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Analytical theory of cat scars with discrete time-crystalline dynamics in Floquet systems
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We reconstruct the spectral pairing theories to enable analytical descriptions of eigenstate spatiotemporal
orders in translation-invariant system without prethermal conditions. It is shown that the strong Ising interactions
and drivings alone stabilize a class of “cat scar” eigenstates with tunable patterns, which lead to local discrete
time-crystal (DTC) dynamics. They exhibit Fock space localization and long-range correlations robust against
generic perturbations in a disorder-free scenario. In particular, we introduce a symmetry indicator method to
enumerate cat scars, with which a set of unexpected inhomogeneous scar patterns are identified in addition to
the ferromagnetic scars found before. These scars enforce DTC dynamics with rigid inhomogeneous patterns,
offering a viable way to verify underlying eigenstate properties experimentally. Further, we prove rigorously that
the strong Ising interactions enforces a selection rule for perturbations of different orders, which imposes an
exponential suppression of spin fluctuations for Floquet eigenstates. Based on this property, three analytical
scaling relations are proved to characterize the amplitudes, Fock space localization, and lifetime for DTC
dynamics associated with cat scars. We further provide two practical methods to check whether certain DTC
phenomena are dominated by single-spin dynamics or due to genuine interaction effects.
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I. INTRODUCTION

Discrete time crystals (DTC) have emerged as an intriguing
phase living far from equilibrium [1–19]. Phenomenolog-
ically, it features a reduced period nT (1 < n ∈ Z) for
observables compared with system driving periods T , thereby
giving rise to the concept of spontaneous breaking of discrete
time translation symmetry. Up to now, numerous systems with
different underlying mechanisms have been proposed to ren-
der such a phenomenon, both theoretically and experimentally
[13–17]. Here, we focus on a particular mechanism dubbed
spectral pairing (SP) [2,3], which remarkably fixes the spec-
tral gap � = 2π/nT between pairwise localized eigenstates,
although individual levels shift considerably under pertur-
bations. That locks the oscillation period to 2π/� without
fine-tuning. SP transcends Landau’s paradigm in handling
spontaneous breaking of time translation symmetry, and ex-
emplifies unique principles of highly nonequilibrium nature.

Currently, one central topic for DTC systems is to dis-
tinguish period-doubled oscillations attributable to different
reasons. In doing so, a useful method of checking different
initial states has been proposed recently [15,20]. For instance,
in many-body localized (MBL) systems, SP is expected to oc-
cur for all eigenstates, and therefore initial states of arbitrary
pattern exhibit local DTC oscillations with original patterns
unchanged [15]. Also, for prethermal systems with Landau’s
spontaneous symmetry breaking [21], eigenstates close to low
energy density sectors (i.e., for a ferromagnetic ground state)
would exhibit SP. Correspondingly, initial states belonging to
the same energy sector (i.e., starting from a ferromagnetic
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product state and include very few spin flips) would generate
DTC dynamics, with the spins diffusing into the same patterns
as the ground state for prethermal effective Hamiltonians (i.e.,
a ferromagnetic pattern). In contrast, initial states residing far
away from the low-energy-density sector (i.e., an antiferro-
magnetic pattern) would show quick thermalization without
dynamics. Their distinctions are emphasized by a new set of
experiments recently [9–12].

Meanwhile, there is a third category of translation-invariant
clean systems violating both MBL and prethermal conditions,
where the mechanism for possible DTC oscillations [22–30]
may be more controversial. By a similar analysis of check-
ing various initial states, pioneering explorations have found
several rather different characters for DTC type of dynamics
therein. For instance, numerics indicates that up to intermedi-
ate scales, homogeneous ferromagnetic initial states rendering
period-doubled oscillations may be associated with SP of rare
nonergodic eigenstates [31,32], dubbed “scars” [33,34]. These
oscillations are shown to survive for exponentially long-time
eL with the increase of system size. Meanwhile, initial states
deviating from ferromagnetic ones may show diffusive os-
cillations that are attributable to other reasons. They include
prethermal systems with approximate global U (1) symme-
tries [20,35–37], and domain wall confinement [38] induced
by extended Ising interaction ranges. A common feature in
this class of systems is that the DTC lifetime is typically
a fixed power-law of certain parameters, insensitive to the
change of system sizes. To provide a more definitive under-
standing of the aforementioned phenomena, as suggested by
several previous works [29,32], it is desirable to formulate
an independent analytical theory of eigenstate SP beyond
the schemes for MBL and prethermal cases. The new theory
is expected to yield a more comprehensive enumeration of
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possible scars with rigid SP. Also, it may offer more rigorous
predictions to quantify the robustness of eigenstate SP in
generic clean Floquet systems, and help distinguish certain
similar phenomena that are attributable to different reasons.

In this work, we explore such a possibility by presenting
a reformulated SP theory. It generalizes our previous analysis
[39] beyond few-body systems to achieve an analytical de-
scription of DTC type of dynamics in intermediate-scale spin
systems. Our major results include two aspects.

First, we offer a practical way to quickly enumerate eigen-
states with SP out of an exponentially large Hilbert space.
Specifically, for translation-invariant systems, a symmetry in-
dicator method is proposed, which predicts a coexistence of
ferromagnetic (FM) and antiferromagnetic (AFM) scar pat-
terns, with the latter largely unappreciated previously. In a
more generic setting where sublattices are included, symmetry
indicators further allow for identifying a richer variety of spin
patterns for local DTC oscillations. We further show that an
arbitrary scar pattern can be precisely engineered by weakly
breaking translation symmetry. Specifically, the amplitudes of
interactions are still homogeneous, while the signs of interac-
tion on different bonds are allowed to change in this situation.
As such, our theory may shed light on achieving on-demand
engineering of SP for eigenstates, without constraints in di-
mensionality, interaction ranges, and the requirements of fully
randomized interactions in contrast to the MBL cases.

Second, to quantify the robustness of these scar-enforced
DTCs, we obtain for the first time analytical scaling relations
showing pairwise Fock space localization and fixed spectral
gaps for scars, which are robust against generic perturbation
of strength λ up to system size L � 1/λ2, i.e., L � 102 for
typical λ ∼ 0.1. Specifically, the amplitudes of DTC oscilla-
tion are shown to be dominantly rescaled by the first-order
spin fluctuations. Such an amplitude rescaling, for separable
perturbations, can be computed in a purely analytical fashion
without fitting. Meanwhile, the Fock space pattern localiza-
tion length, as well as the DTC lifetime scaling, are shown
to be bounded by counting how many spins are interact-
ing in each term of the perturbation Hamiltonian—namely,
by just checking the general form of perturbations. These
scalings quantitatively characterize the eigenstate orders of
the long-range-correlated “cat scars,” named in analogy to
the Schrödinger’s cat eigenstates in MBL DTCs [3]. Sym-
metry indicators and scaling rules provide a generic way
long-sought-after to analytically characterize clean DTCs, es-
pecially to quantitatively compute their scaling behaviors with
explicit analytical formulas. We have compared the results
above against numerics for extensive number of examples,
and find good agreements in all cases.

This work belongs to a series of works initiated in Ref. [39]
aiming at an independent analytical description of possible SP
and eigenstate localization in systems with or without disor-
ders. We briefly discuss below the connection, distinctions,
and relative progresses achieved in this work compared with
the previous one.

Generically, SP is a property for pairs of eigenstates being
cat-like states. Such a state involves very small amounts (i.e.,
in our case, two) macroscopic Fock states, and therefore is
intrinsically associated with localization physics in many-
body Fock space. It was emphasized in Ref. [3] that pairs

of long-range correlated cat states could serve as independent
origins for discrete time translation symmetry breaking with-
out requiring the system to host any unitary symmetry [17].
The robustness of SP for long-range correlated cat states was
further confirmed in Ref. [2] where anti-unitary symmetries
were also broken. As such, although the original discussions
in Ref. [3] describe the situation where all eigenstates are
cat states—which necessarily means MBL by definition—it
is surely tantalizing to consider whether localized cat eigen-
states, as independent and essential mechanisms enforcing SP,
can be realized in other scenarios as well. Soon, it was found
that Floquet prethermal systems with Landau’s spontaneous
symmetry breaking [21,40] offers another platform to achieve
localized cat eigenstates. Compared with MBL DTCs, the
number of cat states in prethermal DTCs are relatively rare,
but these cat states could be achieved with more flexible
conditions regarding spatial dimensionality and interaction
ranges.

Following this direction of research, it is of interest to
further seek for alternative origins of cat eigenstates other
than those induced by MBL or Landau’s symmetry break-
ing. This effort may be especially useful in view of recent
progresses in a re-examination of localization physics. In
particular, a so-called avalanche mechanism [41–45] implies
that the previously proposed phase transition [46–48] between
thermal and MBL regimes may turn out to be a crossover, due
to proliferation of many-body resonances in thermodynamic
limits [49–54] (see, however, different viewpoints [55]). That
means what one would encounter practically in experiments
and numerics is a “prethermal MBL” within finite size and/or
timescales. In constrast, a true MBL phase may be either
absent [49,50,56], or occupy a much smaller parameter regime
[52,53]. As an alternative approach toward a more definite
understanding of localization physics, it may be worthwhile to
explore whether an independent eigenstate SP and localization
mechanism can be quantified rigorously from scratch, without
assuming other background mechanisms a priori.

Constructing a generic analytical theory of localization
physics once and for all in strongly interacting and strongly
driven systems could be rather challenging. Indeed, up to
now, a rigorous mathematical proof for Floquet MBL is still
pending discovery [17]. However, it may be more viable to
make progress by gradually generalizing the analytical frame-
work to include more generic features. As a continued effort,
this work qualitatively extends our previous constructions for
SP of Floquet-Bloch scars (FBS) [39] in few-body systems.
Cat scars reported here show different properties, and re-
quires new techniques to analyze SP in an intermediate-scale
setting.

First, there is a crucial distinction between the two types
of scars regarding in what space localization takes place.
FBS features the localization in many-body momentum space,
which naturally means that each FBS eigenstate is delocalized
in the real-space Fock basis. Therefore, FBS’s exhibit short-
range correlations, and require spatial translation symmetry
to protect their stability of SP—henceforth “Bloch” in the
terminology FBS. In contrast, cat scars in this work exhibit
pairwise localization in real-space Fock basis, and therefore
demonstrate long-range correlations. As such, cat scars could
endure perturbations breaking all crystalline symmetries.
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FIG. 1. Several known DTC phenomena surviving in different parameter regimes and contrasts of their characters.

Second, on the technical aspect, one major advancement in
this work is to derive a selection rule of spin-flip effects for
perturbations of different orders, which in turn legitimizes a
perturbative treatment of certain Floquet systems with essen-
tially gapless quasienergy spectrum. This is indispensable to
generalize our previous analysis for gapped few-body systems
[39] into intermediate scales.

Specifically, for strongly interacting systems where inter-
action strength is comparable with Floquet driving frequency,
the difference between the interaction energy of a certain
eigenstate E1 from that of scar eigenstate E0, i.e., �E =
E1 − E0, may be close to resonant frequency of the Flo-
quet driving, i.e., �E − m × (2π h̄/T ) → 0, m ∈ Z. Such a
many-body Floquet resonance may proliferate quickly with
the increase of system size L, where density of states ramps up
exponentially. At first glance, it may then appear inapplicable
to consider a perturbative treatment to prove the localization
and stability of a certain scar eigenstate.

However, a selection rule is derived in Sec. III B of this
paper, stating that the hybridization amplitude is suppressed
exponentially ∼ λδs for two Fock states differing by δs spin
flips, as enforced by the strong Ising interaction. Here λ�1
is the perturbation strength. Meanwhile, eigenstates are
grouped into different domain wall sectors, mutually showing
rather small hybridizations. Then, unless the interaction is
fine-tuned to the exact resonance point at λ = 0 for nearby do-
main walls sectors, such resonances for hybridizing different
Fock states are exponentially suppressed. We have demon-
strated the mathematically proved selection rules using more
intuitive illustrations, where eigenstate structures are shown

in terms of averaged domain wall number and quasienergy
for each Floquet eigenstate. By examining whether different
domain wall sectors are strongly mixed or not, we clarify
and confirm conditions for Floquet resonances to occur or
vanish.

It may be helpful to compare the cat scar DTCs introduced
in this work with several other known examples of DTC
systems. We briefly outline their distinctions in Fig. 1.

On the one hand, connections and distinctions between
cat scars and MBL DTCs are relatively straightforward. They
both survive in the strongly interacting regime where interac-
tion strength J is comparable to Floquet driving frequency ω.
Localization in these cases are both enforced by strong inter-
actions. For cat scar DTCs, the relevant eigenstates showing
SP is much more rare, typically of the order O(1), compared
with MBL DTCs where majority eigenstates are expected to
be cat states. Nevertheless, the requirement of such a sys-
tem is significantly more flexible in terms of dimensionality,
interaction range, and disorder strengths. Further, the spin
patterns for cat scars can be precisely controlled by chang-
ing the signs of interactions, thereby reducing the burden
of having interaction terms with large numbers of differ-
ent amplitudes. This could be particularly useful in current
noisy-intermediate-scale-quantum (NISQ) devices, because
engineering different two-qubit gates for fully randomized in-
teractions (i.e., in Ref. [9]) costs notably more resources than
having uniform interaction (i.e., in Ref. [57]), which in turn
may impact the number of qubits accessible in experiments.
While this work chiefly focuses on engineering two pairs of
cat states, a tunable number of cat states, in additional to the
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tunability of their patterns, can be achieved by including a
limited number of different interaction amplitudes (see the
examples in Sec. III A). Thus, cat scar DTCs could be viewed
as a new scheme featuring an on-demand engineering of
cat eigenstates using corresponding resources, which supple-
ments the scheme in MBL DTCs where both the number of
cat states and resource burdens are maximized.

On the other hand, it may be a bit more subtle to dis-
tinguish cat scar DTCs from prethermal ones with Landau’s
symmetry breaking. In particular, although Mermin-Wagner
theorem forbids a finite temperature phase transition of Ising
symmetry breaking in 1D with short-range interaction, it is,
however, possible for zero temperature symmetry breaking to
occur. Then, we may be tentative to ask: are the cat scars found
here associated with the Landau’s symmetry breaking at zero
temperature for certain ground states?

The answer, however, turns out to be negative. Here, it is vi-
tally important to note that the strong interaction for cat scars
violates prethermal conditions, such that a static prethermal
Hamiltonian cannot be defined in the first place. That leaves
Landau’s symmetry breaking irrelevant, either at finite or zero
temperature. Specifically, to involve Landau’s theory, it is
necessary to start from a static Hamiltonian to define a set of
thermodynamic quantities, such as conserved energy and tem-
perature. Such an effective Hamiltonian can only be obtained
in DTC systems if interactions are much weaker than the
Floquet driving frequency, namely, the prethermal conditions
are satisfied. For instance, in Ref. [21], it is shown that up to a
global spin flip, if all other parameters in the Hamiltonians are
much smaller than driving frequency (i.e., interaction JT �
1, longitudinal fields hzT � 1, etc.), it is possible to obtain
an approximated static Hamiltonian Heff by factoring out the
global spin flips UF = Pe−iHeff via unitary transformations. In
turn, this static Hamltonian Heff describes the ordering of sys-
tems up to the prethermal timescale ∼eω/J ∼ e1/JT , JT � 1,
and forms the basis to define Landau’s symmetry breaking.
Correspondingly, the prethermal Landau DTC dynamics de-
cays at the timescale t ∼ e1/JT , as the approximated effective
Hamiltonian description fails at this point. That means if
the prethermal condition is violated, as in our case JT ∼ 1,
one cannot arrive at the effective prethermal Hamiltonian in
the first place, leaving further discussions of Landau’s symme-
try breaking groundless. Then, we are forced to go beyond the
Landau’s scheme, and introduce the cat scar-enforced DTCs
attributable to the suppression of spin flips due to strong Ising
interactions, as quantitatively described by the selection rules.

Having compared cat scar DTCs with the other cases en-
forced by SP, we next briefly discuss the comparisons with
DTCs without SP. In principle, as emphasized in Ref. [20],
period-doubled oscillations without localized cat states gen-
erally would involve a diffusive dynamics, unlike the local
DTC oscillations with a fixed spin pattern for the systems
enforced by SP of cat states. In terms of early-time evolutions,
for diffusive systems, any initial states would quickly relax to
a homogeneous spin configuration on average, where exten-
sive numbers of different Fock states are involved. Then, the
system may undergo certain global spin oscillations with the
homogeneous patterns, and approximate conservation laws
such as U (1) symmetries may delay the decay of global oscil-
lations. In terms of late time dynamics, unlike systems with SP

where DTC oscillations would persist for exponentially long
time ∼eL, the diffusive cases typically host a lifetime being
certain fixed power-law insensitive to the change of system
size L.

In addition to discussing the distinctions between cat
scar DTCs with several known examples listed above, as
an application of the analytical framework constructed here,
we also aim at offering practical ways to distinguish the
many-body versus single-spin nature of DTC-like oscillations
within spatial-translation-invariant settings, especially based
on early-time dynamics accessible to experiments. Our con-
struction of SP theory here emphasizes the importance of
strong Ising interaction. That results in a stable many-body
cat scar robust against generic perturbations and shows rigid
DTC oscillations persisting for exponentially long time ∼eL.
In contrast, for certain weakly interacting system, a clean
DTC-like oscillation may emerge, which is instead dominated
by single-particle effects for early-time dynamics. In Sec. IV,
we would discuss such an issue in detail, and offer two spe-
cific perspectives to distinguish many-body versus single-spin
effects. We sketch the results below.

