this diagram. This structure describes the system dynamics ρ(t ) =
· · ·U ′P

∑
i KiUρ(t0 )U †K†

i PU ′† · · · . (b) The underlying lattice of the
classical model that the quantum model is mapped to. The triangular
lattice can be obtained using the star-triangle relationship. The time
dimension becomes the vertical spatial dimension.

boundary dissipation and bulk probablistic dissipation affect
this dynamics is only recently studied in Clifford circuits
[23,26].

Our paper aims to tackle the effect of dissipation in
a controlled manner by generalizing the classical-statistical
mapping of unitary circuits with measurements to include
noisy quantum channels. We compute the annealed second
Rényi entropy and mutual information by mapping the quan-
tum circuit onto a generalized classical Ising model, which
includes both biasing magnetic fields and three-spin interac-
tions, and illustrate their emergence for both dephasing and
amplitude damping quantum channels. With the circuit initial-
ized in a product state, we then study the mutual information
dynamics the effective classical model at finite time with
dissipation-induced symmetry-breaking contributions and an-
alyze the dynamical regimes that emerge from domain wall
configurations. We then compare the classical behavior with
quantum simulations for small systems of qubits subjected to

the joint action of recorded measurements and dissipation to
an environment.

The rest of the paper is organized as follows: In Sec. II,
we introduce the setup of the ancilla-assisted dissipative
plus measurement circuit. This overviews a few different
representations of quantum operations, where the Lindbla-
dian describes continuous dissipation in realistic devices, the
ancilla-assisted picture is instrumental in our analytical map-
ping, and the operator-sum representation is implemented nu-
merically to simulate the open circuit. In Sec. III, we map the
second Rényi entropy of two open circuits—dephasing and
amplitude damping—to the partition function of a general-
ized Ising model. We study the relation between the quantum
parameters and classical parameters, the former of which con-
sists of the local Hilbert space dimension q, the probability of
measurement p, the dissipation rate �, and the latter of which
includes the external field h, diagonal pairwise bonds J13 and
J23, the horizontal pairwise bond J12 and the three-body inter-
action J123. With the classical picture in mind, we obtain the
energy-minimizing domain wall configurations from which
two dynamical scales of entanglement arise for a finite system,
the ballistic growth in a short time, and the exponential decay
that follows. We propose a modified classical picture for the
dissipative system in the thermodynamic limit, where the time
scales do not depend on the system size. In Sec. IV, we sim-
ulate the hybrid circuit with on-site amplitude damping and
present the short-time dynamics and the steady-state values
of the mutual information, which confirms qualitatively the
intuition and prediction of our classical theory on the second
Rényi mutual information of the quantum system. Finally, we
comment on possible future directions in Sec. V.

II. SETUP

The model consists of a chain of N qudits initialized
in a product state ρ(t0) = |ψ0〉〈ψ0|⊗N = 1

N (
∑q−1

i, j=0 |i〉〈 j|)⊗N ,
which is subjected to 2-qudit Haar random unitary gates U
that entangle every other pair of neighboring spins. A 2-qubit
Haar operator is a matrix drawn uniformly over the unitary
group U (q2).

After being subjected to a random unitary gate, each qudit
interacts with its environment independently at each site. The
operator-sum representation of this step is defined via the
Kraus operators {Ki},

ρ(t0 + �t ) =
∑

i

Kiρ(t0)K†
i . (1)

The Kraus operators considered in this paper can also be
described by the Lindbladian evolution by integrating the
following equation for finite time �t :

ρ̇ = γ

(∑
i

−1

2
{LiL

†
i , ρ} + LiρL†

i

)
, (2)

where γ is the dissipation rate, and Li are the jump op-
erators. The Lindbladian assumes Markovian dissipation,
with a vanishing correlation time for the bath. These two
equivalent descriptions (1) and (2) of completely positive
trace-preserving channels [27] can be transformed into each
other through the Choi-Jamikolski isomorphism [28]. We
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henceforth parametrize the dissipation rate via a dimension-
less parameter � for the Kraus operators, which can be
equivalently expressed as a function of γ�t for a Lindbladian
evolving the quantum state over a discrete time step �t .

In this paper, we consider two dissipation mechanisms:
dephasing and amplitude damping. Dephasing can be viewed
as an infinite-temperature bath that acts on the system qudits,
with Kraus operators

K0 = cos(θ )I,

Ki = sin(θ )
√

q

2(q − 1)
γi, i = 1, . . . , q − 1,

where γi are the diagonal generalized Gell-Mann matrices for
qudits q, and [q cos2(θ ) − 1]/2 = 1 − �q determines θ . For
qubits, q = 2, and the corresponding Lindbladian jump oper-
ator is the Pauli matrix σz, with � = (1 − e−2γ�t )/2. As the
jump operator is Hermitian, the density matrix of the system
is subjected to sequences of random unitary evolution and
the dephasing channel will evolve to a fully mixed state. The
derivation of the Kraus operators is included in Appendix A.

The amplitude damping channel is described by a set of
Kraus operators

K0 = |0〉〈0| + √
1 − �

q−1∑
i=1

|i〉〈i|,

Ki =
√

�|i − 1〉〈i|, i = 1, . . . , q − 1.

In the amplitude damping channel, the bath can be understood
as a zero-temperature environment that absorbs the energy
carried by photons emitted from the qudits relaxing to state
|0〉, or equally as a fully polarized bath of qudits. The corre-
sponding Lindblad jump operator for q = 2 is σ− = 1

2 (σx −
iσy). In contrast to the dephasing channel, the steady state
of the Lindbladian is pure and fully polarized. Therefore, it
reaches a nontrivial mixed state under joint unitary evolution
and dissipation even in the absence of measurements.

Yet another description of the open system is to introduce
an ancilla that is always initialized at some fixed state |0〉
and interacts with the principal system through an interaction
Hamiltonian that reproduces the dissipative dynamics after
tracing out the ancilla

ρ(t0 + �t ) = TrE (Uαρ(t0) ⊗ |0〉〈0|U †
α ), (3)

where U (t ) ≡ Uα = eiHα describes the interaction with the
environment. For example, the unitary evolution for the am-
plitude damping channel is generated by Hα = α(σ S

+σ E
− +

σ S
−σ E

+ ), where σ± are the raising/lowering operators for qu-
dits. One can then see that the dissipation rate is � = sin2 α.
This will be the primary example of dissipation considered in
this paper.

After dissipation, the measurement of each spin in the
z direction is performed with probability p independently,
and the probability of an outcome is assigned according
to the Born rule, pq = Pm,qρPm,q

TrPm,qρPm,q
, where Pm,q are projection

operator on to the q orthogonal states on the site m. The
unitary-dissipation-measurement process completes one dis-
crete time step. The next layer consists of the same procedure
with Haar random unitaries shifted by one site to create the

brickwork pattern in Fig. 1(a). Iterating this procedure creates
an ensemble of mixed steady states with different histories of
the quenched unitary U , the location of measurements, and
measurement outcomes, distributed according to the unitary
group, the probability p, and the Born rule respectively.

III. THEORY OF THE TRANSITION

The MPT has been understood through a mapping between
the entropic measures evaluated for n-replicated (1 + 1) di-
mensional qudit systems to the partition function Z of the 2d
classical spin model on a triangular lattice with fixed boundary
conditions [22]. Since dissipation is equivalent to measuring
and discarding the outcome, introducing dissipation does not
change the essence of the mapping, so we will review the
mapping here, and extend it to include dissipation.

The primary quantities simulated in prior study are the
von Neumann entropy S(ρA) of a subset A of the chain as
well as the mutual information I for a bipartition. The von
Neumann entropy can be calculated from Rényi entropies
of order n: S(n)(ρA) = 1

1−n log Trρn
A in the limit n → 1. This

quantity can be related to the partition function Z (n) of the
n!-state Potts model in the q → ∞ limit, so in the n → 1
limit, the entanglement entropy can be understood in terms
of bond-percolation or the Fortuin-Kasteleyn random cluster
model [19]. In random unitary circuits without the q → ∞
and n → 1 limit, a Sn × Sn � ZH

2 symmetry emerges from the
replica theory and is spontaneously broken [29]. The classical
spin value determines the different ways of connecting the
n replicas at every site, and a microstate in the spin system
constitutes one complete history of the replicated qudit chain.