First, we suggest to check whether certain DTC phenom-
ena rely on fine-tuned single-spin echos. Specifically, a strong
longitudinal magnetic fields followed by slightly imperfect
spin flips in DTC models may add up into a spin echo for
individual spins, if the longitudinal field strength is close
to certain values. Such single-particle echos, when assisted
by weak interactions, may result in certain phenomena re-
sembling “dynamical freezing” [58–61] with prolonged DTC
lifetime as discussed in Refs. [20]. Further, without transverse
interactions in Ref. [20], the spin echo may even produce local
oscillations that very much resembles a stable many-body
DTC with SP. However, if one changes the longitudinal field
strength away from the fine-tuned echo limit, the DTC-like
oscillation is immediately suppressed, showing a strong de-
pendence on single-spin physics. In contrast, the cat scars
surviving in strongly interacting regimes are insensitive to
whether such single-particle echos occur or not.

Second, when perturbations only involve single-spin terms,
i.e., for transverse magnetic field perturbations, a weakly
interacting system may host emergent integrability for its
lowest-order effective Hamiltonian. The approximate integra-
bility results in a slow relaxation in the system’s early-time
dynamics. In contrast, for strongly interacting system, we
have obtained a rigorous effective Hamiltonian showing its
overall nonintegrable nature even at the lowest-order. It serves
as a double-check that for strongly interacting systems, DTC
oscillations are enforced by cat scars robust against generic
perturbations, rather than on model fine-tuned integrability.
Based on such an understanding, we suggest the inclusion
of two-spin terms into perturbations, which could sharply
distinguish the two cases. For weakly interacting systems
dominated by integrable effective Hamiltonians at early time,
adding interacting two-spin terms for perturbations drastically
accelerates relaxation and suppresses DTC-like oscillations.
In contrast, cat scar DTCs already live in the regime dom-
inated by many-body effects, and are insensitive to such
changes.

Finally, results in this work may help push forward ongo-
ing experiments. For instance, inhomogeneous DTC patterns
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found here offer a valuable opportunity to prove eigenstate
orders in clean systems based on early-time data, in parallel
to MBL cases [9–11]. This contrasts situations without Fock
space localization, where all initial states quickly relax to a
homogeneous pattern and only total spin oscillation exists.
Also, the coexisting FM and AFM patterns in scar-enforced
DTCs here are sharply distinct from prethermal cases, which
host only one of these patterns in low-temperature sectors
[12]. Such predictions may find applicability in platforms
of intermediate scales, including superconducting qubits
[9,10,62,63], nitrogen-vacancy centers [11,36], trapped ions
[7,12], and Rydberg atoms [64–66], all of which allow for
single-site manipulation and detection.

The remainder of this work is organized as follows. In
Sec. II we introduce a main model and briefly illustrate numer-
ically the signatures of cat scars and the DTC dynamics. Then,
the major contents for analytical framework is presented in
Sec. III. Further, the distinctions between single-spin and in-
teraction effects are elaborated in Sec. IV. And we conclude
in Sec. V. For intuitiveness of discussions, algebras are pre-
sented chiefly in the Appendix, while the main text would
focus instead on a more physical discussion.

II. EXEMPLARY MODEL AND CAT SCAR SIGNATURES

To be concrete, we consider a periodically kicked Ising
chain H0(t + T ) = H0(t ) constantly perturbed by H ′, namely,
H (t ) = H0(t ) + λH ′ with

H0(t )T

2h̄
=

{
(π/2)

∑L
j=1 τ x

j , t ∈ [0, T/2)∑L
j=1 Jjτ

z
j τ

z
j+1, t ∈ [T/2, T )

,

H ′T
2h̄

=
L∑

j=1

(
φτ x

j τ
x
j+1 +

∑
μ=x,y,z

θμτ
μ
j

)
,

φ2 +
∑

μ=x,y,z

θ2
μ = 1. (1)

That corresponds to the Floquet operator characterizing evo-
lutions to period ends as

UF = T e−(i/h̄)
∫ T

0 dtH (t )

= e−i
∑L

j=1(Jjτ
z
j τ

z
j+1+λ(φτ x

j τ
x
j+1+θxτ

x
j +θyτ

y
j +θzτ

z
j ))

× e−i
∑L

j=1( π
2 τ x

j +λ(φτ x
j τ

x
j+1+θxτ

x
j +θyτ

y
j +θzτ

z
j )), (2)

where T means time-ordering. Here τ
x,y,z
j are Pauli matrices

for spins at sites j = 1, 2, . . . , L. Uniform interaction Jj = 1
is taken unless specified otherwise. To reduce the effects of
model fine-tuning, numerical results are allowed to average
over random numbers φ, θμ ∈ (0, 1) to simulate generic per-
turbations. Then, perturbation strength is captured by a single
parameter λ. In the unperturbed limit λ = 0, spins are per-
fectly flipped periodically τ z

j (nT ) = (U †
F )nτ z

j U
n
F = (−1)nτ z

j .
A natural choice of observable is then the spatiotemporal
magnetization orders

M(nT ) = (−1)n

L

L∑
j=1

〈ψini|τ z
j (nT )|ψini〉〈ψini|τ z

j |ψini〉. (3)

FIG. 2. Two types of initial states (FM and AFM) leading to
clean DTC oscillations, where the AFM type was unnoticed before.
Flipping just one spin (denoted by red arrows) for the initial state
drastically reduces the life time, indicating scar physics. For L =
14, 16, 18, 20, we average data at each instant over 103, 103, 102, 101

samples of (φ, θx,y,z ), respectively, and λ = 0.05. Periodic bound-
ary condition is taken throughout this work to eliminate edge
effects.

DTC features a restored oscillation for λ 	= 0, as perturba-
tions are neutralized generically by interactions. That means
M(t ) will assume a constant value over time, representing
persisting period-2T spin flips. Crucially, M(t ) describes
oscillations of individual spins with respect to initial configu-
rations 〈ψini|τ z

j |ψini〉 at each site. Local information in M(t )
is indispensable to illustrate inhomogeneous DTC patterns
later.

We choose the model in Eq. (1) due to two considera-
tions. On the one hand, the major point of this work is to
analytically discuss the underlying mechanism for DTCs in
strongly interacting clean Floquet systems. Then, adopting a
model closely related to previous numerics and experiments
(i.e., for the unperturbed H0) would facilitate illustration and
comparison of the phenomenon. On the other hand, the pertur-
bation H ′ considered here is more generic than many previous
studies involving only a global spin tilting λ

∑L
j=1 τ x

j , i.e.,

resulting in evolutions e−i( π
2 −λ)

∑L
j=1 τ x

j for the first-half of
the period. We would show explicitly in Sec. IV that
such generic perturbations, especially for the two-spin terms
∼τ x

j τ
x
j+1, are vitally important to distinguish the following

two cases: (1) a cat-scar-enforced DTC robust against generic
perturbations, which lives in strongly interacting regimes,
and (2) some other period-doublings dominated by single-
particle physics, which sensitively rely on model or parameter
fine-tunings.

Let us gain some intuitions through exact diagonaliza-
tion of Eq. (1). In Fig. 2, we immediately see that both
FM and AFM initial states lead to stable DTC oscillations
persisting for exponentially long time. Contrarily, flipping
just one spin (denoted by red arrows) for the initial states
drastically shrinks the lifetime to t/T < 2π/λ ∼ 102. That
strongly indicates the coexistence of scars with FM and AFM
configurations.
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FIG. 3. Signature of cat scars. (a) IPR (blue dots) and DOS
(yellow shadow). The scars are around quasienergy eiE (�,FM) =
e−i[(π/2+1)L+π�] and eiE (�,AFM) = ±e−i[(π/2−1)L+π�], where SP quan-
tum numbers � = 0, 1. Scars feature exceptionally high IPRs
signaling their Fock space localization. (b) Scaling of mu-
tual information for the |1, AFM〉 scar for sites j = 1 and
j = L/2 + 1. Data in panel (a) consists of 1 sample only,
(φ, θx, θy, θz ) = (0.3858, 0.7395, 0.3944, 0.3857) with λ = 0.05,
while panel (b) data is averaged over many samples as in Fig. 2.

To characterize scars further, we state rigorously the con-
cept of SP, which refers to Floquet eigen-solutions UF |ωn〉 =
eiωn |ωn〉 satisfying two conditions. (i) Pairwise Fock space
localization, where a pair of eigenstates |ω1〉, |ω2〉 are dom-
inated by different linear combinations of just two Fock
product states |{s j}1〉, |{s j}2〉. Here we denote |{s j}〉 ≡ |s1〉 ⊗
|s2〉 ⊗ · · · ⊗ |sL〉, with τ z

j |s j〉 = s j |s j〉, s j = ±1. Due to or-
thogonality, other eigenstates involve vanishing overlap with
|{s j}1,2〉. (ii) Fixed spectral gap, where the frequency differ-
ence �ω = ω1 − ω2 of the eigenstate pair remains unchanged
under generic perturbations. With both conditions, a pertinent
Fock initial state |{s j}1〉 or |{s j}2〉 overlaps chiefly with the
spectral paired eigenstates, and results in oscillations of local
observables, i.e., 〈{s j}1|τ z

j (t )|{s j}1〉 ∼ 〈ω1|τ z
j |ω2〉ei�ωt + c.c.,

with locked frequencies �ω.
Accordingly, SP in clean systems can be efficiently cap-

tured by eigenstates’ inverse participation ratio IPR(ωn) =∑
{s j} |〈{s j}|ωn〉|4, as plotted in Fig. 3(a). Larger value of IPR

implies that an eigenstate |ωn〉 is dominated by fewer con-
figurations |{s j}〉, and therefore more Fock localized. While
majority eigenstates do show vanishing IPRs typical of delo-
calized clean systems, there are four scars with exceptionally
high IPRs hiding deeply inside the gapless Floquet spectrum
[see density of states (DOS) in Fig. 3(a)]. These scars maintain
a pairwise rigid quasienergy difference �ω ≈ π , satisfying
SP condition (ii). Further, the value 0.5 for scar IPRs indi-
cates that each scar is dominated by two Fock states. Such a
Schrödinger’s cat type of eigenstates exhibit long-range cor-
relations, which can be revealed by finite mutual information
(MI) I = S1 + SL/2 − S1,L/2 between distant sites [3]. Here the
entanglement entropy of a certain site Sj = −tr(ρ j ln ρ j ) is
obtained from the reduced density matrix ρ j = tr{sk 	= j}ρ for the
chosen eigenstate ρ ≡ |ωn〉〈ωn|. In Fig. 3(b), I → ln 2 surviv-
ing finite λ is illustrated for the |1, AFM〉 scar, as other scars
behave similarly. Thus, SP condition (i) is also confirmed.

Clean DTCs with unexpected AFM patterns call for a
practical algorithm to enumerate underlying scars generically.
Also, it is desirable to quantify the behaviors of these scar
eigenstates in a generic setting. For these two purposes, we
introduce an analytical framework below.

III. QUANTITATIVE PREDICTIONS FROM ANALYTICAL
FRAMEWORK

A. Symmetry indicators for cat scar patterns

We would start our analysis from the unperturbed limit
λ = 0, and observe the eigenstate structures for later appli-
cations. Under spatial translation invariance, a major property
for the Floquet eigenstates is that there exists a large degree of
degeneracies, which implies that these degenerate levels can
be easily hybridized upon perturbations, leading to ergodic
behaviors. Scars, contrarily, are the only nondegenerate ones
defying such a fate. Specifically, at λ = 0 for Eq. (1),

U0 ≡ UF (λ = 0) = (−i)L
∏

j

e−i
∑

j J jτ
z
j τ

z
j+1 P, (4)

where Ising symmetry P = ∏L
j=1 τ x

j flips all spins P|{s j}〉 =
|−{s j}〉. Solutions to U0|�, {s j}〉 = eiE (�,{s j })|�, {s j}〉 then read

|�, {s j}〉 =
∑

m=0,1

(−1)m�|(−1)m{s j}〉/
√

2, �=0, 1 mod 2,

E (�, {s j}) = Esp(�) + EIsing({s j}) mod 2π, (5)

where the spectral pairing Esp(�) = π� and Ising interac-
tion energy EIsing({s j}) = −∑

j J js js j+1. Quasienergy shift
−πL/2 due to the factor (−i)L in U0 is neglected.

In the unperturbed limit λ = 0, each eigenstate pair
|0, {s j}〉 and |1, {s j}〉 in the solutions satisfy SP, as they con-
sist of two Fock states |±{s j}〉 and differ in quasienergy by
E (1, {s j}) − E (0, {s j}) = π . However, the Ising energy for
translation invariant systems (Jj = J),

EIsing = −J (L − 2w), w = 0, 2, 4, . . . , L, (6)

only depends on the total number of domain walls (DW),

w =
L∑

j=1

w j, j+1, w j, j+1 = (1 − s js j+1)/2. (7)

Here a DW denotes the bond connecting opposite spins
which separates two FM domains. Then, majority eigen-
states are grouped into degenerate subspace labeled by
(�,w), each spanned by large numbers of configurations
{|�, {s j}1〉, |�, {s j}2〉, . . .} with different allocations of w DWs.
Under perturbation, each reconstructed eigenstate could in-
volve all configurations within a subspace, and the degenerate
levels are lifted into a continuous band of bandwidth ∼ λ, as
schematically illustrated in Fig. 4 for the w = 2 case. Both
conditions of SP are therefore broken. Correspondingly, an
initial Fock state generically overlaps with the whole delocal-
ized band, so any oscillation is expected to dephase within the
timescale 2π/λ, as observed in Fig. 2 for the initial states with
red arrows.

To identify nondegenerate scars efficiently, we introduce
below a symmetry-based algorithm. Take spatial translation
symmetry for instance, [Tx, H (t )] = 0, where Tx|{s j}〉 =
Tx|s1s2 . . . sL−1sL〉 = |sLs1s2 . . . sL−1〉 = |{s j−1}〉. Intuitively,
scar configurations should exhibit identical DW numbers at
all symmetry equivalent bonds, such that relocations of DWs
cannot produce new degenerate configurations. Importantly,
|±{s j}〉 host identical DW distributions. Then, scar patterns
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FIG. 4. L2 configurations sharing the same total number of do-
main walls w = 2, and therefore are degenerate at λ = 0 with Ising
energy EIsing = J (L − 4) in Eq. (6). That means under perturbations,
those eigenstates will undergo a complete reconstruction, where each
eigenstate involves a macroscopic number of configurations. In a
reversed sense, if one chooses a single Fock state as the initial
state, it will overlap with a macroscopic number of eigenstates with
different quasienergy ranging over ∼ λ, and therefore any oscillation
is expected to decay within the characteristic timescale 2π/λ, as
observed in Fig. 2 for the initial states with red arrows.

only need to satisfy a projective translation symmetry

Tx|{s j}〉 = |±{s j}〉, (8)

where ± signs precisely give the FM and AFM cat scars in
Fig. 3, respectively,

|�, FM〉 ≡ |�, {s j = (+1) j}〉, |�, AFM〉 ≡ |�, {s j = (−1) j}〉.
(9)

More rigorously, |±{s j}〉 are recombined into nondegen-
erate spectral pair satisfying P|�, {s j}〉 = (−1)�|�, {s j}〉.
Then, Eq. (8) corresponds to the invariance of eigenstates
Tx|�, {s j}〉 = (±1)�|�, {s j}〉, so that DW operators

Ŵ =
L∑

j=1

Ŵj, j+1, Ŵi j = (
1 − τ z

i τ
z
j

)
/2, (10)

act identically on all symmetry related bonds,
i.e., Wi j |�, {s j}〉 = wi j |�, {s j}〉 ⇒ Wi+1, j+1|�, {s j}〉 =
TxBi jT−1

x |�, {s j}〉 = wi j |�, {s j}〉. As a crosscheck, note
that the degenerate manifold with w total domain walls would
contain Cw

L = L!/(L − w)!w! eigenstates, which denotes
the Cw

L ways to allocate the w domain walls. Thus, we
confirm that only for the FM (w = 0) and AFM (w = L)
subspaces, levels are nondegenerate in the unperturbed limit.
Staying within the systems hosting crystalline spacegroup
symmetries, Eq. (8) constitutes a generic algorithm to quickly
identify scars, as Tx can be replaced by other symmetry
operations.

Clarifications for cat scar conditions are in order. First,
translation symmetry Tx is not required. Rather, removing
Tx means that degeneracy for eigenstates may be lifted and
effects of spin fluctuations need not accumulate, which may
even further stabilize and/or induce more cat scars. In other
words, Eq. (8) is to identify special patterns immune to de-
struction of SP by Tx, and scars survive all disorder strengths.
Second, strong interaction of Ising type is necessary for SP, to
validate the perturbative treatment including the vital selection
rules, which we would elaborate in the next subsection. Note
that strong random Ising interaction is also required in MBL
DTCs to enforce localization [9–11,15].

FIG. 5. Dynamics in systems with two sublattices, where J1 =
−J2 = 1. The two nondegenerate c-AFM initial states lead to DTC
phenomena persisting for exponentially long time, while the two
degenerate c-FM configurations decay quickly upon perturbation.
Here we take a single sample for (φ, θμ) as in Fig. 3(a), and λ = 0.05.

With clarifications, we generalize Tx in Eq. (8) to generic
spatial symmetry A, where cat scar patterns {s(cat)

j } should
satisfy (1) projective symmetry,

A
∣∣{s(cat)

j

}〉 = ∣∣±{
s(cat)

j

}〉
, (11)

and (2) no accidental degeneracy among unperturbed scars.
An example is given in Fig. 5 exploiting Eq. (1) with Jj =
(−1) jJ , which contains two sublattices hosting A = T 2

x . FM
and AFM configurations in Fig. 2 are understood now as two
composite-ferromagnetic (c-FM) patterns T 2

x |{s(c-FM)
j }〉 = | +

{s(c-FM)
j }〉, but they are degenerate (EIsing = 0) violating crite-

rion (2). Contrarily, the two new composite-antiferromagnetic
(c-AFM) patterns T 2

x |{s(c-AFM)
j }〉 = |−{s(c-AFM)

j }〉 are nonde-
generate and yield expected DTC dynamics. Thus, we witness
the counter-intuitive result that in certain clean systems, only
inhomogeneous DTC patterns persist for exponentially long
time, but not homogeneous total spin oscillations.

As a further extension of the above analysis, we briefly
mention the cases where an arbitrary pattern for cat scars
can be achieved by weakly breaking the translation symmetry.
Specifically, for any set of four desirable scar patterns,

±{s j}, ±{(−1) j s j}, s j = ±1, (12)

one could engineer them with Ising interactions,

Jj = s js j+1J, j = 1, 2, . . . , L. (13)

Namely, the strength of interaction is still uniform, but their
signs can change among different bonds. An example is given
in Fig. 6.

In principle, the above scheme would allow for engineering
more than two pairs of cat scars once the amplitudes of Jj

on different sites are allowed to change. For instance, if the
desired four pairs of cat patterns are chosen,

± {s j}1, ±{(−1) j s j}1, ±{s̃ j}2, ±{(−1) j s̃ j}2, (14)

one could engineer them using the interaction configurations,

Jj = s js j+1J1 + s̃ j s̃ j+1J2, (15)

namely, only two types of different amplitudes are in-
volved. An example is given in Fig. 7. Thus, an on-demand
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FIG. 6. Engineering of cat scars with arbitrary patterns, where
interaction strength is uniform, while the signs are different as speci-
fied in Eq. (13). An example with L = 14 is given here, where the
cat scar patterns {s(cat)

j } is given in the upper panel of panel (a).
Correspondingly, we see persisting oscillations of such patterns in
panel (b), while the previous FM and AFM ones become thermaliz-
ing patterns and decay quickly. Perturbation parameters are the same
as in Fig. 3(a).

engineering of cat eigenstates can possibly be achieved.
But further discussions on an extensive number of localized
states would require a more definitive understanding of the
avalanche effect, which is still under debate currently. Thus,
we would postpone this topic to a separate future works. For
the remaining part of this work, we would return to the trans-
lation invariant cases to rigorously establish the analytical
theories of cat scar DTCs, to provide a solid anchor point for
broader ranges of applications and extensions.

B. Emergent selection rule for generic perturbations

In the previous subsection, we have been focusing on en-
ergetic degeneracy for the static Ising interaction energy EIsing

in Eq. (5). A nondegeneracy condition leads to the symmetry
indicators for translation-invariant cases, as well as extensions
to further engineering of cat scar patterns. These conditions
point out the eigenstate configurations where a direct energy
degeneracy is avoided. In this subsection, we would further
consider the effect of nondegenerate perturbations to quantify

FIG. 7. Engineering of four pairs of cat scars with desirable pat-
terns, in contrast to two pairs discussed previously. Here, {s j}1, {s̃ j}2

in Eq. (14) are specified by the red and black configurations in panel
(b), respectively. The associated interactions prescribed in Eq. (15)
with J1 = 2, J2 = 1 result in the bond configuration in the upper
panel of panel (a). System size reads L = 14, and all other perturba-
tions parameters are the same as in Fig. 3(a). The four DTC patterns
in panel (b) is caused by the four pairs of cat scars with large IPRs in
panel (a) denoted by the same color. Perturbation parameters are the
same as in Fig. 3(a).

the robustness of cat scars, and pay special attention to the
possible Floquet resonance.

Specifically, to validate a perturbation treatment, one nec-
essary condition is that the gap between two energy levels
should be larger than the strength of perturbations trying to
hyridize those levels. While a gapped level structure could
be expected in a few-body setting as in Ref. [39], for an
intermediate-scale system as we have here, it is more com-
plicated. As we can observe in Fig. 3(a), upon moderate
perturbations, the spectrum is essentially gapless, where cat
scars are deeply buried inside. More specifically, although
the solutions Eq. (5) indicate a large energy separation be-
tween eigenstates with different total domain wall numbers,
the energy separations may fairly be commensurate with
Floquet driving frequency ω = 2π , which means they are
energetically close-by upon absorbing multiple energy quanta
mω (m ∈ Z) from the driving. With the increase of system
size L, the density of states ramps up exponentially within
a finite Floquet quasienergy window 2π . Thus, based purely
on energetic considerations, it may appear rather unexpected
that cat scars at λ = 0 should maintain their stability against
perturbations λ 	= 0.

Therefore, a more careful treatment of perturbation
strength is needed before we proceed. To facilitate analysis,
one could factor out perturbations λH ′ in the Floquet operator
UF into

UF (λ) = T e−(i/h̄)
∫ T

0 dt (H0(t )+λH ′(t )) = U0U
′(λ),

U0 = T e−(i/h̄)
∫ T

0 dtH0(t ), U ′(λ) = ei
∑∞

k=1 λkVk , (16)

where perturbations of different orders are represented by
Vk = V †

k , and the unperturbed U0 is solved in Eq. (5). Algebras
for factorization is shown in Appendix A.

Stability of SP for cat scars derives from a crucial con-
figuration selection rule for Vk . Specifically, the kth order
perturbation with strength λk only relates Fock states differing
by at most nopk spins, namely, the configuration selection rule
reads

λk〈{s j}|Vk|{s̃ j}′〉 	= 0 ⇒ 1

2

∑
j

|s j − s̃ j | � nopk. (17)

Here, the operator product order nop counts the maximal
number of operators being multiplied in individual terms of
perturbation Hamiltonians, for instance,

nop = 1 : H ′ ∼ τ
μ
j ,

nop = 2 : H ′ ∼ τ
μ
j , τ

μ
i τ ν

j , (18)

with μ, ν = x, y, z, and i, j = 1, . . . , L. So H ′ in Eq. (1)
with both one-spin and two-spin terms gives nop = 2. We
emphasize that the selection rule is an operator property
for UF (λ), whose origin can be intuitively understood as
follows. With perfect spin flips and Ising interactions, the
zeroth order U0 is highly localized, relating only pairwise
Fock states 〈{s j}|U0|{s̃ j}′〉 ∝ δ{s j}=−{s̃ j }′ . Then, any matrix el-
ements of UF (λ) relating {s j} to others {s̃ j}′ 	= ±{s j} must
entirely derive from perturbations λH ′. For power counting,
λkVk involves multiplying k pieces of (λH ′), which could
flip at most nopk spins. The selection rule implies that flip-
ping more spins is suppressed exponentially by higher powers
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FIG. 8. Eigenstate structure with domain wall resolutions.
(a) The quasienergy ωn for unperturbed (λ = 0, gray dots) and per-
turbed (λ = 0.05, yellow dots) Floquet operator corresponding to the
model in Eq. (1). Perturbed scars are highlighted by red dots. Verti-
cal axis specifies the averaged total domain wall number for each
eigenstate. (b) Density of states with total domain wall resolution,
where we plot those quasienergies overlapping notably with the scar
levels. Here we define, i.e., 〈Ŵ 〉 ≈ 6 by collecting all quasienergy
levels whose averaged total domain wall number 〈ωn|Ŵ |ωn〉 resides
between 5 and 7, namely, 〈Ŵ 〉 ∈ [w − 1, w + 1] ≈ w. The system
size and parameters are the same as those in Fig. 3(a).

of λk in perturbation series. Rigorous algebraic proof us-
ing Baker-Campbell-Hausdorff-Dykin formula is presented
in Appendix A. We shall see below that this constitutes
the mechanism beyond energetic reasoning to ensure scar
localization.

Let us check the structures of perturbed eigenstates more
concretely, to understand how the selection rules work.
In Fig. 8(a), we label the averaged domain wall number
〈ωn|Ŵ |ωn〉 for each Floquet eigenstate |ωn〉 explicitly, where
Ŵ is given in Eq. (10), and ωn is the quasienergy. Solutions
in Eqs. (5) and (6) show that at λ = 0, quasienergies are
grouped into sectors of different total domain wall numbers
w, as represented by gray dots in Fig. 8(a). Each w sector
separates from nearby ones with w ± 2 by quasienergy dif-
ference �E = 4J mod 2π . Under perturbation λ 	= 0, each
degenerate set of levels (gray dot) are lifted into a band as
denoted by yellow dots in Fig. 8(a).

We observe that even after the perturbation, each eigen-
state is still localized into a certain domain wall sector.
This is surprising because there are apparently large numbers
of eigenstates with different 〈Ŵ 〉 but the same quasienergy
ωn, indicating possible Floquet resonance and strong hy-
bridization of these levels. However, we see that only minor
hybridization occurs for consecutive domain wall sectors,
while in general, eigenstates seem to still preserve their orig-

inal domain wall numbers on average. Further, we could
verify the thermalization properties of these domain wall
bands using level spacing statistics [67]. To do so, we as-
semble the levels according to their domain wall numbers as
shown in Fig. 8(b), i.e., levels with 〈Ŵ 〉 ∈ [w − 1,w + 1] ≈
w are grouped into continuous bands. Then, calculations of
level spacing ratios can be performed for each band, rn =
min(δn, δn+1)/ max(δn, δn+1), where δn = ωn+1 − ωn denotes
the consecutive gaps for the sorted quasienergy levels ωn <

ωn+1. In the table of Fig. 8(a), we list the averaged level
spacing statistics 〈r〉 for each 〈Ŵ 〉 sector, and all such bands
are in the strongly chaotic limit with Gaussian orthogonal
ensemble 〈r〉 → 0.54, verifying the overall thermalizing na-
ture of the system. Then, it is of interest to find out what
suppresses Floquet many-body resonances that may hybridize
these different 〈Ŵ 〉 sectors.

The reason for domain wall separations can be understood
by power counting of perturbations according to the selection
rule in Eq. (17). Specifically, let us start from the unperturbed
limit λ = 0 and consider perturbations within the same do-
main wall sector and those among different w’s. Within the
same domain wall sector, degenerate level hybridization can
always start from the first order which flips up to nop spins,
i.e., by shrinking or expanding domain size without chang-
ing the total domain wall numbers. In contrast, two sectors
w1,w2 differing by δw = |w1 − w2| domain walls necessarily
requires flipping at least δw/2 spins to create or annihilate
δw walls. That means the corresponding hybridization would
not start until the perturbation order k � δw/2nop in witness
of the selection rule, with corresponding maximal hybridiza-
tion strength λk�w/2nop . In Fig. 8, we observe that the scar
levels (w = 0 for FM and w = L = 20 for AFM) are only
close to thermalizing sectors of w = 6, 8, 12, 14, implying
that δw � 6 at least. Thus, the hybridization between scars
and other domain wall sectors involves a maximal strength
λk>6/4, which is subdominant compared with the intrasec-
tor hybridization strength λ1 for a weak perturbation λ � 1.
Once the degenerate levels are lifted for λ 	= 0, according to
the thermalizing behaviors for nonscar domain wall sectors,
we would expect each level to be extended in the Fock space
with total domain wall number w, whose Hilbert subspace
dimension can be estimated as Cw

L = L!/(L − w)!w!. Each of
such delocalized thermalizing eigenstate may involve all the
Cw

L configurations, among which only a small subset would
deviate from scar configurations by the minimal spin flip
number δw/2nop with hybridization strength ∼λδw/2nop . Then,
the localized scar would only hybridize with each delocalized
level with an even weaker strength.

To summarize the above analysis, the condition to avoid
Floquet resonance between scars and thermalizing levels is
that in the unperturbed limit λ = 0, scar quasienergy should
not be identical to the nearby δw/2 � nop sectors. This
way, even if scars are energetically resonant with other sec-
tors δw/2 > nop, the hybridization strength is suppressed by
∼λk>δw/2nop/Cw

L due to both selection rules and the delocal-
ization of thermalizing levels.

Since the absence of massive delocalizing Floquet reso-
nance is of vial importance for later perturbative treatment,
it is worth being more cautious, so we perform two additional
tests to verify it.
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FIG. 9. Domain wall resolved density of states, when level spac-
ing between consecutive domain wall sectors �E = 2J, 2J + π

are close to be in resonance with Floquet driving frequency 2mπ ,
namely, Jres = mπ/4, m ∈ Z. (a), (c) Off-resonant |J − Jres| > λ,
where cat scars are preserved. (b) In exact resonance, where cat scars
together with the domain wall structure are destroyed. System size
and perturbation parameters are the same as in Fig. 3.

First, let us observe how Floquet resonance between nearby
domain wall sectors occur and vanish more quantitatively. To
access the resonance, we could set the interaction exactly to
be J = π/4, such that the energy separation between nearby
domain wall sectors �E = 2Jδw = 4J ≈ π, δw = 2. Then,
all domain sectors w would be in exact resonance with their
consecutive ones w ± 2 (recall that for each domain wall
sector, there are two spectral pairs differing by quasienergy π ,
so the total energy difference from Ising interaction �E ≈ π

and spectral pairing π adds up to 2π = ω). As expected,
from Fig. 9(b), we see that a complete resonance occurs
for all levels in the system, as the intra-sector and inter-
sector hybridization strengths are both ∼λ1. Setting J slightly
away from the exact resonance point π/4 immediately sup-
presses the hybridization among different domain wall sectors
and recovers the scar structure, as seen in Figs. 9(a) and
9(c).

Second, let us also observe the effect where exact coinci-
dence of quasienergy at the unperturbed point λ = 0 occurs
for two sectors separating by large numbers of domain wall
differences δw/2 > nop. In the previous analysis, we claim
that due to the exponential suppression of inter-sector hy-
bridization ∼λδw/2nop by selection rules, scars with exactly
the same quasienergy as sectors separating by large num-
bers of domain walls would not lead to strong hybridization.
Two such examples confirming the claim are presented in
Fig. 10. For instance, in Fig. 10(a), the FM (or AFM) scars
possess exactly the same quasienergy at λ = 0 with levels
hosting w = 6, 12 (or w = 8, 14) domain wall in Fig. 10,
corresponding to minimal domain wall separation by δw = 6.
As expected, we observe that although the scars (red dots)
share the same quasienergy as several sets of levels (gray dots)
in the unperturbed limit, scars would not notably hybridize
with these levels due to the exponential suppression of spin
flipping as given by the selection rule. Similarly, another ex-
ample in Fig. 10(b) shows the coincidence of scar (red dots)
quasienergies with those unperturbed levels hosting w = 10
domain walls at λ = 0 (gray dots). Once again, scars refuse to
notably hybridize with these degenerate levels upon perturba-
tion λ 	= 0 (yellow dots).

FIG. 10. Domain wall resolved density of states, where
quasienergy degeneracy occurs between domain wall sectors �w >

nop, where nop = 2 for the model in Eq. (1) whose perturbations
are up to two-spin terms. Here, although the cat scars in w = 0, 20
sectors have exactly the same quasienergy with states in domain wall
sectors w = 6, due to exponential suppression of hybridization by
selection rules, scars are still preserved. This result, together with
Fig. 9, emphasize that a pure energetic consideration is insufficient.
Rather, the stability of cat scars crucially relies on the configuration
selection rules emergent from strongly interacting systems. Here,
the system size and perturbation paramters are the same as those in
Fig. 3(a).

C. Scaling exponents for cat scars

Based on the selection rule in Eq. (17) and the eigen-
state structure illuminated above, we are ready to analyze
the stability and scaling behaviors of cat scars. To simplify
discussions, FM and AFM patterns are both denoted “cat”
below, i.e., |�, (A)FM〉 ≡ |�, {s(cat)

j }〉, as analysis are identical
for them. Perturbation series consists of iterative corrections
|ω̃�,cat〉 = eiλk Sk . . . eiλ2S2 eiλS1 |�, {s(cat)

j }〉 + O(λk+1), where Sk

diagonalizes the perturbed Floquet operator UF (λ)|ω̃�,cat〉 =
eiω̃�,cat |ω̃�,cat〉 at the order λk , rendering corrected quasienergy

eiω̃�,cat = ei(E (�,{s(cat)
j })+∑∞

k=1 λkω
(k)
�,cat ). Recall that the perturbed

Floquet operator is also factored into the form UF (λ) =
U ′(λ)U0 previously, where |�, {s(cat)

j } are eigenstates of U0,

and U ′(λ) = ei
∑∞

k=1 λVk are for perturbations of different
orders.