The replica limit n → 1 is crucial in producing the correct
universality class of the measurement induced phase transi-
tion. Nevertheless, the free energy of the Ising model can still
illuminate the new type of entanglement dynamics present in
a dissipative monitored circuit, analogous to analyses without
the replica limit in [23,29]. To capture entanglement, we com-
pute the annealed Rényi mutual information. Although it is a
classical information measure, it reveals quantum correlations
as the total thermal entropy is subtracted. Beyond mutual
information, deciding the separability of a mixed state is an
NP-hard problem [30]. Common measures for mixed-state
entanglement are the negativity or the logarithmic negativity
[31]. However, computing the negativity of the state requires
more than two classical states per site, i.e., more than two
replicas. This can be done in principle and will be simplified in
q → ∞ limit, see Appendix B. Empirically, the dynamics and
the steady-state values of mutual information and negativity
are almost identical (see Appendix C), which also validates
entanglement dynamics predicted from the analytic calcula-
tion of the mutual information.

In the rest of the section, we will first review how to
compute the Rényi entropy of the random circuit of qudits
in which the dissipation is in the form of the dephasing
channel, by mapping it to an effective spin model. The only
difference between the measurement and the dephasing chan-
nel here is that after the ancilla and the on-site qudits are
coupled completely, the ancilla is projected when a measure-
ment is performed and traced out while the system dissipates.
Then we compute the second Rényi entropy of the amplitude
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damping channel using the Kraus operator representation.
Compared to hybrid unitary circuits, the circuit with dissipa-
tion can be mapped to an Ising model with general three-body
interactions on downward pointing triangles of the result-
ing triangular lattice, beyond the purview of exact solutions
[32]. This mapping is exact when n = 2, but note that for
n � 3 positivity of the classical Boltzmann weights cannot
be guaranteed. We then directly use the Boltzmann weights
to compute possible domain wall configurations in different
time regimes of the quantum system, which translates to the
vertical extent of the corresponding 2D classical magnet. We
finally estimate the dynamical time scales of the second Rényi
mutual information for transitions between different domain
wall configurations in finite system size N .

A. The dephasing channel

The open quantum circuit contains a qudit chain with q
states {|1〉 , |2〉 , · · · , |q〉} on each site and 2-qudit Haar ran-
dom unitary matrices U ∈ U (q2) that act on neighboring spins
as the orange boxes in Fig. 1(a). The average of the von
Neumann entropy [33] over the Haar measure is simply

EU [SA] = −
∫

U
dUTrρA(U ) log ρA(U )

= ∂

∂n

∣∣∣
n→1+

logEU [Tr(ρn)]. (4)

The right-hand side is not a properly quenched averaged n-th
Rényi entropy over the Haar ensemble but can be viewed as
an annealed Rényi entropy. In this paper, the “Rényi index”
is conflated with the number of replicas, i.e., the n → 1 limit
will indeed give the von Neumann entropy, but without taking
the limit, it does not give a properly averaged nth Rényi en-
tropy, but an “annealed” version of the entropy-like quantity,
and is lower bounded by the nth Rényi entropy. For simplicity,
it will be referred to it as the nth Rényi entropy and it should
be understood that all analytic averaging stays annealed in
the replica formalism until n → 1 is taken. There is another
similar line of replica calculation where the Rényi index and
the number of replicas are independent [20,23]. One can take
both limits at once to obtain the von Neumann entropy, or only
the replica limit to obtain the Rényi entropies.

The unitary evolution acting on the replicas will be a tensor
product of n Haar matrices U ∈ U (q2), i.e., U ⊗ U † ⊗ · · · ⊗
U †, and averaging over the Haar ensemble results [34] in a
simpler network that hosts only n! degrees of freedom for each
σ and τ ∈ Sn on each site

(5)

where wg(στ−1, q2) is the Weingarten function, which
bridges the group of unitary matrices of size d × d
and the symmetric group on q letters Sq. It is a poly-
nomial function of d of most degree q, defined over
Sq as

wg(σ, d ) = 1

q!2

∑
λ

χλ(I)2χλ(σ )

sλ,d (I)
, (6)

where σ ∈ Sn, λ is a partition, χλ is the character of the parti-
tion, and sλ,d is the dimension of the irreducible representation
of the unitary group associated with λ [34]. In the quantum
model, the values of σ and τ represent different configura-
tions of how the replica indices are connected locally. In the
classical picture, they are simply the different spin states in
the group Sn. The unitary evolution is followed by dissipation.
We choose here an ancilla representation where every qudit
on the principal Hilbert space is entangled with an ancilla
initialized at |0〉. The ancilla lives in a Hilbert space of q + 1
states {|0〉 , |1〉 , · · · |q〉} and becomes entangled via the unitary
gate Rα =∑q

i=1 |i〉〈i| ⊗ e−iαXi where Xi = |i〉〈0| + |0〉〈i|. The
strength of the interaction is controlled by the dimensionless
parameter � = sin2 α [22]. After the application of Rα , the
ancilla degrees of freedom are traced out independently at
every site. Tracing out the environment is averaging the state
of the principal system over the ensemble of measurement
outcomes, which is a simple statistical averaging and requires
no replica trick.

The measurement step is operationally similar to but
fundamentally different from dissipation. The ancilla gets
projected onto its computational basis |i〉m (with each ba-
sis state describing a trajectory), which can be carried out
by Nφ[ρ] =∑q

i=0 |i〉〈i|mρ|i〉〈i|m. The von Neumann entropy
of the subsystem A can therefore be formally computed as
the annealed conditional entropy between the system M and
A [22],

EU [SA] = ∂

∂n

∣∣∣∣
n→1+

S(n)
A (7)

where

S(n)
A = S̃(n)

AM − S̃(n)
M (8)

is the difference between the Rényi entropies of the sub-
systems AM and M after the ancilla are projected onto the
trajectory specified by m,

S̃(n)
X = logEU Tr{Nφ[ρX ]n}. (9)

The average von Neumann entropy 〈SA〉 is recovered only
when n → 1. However, the S(n)

A is substantially simpler to
compute for fixed n. As we are interested in the understanding
qualitative features of for small-system dynamics, we focus on
calculating S(2)

A as well as a corresponding generalized mutual
information measure, and compare results to small-system
quantum simulations.

B. Dephasing channel

Combining the above steps, the effect of dissipation fol-
lowed by measurement can be compactly expressed by the
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Boltzmann weight of the diagonal bond of the resulting hon-
eycomb lattice of classical effective spins, by contracting the

tensor formed by the diagonal bonds with the tensor formed
by the two connected spins σ and τ ,

w
(n)
d (σ, τ ) =

∑
�a,�b, �a′, �b′

=
∑

�a,�b, �a′, �b′

M (n)

�a�b, �a′ �b′σ�a�bτ �a′ �b′ =
∑

�a,�b, �a′, �b′

n∏
k=1

Tr
{
Nφ

[
e−iβXak |0〉〈0|eiβX †

bk

]

× δak ,a′
k
δbk ,b′

k
((1 − �) + δa′

kb′
k
�)
}
σ�a�bτ �a′ �b′ =

∑
�a,�b

{
(1 − p)n

n∏
k=1

(
(1 − �) + δa′

kb′
k
�
)

+ pn
n∏

k=1

δakbk δbkak+1

(
(1 − �) + δa′

kb′
k
�
)}

σ�a�bτ�a�b = qpn + (1 − p)n

×
∑
�a,�b

n−1∑
k=0

(1 − �)k�n−kq#conn(
∏

j δa j bσ ( j)δa j bτ ( j)
∏n−k

α δa jα b jα
) = qpn + q#cycle(στ−1 )(1 − p)n(1 − �)n + (1 − p)n

×
∑
�a,�b

n−1∑
k=0

(1 − �)k�n−kq#conn(
∏n−1

j=0 δa j bσ ( j)δa j bτ ( j)
∏n−k

α δaαbα )
, (10)

where #conn(·) is the function that counts the number
of connected components of the argument and #cycle(·)
counts the number of cycles of the argument. For ex-
ample, fix n = 2, σ = τ = (12). The exponent of q in
the k = 1 term is #conn(