Three universal scaling relations can be obtained for per-
turbed cat scars |ω̃�,cat〉. We first present the results below.
These scaling formulas will be applied in later subsections to
specific examples and compare with corresponding numerical
investigations.

1. Scaling (1)

Amplitudes for the original FM or AFM components in
Eq. (9) are rescaled by the dominant first-order fluctuations to

α2
0 ≡ ∣∣〈�, {s(cat)

j

}∣∣ω̃�,cat
〉∣∣2 = 1

1 + V̄ 2
1 λ2L

+ O((λ2L)2). (19)

Here, the first-order local perturbation strength

V̄ 2
1 = 1

8

′∑
�′,{s j }′

∣∣〈�′, {s j}′|V1, j=1 + V1, j=2

∣∣�, {s(cat)
j

}〉∣∣2

× csc2
[(

E
(
�,

{
s(cat)

j

}) − E (�′, {s j}′)
)
/2

]
(20)
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characterizes spin fluctuations on top of FM or AFM pat-
terns {s(cat)

j }, where the factored perturbation in U ′(λ) reads

V1 = ∑L
j=1 V1, j , and summation

∑′
�′,{s j }′ excludes the cat

eigenstates under consideration. Unperturbed quasienergies
are also shown in Eq. (5).

2. Scaling (2)

Overall spin configurations for perturbed cat scars |ω̃�,cat〉
exhibit an exponential Fock space localization to the unper-
turbed patterns {scat

j }:
|〈{s j}|ω̃�,cat〉|2 ∝ λ�scat ({s j})/ξ . (21)

Here, the pairwise Fock space distance,

�scat({s j}) = 1

2
min

⎛
⎝ L∑

j=1

∣∣s j − s(cat)
j

∣∣, L∑
j=1

∣∣s j + s(cat)
j

∣∣
⎞
⎠,

(22)

counts how many spins are different between the configu-
rations ±{s(cat)

j } and another {s j}, serving as a measure of
“distance” in many-body Fock space. The corresponding lo-
calization length in Fock space is constrained by selection
rules to

ξ � nop. (23)

3. Scaling (3)

Spectral gap for pairwise perturbed scars approaches the
unperturbed value π with exponential accuracy,

�π = |ω̃1,cat − ω̃0,cat| = π + O(λL/ν ). (24)

Similarly, due to selection rules, the spectral deviation expo-
nent is constrained into

ν � nop. (25)

Recall that the operator product order nop is defined in
Eq. (18), which counts that in the bare perturbation Hamil-
tonian H ′, up to nop-spin terms are involved.

Physically, scaling relations in Eqs. (19), (21), and (24)
prescribe the universal behaviors of clean DTCs facing per-
turbations. Specifically, scaling relations (1) and (2) render

|ω̃�,cat〉 = α0

∣∣�, {s(cat)
j

}〉 + ∑
{s j}′

O
(
λ�scat ({s j}′ )/ξ )|{s j}′〉, (26)

so FM or AFM initial states overlapping chiefly with per-
turbed cat scars evolve as

|ψ (nT )〉 =U n
F

∣∣{s(cat)
j

}〉
≈ (α0/

√
2)

(
einω̃0,cat |ω̃0,cat〉 + einω̃1,cat |ω̃1,cat〉

)
. (27)

Minor overlaps of |{s(cat)
j }〉 with other eigenstates contribute

exponentially localized spin fluctuations. Further, using scal-
ing relation (3) and solutions of |�, {s(cat)

j }〉 in Eq. (9), we
obtain the dominant dynamics [recall that M(nT ) is defined
in Eq. (3)],

|ψ (nT )〉 ≈ α2
0 cos(O(λL/ν )n)

∣∣(−1)n
{
s(cat)

j

}〉
,

⇒ M(nT ) ≈ α4
0 cos2(O(λL/νn)). (28)

Thus, we observe period-2T local spin flips |(−1)n{s(cat)
j }〉,

with amplitudes for M(t ) reduced to α4
0 ≈ (1 + V̄ 2

1 λ2L)−2,
thereby giving the estimation L � 1/λ2. Within such in-
termediate scales, the DTC lifetime ∼ (1/λ)L/νT grows
exponentially with the increase of system sizes, as indicated
by the cosine modulation.

Proof for scaling relations is sketched below to illuminate
their origins, while algebras are furnished in Appendix B.
Recall that Sk in the perturbation series serves to cancel the
off-diagonal terms of UF proportional to λk , which involves
products of perturbations Vk1Vk2 . . .Vkα

with
∑α

p=1 kp = k.
Then, selection rules for Vkp enforce that Sk similarly cannot
flip more than nopk spins. Consequently, the first-order cor-
rection |ω̃�,cat〉 = α0(1 + iλS1)|�, {s(cat)

j }〉 + O(λ2) features
fluctuations of nop nearby spins for local perturbation. Under
translation invariance, amplitudes for spin flips are identical
on different sites, and their accumulated effect renders the
factor L in normalization constant α0 for scaling relation (1).
Further, it takes perturbation of orders λk��scat ({s j})/nop to flip
±{s(cat)

j } by �scat({s j}) spins into |{s j}〉 in |ω̃�,cat〉, implying
scaling relation (2) and the bound on ξ . Finally, in quasienergy
corrections λkω

(k)
�,cat = λk〈�, {s(cat)

j }|Fk|�, {s(cat)
j }〉 =

λk

2

∑1
m,m′=0(−1)(m−m′ )�〈(−1)m{s(cat)

j }|Fk|(−1)m′ {s(cat)
j }〉, the

spectral pair numbers � only appear in the cross terms m 	= m′

for opposite patterns. Here Fk involves products of Sk1 . . . Skα

and Vp1 . . .Vpβ
of total orders

∑α
j=1 k j + ∑β

j=1 p j � k, and
therefore flips no more than nopk spins. That means lower
order Fk<L/nop cannot flip all L spins and the cross terms for

m 	= m′ vanish. Then, ω
(k)
1,cat = ω

(k)
0,cat up to k < L/nop, and

the perturbed spectral gap maintains rigidity ω̃1,cat − ω̃0,cat =
E (1, {s(cat)

j }) − E (0, {s(cat)
j }) + ∑

k�L/nop
λk (ω(k)

1,cat − ω
(k)
0,cat ) =

π + O(λk�L/nop ), proving scaling relation (3) and the bounds
on ν. In the language more closely related to quantum
computation [3], perturbations Fk represents a local circuit
of depth nopk, so lower order Fk<L/nop cannot disentangle the
correlated cat scars into product states.

In previous numerics [24,26,31,32], certain aspects of scal-
ings have been speculated. New contributions in this work
involve not only clarifying the underlying mechanism, but
also proving the analytical scaling form, including the values
or bounds of exponents. In the following subsections, we
verify these scalings in Eqs. (19), (21), and (24) numerically,
which shows quantitative agreements for both the model in
Eq. (1) and alternative ones with different nop.

D. Applications and numerical verifications

In this subsection, we would compare the analytical scaling
relations in Eqs. (19), (21), and (24), as well as the bounds on
exponents in Eqs. (23) and (25), against numerical investiga-
tions of the models in Eqs. (1) and (30).

First, let us benchmark the IPR scaling using the
relations in Eq. (19), which is intimately related to the
DTC oscillation amplitudes in Eq. (28). Recall that for all
zeroth-order solutions in Eq. (5),

∑
{s j}′ |〈{s j}′|�, {s j}〉|4 =∑

{s j}′ |〈{s j}′| 1√
2

∑
m=0,1(−1)m�|(−1)m{s j}〉|4 = 1/2, then
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FIG. 11. Universal scaling behaviors for |1, AFM〉 scar IPRs.
Dots are numerically data of IPR for the |1, AFM〉 scar eigenstates,
and the lines are prescribed by the universal scaling relation V̄ 2

1 λ2L
in Eq. (29), with a single fitting parameter V̄ 2

1 ≈ 0.2564. The value of
V̄ 2 is obtained by fitting the data for small system size L = 12 alone.
In turn, we see that the analytical scaling matches numerical data for
all L up to λ � 0.1.

from Eq. (26) we have

IPR(ω̃�,cat ) =
∑
{s j}′′

|〈{s j}′′|ω̃�,cat〉|4 ≈ α4
0

2
.

To leading orders, using Eq. (19), the IPR scaling correspond-
ing to (half of) the DTC oscillation amplitude reads

IPR(ω̃�,cat ) ≈ 1

2

1(
1 + V̄ 2

1 λ2L
)2 ≈ 1

2
− V̄ 2

1 λ2L. (29)

Thus, the leading order deviation of IPR from the unperturbed
value 1/2 takes the universal scaling form V̄ 2

1 λ2L.
To test the analytical results directly, we compute the IPR

deviations for our main text model in Fig. 11. For generic
perturbations λH ′ in Eq. (16), usually it is hard to obtain
a closed form for the factored Vk . Nevertheless, it is worth
emphasizing that since V̄1 is the same for all system sizes, one
can conveniently obtain its value by fitting the scaling form
to numerical data for a single small system size. In turn, the
universal scalings for all larger system sizes can be predicted
via Eq. (29). An example is given in Fig. 11. Indeed, the
expected behaviors for 1/2 − IPR(ω̃1,AFM) ∝ λ2L shows up.

Moreover, for models with separable perturbations in UF ,
the constant V̄1 can indeed be computed exactly, such that the
IPR scaling can be obtained without any fitting. To illustrate
the calculations, and also to test our analytical theories further,
we discuss the following Ising chain under both transverse and
longitudinal fields,

UF = e−i(J
∑L

j=1 τ z
j τ

z
j+1+h

∑L
j=1 τ z

j )e−i( π
2 −λ)

∑
j τ x

j . (30)

Such a model, including its disordered variants, have played
important roles in recent numerics and experiments. We first
note that a gauge transformation reduces it to

ŨF = ei(h/2)
∑

j τ z
j UF e−i(h/2)

∑
j τ z

j = U0U
′,

U ′ = eiλ
∑

j (τ
x
j cos(h)−τ

y
j sin(h)). (31)

FIG. 12. The scaling of IPR deviation for the model in Eq. (30)
with separable perturbation. Dots are numerical data for UF in
Eq. (30), while lines are analytical scaling functions 1

2 − IPR ≈
1
2 (1 − (1 + V̄ 2

1 λ2L)−2) in Eq. (29), with V̄ 2
1 explicitly given in

Eq. (33). Here J = 1, and other parameters are denoted in the figures.
We see that the analytical formula precisely predicts the scaling
behaviors without any fitting parameters. Also, we verify that the
longitudinal fields h indeed only lead to perturbative effects.

Here, the zeroth order U0 is the same as in Eq. (4). Compared
with the generic form U ′ = ei

∑∞
k=1 λkVk , we see that here

V1 =
∑

j

(
τ x

j cos(h) − τ
y
j sin(h)

)
, (32)

while all others Vk�2 = 0. Thus, for both types of scars, a
straightforward calculation using Eq. (20) gives the analytical
form for perturbation strength,

V̄ 2
1 = 1

4

(
cos2 h

sin2 2J
+ sin2 h

cos2 2J

)
. (33)

We compare the analytical scaling relations for this model
with numerics in Fig. 12. As expected, without any fitting
parameters, Eqs. (29) and (33) agree well with the numerical
data.

The reduction of FM or AFM amplitudes in cat scars can be
understood as the effect of domain-wall fluctuations. Specif-
ically, in Eq. (20), the first-order perturbation introduces new
configurations differing from FM or AFM ones by nop spins as
allowed by selection rules for V1, j , corresponding to domain
wall creation or annihilation on top of the background FM or
AFM configurations. That in turn rescales the normalization
constant α0. In translation invariant systems, such effects sim-
ply accumulate, giving rise to the factor L in Eq. (19).

Second, in Fig. 13, we consider the model in Eq. (1), and
numerically evaluate the scaling relation (2) in Eq. (21) of
Fock space localization for cat scars. Here, the Fock space
distance δs between a certain configuration {s j} and one of
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FIG. 13. Numerical test of Fock space localization for cat scars. (a), (d) Schematic illustration for counting spin flips in systems of size
L = 4, which quantify the Fock space distance between two configurations. (b) Fock space localization when both one-spin (θμτ

μ
j ) and two-spin

(φτ x
j τ

x
j+1) perturbations are present. In this case, the Fock localization exponent ∼ λδs/ξ is bounded by ξ � nop = 2. (c) Fock space localization

when only one-spin (θμτ
μ
j ) perturbation is present. Here, due to a modified selection rule, the Fock localization exponent ∼ λδs/ξ is bounded

by ξ � nop = 1. In panels (b) and (c), the dots are numerical data for the model in Eq. (1). Gray lines are fittings with exponents specified in
the legends for all scars. Perturbation strength reads λ = 0.05, system size L = 20, and other parameters are specified in the figures. From the
data, we do see a Fock space localization onto the cat scar configuration pairs |±{s(cat)

j }〉, as the wave function amplitudes for perturbed cat

scars decay exponentially with the increase of spin flips with respect to ±{s(cat)
j }.

the cat scar configuration pair {s(cat)
j } is defined as

δscat({s j}) = 1

2

L∑
j=1

∣∣s(cat)
j − s j

∣∣, (34)

while the pairwise deviation �s is defined in Eq. (22). A
schematic illustration of counting Fock space distance, both
in terms of δs and �s, is given in Figs. 13(a) and 13(d) for
FM and AFM cat scars, respectively. Note that the localiza-
tion length ξ in Eq. (23) is bounded by the selection rule
for Vk’s. Namely, if the perturbation Hamiltonians involve up
to two-spin terms nop = 2, then the selection rules for Vk is
that it could flip up to nopk = 2k spins. That subsequently
gives the bound ξ � nop = 2 in Eq. (23). This is verified in
Fig. 13(b) that for all the four scars [corresponding to the
case in Fig. 3(a)], ξ is bounded by 2. We could further test
the bounds by reducing the perturbations to involving only
one-spin terms, namely, setting φ = 0 for φτ x

j τ
x
j+1 leaving

only θμτ
μ
j in the perturbations of Eq. (1). Consequently,

nop = 1 and the selection rules is modified so that Vk can
only flip nopk = 1 × k spins, such that localization length is
bounded by ξ � 1. The analytical result is again confirmed in
Fig. 13(c), with the FM scars appearing to saturate the new
bounds.

Finally, we compare the SP deviation scaling in Eq. (24)
with numerical investigations of Eq. (1).

The schematic picture for the fixed spectral gap π is il-
lustrated in Fig. 14(a). At the fine-tuned point λ = 0, the cat
scar E (1, {s(cat)

j }) separates from its partner E (0, {s(cat)
j }) by

quasienergy π , where {s(cat)
j } denotes FM or AFM. Under

perturbation λ, each level E (�, {s(cat)
j }) is shifted to ω̃�,cat by

a significant amount ω̃�,cat − E (�, cat) = δω�,cat ∼ λ2. How-
ever, both levels � = 0, 1 shift by almost identical amounts
δω1,cat − δω0,cat = O(λL/ν ), ν � nop, such that the perturbed
scars still show a spectral gap ω̃1,cat − ω̃0,cat = π + O(λL/ν ),
with deviations O(λL/ν ) = O(e−| ln(1/λ)|L/ν ) shrinking expo-
nentially with the increase of system sizes L.

The spectral gap scaling is verified in Figs. 14(b)–14(d).
In all cases, as shown by the small dots, the quasienergy cor-
rection for individual levels δω�,cat always scale as λ2, which
are relatively large. However, both scars � = 0, 1 shift by the
same amount, such that pairwise deviations δω1,cat − δω0,cat

vanish exponentially with the increase of system sizes L.
To further test the bounds for scaling exponent ν, note that
when both one-spin (θμτ

μ
j ) and two-spin (φτ x

j τ
x
j+1) pertur-

bations are present, ν � nop = 2, as observed in Figs. 14(b)
and 14(c) for both FM and AFM scars. We could further
test the bounds similar to what was done in Fig. 13(d) by
shutting down the two-spin terms in perturbing Hamiltoni-
ans, i.e., φ = 0, and only allow for one-spin perturbations
θμτ

μ
j . Then, we see in Fig. 14(d) that indeed the expo-

nent ν for spectral gap deviation O(λL/ν ) saturates the new
bound ν � nop = 1.

The exponent ν in Eq. (23) satisfies the same bound as
the pattern localization length ξ in Fock space as given by
Eq. (25). However, it is worth clarifying that they are not
the same quantity because they arise from different perturba-
tion orders. The Fock space localization length ξ is chiefly
contributed by lower order perturbations k < L/2nop, as the
λkth order terms would involve spin configurations |{s j}〉
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FIG. 14. Scaling of the exponentially small SP deviation from π for the perturbed cat scar pair. (a) Schematic illustration of the SP
mechanism: each scar level could shift considerably ∼λ2 under perturbation λ; but they shift by almost the same amount, so the quasienergy
difference between a pair of cat scar approaches π . (b)–(d) Scaling for the spectral gap deviation away from π , which vanishes exponentially
O(λL/ν ) with the increase of system size L. Note that the exponent ν � nop is bounded by the operator product power for perturbation
Hamiltonians. In panels (b) and (c) there are both one-spin θμτ

μ
j and two-spin terms φτ x

j τ
x
j+1, so ν � nop = 2. Instead, we turn off the two-spin

perturbations φ = 0 in panel (d), which reduces the exponent to ν � 1. The spectral gap deviations for FM scars in this case saturates the bound
δω1,FM − δω0,FM ∼ O(λL ). Parameters in panels (b) and (c) are the same as in Fig. 13(b), while parameters in panel (d) are the same as those
in Fig. 13(c).

separating from FM or AFM ones ±{s(cat)
j } by � nopk spin

flips, thereby giving the exponential scaling as in Fig. 13. In
contrast, the exponent ν for spectral gap deviations is deter-
mined by higher orders terms k � L/nop, because all lower-
order quasienergy corrections λk<L/nop are strictly the same
for cat scar pairs ω

(k)
1,cat − ω

(k)
0,cat = 0 and therefore no deviation

would ever exist until one reaches the perturbation of order
λk�L/nop .