∏2−1
j=0 δa j bσ ( j)δa j bτ ( j)

∏2−1
α=0 δa jα b jα

=
#conn(δa0b1δa1b0δa0b0δa1b1 ) = 1. Without the

∏n−k
α δaαbα

term,
the connected components are the same as the number of
cycles, which would be 2. The cycle structure only depends
on στ−1, which has Sn × Sn symmetry, while the connected
component depends on σ and τ independently and there is
no apparent symmetry associated with the counting of fixed
points of στ−1. This is the replica symmetry breaking that
leads to the disappearance of MPT in dissipative systems
[22,23]. The tensor notation is adopted from the previous
study [22]. In the tensor network picture, the α gates connect
all the legs between τ and σ , which makes up one connected
component, and there are no more cycles. Naturally, the per-
mutations with more fixed points, or more cycles of length
1, will have more connected components. Since the identity
I ∈ Sn fixes every index, its Boltzmann weight is larger than
any other spin value and the spin symmetry is broken. When
� = 0, the third term in (10) drops out and the expression
again only depends on the cycle structure of στ−1, restoring
the symmetry.

Because the weights from the Weingarten function can be
negative, an extra step must be taken to ensure that the statis-
tical model is sensible. Half of the spins can be summed first,
resulting in a spin model defined on a triangular plaquette,
such as the one in Fig. 1(b). With dissipation, integrating out
τ or σ first can, in principle, yield distinct magnetic models

for the remaining spin σ or τ , respectively, while representing
the same quantum behavior. We choose the former, with the
Boltzmann weight of a triangular plaquette given by

(11)

This is the star-triangle relation. The three-body weight is al-
ways positive for n = 2 and positive under certain conditions
on p and q for general n � 3 [22].

The last step that completes the mapping is to impose the
correct boundary condition. The qudit chain is initialized the
same way at every site and across different replicas, which
means that the bottom boundary of the classical is open and
its Boltzmann weight wbottom is 1. The boundary condition
at the top is determined by the subregion A for which the
entropy is computed. Recall that the quantities of interest are
S̃(n)

AM and S̃(n)
M after (5) and (7) are combined. The former has

the subregion B traced out before replicating, while the latter
has both A and B traced out before replicating. To write S as a
linear function of the replicated density matrix so that it can be
substituted into the replica trick in (4), one can insert I ∈ Sn

in the subregion that needs to be traced out first, and insert
C(n) ∈ Sn in the subregion where the Rényi entropy needs to
be computed. The first term in (7) can be identified with the
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partition function

EU [〈Trρ (n)
AM〉] = EU

[
Tr
{(
C (n)

A ⊗ I(n)
B ⊗ C (n)

M

)
× 〈ρ(U )1 ⊗ · · · ⊗ ρ(U )n〉

}]
= wtop

(
C(n)

A , I(n)
B ,C(n)

M

)∑
{�σ }

∏
i

wn
3

({
σ i

1, σ
i
2, σ

i
3

})

= Z (n)
AM , (12)

where the subscripts of the partition function Z means the
spins in the AM subregion of the boundary are pinned in a
different direction from those in B, which are in the I ∈ Sn

direction. For instance, when n = 2, all the spins in the subre-
gion AM point down and the spins in the subregion B point up,
by convention. Therefore, combining (4), (7), and (12), one
can compute the von Neumann entropy (7) as the free energy
difference between two spin models with different boundary
conditions,

EU [〈SA〉] = ∂

∂n

∣∣
n→1+

[
log Z (n)

AM − log Z (n)
M

]
= lim

n→1

1

n − 1

[
F (n)

AM, − F (n)
M

]
. (13)

The limit is difficult to take as it requires a general expression
of the right-hand side as a function of n. In the confined
phase, which is the low-temperature limit of the classical
model with the Sn × Sn � ZH

2 symmetry, the mixed boundary
condition induces at least one domain wall and the entropy
hence becomes directly associated to the free energy of the do-
main wall. In graph theory, this domain wall is a minimal-cut
surface in the graph with edges weighted by wg and wd , and
its existence in the tensor network construction of AdS/CFT
gives a means to calculating the von Neumann entropy of the
boundary subregion homologous to this surface [3,10].

For a mixed state, the mutual information I = SA + SB −
SAB between subystems A and B provides a measure for
quantum correlations in the system. As the limit n → 1 is
analytically challenging, we focus on S̃(2)

X as discussed above,
which gives the annealed second Rényi mutual information,

Ĩ (2)
A:B := S(2)

A + S(2)
B − S(2)

AB

= S̃(2)
AM − S̃(2)

M + S̃(2)
BM − S̃(2)

M − (S̃(2)
ABM + S̃(2)

M

)
:= F (2)

A + F (2)
B − (F (2)

AB + F (2)
∅
)
. (14)

The numerics has shown that the critical exponents and the
critical probability of measurement do not depend on the
Rényi index [35]. The calculation, therefore, simplifies to
approximating the free energies of the Ising model FX ≡ S̃(2)

X
as a function of the quantum parameters in different limits of
the system size and time, for different boundary conditions
that are determined by X . We take A and B to be bipartitions
of the top boundary of the statistical model and the subregion
M does not need to appear since it is fixed in the direction
I ∈ Sn in every term. Furthermore, F∅ = S(n)

M represents the
spin model with the entire top boundary fixed to be I ∈ Sn.
This term is necessary to compute the conditional entropy
and it functions as a constant shift in the mutual information.
We note that the Rényi entropies and its generalized annealed

FIG. 2. Classical parameters as a function of the parameters in
the quantum model, with p = 0.1, q = 2.

versions do not satisfy subadditivity, so the corresponding
mutual information can be negative [36]. Alternative gener-
alizations of mutual information have been proposed such as
the Petz Rényi mutual information or the Rényi divergence
[36,37], the study of which will be left for future work.

With the boundary conditions established, we are now
ready to map the twice-replicated open quantum circuit
(n = 2) above to the Ising spins defined the downward
pointing triangular plaquette with arbitrary interactions. The
Boltzmann weight on one plaquette is

w(σ1, σ2, σ3) = e−βE (σ1,σ2,σ3 )

:= exp{h0 + h1σ1 + h2σ2 + h3σ3 + J12σ1σ2

+ J23σ2σ3 + J31σ3σ1 + J123σ1σ2σ3}. (15)

Here, J123 is the coupling between the three spins for a
downward-facing triangle, the Ji j are the pairwise couplings,
hi describe effective external magnetic fields, and h0 is a
normalization. Each of these effective parameters depends
on the measurement and dissipation rates p and �, as well
as the qudit dimension q. All eight parameters are defined
via the weights for eight distinct configurations of triangle
spins w(σ1, σ2, σ3), where σ1, σ2, and σ3 are taken to denote
the top left, top right, and bottom spin of downward-pointing
triangles. Combining the triangles into a triangular-lattice
Ising model, the total magnetic field acting on each spin is
h =∑3

i=1 hi because every lattice spin is at the corner of three
downward triangles.

We illustrate how the classical parameters behave as one
adjusts the quantum parameters � and p respectively in Fig. 2
and Fig. 3. In the absence of dissipation, all the symmetry-
breaking terms hi and J123 are 0, which recovers the spin
model in [22]. Increasing the probability of measurement p
weakens pairwise interactions, eventually reaching a transi-
tion from ferromagnetic order to disorder. When � > 0, the

FIG. 3. Classical parameters as a function of the parameters in
the quantum model, with � = 0.001, q = 2.
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symmetry-breaking terms hi and J123 become nonzero, and the
probability of measurement p decreases bias terms at a much
faster rate than the pairwise interaction couplings (Fig. 3). We
will see similar effects of p and � for the amplitude damping
channel in the next subsection.

C. Amplitude damping channel

Now consider the amplitude damping channel. The reader
who only wishes to know the consequence of the calcu-
lation, i.e., the entanglement dynamics described by the

domain walls rather than the details of using of replica
symmetry-breaking tensor diagrams, can skip to Sec. III D.
This channel is commonly used to model spontaneous emis-
sion processes, e.g., the qudit chain is coupled to a polarized
zero-temperature bath, which forces the system qudits to col-
lapse to |0〉. The Kraus operators for the channel are {K0 =
|0〉〈0| + √

1 − �
∑q−1

i=1 |i〉〈i|, Km = √
�|m − 1〉〈m|}q−1

m=1. To in-
troduce these to the mapping, we replace the ancilla couplings
(α gates) by a sum over Kraus operators. The weights are
computed from contracting

∑q−1
m=0 Km,a′

iai K
†
m,b′

ibi
, i = 1, . . . , n

with the σ and τ tensors, weighted by the same coupling to
the measurement ancillae. One obtains the following:

(16)

The first bracket in the product (16) explicitly breaks the
replica symmetry. In the dephasing channel, the identity I ∈
Sn will give the highest Boltzmann weight because it has the
most connected components. In this channel, the same struc-
ture is imposed by the Ki terms, favoring the configuration I
that maximizes the number of total connections of the delta
functions. To simplify the weights from (16), we create the
following diagrammatic rules. The terms from K0 has the two
following contributions—the stub for δai0s and the legs for
δaia′

i
s,

(17)

where the stub is contracted with the state |0〉, which gives
the sum 1. The straight legs live in the (q − 1) dimensional

Hilbert space with the states {1, . . . , q − 1}

(18)

Each term above is accompanied by a factor of (1 − �). The
contraction of (17) and (18) between different replicas yields
0. The tensor and tensor contraction associated with the oper-
ator Ki is

(19)

where the circles with the minus sign ensure that a′
i =

ai − 1 and b′
i = bi − 1. The diagram is always accompa-

nied by �. The upper legs of the circle live in the Hilbert
space spanned by {|0〉 , . . . , |q − 2〉} and the lower legs by
{|1〉 , . . . , |q − 1〉}, both having one fewer dimension than the
straight legs from K0. This means that in the cross terms, the
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contraction between the Hilbert space {|0〉 , . . . , |q − 2〉} of
K0 and {|1〉 , . . . , |q − 1〉} of Ki gives q − 2.

The contractions shown above occur when the output ket
a′

i and bra b′
i are identified within each replica, i.e., when the

spin points in the ↑ direction. From this, we can calculate the
diagrams that contribute to the weight w(↑↑) in the Ising case
(n = 2) as the following:

(20)

Factors of 2 are introduced due to the invariance of the tensor
contraction under the exchange of the two replicas. When
the brackets connect different copies, as a general rule, any
connected component contributes a factor of q − 1, except for
those involving a stub (17), which contributes 1, and when the
(18) is connected to the upper leg of (19), which contributes
q − 2. The other weights can be derived similarly,

(21)

FIG. 4. Classical parameters as a function of the parameters in
the quantum model in the amplitude damping model, with p =
0.1, q = 2.

(22)

(23)

We note that the diagrams illustrate how to generalize the
weight computation for general n > 2, but the positivity of
the Boltzmann weights is again not guaranteed.

At small values of � and p, the Ising model representation
of the emission channel behaves similarly to the dephasing
channel. This can be understood as the principal function of
dissipation at small � is making the quantum state mixed
regardless of the specific dissipative mechanism. At small
enough �, dissipation increases the biasing terms and de-
creases pairwise interactions, as can be seen from Fig. 4. As
� increases, the bath ultimately forces the quantum system
into a fully polarized state. At very large �, the parameters of
the two classical models have very different behaviors, which
illustrates that the two steady states, 1

N I
⊗N and |0〉⊗N , of the

open quantum circuits are drastically different, as a result from
interacting with an infinite-temperature and zero-temperature
bath.
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FIG. 5. Classical parameters as a function of the parameters in
the quantum model in the amplitude damping model, with � =
0.001, q = 2.

The dependence of the individual couplings on p at � =
0.001 are shown in Fig. 5. As p increases, the symmetry-
breaking h and J123 are quickly suppressed to orders of
magnitude smaller than Ji j , which restores the long-range or-
der in the pairwise Ising model on the triangular lattice [22,32]
and nudges the dissipative system towards larger steady-state
entanglement. This suggests sweet spots, which, although
obeying area laws for mutual information and entanglement
negativity, yield maximal prefactors for their asymptotic be-
havior by virtue of competition between dissipation and
measurements. The consequences for the mutual information
will be further analyzed in the next section.

D. S̃(n)
X and domain walls

We now turn to extract the mutual information Ĩ (2) from
domain walls that form for different boundary conditions in
(14). Without dissipation, the free energy of domain walls
scales with the subsystem size N/2 in the small-p ferromag-
netic phase for FA and FB while FAB and F∅ remain trivial,
which results in an entanglement volume law.

At finite �, the situation becomes richer: The energy of
boundary-enforced domains with spins that are anti-aligned
to the bias field and three-spin interaction now scales with
the domain area rather than just the domain wall length. The
enclosed area is a product of the subsystem size and the time-
like direction, and preferable domain wall configurations will
therefore sensitively depend on time. Furthermore, FAB can
favor hosting domain walls as well. The expected area laws in
the steady state must consequently result from the cancellation
of free energies from different boundary conditions.

1. p = 0 measurement limit, t → ∞
We start by reviewing the limit of an unmonitored circuit

at long times and use the exact dependence of the Boltz-
mann weights on (p, �) to deduce the saddle point of the
classical model with different boundary conditions and in
the two-dimensional limit for the classical model, to extract
the steady-state behavior of the mutual information. This is
tractable as there is no entropic contribution to the free en-
ergy of the model. At p = 0, � �= 0, the classical system will

FIG. 6. The energy of each plaquette in the Ising model (12)
mapped from the dissipative open circuit. � is set to 0.1 to exaggerate
the Ising symmetry breaking in the weights.

minimize the area spanned by , because will always

cost less energy from Fig. 6. Even though domain walls are
energetically costly, in the thermodynamic and at long times,
the bulk will be fully ↑ polarized regardless of the boundary
condition. All domain walls therefore stick to the top bound-
ary and determine the Rényi mutual information (14). After
subtracting a system-spanning domain wall in FAB from two
half system domain walls in FA and FB, only a contribution
from the boundary between subsystems A and B remains.
This means that the mutual information obeys an area law, as
expected. We carry out the infinite q expansion of the domain
wall configuration explicitly in Appendix B. From Table I, the
leading order of 1

q to the Rényi mutual information is

(24)

The factor of 2 comes from the periodic boundary condition
in the spatial direction of the quantum model. The diagrams
in the third line are the classical configurations close to the
last time slice of the random circuits [Fig. 1(a)] and the dark
regions mark the downward spin clusters. The corresponding
quantum state is a product state in spite of the infinite number
of on-site degrees of freedom, which is expected when the
system only scrambles and dissipates, wherein the unitary
scrambling accelerates the dissipation since the local infor-
mation dissipates globally.

When q < ∞, the mutual information receives correction
in p, �, and 1

q , which turns out to be negative. This is not
prohibited because Rényi entropies do not satisfy subaddi-
tivity. Its negativity is heuristically an extreme case of the
“decoupling principle” [14,38], where quantities like Trρ2

AB
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may encode more information than Trρ2
A or Trρ2

B combined,
because the former contains interactions between the subsys-
tem A and B. This may especially be true for systems that
interact with a bath since measuring the subsystem A reveals
“less information about B than 0”, where 0 is the decoupling
principle in the � → 0 limit. The naive Rényi mutual infor-
mation can be computed in terms of Boltzmann weights of
the individual plaquette (Fig. 6)

Ĩ (2)
A:B(p = 0, q, � > 0) = 2 log

(
w(↑↓↑)w(↓↑↑)

w(↓↓↑)w(↑↑↑)

)
, (25)

The case (p = 0, � = 0) is excluded because in this limit
w(↓↓↑) = w(↑↑↓) = 0, which means the horizontal domain
wall costs infinite energy, and the picture breaks down. On the
other hand, for � = 0, the mutual information will be in the
volume-law phase because there will be no domain walls for

homogeneous boundaries and the energies of and

are 0,

(26)

where −2 log w(↑↓↑) would be the prefactor of the volume-
law growth for the mutual information.