Let us summarize the results we obtain so far. Analytically
derived scaling relations in Eqs. (19), (21), and (24) (see Ap-
pendix B for rigorous proof), are verified by the corresponding
scaling of IPR (Figs. 11 and 12), Fock space localization
(Fig. 13) and spectral gap deviation (Fig. 14), respectively.
They constitute a scheme to characterize the robustness of
scars and predict the corresponding DTC behaviors as in
Eq. (28). These scalings all originate from the selection rule
for perturbations in Eq. (17), which is enforced by the strong
Ising interaction. Under this condition, we could start from
a Fock state with spin patterns prescribed by the symmetry
indicator in Eq. (8) or its generalization [i.e., Eq. (11) for
systems with sublattices, and Eqs. (13) and (14) for arbitrary
patterns]. Then, these scaling relations follow and capture the
resulting DTC dynamics.

IV. TWO WAYS TO DISTINGUISH INTERACTION VERSUS
SINGLE-SPIN EFFECTS

In the previous sections, we have investigated the cat
scar structures and the corresponding DTC dynamics result-
ing from strong Ising interactions. When studying specific
models, nevertheless, we may observe certain features that
could possibly result from rather different reasons. As such,
this section is devoted to distinguishing the cat scar DTCs
from a class of rather subtle systems. It typically involves a
weak interaction and relatively simple models, showing phe-
nomena that very much resemble DTCs with robust SP and
localization at early time. However, they are more related to
single-spin effects instead. Specifically, we would discuss two
possible reasons of spin echos and noninteracting integrabil-
ity where such single-spin term dominated oscillations could
arise, and offer the practical ways to distinguish them from the
many-body DTCs enforced by cat scars based on early-time
dynamics.

For our purposes here, let us start from the model intro-
duced in Eq. (30), which we reproduce here for convenience,

UF = U2U1 = e−i
∑L

j=1(Jτ z
j τ

z
j+1+hzτ

z
j )e−i( π

2 −λ)
∑L

j=1 τ x
j . (35)
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FIG. 15. Schematic plot for the single-particle echo that gener-
ate early-time DTC-like oscillations in the weakly interacting case.
(a) When hz → 0, spin flip errors accumulate. (b) With a field
strength hz → π/2, a single-particle spin echo is recovered every
two periods. To distinguish cat scar DTCs from such single-particle
physics, it is suggested to tune hz far away from the echo limit, like
in Fig. 2.

(Note that here all dimensionless parameters J, hz, (π/2 − λ)
are already compared with the Floquet driving frequency, i.e.,
the dimensionless parameter J here is related to the interaction
strength carrying energy unit H2 ∼ J̃τ z

j τ
z
j+1 in Hamiltonians

by J = J̃T/2h̄.) We would like to benchmark the roles of in-
teraction and many-body effects, and therefore distinguish the
two cases with strong [i.e., J = 1 discussed in Eq. (30)] and
weak (J = 0.1) interactions. The following analysis shows
that although in certain cases, weakly interacting systems
J = 0.1 could mimic the many-body DTC behaviors, these
oscillations in weakly interacting systems are more consistent
with a fine-tuned single-particle physics description.

A. Single-spin echos

The first effect we would like to check is the approxi-
mate single-spin echo, which is schematically illustrated in
Fig. 15. DTC phenomenon in many cases is observed in
the following fashion: (1) With U1 in Eq. (35) alone, the
spin oscillation frequency is fine-tuned. For instance, the per-
turbation λ

∑L
j=1 τ x

j in Eq. (35) will result in a frequency
deviation from π , because the errors in spin flips, as shown
in Fig. 15(a), will accumulate during oscillations. (2) Then,
once we turn on U2 in Eq. (35), the 2T -periodic oscillations
may be recovered, indicating DTC physics due to the effects
of interactions J . However, there is a subtlety here: in addition
to the interactions J , there is also a single-spin rotation ∼hz in
U2 of Eq. (35). If the values of hz is fine-tuned around π/2—
corresponding to a spin π -pulse rotation around the z-axis—a
single-spin echo could be achieved in every two periods, as
shown in Fig. 15(b). Mathematically, the echo corresponds to
the identity describing single-spin rotations over two periods,

e−i π
2

∑L
j=1 τ z

j e−ig
∑L

j=1 τ x
j e−i π

2

∑L
j=1 τ z

j e−ig
∑L

j=1 τ x
j

= (−1)L

⎛
⎝ L∏

j=1

τ z
j

⎞
⎠e−ig

∑L
j=1 τ x

j

⎛
⎝ L∏

j=1

τ z
j

⎞
⎠e−ig

∑L
j=1 τ x

j

= (−1)Le+ig
∑L

j=1 τ x
j e−ig

∑L
j=1 τ x

j = (−1)L, (36)

FIG. 16. Effects of changing single-particle terms
∑L

j=1 hzτ
z
j in

Eq. (35). (a) In the weakly interacting case, the DTC-like oscillation
at early time is sensitive to single-spin dynamics, where hz → π/2 ≈
1.57 generates an almost perfect spin echo for every two periods.
Consequently, tuning hz away from π/2 strongly supresses the 2T
oscillations. (b) In contrast, the strongly interacting cat-scar DTC is
insensitive to such single-particle parameter fine-tunings.

where we used τ z
j τ

x
j τ

z
j = −τ x

j . That means even if J = 0 in
Eq. (35) (in noninteracting cases), for arbitrary perturbation
strength ei

∑L
j=1 τ x

j , a sinlge-spin echo can always be achieved
every two periods if hz → π/2.

Thus, we are prompted to double-check whether certain
observed DTC-like oscillations are dominated by such single-
spin echos, rather than many-body effects. An example is
illustrated in Fig. 16, where we compare the evolutions for
weakly [J = 0.1 in Fig. 16(a)] versus strongly [J = 1 in
Fig. 16(b)] interacting cases concerning the model in Eq. (35).
To check whether local oscillations without diffusions occur,
we start with the AFM initial state, and compute M(t ) as in
Eq. (3). It is found numerically that for the case with weak
interactions in Fig. 16(a), DTC like oscillations at early time
sensitively depend on the longitudinal field strength hz. Only
in the single-particle echo limit, i.e., hz = 1.4 → π/2 ≈ 1.57,
the system may exhibit a local DTC type of oscillation. When
hz deviates from such a limit, like the cases with hz = 0.8
and 0.4, local DTC oscillation is notably suppressed even at
early time t/T < 100. We have also verified that an anal-
ogous scenario occurs for disordered magnetic fields hz

j ∈
[−hz/2, hz/2] under uniform weak interactions J = 0.1 as in
Fig. 16. This is to be sharply contrasted against the strongly in-
teracting case in Fig. 16(b) where the cat-scar-enforced DTCs
are insensitive to such single-particle echos.

To understand such a difference, let us compare the dif-
ferent energy scales in two cases more carefully. For weakly
interacting situations with strong longitudinal fields, the dom-
inant energy scales in Eq. (35) are single-spin magnetic fields
hz, (π/2 − λ) ∼ π/2, both of which are comparable with
the Floquet driving frequency. Interactions J = 0.1 are then
relatively small parameters that could be treated as perturba-
tions. Thus, the mechanism underlying DTC-like oscillations
observed for hz = 1.4 in Fig. 16(a) is an almost perfect
single-spin echo, perturbed by deviations from the echos λ =
0.1, |hz − π/2| ≈ 0.17, and also interactions J = 0.1 ensur-
ing long-time thermalization. All of these perturbations are
one order of magnitude weaker than driving frequency. In
fact, in the limit hz → π/2, since spin echos occur for each
individual spin, local DTC-like oscillations could occur for
rather generic initial states at early time. Nevertheless, due to
the single-particle nature of such oscillations, when the devia-
tions from single-spin echos are enhanced for hz = 0.8, 0.4
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(so that |hz − π/2| ≈ 0.77, 1.17), DTC type of oscillations
are destroyed. In contrast, for strongly interacting cases in
Fig. 16(b), the dominant role is played instead by interactions
J = 1. That results in the selection rules for perturbations and
the domain wall structures observed in Fig. 8, prescribing the
localization of eigenstates to different domain wall sectors of
the many-body Fock space. In such cases, whether single-spin
echo occurs or not is no longer important for the essential
mechanism.

B. Single-particle integrability

While the effects of single-spin echos are relatively intu-
itive to understand, there is a second effect due to approximate
single-particle integrability that could be slightly more subtle.
Specifically, we could consider a gauge transformation of
Eq. (35) to factor out a perfect π -pulse, and define an effective
Hamiltonian for the remaining terms

ŨF = (−i)LVUFV † (
V = ei

∑L
j=1(hz

j/2)τ z
j
)

= (
e−i

∑L
j=1 Jτ z

j τ
z
j+1 eiλ

∑L
j=1(τ x

j cos(hz )−τ
y
j sin(hz )))P

≡ e−iHeff P, P =
L∏

j=1

τ x
j . (37)

Such an operation shares certain similarity with the way
prethermal Hamiltonians were defined in Ref. [21], but with
the crucial difference that the interaction J could be fairly
large. Thus, if we were to treat Heff as a prethermal Hamil-
tonian, then the associated prethermal time τ∗ ∼ e1/J could
be rather short if J is strong. Instead, we define Heff here
chiefly to capture the early-time dynamics due to approximate
integrability, for both weak and strong J in a unified way. That
only involves dominant lowest-order terms in Heff. Late time
dynamics, in contrast, requires incorporations of all higher-
order smaller terms in Eq. (37) and would not be considered
here.

(1) For the weakly interacting case J ∼ 0.1 in Eq. (37), the
lowest-order effective Hamiltonian are simply the summation
of all terms in the exponential,

Heff = H (1)|J�1 + O(λ2, J2, λJ ),

H (1)|J�1 =
L∑

j=1

(
Jτ z

j τ
z
j+1 − λ

(
cos(hz )τ x

j − sin(hz )τ y
j

))
,

(38)

where the higher-order terms ∼ λ2, J2, λJ ∼ 10−2 would only
be relevant on the timescale of several hundreds of periods.
We could observe that Eq. (38) is a transverse-field Ising
model, which can be mapped to noninteracting free fermions
{ f †

j , fk} = δ jk in one-dimension via Jordan-Wigner transfor-
mation [68]

τ z
j → ( f †

j + f j )(−1)
∑ j−1

k=1 f †
k fk ,

− sin(hz )τ x
j − cos(hz )τ y

j → −i( f †
j − f j )(−1)

∑ j−1
k=1 f †

k fk

cos(hz )τ x
j − sin(hz )τ y

j → (2 f †
j f j − 1), (39)

FIG. 17. Effects of including more generic perturbation

eiλ
∑L

j=1 τ x
j → eiλ

∑L
j=1(cos(θxx )τ x

j +sin(θxx )τ x
j τ x

j+1 ), with total strength λ

unchanged. (a) The weakly interacting case can experience a slow
relaxation, if the model exhibits fine-tuned integrability for the
lowest-order effective Hamiltonians (θxx = 0 case). That delays
the destruction of DTC-like oscillations at early time. Then, as
we include more generic perturbation (θxx 	= 0), thermalization is
significantly accelerated. (b) In contrast, the strongly interacting
system is already nonintegrable for the effective Hamiltonian.
DTCs induced by the cat scars do not rely on model fine-tuned
integrability, and are robust against generic perturbation. Same
results are observed in Fig. 2 where we sample over different
perturbation types.

resulting in

H (1)|J�1 =
L∑

j=1

(J ( f †
j f j+1 + f †

j f †
j+1 + h.c.) − 2λ f †

j f j ),

(40)

where constant terms are neglected. Then, we see that Eq. (40)
describes the Bloch band for mean-field spinless p-wave su-
perconductors. The single-particle crystal momenta k, i.e.,
in the Fourier transformation fk = (1/

√
L)

∑L
j=1 f jeikx j , are

conserved quantities and therefore Eq. (40) is integrable.
Thus, for weakly interacting situation J ∼ 0.1 in Eq. (35),

its early-time dynamics is dominated by noninteracting
single-particle integrable models. Such an approximate inte-
grability causes a slow relaxation and delays the thermaliza-
tion. Consequently, we observe that even for relatively weak
hz = 0.8, 0.4 in Fig. 16(a), there still appears certain DTC-like
oscillations with suppressed amplitudes at early time t/T <

100, rather than showing thermalizing behaviors without dy-
namics [i.e., M(t ) decays to zero with small fluctuations].

In contrast, if we explicitly break the integrability by
including more generic perturbations, then thermalization
processes would be significantly accelerated. For instance, in
Fig. 17(a), we change the form of perturbation in Eq. (35) into

U1 = e−i( π
2 −λ)

∑L
j=1 τ x

j

→ e−i( π
2

∑L
j=1 τ x

j +λ(cos(θxx )τ x
j +sin(θxx )τ x

j τ
x
j+1 )), (41)

where θxx = 0 returns the perturbation to its original form ∼
λτ x

j , while for nonzero θxx additional two-spin perturbations ∼
τ x

j τ
x
j+1 are included. We see in Fig. 17(a) that the generic per-

turbation θxx 	= 0, with equal perturbation strength λ, indeed
triggers a full thermalization behavior of the weakly interact-
ing cases at early time. In contrast, the cat-scar-enforced DTC
behaviors in strongly interacting cases [Fig. 17(b)] is robust
against the changes of perturbation forms, as we have already
seen in Fig. 2.
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FIG. 18. Illustration of the function magnitudes in Eq. (42).

Next, for completeness, let us also derive the effective
Hamiltonian for early-time dynamics in strongly interacting
cases as well.

(2) For the strongly interacting case J ∼ 1 in Eq. (35),
however, the Hamiltonian H (1) cannot be obtained by sim-
ply summing over terms in the exponential parts, because a
relatively strong interaction term Jτ z

j τ
z
j+1 with J ∼ 1 does

not commute with other magnetic field terms. Nevertheless,
we could still obtain a closed-form via BCHD formula in
Appendix C, and arrive at the rigorous result

Heff = H (1)|J∼1 + O(λ2),

H (1)|J∼1 =
∑

j

(
Jτ z

j τ
z
j+1 − λ

(
cos(hz )τ x

j − sin(hz )τ y
j

)
− λ f (J )

(
cos(hz )τ y

j + sin(hz )τ x
j

)(
τ z

j−1 + τ z
j+1

)
−λg(J )

(
cos(hz )τ x

j − sin(hz )τ y
j

)(
1 + τ z

j−1τ
z
j+1

))
,

(42)

where the functions (which are plotted in Fig. 18)

f (J ) = 1

4J

(
π2

12
+ Li2(−e−2iJ ) + Li2(−e2iJ )

2

)
,

g(J ) = 1

4J

(
−2J ln(2) + Li2(−e−2iJ ) − Li2(−e2iJ )

2i

)
, (43)

and Lis(z) is the polylogarithm function

Lis(z) =
∞∑

k=1

zk

ks
. (44)

The terms ∼ f (J ), g(J ) in Eq. (42) rigorously obtained here
are new additions compared with results in previous literature
for weakly interacting systems [9,12,15]. Due to the effects of
these additional terms, the strongly interacting system already
shows nonintegrable nature at the lowest-order expansions.
Thus, further adding two-spin terms in the perturbation, as
in Fig. 17(b), would not affect the dynamics because the
cat-scar-enforced DTCs do not rely on fine-tuned integrability.

Finally, we should remark that while the effective Hamilto-
nian for weakly interacting system [Eq. (38)] can be regarded
as a prethermal static Hamiltonian, the strongly interacting
one in Eq. (42) cannot be viewed in the same way. To show
it, let us consider the evolution at double-period ends for the
transformed Floquet operator in Eq. (37),

Ũ 2
F = e−iH (1) (τ x

j ,τ
y
j ,τ

z
j )e−iH (1) (τ x

j ,−τ
y
j ,−τ z

j ), (45)

where we used Pτ
y,z
j P = τ x

j τ
y,z
j τ x

j = −τ
y,z
j . For the weakly

interacting case Eq. (38), all parameters in H (2) are small, and

therefore we can simply sum up different terms and obtain

Ũ 2
F = e−2i

∑L
j=1(Jτ z

j τ
z
j+1−λτ x

j cos(hz )) + O(λ2, J2, λJ )

≡ e−2iHpreth + O(λ2, J2, λJ ). (46)

Thus, we can indeed arrive at a static Hamiltonian descrip-
tion with Hpreth = ∑L

j=1(Jτ z
j τ

z
j+1 − λτ x

j cos(hz )), as further
evolutions would be controlled by the same e−2iHpreth with-
out drivings, until the timescale where higher-order terms
O(λ2, J2, λJ ) show significant effects.