2. p > 0, t < t∗
A (short-time regime)

Introducing measurements makes the system more en-
tropic, lowering the free energy of the classical model and the
entanglement in the quantum model, but the free energy is still
dominated by energy (p < pc). As seen from Sec. III C and
Fig. 6, the measurement probability p decreases the strength
of the bias field and three-spin interactions.

We analyze the domain wall configuration in FA by study-
ing the energetic and entropic contributions of two symmetric
random walkers that start from the top (t = tfinal) AB bound-
ary. First, we eliminate the possibility of a horizontal domain
wall because it incurs a high-energy cost, as seen from the
Boltzmann weights in Fig. 6, and will hence be unstable to
the following fluctuation

(27)

as the latter configuration is energetically much cheaper.

Therefore, the allowed moves for the walkers will be

and at short time scales, which means that the domain

wall must connect the top t = tmax and bottom (t = 0) bound-
aries. Within time t , the total number of sample paths is 22t .

FIG. 7. The prefactor of the extensive part of the second Rényi
mutual information of the dissipative quantum circuit.

However, not all walks have equal energies, and we estimate
the energy of the two parallel walks as it is the most entropic
choice amongst the 22t paths while keeping the energy iden-
tical, which makes up a macrostate with well-defined free
energy. The parallel constraint halves the number of paths,
which will underestimate the domain wall fluctuation so the
actual entropy of the state is bounded between 2t log 2 and
t log 2. We therefore denote the entropic correction as λt with
log(2) � λ � 2 log(2). We note that for much larger �, do-
main wall configurations must instead minimize the domain
area with anti-aligned spins, but we focus here on � � p < 1.
Similarly, FAB and F∅ must both remain fully polarized as a
horizontal domain for FAB is too costly, and hence increase
linearly with time. Collectively, the mutual information grows
linearly, which follows from the free energy difference per
unit time �E as

�E (p, �) = − log
w(↑↓↑)w(↑↓↓)

w(↑↑↑)w(↓↓↓)
. (28)

This needs to be corrected by the entropy growth t log 2
per random walker. Therefore, the total mutual information
growth reads

(29)

Termed the entanglement velocity [17], v2(p, �) is shown in
Fig. 7 as a function of dissipation and measurement rates
for parallel walkers λ = log(2), which shows that they both
smoothly slow down the entanglement growth. The growth in
free energy here is the same mechanism as the entanglement
growth of the Rényi entropy in the case without dissipation,
but twice in value. Each Rényi entropy has its own velocity vn

that is the prefactor of the ballistic surface growth predicted by
the KPZ equation, followed by the subleading correction t1/3

that accounts for the fluctuation [14,17,23,26,38]. A bound on
the growth of the mutual information would be difficult to es-
timate because the speed at which S(n)

A and S(n)
AB are separately

bounded and with opposite signs. In principle, the estimated
velocity for Rényi index n > 1 can be negative at large p;
however, the above domain wall analysis breaks down for
large p as entropy dominates the free energy.
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FIG. 8. The rescaled crossover times t∗
A/N for finite system size

N (right). The system size used is N = 250.

3. p > 0, t∗
A < t < t∗

AB (intermediate-time regime)

For FA and FB at longer times, the pair of domain walls that
traverse the time direction will instead transition to one that
traverses the spatial direction, i.e., it starts and ends on the
same boundary. First, the two random walkers can now cross
via low-energy diagonal moves and hence terminate. Second,
the domain with spins aligned in the direction disfavored by
the symmetry-breaking terms h and J123 will be minimized for
longer times, making a domain wall that starts and ends on the
top boundary energetically favorable.

When the system size N is sufficiently small, the free
energy that includes the entropy λt in the previous subsection
is appropriate since t for this configuration can be on the same
order as N . After t∗

A , a different domain wall configuration for
FA can appear, which consists of diagonal domain walls that
encloses a V-shaped region of ↓ like that in FA(p = 0, � = 0).
Entropic contributions are suppressed as the following fluctu-
ation on the laterals of the triangles

(30)

incurs an enormous energy cost for small p due to substituting

by .

Equating the free energies of the short and intermediate-
time domain wall states

(31)

defines the time scale t∗
A via the solution of

− t∗
A

(
log w(↑↓↑)w(↑↓↓) + N − 2

2
log w(↓↓↓) + λ

)

= −1

2

(
N

2
− 1

)2

log w(↓↓↓) − N log w(↓↑↑)

−
[

N

2
t∗
A − 1

2

(
N

2
+ 1

)2]
log w(↑↑↑) (32)

where only the region where the two saddle points differ is
equated in the free energy expression above which consists of
Nt∗

A
2 plaquettes; the rest of the state would be uniformly ↑. The

solution of t∗
A is plotted in Fig. 8. This t∗

A is proportional to
the system size N . t∗

A is shortened with increasing p and �.

FIG. 9. The crossover time t∗
AB at various probability of measure-

ment �, which is independent of the system size. The size used to
produce the plot is N = 250, As N increases, the curve starts to
flatten and deviate at large �. The dashed red line (1/�) is a guide to
the eye.

This together with the decrease in the entanglement velocity
v2 predicted in Sec. III D 2 explains why circuits with higher
rate of measurement and dissipation form less entanglement
even at short times. We note that in the thermodynamic limit
N → ∞ as well as in the large � limit, or when N� � 1, the
domain wall will stay closer to the top boundary because the
free energy scales with the area of ↓, which is proportional to
Nt , and t∗

A will instead be system size independent.

4. p > 0, t > t∗
AB (long-time regime)

Another dynamical crossover in the mutual information
happens when the saddle point of the homogenous ↓ boundary
turns from all ↓ to having a small island of ↓ close to the
top, enclosed by V-shaped vertical boundaries. This happens
in a finite-size system and the time scale can be estimated by
setting the free energies of the two configurations to be equal.

For a finite system, the vertical domain walls plus can

cost less energy than the horizontal domain wall so one can
imagine a typical state is one that zigzag along the waist, but

if there are more zigzags, there must be more that are

costly. We approximate the energetic cost of such a configu-
ration with a single V shape,

(33)

which defines an equation for t�
AB

− Nt∗
AB log w(↓↓↓)

= (N − 2)2

2
log w(↓↓↓) − (2N − 4) log w(↑↓↓)

− 2 log w(↓↓↑) −
(

Nt∗
AB − N2

2

)
log w(↑↑↑). (34)

Its dependence on � and p is shown in Fig. 9. The leading
terms in t∗

AB consist of N
2 + 2(log w(↓↑↑)−log w(↓↓↓))

log w(↓↓↓)−log w(↑↑↑) where the
second term scales with 1/�. For finite systems at a small
dissipation rate, i.e., when 1 � �N , the second term will
dominate, and t∗

AB scales with 1/� with a weak dependence
on N . This is the limit when most of the energy cost in FAB
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comes from the domain wall, which agrees with the analysis in
dissipative model without measurement [24]. However, when
�N � 1, the first term will dominate and t∗

AB will plateau at
N/2 when � surpasses 1/N . This happens when the energy

incurred by the expanding area populated by becomes

larger than that of the diagonal domain walls. This is the only
allowed saddle point when the dissipation only occurs on the
boundary [24]; without measurement, the horizontal domain
wall is forbidden. We are assuming similarly that for a finite
system, the energy cost of a horizontal domain wall outweighs
that of a ↓ region. We will consider the horizontal domain wall
in the thermodynamic limit in the next discussion session.
Note that t∗

AB is not defined for � = 0 because in that limit
SAB = 0 at all times.

To summarize the dynamical regimes of finite-size random
circuits with or without measurement or dissipation, a key
ingredient is the restriction on domain wall growth in both
the space and the time dimensions. Measurement and dissi-
pation play very different roles when they are both present
in the system; independently, however, either will reduce the
entanglement of the steady state. When dissipation is absent,
one recovers the well-known cases of entanglement growth
in (monitored) random unitary circuits, shown in Fig. 10(a)
and entanglement does not decay after a saturation time linear
in N .

With dissipation but without measurements, entanglement
grows ballistically initially as the domain wall stretches in
time, but then decays to zero because FAB grows longer than
FA given that nucleating a domain wall without an appropriate
boundary condition is more difficult. In the end, the classical
domain wall will stick to the final time slice as it is the
most energetically favorable, shown in Fig. 10(b). The unitary
dynamics does not create more entanglement between the
disparate elements within the principal system, and the steady
state becomes classical.

With both measurement and dissipation, the initial growth
phase does not change. However, measurement and dissi-
pation have competing effects in the statistical mechanical
model and on the steady state. The dissipation causes the
mutual information to fall off as in the previous case, but the
measurement keeps the state from being completely mixed. In
the classical model, the measurement leaves some room for
↓ in a finite system, but compared to the nondissipative case,
its domain wall will be closer to the top boundary due to the
biased fields, so the free energy or the mutual information in
the quantum model is less than that of the 10(a) and more than
that of 10(b), as seen in Fig. 10(c).

5. Comments on the time scales as N → ∞
For finite-size systems, we have found two timescales t∗

A
and t∗

AB, where the former depends on N . This cannot happen
in the thermodynamic limit, because the entanglement should
not grow linearly forever when it is coupled to an infinite
bath. However, the difference between finite and infinite N is
that the parametric energy difference between the domain wall
configurations (Fig. 6) does not matter at finite times as long
as the difference does not increase with the system size. This
means that for FAB, O(1) number of diagonal domain walls

FIG. 10. The dynamics of the mutual information when (a) p �
0 and � = 0, (b) p = 0 and � > 0, and (c) p > 0 and � > 0 for finite
systems.

are allowed as long as it does not grow with the horizontal
extent of the system N , even if the boundary condition does
not induce a domain wall, and the free energy is lowered by
the domain walls due to their fluctuations. The energy of the
diagonal domain wall, which scales with 2t is infinitesimal

compared to the bulk uniform , which scales roughly with

tN and it will be compensated by nucleating a region of

around t = 0 slice that costs less than , which scales with

t2. The transition to the steady state will then be the same for
FA and FAB, both of which will be described by changing from
a trapezoid at short times to a hanging horizontal domain wall
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in the long time limit,

The time of transition t∗ can be obtained by setting the two
free energies to be equal and in the large N limit, it is the same
time scale where the FA in (29) becomes that in (24) with finite
depth and it will be N independent. If we ignore the depth of
the hanging horizontal domain wall, we could estimate this by

t∗ = log w(↓↓↑) − log w(↑↑↑)

log w(↓↓↓) − log w(↑↑↑)
, (35)

where costs � more than , so this time scale again

scales with 1
�

, as expected [24].
This new configuration also has an impact on the entan-

glement velocity calculated in Sec. III D 2, which is now time
dependent. The extra diagonal domain walls and the larger

area in FAB than that in FA will reduce the velocity in time

and changes the sign of the velocity at a finite, N-independent
cross-over time ts. This is difficult to estimate as it depends
on the number of diagonal domain walls/trapezoids, even
if it is constrained to be O(1), and on the depth at which
the trapezoids emerge. A scenario in which the sign of the
velocity can change is the following:

where the top row describes the state changing in FA and
the bottom row describes the state changing in FAB. The left
frame occurs at the extremely short time t < t∗

A . The mid-
dle frame describes a decrease of the mutual information as
the number of domain walls in FAB outnumbers that in FA

and FB combined. This change is accompanied by enhanced
fluctuations as vertical domain walls will merge areas of the
same spin in the vicinity of each other. Nevertheless, this ar-
gument about the relation between the two timescales ts < t∗
provides an intuitive picture of how area-law entanglement
in the steady state is reconciled with ballistic short-time en-
tanglement growth in an infinite system. The entanglement
dynamics should be comparable to that in Fig. 10(c), with tA
substituted by ts and tAB by t∗.

While the above rough estimations of crossover times for
small systems largely ignored entropic contributions, these
are needed for computing precise values of the mutual in-
formation in the steady state. Prior studies on monitored
unitary circuits has mapped the resulting fluctuating domain
walls onto a directed polymer problem, with projective mea-
surements acting like random attractive potentials V (x, t )
in the bulk [14,38]. The kinetic energy of these polymers
comes from the thermal fluctuation that we have ignored. The
boundary condition plays a vital role in computing mutual
information. If the mixed boundary condition does not change
the bulk state of the lattice magnets, e.g., the completely
polarized state, or the nature of the polymers, the mutual

information Ĩ (2)
A:B will only keep an O(1) area-law contribution.

In the statistical mechanical description, this means that the
polymers in FA and FB would be treated as two halves of the
polymer in FAB, and FA + FB − FAB − F∅ = −ĨA:B � 0, since
entropy increases when a substance is divided into multiple
parts. This is not the correct assumption, because the polymer
in FAB is a closed contour in the bulk, and cutting it will
result in two free floating polymers with much larger entropy
than the polymers pinned at the two ends in FA and FB. If
the energy still roughly cancels up to O(log N ) between the
classical models with different boundary conditions, we quote
the free energy difference between the two types of polymer
in capillary wave theory that is 5

2 log N [14] in the case where
measurement is absent. However, the final mutual information
does depend on p and � in [23] and our Sec. IV, which will
require revisions to explain the steady-state entanglement in
a monitored dissipative system. We note that in our case,
dissipation acts like a long-range gravitational attraction to the
top boundary that wants to minimize the area of ↓ enclosed.
This long-range potential controlled by � will compete with
the other localized potential V (x, t ) controlled by p in deter-
mining the surface tension, and hence the saddle points. A
refinement of the classical theory is therefore required to have
analytic control over the steady-state mutual information.

IV. NUMERICAL SIMULATIONS

To check the qualitative dynamical trends as a function
of p and � for the quantum system, we now simulate the
monitored random-unitary + amplitude damping circuit for
small qubit chains up to N = 14 following Fig. 1(a) using
exact many-body density matrix trajectories. At every layer,
we first apply the Haar random unitary matrix to the two-
nearest-neighboring qubits, then evolve individual qubits by
the Kraus operators for the dissipative channel. Subsequently,
each qubit is subjected to a projective measurement at ran-
dom times, governed by the probability p. The circuit can be
considered as a Trotter decomposition of a monitored qubit
chain that slowly dissipates into a Markovian environment.
To improve the numerical efficiency of the density matrix
evolution, we optimize tensor contraction between gates and
qubits, which halves the run time compared to brute force
matrix multiplication for the open N-body quantum systems.
The dimensionless quantity �, the probability of making mea-
surements p and the system size N determine dynamics and
steady-state entanglement, which we study by computing the
von Neumann mutual information

IA:B(ρ) = S(ρA) + S(ρB) − S(ρ) (36)

via simulating the per-measurement-sequence density matrix
trajectories and averaging over measurements. {A, B} is an
equal-size partition of the system with periodic boundary con-
dition. Complementary behavior for the logarithmic negativity
is shown in Appendix C. Results are presented in the parame-
ter space (p, �) where p ∈ [0, 0.6] and � ∈ [10−4, 10−2]. The
range of probabilities encompasses the critical pc that have
been observed and predicted for pure-state trajectories with
monitored measurements [22,39,40]. We focus on weak but
non-negligible dissipation rates; for instance, � = 10−3 has
been used to test error propagation in noisy intermediate scale
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FIG. 11. The dependence of the purity of the total steady state on
the probability of measurement for different �.

quantum (NISQ) devices [41]. While simulable system sizes
N remain too small to resolve critical points and scaling ex-
ponents for pure-state dynamics, the central object of interest
in our paper is the competition between dissipation and moni-
tored measurements in governing the short-time entanglement
dynamics, to identify peak regimes of mutual information
growth, useful for optimizing entanglement generation in
quantum systems in a noisy environment. The behavior of
the dephasing channel is similar to the amplitude damping
channel at small �, which we will not analyze in this paper.
The difference kicks in only at large � when the qubit chain
completely thermalizes with the environment.