In contrast, for strongly interacting cases, the two terms
H (1)(τ x

j , τ
y
j , τ

z
j ), H (1)(τ x

j ,−τ
y
j ,−τ z

j ) in the exponential of
Eq. (45), where H (1)’s are given by Eq. (42), both involve
a large parameter J and several two-spin terms that do not
commute with each other. Then, it is no longer possible to
obtain a closed-form local Hamiltonian to describe prethermal
physics. Rather, in this case, we have a genuine strongly
interacting system under periodic drivings, which typically
absorbes energy and heats up quickly. This is consistent with
the description in Fig. 8(a), where the GOE type of level spac-
ing statistics indicates the thermalizing behavior for nonscar
eigenstates in each domain wall sector. Thus, in the strongly
interacting case, we can no longer rely on a prethermal static
description of the system with or without Landau’s symmetry
breaking. Instead, it is the unconventional scar localization
enforced by strong interactions that leads to cat scar-induced
DTC dynamics.

V. CONCLUSION

An analytical framework is constructed for SP of cat scars
in clean Floquet systems, enabling systematic enumeration
of their DTC oscillation patterns and prediction of the scal-
ing behaviors. For future works, symmetry indicators may
yield more sophisticated phenomena in higher dimensions
with richer space groups. Also, our work paves the way to
analytically bridging the two anchor points of clean DTCs
illuminated here and the strongly disordered cases studied
before. To extend the analysis in this work toward more dis-
ordered scenarios, one probably needs to carefully take into
account possible resonances that may destabilize the localiza-
tion of majority eigenstates, as revealed by recent studies on
the avalanche mechanism. Finally, this work may help distin-
guish cat-scar-enforced DTC dynamics from other DTC-type
of phenomena in translation-invariant systems, including the
prethermal systems with Landau symmetry breaking similarly
host robust SP, and also certain systems dominated by nonin-
teracting effects instead.
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APPENDIX A: ALGEBRAIC PROOF FOR SELECTION
RULES REGARDING FACTORED PERTURBATIONS

OF DIFFERENT ORDERS

1. Main proofs

Consider a Floquet operator made of two driving steps,

UF (λ) = U2(λ)U1(λ) = e−i(H2+λH ′
2 )e−i(H1+λH ′

1 ). (A1)
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Here we take generic perturbations up to two-spin terms,

H ′
1 =

L∑
j=1

∑
μ=x,y,z

θμτ
μ
j +

L∑
j=1

∑
μ,ν=x,y,z

φμντ
μ
j τ ν

j+1, (A2)

H ′
2 =

L∑
j=1

∑
μ=x,y,z

θ ′
μτ

μ
j +

L∑
j=1

∑
μ,ν=x,y,z

φ′
μντ

μ
j τ ν

j+1. (A3)

The model in Eq. (1) serves as a specific example with
H ′

1 = H ′
2 and φμν = φδμxδνx. We define the operator product

order nop by counting at most how many spin operators are
multiplied in individual terms of perturbation Hamiltonians,
i.e.,

nop = 2 : θμ, θ ′
μ, φμν, φ

′
μν 	= 0, ∼ τ

μ
j , τ

μ
j τ ν

j+1,

nop = 1 : θμ, θ ′
μ 	= 0, φμν = φ′

μν = 0, only ∼ τ
μ
j .

(A4)

Namely, with both one-spin and two-spin terms nop = 2, and
if only one-spin terms are present nop = 1. The selection rules
would be intimately related to the quantity nop.

To facilitate further analysis, we would like to factor the
perturbation into the form UF (λ) = U0U ′(λ), where U0 =
e−iH2 e−iH1 does not involve perturbations and therefore can
be solved exactly. We first formally factor out the perturbation

by inserting an identity matrix,

UF (λ) = (
e−iH2 e−iH1

)(
eiH1 eiH2UF

) ≡ U0U
′,

U ′ = eiH1 eiH2 e−i(H2+λH ′
2 )e−i(H1+λH ′

1 ). (A5)

Now, recall that the unperturbed Hamiltonians H0(t ) [Eq. (1)]
at two driving steps read

H1 = π

2

∑
j

τ x
j , e−iH1 = (−i)L

∏
j

τ x
j ,

H2 =
∑

j

τ z
j τ

z
j+1, e−iH2 =

∏
j

e−iτ z
j τ

z
j+1 . (A6)

Then, eiH1 (τ x
j , τ

y
j , τ

z
j )e−iH1 = (τ x

j ,−τ
y
j ,−τ z

j ) gives

U ′ = (
eiH2 e−i(H2+λH ′

2(τ x
j ,−τ

y
j ,−τ z

j )))(eiH1 e−i(H1+λH ′
1 )) ≡ U ′

2U
′
1.

(A7)

Since H ′
1,2 are already taken as generic perturbations, we

would neglect the sign flips for H ′
2(τ x

j ,−τ
y
j ,−τ z

j ), and denote

U ′ = U ′
2U

′
1, U ′

α = eiHα e−i(Hα+λH ′
α ), α = 1, 2, (A8)

where H1,2 and H ′
1,2 are given by Eqs. (A6) and (A3), respec-

tively.
For the formal decomposition to be useful, we would like to

sort out the structures of U ′
α , and to prove a selection rule that

paves the way for showing scaling relations later on. To do so,
let us apply the Baker-Campbell-Hausdorff-Dynkin (BCHD)
formula [69] to Eq. (A8),

U ′
α = exp

⎛
⎝ ∞∑

n=1

(−1)n+1

n

∑
p j+q j>0, p j ,q j�0

[
(iHα )(p1 ),

[( − i(Hα + λH ′
α )(q1 )

)
,
[
. . . ,

[
(iHα )(pn ), (−i(Hα + λH ′

α )(qn ) )
]
. . .

]
(∑n

j=1(p j + q j )
) ∏n

j=1 p j!q j!

⎞
⎠, (A9)

where the iterative brackets means, i.e., [A(2), B(3)] =
[A, [A, [B, [B, B]]]], and in our case the nonvanishing terms in
the exponential should satisfy qn � 1 and that not all q j = 0.

As a preliminary step, we confirm below that based on the
form of Eq. (A9), U ′

α can be written as

U ′
α (λ) = exp

(
i

∞∑
k=1

λkVα,k

)
, (A10)

where V †
α,k = Vα,k are Hermitian operators.

First, note that the lowest order n = 1 terms in the expo-
nential

iHα − i(Hα + λH ′
α ) +

∑
r1�1

ip1−1

(p1 + 1)p1!
λ
[
H (p1 )

α , H ′
α

]

= −iλ

(
H ′

α +
∑
p1�1

ip1

(p1 + 1)p1!

[
H (p1 )

α , H ′
α

])
, (A11)

is of the order λ1. Other higher-order terms would necessarily
involve at least one commutator of [Hα, λH ′

α] to be nonvan-
ishing. Thus, the perturbation U ′(λ) indeed start from the λ1

term.
Second, note that for a set of arbitrary Hermitian op-

erators A†
j = Aj , by repeatedly using [A1, A2]† = [A†

2, A†
1] =

[A2, A1] = −[A1, A2], we have

[A1, [A2, . . . [An−1, An]]]†

= [[[An, An−1], An−2], . . . , A2], A1]

= (−1)n−1[A1, [A2, . . . , [An−1, An]]]

⇒ [iA1, [iA2, . . . [iAn−1, iAn]]]†

= (in)†[A1, [A2, . . . [An−1, An]]]†

= (−1)[iA1, [iA2, . . . [iAn−1, iAn]]]. (A12)

Replacing Aj’s with Hα, H ′
α in Eq. (A9), we see that each term

in the exponential with given pj, q j is anti-Hermitian. Thus,
operators Vα,k in Eq. (A10) are Hermitian ones [(iVα,k )’s are
anti-Hermitian].

Thus, the form of perturbations in Eq. (A10) is confirmed.
Next we further prove the selection rule for Hermitian opera-
tors V1,k and V2,k separately using the form in Eqs. (A9). To do
so, let us define the Fock space distance δs by counting how
many spins are flipped between two Fock configurations |{s j}〉
and |{s̃ j}′〉,

δs({s j}, {s̃ j}′) = 1

2

∑
j

|s j − s̃ j |. (A13)
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The selection rule relates the perturbation orders λkVα,k with
the maximal Fock space distance δs({s j}, {s̃ j}′) for nonvanish-
ing matrix elements 〈{s j}|Vα,k|{s̃ j}′〉.

(1) For U ′
1, recall that H1 = π

2

∑
j τ

x
j only involves single-

spin terms. That means the commutation of H1 with any
product τ

μ1
j1

τ
μ2
j2

. . . τ
μn
jn

preserve the total number of spin op-
erators being multiplied, i.e.,[

H (n)
1 , τ

ν1
j1

τ
ν2
j2

. . . τ
νn
jn

] =
∑

μ1...μn

A(n)
μ1...μn

τ
μ1
j1

. . . τ
μn
jn

,

A(n)
μ1...μn

∈ C, νk, μk = x, y, z, (A14)

where the right-hand side also only involves products of n
operators. Thus, it solely depends on the number of H ′

1, i.e.,
q j in Eq. (A9) to determine the how many operators are
multiplied in each term. Specifically, for the λkth order terms,
there are k pieces of H ′

1 in the commutators of Eq. (A9).
Since H ′

1 involves at most multiplications of nop spin opera-
tors in Eq. (A3), there are at most nopk spin operators being

multiplied together for any terms in V1,k . Therefore, the selec-
tion rule for V1,k is

〈{s j}1|V1,k|{s j}2〉 	= 0 ⇒ δs({s j}1, {s j}2) � nopk. (A15)

(2) For U ′
2, note that the commutation of H2 = ∑

j J jτ
z
j τ

z
j+1

with any operator product only exchanges τ x
j ↔ τ

y
j , and/or

attached additional factors of τ z
j ’s in an operator product.

Therefore, it cannot increase or decrease the number of spin-
flipping operators τ

x,y
j being multiplied in a term. For instance,

H2 commuting with one and two spin terms gives[
H2, τ

x
j

] = iJτ
y
j

(
τ z

j+1 + τ z
j−1

)
,[

H2, τ
y
j

] = −iJτ x
j

(
τ z

j+1 + τ z
j−1

)
,[

H2, τ
x
j τ

x
j+1

] = J
(
iτ z

j−1τ
y
j τ

x
j+1 − τ

y
j τ

y
j+1 + iτ x

j τ
y
j+1τ

z
j+2

)
.

(A16)

More generally, for an arbitrary term with n spin flipping
operators, we have

[
H (n)

2 ,
(
τ

ν1
j1

τ
ν2
j2

. . . τ
νn
jn

)(
τ z

k1
τ z

k2
. . . τ z

km

)]
= [

H (n)
2 , τ

ν1
j1

τ
ν2
j2

. . . τ
νn
jn

](
τ z

k1
τ z

k2
. . . τ z

km

)
(A17)

=
∑

μ1μ2...μn=x,y

τ
μ1
j1

τ
μ2
j2

. . . τ
μn
jn

⎛
⎝ ∑

mn+1...mL=0,1

B(n)
μ1...μn;mn+1,...,mL

(
τ z

jn+1

)mn+1
(
τ z

jn+2

)mn+2
. . .

(
τ z

jL

)mL

⎞
⎠. (A18)

Here transverse components are labeled by ν1, . . . , νn, μ1, . . . , μn = x, y, while longitudinal ones τ z
j are explicitly denoted.

Coefficients are generally denoted as B(n)
μ1...μn;mn+1,mn+2,mL

∈ C. Now, although the total number of operators changes, the number
of spin-flipping operators, i.e., τ

ν1
j1

. . . τ
νn
jn

and τ
μ1
j1

. . . τ
μn
jn

, remain the same on both sides of Eq. (A17). That means, again, V2,k

can flip as many spins as the k pieces of H ′
2 in the commutators of Eq. (A9), rendering the selection rule

〈{s j}1|V2,k|{s j}2〉 	= 0 ⇒ δs({s j}1, {s j}2) � nopk. (A19)

Thus, the selection rules for V1,k and V2,k are the same as given by Eqs. (A15) and (A19).
Finally, let us consider the total perturbations by using the BCHD formula again,

U ′(λ) = U ′
2U

′
1 = ei

∑∞
k=1 λkV1,k ei

∑∞
k′=1 λk′

V1,k′

= exp

⎛
⎜⎜⎝

∞∑
n=1

(−1)n+1

n

∑
p j +q j >0,

p j ,q j �0

[(
i
∑

k1
λk1V1,k1

)(p1 )
,
[(

i
∑

k′
1
λk′

1V2,k1

)(q1 )
,
[
. . . ,

[(
i
∑

kn
λknV1,kn

)(pn )
,
(
i
∑

k′
n
λk′

nV2,k′
n

)(p1 )]
. . .

]]]
( ∑n

j=1(p j + q j )
)∏n

j=1 p j!q j!

⎞
⎟⎟⎠,

= ei
∑∞

k=1 λkVk , (A20)

where in the last step we use the same analysis as that for Eq. (A10) to obtain the exponential form and the Hermitian condition
V †

k = Vk . Then, a simple power counting gives that the λk terms involve commutations of

Vk ∼ [
V (p1 )

1,k1
,
[
V (q1 )

2,k′
1
,
[
. . .

[
V (pn )

1,kn
,V (qn )

2,k′
n

]
. . .

]
,

n∑
j=1

(k j p j + k′
jq j ) = k. (A21)

Due to the selection rules Eqs. (A15) and (A19), V1,k j and V2,k′
j

at most involve multiplications of nopk j, nopk′
j spin-flipping

operators, respectively, so Vk at most involves multiplications of
∑n

j=1 nop(k j p j + k′
jq j ) = nopk spin-flipping operators. Thus,

we have the final form and selection rules for the full perturbation operator,

UF (λ) = e−i(H1+λH ′
1 )e−i(H2+λH ′

2 ) = U0U
′(λ),

U0 ≡ UF (λ = 0) = e−iH2 e−iH1 , U ′(λ) = exp

(
i

∞∑
k=1

λkVk

)
,

〈{s j}1|Vk|{s j}2〉 	= 0 ⇒ δs({s j}1, {s j}2) � nopk. (A22)

This is satisfied by H1, H2 in Eq. (A6) under generic perturbations in Eq. (A3).
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To give an example, let us write down the generic form for the first-order perturbation V1 ∼ λ1 for the model in Eq. (1)
H ′

1 = H ′
2 = H ′ = ∑

j (φτ x
j τ

x
j+1 + ∑

μ=x,y,z θμτ
μ
j ). From Eq. (A9), we see that V1 is given by the commutation of H ′ with multiple

H1 and H2, namely,

V1 = f1
({[

H (n)
1 , H ′]∣∣0 � n ∈ Z

}) + f2
({[

H (n)
2 , H ′]∣∣0 � n ∈ Z

})
. (A23)

For the H1 part, only single-particle terms are involved, and we could easily obtain

[
H (n)

1 , H ′] =
(

π

2

)n
[( ∑

j

τ x
j

)(n)

,
∑

k

(
φτ x

k τ x
k+1 +

∑
μ=x,y,z

θμτ
μ

k

)]

=
(

π

2

)n ∑
k

[(
τ x

k

)(n)
,
(
θyτ

y
k + θzτ

z
k

)]

=
{(

π
2

)n ∑L
k=1 i

(
θyτ

z
k − θzτ

x
k

)
, odd n(

π
2

)n ∑L
k=1

(
θyτ

y
k + θzτ

z
k

)
, even n

. (A24)

However, the iterative commutation of H2 with H ′ is a bit more complicated. Full details of computations are left to Sec. A 2.
From Eqs. (A34) and (A44) there, combined with Eqs. (A24), we have the generic form

V1 =
L∑

j=1

∑
m1,m2=0,1

⎛
⎝ ∑

μ1=x,y

αm1m2,μ1

(
τ z

j−1

)m1
τ

μ1
j

(
τ z

j+1

)m2 +
∑

μ1μ2=x,y

βm1m2,μ1μ2

(
τ z

j−1

)m1
τ

μ1
j τ

μ2
j+1

(
τ z

j+2

)m2

⎞
⎠, (A25)

where α(n)
m1m2,μ1

, β (n)
m1m2,μ1μ2

∈ C are coefficients. We see that the first-order factored perturbation V1 takes a similar form as the
bare perturbation H ′, with the only difference that certain τ z

j ’s are attached to nearby sites and the coefficients are modified. Most
importantly, the number of spin-flipping operators, τ

x,y
j ’s, are limited to two in each term, and therefore fulfilling the selection

rules Eqs. (A22).
For later use, it is also helpful to note that a gauge transformation by the unperturbed Floquet operator U0 in Eq. (4) leaves

the selection rules for Vk in Eq. (A22) unchanged, namely,

if 〈{s j}|Vk|{s̃ j}〉 	= 0 ⇒ δs({s j}, {s̃ j}′) � nopk,

then for Ṽk ≡ U †
0 VkU0,

〈{s j}|Ṽk|{s̃ j}′〉 	= 0 ⇒ δs({s j}, {s̃ j}′) � nopk. (A26)