We choose an initial pure product state, which generically
evolves into a mixed state as a function of � while simulta-
neously subjected to measurement purification (Fig. 11). For
large � � 1, the state will evolve into the unique ground state
of the Lindblad operator. A higher rate of dissipation renders
lower purity at a given probability of measurement, as long
as � < 1, while measurements purify the states (Fig. 11).
Another limit where the steady state is pure is when the
dissipation rate is large enough, e.g., � > 1, the state will
evolve into the unique ground state of σ⊗N

− .
The dynamics of the von Neumann mutual information and

the negativity agree qualitatively with the picture presented
in Sec. III D from the perspective of the effective classical
theory for small systems N . At very short times, the entan-
glement grows ballistically. We fit a linear function to the
growth within time N/2 [Fig. 12(a)], estimated by t∗

A . The
resulting entanglement velocity v1 decreases with increasing
p and �, shown in Fig. 13, similar to v2 predicted in Fig. 7.
The increase in the mutual information terminates smoothly
around a time proportional to t∗

A that is shortened by both
measurement and dissipation, seen directly from the dynam-
ics [Fig. 12(a)]. Note that the numerical saturation time tsat,
estimated in Appendix C, upper bounds t∗

A in Sec. III D 3 for
fixed (p, �).

At longer times, the dissipative evolution shows an ex-
ponential decay, the time scale of which is controlled by
1/�. Larger probability of measurement prevents the steady
state from becoming completely mixed while shortening the

FIG. 12. (a) The dynamics of the mutual information within the
same time frame at three decades of dissipation rates �. The color
bar marks the probability of measurement p. The system size is
N = 10 qubits. Each point in time is averaged over 200 independent
trajectories over random Haar measure, projective measurements
randomly located in space-time, and the random measurement out-
comes. (b) The mutual information of the steady state as a function
of the probability of measurement at different values of dissipation
rates. The color bar marks the dissipation rate �.

waiting time. This 1/� waiting time behavior in the Lindblad
system again agrees qualitatively with the estimate for the
crossover time t∗

AB for the second Rényi entropy deduced from
the classical model, which was shown to be proportional to
1/� and decreases with increasing p. This decay describes
the thermalization process of the total state ρAB with the
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FIG. 13. The fitted velocity of increase in the mutual information
at short times in system size N = 10.

environment after tsat, when most of the entanglement be-
tween A and B is formed.

Finally, in the steady state, the mutual information dis-
plays a nonmonotonic dependence on the probability of
measurement p [Fig. 12(b)], which decreases the entangle-
ment between A and B, however, purifies the final state defined
on AB. Unlike measurement, dissipation is only destructive in
forming long-range correlations between A and B and drives
the system towards a mixed state because individual qubits
entangle with the environment as opposed to other qubits. The
unitary still scrambles the information very quickly within the
mixed state but cannot purify the state or retain the quan-
tum correlation from the interaction with the environment.
As a result, the mutual information at fixed p monotonically
decreases in �. The qualitative dependence of the entangle-
ment as a function of p and � are consistent with previous
findings [23], which includes the peak around p = 0.1 with
varying system size. For the purpose of quantum computing,
the relevant time regime with useful entanglement is therefore
bounded by t∗

A . The estimate of t∗
A for small accessible system

sizes is, therefore, the main quantity of interest of this paper.
Without dissipation, measurement only serves to destroy

entanglement, evident from the mutual information curves
that descend with increasing probabilities of measurement
in the left panel of Fig. 14 and the monotonic decreasing
negativity in Fig. 15(b). However, with dissipation, the steady

FIG. 14. The scaling of the mutual information with the system
size when � = 0 and when � = 0.01.

FIG. 15. The dependence of the logarithmic negativity of the
subsystem of half the size on the probability of making measurement
p, where the different colors mark (a) the dissipation rate � and
(b) the different system sizes. In (b), the system size used in the left
panel is N = 10.

state lacks any entanglement when no measurement is made,
with vanishing mutual information at p = 0 for all dissipation
rates �. As the probability p increases, some coherence of
the quantum state is recovered and peaks emerge at the sweet
spots where the mutual information is maximized. This en-
tanglement maximizing measurement rate grows slightly with
increasing �, and the value of the peak decreases when �

is increased. In the left panel of Fig. 14, the dissipationless
qubit system is in the volume-law phase when p < pc ≈ 0.16
and area law when p > pc. In the presence of dissipation, the
mutual information obeys an area law in the steady state and
stops growing with the system size at large times (Fig. 14,
right panel). There is no transition in the probability of mea-
surement in the case of random unitary circuits since though
the classical analysis where the probability of measurement
weakens the symmetry-breaking interactions, but is unable
to completely recover the symmetry of the system before
the domain walls become deconfined. To the extent that we
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FIG. 16. The estimated peak time divided by the system size. The
system size giving this plot is N = 10, so there is not enough time to
resolve the saturation time at � = 0 and � = 10−4.

understand the classical model, there is no symmetry to pro-
duce a sharp phase transition.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we extend the mapping between random
unitary circuits and classical spin models to include both
dissipation and measurements. In this mapping, dissipation
turns on a bias field and three-body interactions on downward-
pointing triangles in the effective Ising model, and the mutual
information can be computed from free-energy differences
between different boundary conditions. We focus on small and
accessible qubit system sizes and qualitatively estimate the
short-time, intermediate-time, and steady-state limits of the
entanglement behavior via calculating a generalized second
Rényi mutual information. While the measurement-induced
phase transition is absent at any finite dissipation strength,
the Ising effective classical-statistical model for two replica
is sufficient to qualitatively understand distinct entanglement
dynamical regimes. These emerge from distinct domain wall
configurations as finite times of the effective Ising model. In
classical theory, measurements act to push the model towards
a restored Ising symmetry that was broken by dissipation,
encouraging the growth of diagonal (vertical) domain walls.
Conversely, dissipation serves to push the domain wall to-
wards the pinned boundary, to minimize the area of the spins
that anti-align with the biasing terms. The crossover times in
the quantum entanglement can be estimated by the change in
the saddle point of the classical model as time direction is
stretched longer. For finite systems N at low-dissipation rate
�, the entanglement first grows linearly for a time propor-
tional to N with a � and measurement probability p-dependent
velocity, then decays for a time inversely proportional to the
dissipation rate � to reach a steady state with area-law en-
tanglement. We finally simulate the open system using exact
diagonalization for small system sizes and confirm the qualita-
tive behavior of time scales and entanglement speed that was
estimated in the classical theory. We find in agreement with
predictions that the short-time dynamics in small systems can
create extensive entanglement, which can be usefully targeted
for quantum computation, with a bound on achievable time
scales estimated from the effective classical model.

An obvious way to improve the presented mapping is to
compute quantitative measures of entanglement for mixed
states such as negativity and Petz Rényi mutual information
[36,37], which satisfies subadditivity and only depends on a
single classical state instead of several with different bound-
ary conditions. This requires a general n-replicated quantum
system to a classical model for arbitrary n and is difficult in
the current scheme as the number of spin states increase with
the number of replicas, but can in principle, be carried out
via a diagrammatic expansion. Another approach is to extend
previous analyses using directed polymers by adding long-
range potentials that mimic the effect of dissipation. Improved
simulations of the open quantum using tensor network [42]
or stabilizer formalism [23,24] will also permit more refined
computations of time scales and transitions.

On a different front, although the tensor network mod-
els in holography are still limited in applications so far, the
calculation of entanglement entropy is much more tractable
in this setup, and it has been fruitful to refine the struc-
ture of bulk spatial slices by the entanglement properties of
boundary subsystems. The effect of measurement on the
boundary BCFT has recently been recognized as information
teleportation in the bulk in the context of MPT [43,44]. Ad-
ditionally, the recent progress in addressing the black hole
information paradox relies on coupling the boundary CFT to
a bath in addition to the proposal that AdS/CFT correspon-
dence itself can be understood as quantum error correction has
brought brand new insight in to the notion of bulk-boundary
mapping [3,45]. Our classical analytic picture of the dissipa-
tive circuit is a step towards understanding the bulk theory that
is dual to a CFT coupled to a bath.
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APPENDIX A: KRAUS OPERATORS FOR GENERALIZED
DEPHASING CHANNEL

The dephasing channel can be written as

�(ρ) = (1 − p)ρ + p
d−1∑
k=0

tr(Ek,kρ)Ek,k,

where Ei, j = |i〉〈 j| is the matrix unit, |i〉〈 j| is in the compu-
tational basis, and d = 2N is the dimension of the Hilbert
space. Its Kraus operators are the eigenvectors of the Choi
operator, which can be written as C� =∑i, j,i �= j |ii〉〈 j j|(1 −
p) +∑i |ii〉〈ii|p. As the column space of the Choi operator
is clearly spanned by states of the form |ii〉, we shorten the
repeated index |ii〉 → |i〉. The Kraus operators will be the
solution to the equation

(C�(ρ) − λI) |α〉 = 0

⇒ (1−p)
∑

j

〈 j |α〉
∑

i

|i〉 + (p − λ) |α〉 = 0. (A1)
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The vector equation will be 0 under two circumstances:
one is when the vectors |α〉 ∝∑i |i〉, which is an eigenvector
with the eigenvalue d (1 − p) + p. The other one is when
the coefficients of all the vectors are zero, i.e., λ = p and
(1 − p)

∑
j 〈 j |α〉 = 0 for any p. Since | j〉 is summed over an

orthonormal basis of the Hilbert space, to make
∑

j 〈 j |α〉 =
0, |α〉 needs to be a sum of vectors with coefficients of equal
magnitude and opposite signs. Since there can only be d − 1
linearly independent eigenvectors in this subspace, without
loss of generality, we write this set of eigenvectors with
eigenvalue p as {| j〉 − |0〉}d−1

j=1 , to which we must perform the
standard Gram-Schmidt orthonormalization procedure.

We use the following strong induction to show that or-
thonormalizing {|λ̃ j〉 = | j〉 − |0〉}d−1

j=1 gives the generalized
diagonal Gell-Mann matrices of SU (d ) [46],

λl =
√

2

l (l + 1)

⎛
⎝ l∑

j=1

Ej, j − lEl+1,l+1

⎞
⎠,

which, in our index convention, are

|λl〉 =
√

1

l (l + 1)

⎛
⎝ l−1∑

j=0

| j〉 − l |l〉
⎞
⎠.

Proof. The base case is |λ1〉 = 1√
2
(|0〉 − |1〉), which satis-

fies the form. Now assume that the form holds ∀l � l ′. Then
the l = (l ′ + 1)st orthonormal basis vector is

| ∼
λ̃l+1〉 = |λ̃l+1〉 −

∑
k=1

l 〈λ̃k〉 λ̃l+1 |λ̃k〉

= 1√
2

(|l + 1〉 − |0〉)

+ 1√
2

∑
k=1

l 1

k(k + 1)

(
k−1∑
i=0

|i〉 − k |k〉
)

= 1√
2

(|l + 1〉 − |0〉)

+ 1√
2

⎛
⎝ l−1∑

i=0

|i〉
∑

k=i+1

l 1

k(k + 1)
−

l−1∑
k=1

1

k + 1
|k〉
⎞
⎠

= 1√
2

(|l + 1〉 − |0〉)

+ 1√
2

l−1∑
i=0

(
1

i + 1
− 1

l + 1

)
|i〉 −

l−1∑
i=1

1

i + 1
|i〉

= 1√
2

(|l + 1〉 − |0〉) + 1√
2

(
|0〉 − 1

l + 1

l∑
i=0

|i〉
)

= 1√
2

(
|l + 1〉 − 1

l + 1

l∑
i=0

|i〉
)

.

Normalizing this by
√

〈∼̃
λl+1〉 ∼̃

λl+1 =
√

l+2
l+1 gives

|λl+1〉 =
√

1

(l + 1)(l + 2)

(
(l + 1) |l + 1〉 −

l∑
i=0

|i〉
)

.

Q.E.D.

Combining this with the other eigenvector with the eigenvalue
d (1 − p) + p, we obtain the expressions of the Kraus opera-
tors in Sec. II.

APPENDIX B: BOLTZMANN WEIGHTS IN THE
q → ∞ LIMIT

Due to the lack of spin symmetry from dissipation, the
number of distinct Boltzmann weights w3(σ1, σ2; σ3) prolif-
erates rapidly as n is increased. To simplify the analysis, we
take the limit of a large local Hilbert space dimension q → ∞,
which has previously been used to make the analytical con-
tinuation n → 1 tractable [17,20,24] and recovers the Potts
model limit. The Weingarten function has 1/q2 suppression in
the case when the σ3 and τ on the vertical bonds disagree, so
we only keep the contribution from τ = σ3 when computing
the three-body Boltzmann weight. Expanding w3(σ1, σ2, σ3)
in the leading orders of 1/q2, p, and � and assuming 1 > p �
� � 1/q2 > 0, one obtains

(B1)

104310-17



YUE LI AND MARTIN CLAASSEN PHYSICAL REVIEW B 108, 104310 (2023)

TABLE I. The Boltzmann weights of domain wall and spin configuration on a plaquette at the leading order of the inverse on-site
Hilbert space dimension 1/q. In the lower table, the reflection symmetry of each triangular plaquette is preserved, but the same domain
wall configuration have different weights, depending on the bottom spin orientation.

where the empty plaquette means that three spins on the corners are the same. Furthermore, only terms O(�) are kept. From

the expression above, the Boltzmann weights of and are equal without the � term, and the highest-order replica

symmetry-breaking term makes the weight of smaller by 4�. To see how dissipation affects the other spin configurations

on a plaquette, one must go to the next order in 1/q, where the replica symmetric (RS) part is

q3(1 − p)2((1 − p)2 + p2)
q4 − 1

(δσ1σ3 + δσ2σ3 − 2δσ1σ3δσ2σ3 ) (B2)

and the replica symmetry-breaking (RSB) part is

(B3)

where vertices drawn without a spin mean that the spin can
point in either up or down, and repeated empty vertices in the
plaquette mean that they all take the same spin but can point
in either direction. We organize the Boltzmann weights of the
other configurations in leading order 1

q in Table I.
Configurations that receive RSB correction at the same

order as their RS configuration are the ones with τ = σ3 =↓.
Heuristically, this follows from dissipation turning on a mag-
netic field in the up-spin direction [23,25]. However, we note
that the weights account for a combination of a magnetic field
pointing in ↓ direction and a three-body term that favors the
↑ direction as shown in Sec. III C. Having no domain wall

costs the least energy, which is roughly 0 for or 4�

for . The vertical domain wall costs log(q) if the bottom

spin on the plaquette is ↑, and log(q) + 2� if the bottom
spin is ↓. Lastly, the horizontal domain wall costs 2 log q and
2 log q + 4� with the same dependence on the bottom spin. If
the number of ↑ and ↓ spins are not equal, then the free-energy

penalty compared to the homogeneous ground state scales
like N2 log(1 − 4�) ≈ −4N2� where N2 is the size of the 2D
lattice.

APPENDIX C: SCALING OF ENTANGLEMENT
AND NEGATIVITY OF THE QUANTUM CIRCUITS

As mentioned in the main text, the logarithmic negativity
has similar behavior to the mutual information, and it is an
actual entanglement monotone, i.e., it does not increase under
completely positive trace-preserving maps [31]. It is defined
as

NA:B = log Tr
√

||ρTA ||2, (C1)

where TA means the partial transpose on subsystem A. The
logarithmic negativity is additive and computes the amount
of entanglement distillable. The steady-state logarithmic neg-
ativity also forms a peak in probability of measurement p, and
monotonically decreases as a function of �. An increase in �

from 10−3 to 10−2 halves the maximum of log negativity at
the pmax ≈ 0.1. At � = 10−2, the negativity and the mutual
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information cannot scale linearly with N at any p and the
system is deep in the area-law phase.

Due to the noise in the dynamics and finite system size,
we hand pick tsat where the mutual information saturates or
peaks. The transition time is picked such that before tsat, the
mutual information monotonically increases in time, and after
tsat the only tolerable increases in mutual information is due

to fluctuation. The saturation time has the same trend as t∗
A in

Sec. III D 3, which decreases with p and �. Due to the small
system size, the saturation time is too close to differentiate the
� = 0 and 10−4 cases, and as � increases, the curves of tsat

develop a meaningful difference (See Fig. 16). We expect that
the saturation time will smoothly decay to 0 as a function of p
and �.
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