Specifically, for individual spin operators, the gauge transformation performs a local linear mapping,

U †
0

⎛
⎜⎝

τ x
j

τ
y
j

τ z
j

⎞
⎟⎠U0 = (

cos J + i sin Jτ z
j τ

z
j+1

)(
cos J + i sin Jτ z

j τ
z
j−1

)⎛⎝ τ x
j

−τ
y
j

−τ z
j

⎞
⎠(

cos J − i sin Jτ z
j τ

z
j−1

)(
cos J − i sin Jτ z

j τ
z
j+1

)

=

⎛
⎜⎝

τ x
j

(
cos2 2J − τ z

j−1τ
z
j+1 sin2 2J

) − τ
y
j cos 2J sin 2J

(
τ z

j−1 + τ z
j+1

)
−τ x

j cos 2J sin 2J
(
τ z

j−1 + τ z
j+1

) − τ
y
j

(
cos2 2J − τ z

j−1τ
z
j+1 sin2 2J

)
−τ z

j

⎞
⎟⎠ ≡ Kj

⎛
⎜⎝

τ x
j

τ
y
j

τ z
j

⎞
⎟⎠,

Kj =

⎛
⎜⎝

cos2 2J − sin2 2Jτ z
j−1τ

z
j+1 − sin 2J cos 2J

(
τ z

j−1 + τ z
j+1

)
0

− sin 2J cos 2J
(
τ z

j−1 + τ z
j+1

) −(
cos2 2J − sin2 2Jτ z

j−1τ
z
j+1

)
0

0 0 −1

⎞
⎟⎠. (A27)

The matrix Kj is block-diagonalized as τ
x,y
j and τ z

j are decoupled. Thus, the gauge transformation at a certain site j is to
exchange τ x

j ↔ τ
y
j , and attach additional τ z

j±1 at nearby sites. Further note that multiplications like τ z
j−1(τ x

j−1, τ
y
j−1, τ

z
j−1) =

(iτ y
j−1,−iτ x

j−1, 1) again only exchanges τ x
j−1 ↔ τ

y
j−1. We see that for a generic term, the gauge transformation cannot increase

or decrease the number of spin-flipping operators τ
x,y
j , namely,

U †
0

(
τ

ν1
j1

τ
ν2
j2

. . . τ
νn
jn

)(
τ z

k1
τ z

k2
. . . τ z

km

)
U0 =

∑
μ1μ2...μn=x,y

τ
μ1
j1

τ
μ2
j2

. . . τ
μn
jn

∑
mn+1...mL=0,1

Bmn+1,...,mL
μ1...μn

(
τ z

jn+1

)mn+1
(
τ z

jn+2

)mn+2
. . .

(
τ z

jL

)mL
, (A28)

where the number of spin flipping operator ν1 . . . νn, μ1 . . . μn = x, y is preserved on both sides as n. Combined with the selection
rules for the bare Vk in Eq. (A22), we have proved the relations in Eq. (A26).

104309-20



ANALYTICAL THEORY OF CAT SCARS WITH DISCRETE … PHYSICAL REVIEW B 108, 104309 (2023)

2. Algebras for proving Eq. (A25): Iterative commutation of H2

with generic one-spin and two-spin terms

Here the zeroth-order Hamiltonian reads

H2 = J
∑

k

τ z
k τ

z
k+1.

We would consider repeated commutations between H2 with
one-spin and two-spin terms τ

μ
j , τ

μ
j τ ν

j . Independent ones are
written in the following form

Aj =
(

τ x
j

τ
y
j

)
, Bj, j+1 =

⎛
⎜⎜⎜⎜⎝

τ x
j τ

x
j+1

τ x
j τ

y
j+1

τ
y
j τ

x
j+1

τ
y
j τ

y
j+1

⎞
⎟⎟⎟⎟⎠, (A29)

while others like τ z
j τ

x
j+1 can be obtained from results for

Aj , as τ z
j commute with H2. In the following, commutations

like [H2, Aj] mean to commute H2 with each component of
Aj . Since H2 only exchanges τ x

j ↔ τ
y
j , its commutation with

Aj, Bj amounts to a linear transformation within the subspace
of Aj, Bj, j+1, namely,[

H (n)
2 , Aj

] = Kn
j A j,

[
H (n)

2 , Bj, j+1
] = Ln

j B j, j+1, (A30)

where Kn
j , Ln

j are 2 × 2 and 4 × 4 matrices, respectively.
We shall obtain the explicit formula for all Kn

j , Ln
j . Below,

we would use τ
x,y,z
j to denote the spin operators. Instead,

σx,y,z,0, sx,y,z,0 are just Pauli matrices to denote coefficients.
(1) One-spin terms:

[H2, Aj] = 2J

(
iτ y

j

(
τ z

j−1 + τ z
j+1

)
−iτ x

j

(
τ z

j−1 + τ z
j+1

)
)

= 2J

(
0 i

(
τ z

j−1 + τ z
j+1

)
−i

(
τ z

j−1 + τ z
j+1

)
0

)(
τ x

j

τ
y
j

)

≡ K1
j A j,

⇒ K1
j = −2J

(
τ z

j−1 + τ z
j+1

)
σy. (A31)

Here spin operators τ z
j±1’s commute with all other operators.

Further, note that all operators in K1
j commute with H2, re-

peated commutations of H2 with Aj amounts to repeated linear
transformation[

H (n)
2 , Aj

] = (
K1

j

)n
A j = Kn

j A j,

Kn
j = (

K1
j

)n

=
{

(−2J )n2n−1
(
1 + τ z

j−1τ
z
j+1

)
σ0, even n � 2

(−2J )n2n−1
(
τ z

j−1 + τ z
j+1

)
σy, odd n

.

(A32)

Thus, explicitly, for 1 � m ∈ Z,[
H (2m)

2 , τ x
j

] = (1, 0)K2m
j A j = J2m24m−1

(
1 + τ z

j−1τ
z
j+1

)
τ x

j ,[
H (2m)

2 , τ
y
j

] = (0, 1)K2m
j A j = J2m24m−1

(
1 + τ z

j−1τ
z
j+1

)
τ

y
j ,[

H (2m−1)
2 , τ x

j

] = (1, 0)K2m−1
j A j

= −J2m−124m−2
(
τ z

j−1 + τ z
j+1

)( − iτ y
j

)
,[

H (2m−1)
2 , τ

y
j

] = (0, 1)K2m−1
j A j

= −J2m−124m−2
(
τ z

j−1 + τ z
j+1

)(
iτ x

j

)
. (A33)

Thus, commutation of H2 with one-spin terms can be summa-
rized into the generic form[

H (n)
2 , τ

μ
j

] =
∑

m1,m2=0,1

∑
μ1=x,y

α(n)
m1m2,μ1

(
τ z

j−1

)m1
τ

μ1
j

(
τ z

j+1

)m2
,

(A34)

with coefficients α(n)
m1m2,μ1

as in Eq. (A33).
(2) Two-spin terms:

[H2, Bj, j+1] = 2J

⎛
⎜⎜⎜⎜⎝

τ z
j−1iτ y

j τ
x
j+1 − τ

y
j τ

y
j+1 + τ x

j iτ y
j+1τ

z
j+2

τ z
j−1iτ y

j τ
y
j+1 − τ

y
j τ

y
j+1 + τ x

j iτ y
j+1τ

z
j+2

−τ z
j−1iτ x

j τ
x
j+1 + τ x

j τ
y
j+1 + τ

y
j iτ y

j+1τ
z
j+2

−τ z
j−1iτ x

j τ
y
j+1 − τ x

j τ
x
j+1 − τ

y
j iτ x

j+1τ
z
j+2

⎞
⎟⎟⎟⎟⎠

≡ L1
j B j, j+1,

L1
j = 2J

⎛
⎜⎜⎜⎜⎝

0 iτ z
j+2 iτ z

j−1 −1

−iτ z
j+2 0 1 iτ z

j−1

−iτ z
j−1 1 0 iτ z

j+2

−1 −iτ z
j−1 −iτ z

j+2 0

⎞
⎟⎟⎟⎟⎠

= 2J
(
σysy − τ z

j−1σys0 − τ z
j+2σ0sy

)
, (A35)

where we verified again that commutation of H2 with
Bj, j+1 only performs linear transformation within the four-
dimensional subspace. Since L1

j commute with H2, repeated
commutation of H2 with Bj, j+1 reduces to a multiplication[

H (n)
2 , Bj, j+1

] = (
L1

j

)n
B j, j+1 = Ln

j B j, j+1, Ln
j = (

L1
j

)n
.

(A36)

Computing Ln
j is slightly more involved than that for Kn

j ,
which we will derive using deductions. Specifically, for x2 =
2, we have(

L1
j

)2 = (2J )2
(
3 − 2τ z

j−1σ0sy − 2τ z
j+2σys0 + 2τ z

j−1τ
z
j+2σys0

)
.

Now suppose(
L1

j

)n = (2J )n
(
(xn + 1) − xnτ

z
j−1σ0sy

− xnτ
z
j+2σys0 + xnτ

z
j−1τ

z
j+2σys0

)
. (A37)

Then,(
L1

j

)n+1 = (2J )n+1
(
3xnτ

z
j−1τ

z
j+2 − (3xn + 1)τ z

j+2σ0sy

− (3xn + 1)τ z
j−1σys0 + (3xn + 1)σysy

)
(
L1

j

)n+2 = (2J )n+2
(
(9xn + 3) − (9xn + 2)τ z

j−1σ0sy

− (9xn + 2)τ z
j+2σys0 + (9xn + 2)τ z

j−1τ
z
j+2σysy

)
,

(A38)

giving

xn+2 = 9xn + 2 ⇒
(

xn+2 + 1

4

)
= 32

(
xn + 1

4

)

⇒ xn + 1

4
= 3n−2

(
x2 + 1

4

)
⇒ xn = 3n − 1

4
. (A39)
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Thus, for 1 � m ∈ Z,

L2m
j = (2J )2m

4

(
(32m + 3)σ0s0 + (32m − 1)

(−τ z
j−1σ0sy − τ z

j+2σys0 + τ z
j−1τ

z
j+2σysy

))
, (A40)

L2m−1
j = (2J )2m−1

4

(
(32m−1 − 3)σ0s0τ

z
j−1τ

z
j+2 + (32m−1 + 1)

( − τ z
j+2σ0sy − τ z

j−1σys0 + σysy
))

. (A41)

From these results, one could obtain arbitrary iterated commutation between H2 and the two-spin terms Bj, j+1. For instance,

[
H (2m)

2 , τ x
j τ

x
j+1

] = (1, 0, 0, 0)L2m
j B j, j+1

= (2J )2m

4

(
(32m + 3)τ x

j τ
x
j+1 + (32m − 1)

(
τ z

j−1iτ x
j τ

y
j+1 + iτ y

j τ
x
j+1τ

z
j+2 − τ z

j−1τ
y
j τ

y
j+1τ

z
j+2

))
, (A42)[

H (2m−1)
2 , τ x

j τ
x
j+1

] = (1, 0, 0, 0)L2m−1
j B j, j+1

= (2J )2m−1

4

(
(32m−1 − 3)τ z

j−1τ
x
j τ

x
j+1τ

z
j+2 + (32m−1 + 1)

(
iτ x

j τ
y
j+1τ

z
j+2 + τ z

j−1iτ y
j τ

x
j+1 − τ

y
j τ

y
j+1

))
, (A43)

where the vector (1, 0, 0, 0) is acting on the 4 × 4 matrices σ0sy, etc., in Eqs. (A40) and (A41). In sum, the commutation of H2

with two-spin terms would result in the generic form[
H (n)

2 , τ
ν1
j τ

ν2
j+1

]= ∑
m1m2 = 0, 1
μ1μ2 = x, y

β (n)
m1m2,μ1μ2

(
τ z

j−1

)m1
τ

μ1
j τ

μ2
j+1

(
τ z

j+2

)m2
, (A44)

where β (n)
m1m2,μ1μ2

’s are given in Eqs. (A42) and (A43).

APPENDIX B: ALGEBRAIC PROOF FOR SCALING RELATIONS

1. IPR scaling: Amplitudes of original cat scar components
and DTC amplitudes

Here we would focus on the first-order correction to the wave function and obtain the leading order deviation of IPR from
the unperturbed values. This is intimately related to the DTC amplitudes. Specifically, for the fine-tuned solutions in Eq. (5), the
only nondegenerate scars take either the FM or AFM configuration. We would denote both of them by {s(cat)

j } as analysis for the
two configurations are the same, ∣∣�, {s(cat)

j

}〉 = |�, FM〉 = |�, {s j = (+1) j}〉
or = |�, AFM〉 = |�, {s j = (−1) j}〉. (B1)

Under perturbation, the first-order perturbation gives

|ω̃�,cat〉 = α0

⎛
⎜⎝∣∣�, {s(cat)

j

}〉 + iλ
∑

�′,{s j }′ 	=�,{s(cat)
j })

〈�′, {s j}′|V1|�, {s(cat)
j }〉

ei(E (�,{s(cat)
j })−E (�′,{s j }′ )) − 1

|�′, {s j}′〉

⎞
⎟⎠ + O(λ2). (B2)

Now, the generic form for V1 in Eq. (A25) means that only consecutive one or two spins can be flipped. That means all |�′, {s j}′〉
in Eq. (B2) must differ from the scar configurations |�, {s(cat)

j }〉 by two domain walls. Recall E (�, {s j}) = E (�,w) = π� − J (L −
2w), with w = 0, L for FM and AFM configurations, respectively. All quasienergy differences in the denominator of Eq. (B2)
then give identical contributions,

E
(
�,

{
scat

j

}) − E (�′, {s j}′) = π (� − �′) ∓ 4J, (B3)

where ∓ signs correspond to FM or AFM scars. Thus, the denominator can be factored out from the summation. Meanwhile, for
the generic form of V1,

V1 =
L∑

j=1

V1 j,

V1 j =
∑

m1,m2=0,1

⎛
⎝ ∑

μ1=x,y

αm1m2,μ1

(
τ z

j−1

)m1
τ

μ1
j

(
τ z

j+1

)m2 +
∑

μ1μ2=x,y

βm1m2,μ1μ2

(
τ z

j−1

)m1
τ

μ1
j τ

μ2
j+1

(
τ z

j+2

)m2

⎞
⎠, (B4)
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translation invariance implies that

TxV1T
−1
x = V1 ⇒ TxV1 jT

−1
x = V1, j+1. (B5)

Also, recall that cat scars satisfy the projective translation symmetry (± signs below are for FM and AFM configurations,
respectively),

Tx

∣∣�, {s(cat)
j

}〉 = (±1)�
∣∣�, {s(cat)

j

}〉
. (B6)

Then, the matrix elements for each site V1 j are identical to the same terms two sites away,∑
�′,{s j }′

〈�′, {s j}′|V1, j+2

∣∣�, {s(cat)
j

}〉|�′, {s j}′〉 =
∑

�′,{s j }′
〈�′, {s j}′|T 2

x V1 j (T
−1
x )2

∣∣�, {s(cat)
j

}〉|�′, {s j}′〉

=
∑

�′,{s j }′
〈�′, {s j}′|T 2

x V1 j |�, {s(cat)
j }〉|�′, {s j}′〉

=
∑

�′,{s j }′
〈�′, {s j}′|V1, j |�, {s(cat)

j }〉(T 2
x |�′, {s j}′〉

)
,

where in the last step we shift the dummy configuration
∑

{s j}′ |�′, {s j}′〉〈�′, {s j}′| = ∑
{s j}′ T

2
x |�′, {s j}′〉〈�′, {s j}′|(T−1

x )2. That
means Eq. (B2) can be written as

|ω̃�,cat〉 = α0

⎛
⎝∣∣�, {s(cat)

j

}〉 + λ
∑

�′,{s j }′

〈
�′, {s j}′|(V1, j=1 + V1, j=2)

∣∣�, {s(cat)
j

}〉
ei(π (�−�′ )∓4J − 1

L/2−1∑
m=0

T 2m
x |�′, {s j}′〉

⎞
⎠ + O(λ2). (B7)

Denote the averaged strength of the first-order perturbation as

V̄ 2
1 = 1

2

∑
�′,{s j}′ 	=�,{s(cat)

j }

∣∣∣∣∣ 〈�
′, {s j}′|(V1, j=1 + V1, j=2)

∣∣�, {s(cat)
j

}〉
ei(π (�−�′ )∓4J ) − 1

∣∣∣∣∣
2

= 1

8

∑
�′,{s j }′ 	=�,{s(cat)

j }

∣∣〈�′, {s j}′|(V1, j=1 + V1, j=2)
∣∣�, {s(cat)

j

}〉∣∣2
csc2

(
π (� − �′) ∓ 4J

2

)
, (B8)

the normalization constant α0, related to amplitudes for the original cat scar components |�, {s(cat)
j }〉 in the unperturbed cat scars

|ω̃�,cat〉, is rescaled to

1 = |〈ω̃�,cat|ω̃�,cat〉|2 = α2
0

(
1 + λ2V̄ 2

1 L
)

⇒ α2
0 = 1

1 + V̄ 2
1 λ2L

= ∣∣〈�, {s(cat)
j

}∣∣ω̃�,cat
〉∣∣2

. (B9)

2. Scaling for amplitudes of other spin components:
Fock space localization

IPR scaling in the previous section characterizes the amplitude rescaling for FM or AFM components |�, {s(cat)
j }〉 ∼ |±{s(cat)

j }〉
in perturbed cat scars eigenstates |ω̃�,cat〉. It is chiefly contributed by the first-order DW fluctuations on top of the scar
configurations ±{s(cat)

j }. Here, we would further consider all higher-order corrections to cat scar eigenstates and observe the
amplitudes for other spin configurations in |ω̃�,cat〉. To quantitatively describe the deviations of spin configurations away from
the cat scar patterns, we recall the Fock space distance δs in Eq. (A13) and further define the pairwise Fock space distance �s,

δs
({s j},

{
s(cat)

j

}) = 1

2

L∑
j=1

∣∣s j − s(cat)
j

∣∣,

�s
({s j},±

{
s(cat)

j

}) = 1

2
min

⎛
⎝ L∑

j=1

∣∣s j − s(cat)
j

∣∣, L∑
j=1

∣∣s j + s(cat)
j

∣∣
⎞
⎠. (B10)

Here �s({s j},±{s(cat)
j }) is abbreviated in the main text as �scat({s j}). An example for L = 4 is given in Figs. 13(a) and 13(d).

Intuitively, δs({s j}, {s(cat)
j }) characterizes that staring from +{s(cat)

j }, how many spins are flipped to end up with {s j}. Similarly,

�s({s j},±{s(cat)
j }) counts the minimal numbers of spin flips to go from either of the cat scar configuration pair ±{s(cat)

j } to {s j}.
Correspondingly, Fock space localization means that certain eigenstates, i.e., the perturbed cat scars |ω̃�,cat〉, exhibit exponential
decay for the Fock basis coefficients |〈{s j}|ω̃�,cat〉| with the increase of �s.
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In the following, let us quantitatively analyze the scaling of Fock basis amplitudes for cat scars including all perturbation
orders. General perturbation series for the corrected cat scar eigenstates reads

|ω̃�,cat〉 = · · · eiλkSk · · · eiλ2S2 eiλS1
∣∣�, {s(cat)

j

}〉
, (B11)

where the Hermitian matrices S1, S2, · · · , Sk would diagonalize the perturbed Floquet operator up to the λkth order,

〈�1, {s j}1|e−iλS1 e−iλ2S2 · · · e−iλkSk
(
U0ei

∑∞
k=1 λkVk

)
eiλk Sk · · · eiλ2S2 eiλS1 |�2, {s j}2〉 ∝ δ�1,�2δ{s j}1,{s j}2 + O(λk+1). (B12)

For our purposes here, it will be most useful and sufficient to obtain the formal operator solutions for Sk’s, and especially to prove
their associated selection rules. To gain some intuition for general forms, we check the first-order results, where off-diagonal
elements for S1 satisfy [i.e., expand Eq. (B12) up to λ1 orders]

1 − (1 − iλS1)(U0(1 + iλV1))(1 + iλS1) = 0

⇒ [S1,U0] = U0V1 ⇒ S1 − U †
0 S1U0 = −V1. (B13)

Then, formal solutions for Eq. (B13) can be written as

S1 = −
∞∑

p=0

(U †
0 )pV1U

p
0 . (B14)

Using the solution forms in Eq. (B14), we see that S1 corresponds to repeated gauge transformation by U0 for the first-order
perturbation V1. So according to the generalized selection rules in Eq. (A26), S1 inherits the selection rules of V1 as

〈{s j}|S1|{s̃ j}′〉 	= 0 ⇒ δs({s j},±{s̃ j}) � nop, (B15)

where nop for operator product powers in perturbation Hamiltonians is given in Eq. (A4).
Now, we obtain the generic form for Sk using deductions. Suppose Sk−1 already diagonalize Eq. (B12) up to the λk−1th order,

and {Sq|q = 1, 2, . . . , k − 1} satisfy the selection rule that 〈{s j}1|Sq|{s j}2〉 	= 0 ⇒ δs({s j}1, {s j}2) � nopq. Note the expansion

ei
∑∞

k=1 λkVk =
∞∑

α=0

iα

α!

( ∞∑
k=1

λkVk

)α

=
∞∑

α=0

iα

α!

∑
{k1,k2,...,kα�1}

λ
∑α

j=1 k jVk1Vk2 . . .Vkα
. (B16)

Then, for the λkth order, we have for nondiagonal elements

0 = i[U0, Sk] + iU0Vk +
k−1∑
α=0

∑
{mj , n j , = 0, 1, . . . , k − 1,

k j = 1, 2, . . . , k − 1|∑k−1
j=1 j(mj + n j ) + ∑α

j=1 k j = k}

iα+∑k−1
j=1(mj−n j )

α!
∏k

j=1 mj!n j!

× (
Sn1

1 Sn2
2 · · · Snk−1

k−1

)
U0

(
Vk1Vk2 . . .Vkα

)(
Smk−1

k−1 · · · Sm2
2 Sm1

1

)
⇒

Sk − U †
0 SkU0 = − Vk+i

k−1∑
α=1

∑
{mj , n j = 0, 1, . . . , k − 1,

k j = 1, 2, . . . , k − 1|∑k−1
j=1 j(mj + n j ) + ∑α

j=1 k j = k}

iα+∑k−1
j=1(mj−n j )

α!
∏k

j=1 mj!n j!
U †

0

(
Sn1

1 Sn2
2 · · · Snk−1

k−1

)
U0

(
Vk1Vk2 . . .Vkα

)(
Smk−1

k−1 · · · Sm2
2 Sm1

1

)
.

Thus, the formal solutions can be similarly written as

Sk = −
∞∑

p=0

(U †
0 )pVkU

p
0 + i

∞∑
p=0

(U †
0 )p

(
k−1∑
α=1

∑
{mj , n j = 0, 1, . . . , k − 1,

k j = 1, 2, . . . , k − 1|∑k−1
j=1 j(mj + n j ) + ∑α

j=1 k j = k}

iα+∑k−1
j=1(mj−n j )

α!
∏k

j=1 mj!n j!

× U †
0

(
Sn1

1 Sn2
2 · · · Snk−1

k−1

)
U0

(
Vk1Vk2 . . .Vkα

)(
Smk−1

k−1 · · · Sm2
2 Sm1

1

))
U p

0 . (B17)

The first line in Eq. (B17) takes the same form as Eq. (B14), which is a gauge transformation of Vk with U0. Thus, it inherits the se-
lection rules of Vk of relating configurations at most δs � nopk spins apart. Also, operators V1, . . . ,Vk−1 and S1, . . . , Sk−1, already
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satisfies the selection rules according to the assumptions of deduction. The second line corresponds to gauge transformations
of these operators. Thus, they also satisfy the selection rules of flipping at most δs �

∑k−1
j=1(nop j)(mj + n j ) + ∑α

j=1(nop p j )q j =
nopk spins. In sum, the operator Sk satisfy the selection rule

〈{s j}|Sk|{s̃ j}′〉 	= 0 ⇒ δs({s j}, {s̃ j}) � nopk. (B18)

That completes the deductive proof for arbitrary orders k.
Finally, the perturbed cat scar eigenstate can be sorted by orders of λk as

|ω̃�,cat〉 = · · · eiλkSk · · · eiλ2S2 eiλS1
∣∣�, {s(cat)

j

}〉
= ∣∣�, {s(cat)

j

}〉 + ∞∑
k=1

λk
∑

{mj = 0, 1, . . . , k|∑k
j=1 jm j = k}

i
∑k

j=1 mj∏k
j=1 mj!

Smk
k · · · Sm2

2 Sm1
1

∣∣�, {s(cat)
j

}〉
. (B19)

Using the selection rules for Sk in Eq. (B18), the maximal number of spins that can be flipped by the λk terms
�

∑k
j=1 nop j × mj = nopk. Now, note that in the unperturbed eigenstate |�, {s(cat)

j }〉 = (1/
√

2)(|{s(cat)
j }〉 + (−1)�|−{s(cat)

j }〉),

there are pairwise Fock product states |±{s(cat)
j }〉 to start with. Thus, Fock states |{s j}〉 with �s({s j},±{s(cat)

j }) spins

flipped with respect to cat configurations |±{s(cat)
j }〉 will only show up above perturbation orders λk��s({s j },±{s(cat)

j })/nop ,
with pairwise Fock space distance �s in Eq. (B10). Then, we have the scaling relation characterizing Fock space
localization

|〈{s j}|ω̃�,cat〉|2 = O
(
λ�s({s j },±{s(cat)

j })/ξ ), ξ � nop. (B20)

Recall that λ � 0.1 in the DTC regime, so indeed the cat scar eigenstates |ω̃�,cat〉 is exponentially centered at the Fock space

around |±{s(cat)
j }〉 as the coefficients for other spin configurations decay exponentially λ�s({s j },±{s(cat)

j })/ξ = e−�s({s j },±{s(cat)
j })| ln(1/λ)|/ξ

with the increase of spin differences between {s j} and ±{s(cat)
j }.

3. Spectral gap scaling: Exponential growth of DTC lifetime with the increase of L

In the previous two sections, we have proved that for the perturbed cat scars |ω̃�,cat=FM/AFM〉, the amplitudes for original
FM or AFM components experience a minor reduction to α2

0 = |〈�, {s(cat)
j }|ω̃�,cat〉|2 = 1/(1 + V̄ 2

1 λ2L) by the first-order domain
wall fluctuations. Other spin configurations show exponential Fock space localization. Thus, in intermediate scale systems L �
1/λ2, an FM (or AFM) initial state will chiefly overlap with two cat scars |ω̃�=0,FM〉, |ω̃�=1,FM〉 (or |ω̃�=0,AFM〉, |ω̃�=1,AFM〉).
In this section, we would further prove that the spectral gap for the scars of a certain configuration, i.e., ω̃1,FM − ω̃0,FM or
ω̃1,AFM − ω̃0,AFM, approaches the unperturbed value π with exponential accuracy as the system size L increases. In particular,
we would explicitly demonstrate the origin of exponentially small gap deviation from π in finite-size systems, and give a bound
on the scaling exponents.

Let us first gain some intuitions for the general proof by checking the first-order quasienergy correction,

ω
(1)
�,cat = 〈

�,
{
s(cat)

j

}∣∣V1

∣∣�, {s(cat)
j

}〉
. (B21)

Note that V1 can flip up to nop spins, i.e., for perturbations up to two-spin terms like φτ x
j τ

x
j+1 we have nop = 2. Then, for system

sizes L > 4, matrix elements like

〈�, FM|V1|�, FM〉 = 1

2
(〈↑↑↑↑ · · · |V1| ↑↑↑↑ · · · 〉 + 〈↓↓↓↓ · · · |V1| ↓↓↓↓ · · · 〉)

+ (−1)�

2
(〈↑↑↑↑ . . . |V1| ↓↓↓↓ . . . 〉 + 〈↓↓↓↓ · · · |V1| ↑↑↑↑ · · · 〉),

〈�, AFM|V1|�, AFM〉 = 1

2
(〈↑↓↑↓ . . . |V1| ↑↓↑↓ . . . 〉 + 〈↓↑↓↑ . . . |V1| ↓↑↓↑ . . . 〉)

+ (−1)�

2
(〈↑↓↑↓ . . . |V1| ↓↑↓↑ . . . 〉 + 〈↓↑↓↑ . . . |V1| ↑↓↑↓ . . . 〉), (B22)

shows vanishing cross terms (denoted by red), because those red terms require simultaneously flipping L spins, which violates
the selection rules. Thus, these matrix elements are completely independent of spectral pairing quantum numbers �, and we see
that it is again the selection rules enforcing the identical quasienergy correction for pairwise scars,

ω0,cat = ω1,cat = 〈
�,

{
s(cat)

j

}∣∣V1

∣∣�, {s(cat)
j

}〉
= 1

2

∑
m=0,1

〈(−1)m{s(cat)
j }|V1|(−1)m{s(cat)

j }〉. (B23)

104309-25



BIAO HUANG PHYSICAL REVIEW B 108, 104309 (2023)

Based on the first-order solutions, we now prove the fixed spectral gap for higher-order quasienergy corrections ω̃�,cat via
deductions. Assuming that ω

1�q�k−1
�,cat up to the λk−1th order are all independent of spectral pairing quantum numbers �, let

us consider the λkth order corrections. Generically, with the corrected eigenstates |ω̃�,cat〉 = · · · eiλkSk . . . eiλS1 |�, {s(cat)
j }〉, the

corresponding corrected quasienergy reads

eiω̃�,cat = 〈
�,

{
s(cat)

j

}∣∣e−iλS1 e−iλ2S2 · · · e−iλkSk · · · (U0ei
∑∞

k=1 λkVk
) · · · eiλkSk · · · eiλ2S2 eiλS1

∣∣�, {s(cat)
j

}〉
= ei(E (�,{s(cat)

j })+δω�,cat ), δω�,cat =
∞∑

k=1

λkω
(k)
�,cat, (B24)

where E (�, {s(cat)
j }) is the cat scar quasienergy at λ = 0. Using 〈�, {s(cat)

j }|U †
0 = e−iE (�,{s(cat)

j })〈�, {s(cat)
j }|, we have

eiδω�,cat = ei(ω̃�,cat−E (�,{s(cat)
j }))

= 〈
�,

{
s(cat)

j

}∣∣U †
0 e−iλS1 e−iλ2S2 · · · e−iλk Sk · · · (U0ei

∑∞
k=1 λkVk

) · · · eiλkSk · · · eiλ2S2 eiλS1
∣∣�, {s(cat)

j

}〉
, (B25)

and therefore a power counting gives that the λkth order terms read

iω(k)
�,cat = −

k∑
α=2

iα

α!

∑
{1�k j�k−1| ∑α

j=1 k j=k}
ω

(k1 )
�,cat . . . ω

(kα )
�,cat +

k∑
α=0

∑
{mj , n j = 0, 1, . . . , k,

k j = 1, 2, . . . , k|∑k
j=1 j(mj + n j ) + ∑α

j=1 k j = k}

iα+∑k
j=1(mj−n j )

α!
∏k

j=1 mj!n j!

× 〈
�,

{
s(cat)

j

}∣∣F (k,α)
{n j ,mj ,k j}

∣∣�, {s(cat)
j

}〉
,

F (k,α)
{n j ,mj ,k j} = U †

0

(
Sn1

1 Sn2
2 · · · Snk

k

)
U0

(
Vk1Vk2 . . .Vkα

)(
Smk

k · · · Sm2
2 Sm1

1

)
. (B26)

The lower-order corrections ω
q�k−1
�,cat are already independent of � according to the assumptions of deductions. Further, for

F (k,α)
{n j ,mj ,k j }, one could apply the selection rules Eq. (A22) for Vkj , Eq. (B18) for S1 . . . Sk , as well as Eq. (A26) for operators under

gauge transformation by U †
0 . . .U0. Altogether, F (k,α)

{n j ,mj ,k j } could flip as many as
∑nk

j=1(nop j)(n j + mj ) + ∑α
j=1 nopk j = nopk spins,

namely,

〈{s j}1|F (k,α)
{n j ,mj ,k j}|{s̃ j}2〉 	= 0 ⇒ δs({s j}1, {s̃ j}2) � nopk. (B27)

Thus, for a system of size L, up to perturbation order k < L/nop, the cross terms denoted by red color below vanish,

〈
�,

{
s(cat)

j

}∣∣F (k,α)
{n j ,mj ,k j }

∣∣�, {s(cat)
j

}〉 = 1

2

(〈{
s(cat)

j

}∣∣F (k,α)
{n j ,mj ,k j }

∣∣{s(cat)
j

}〉 + 〈 − {
s(cat)

j

}∣∣F (k,α)
{n j ,mj ,k j }

∣∣−{
s(cat)

j

}〉)
+ (−1)�

2

(〈{
s(cat)

j

}∣∣F (k,α)
{n j ,mj ,k j }

∣∣−{
s(cat)

j

}〉 + 〈 − {
s(cat)

j

}∣∣F (k,α)
{n j ,mj ,k j}

∣∣{s(cat)
j

}〉)
. (B28)

This is again because the cross terms require flipping all L spins to related ±{s(cat)
j }, which violates the selection rules for

F (k,α)
{n j ,mj ,k j } when k < L/nop. Then, we have proved that up to the order λk<L/nop , quasienergy corrections ω

(k)
0,cat = ω

(k)
1,cat at each

perturbation order. However, for k � L/nop, operators F (k,α)
{n j ,mj ,k j} can indeed flip all L spins in the system, so the red terms in

Eq. (B28) no longer vanish such that ω
(k�L/nop )
�,cat start to depend on the quantum numbers �. In sum, the quasienergy difference for

pairwise cat scars ω̃0,cat, ω̃1,cat approaches the unperturbed value π with exponential accuracy

exp (i(ω̃1,cat − ω̃0,cat )) = exp
(
i
(
E

(
1,

{
s(cat)

j

}) − E
(
0,

{
s(cat)

j

})) + i(δω1,cat − δω0,cat )
)

= exp

(
iπ + i

∞∑
k=1

λk
(
ω

(k)
1,cat − ω

(k)
0,cat

))

= exp

⎛
⎝iπ + i

∞∑
k=L/nop

λk
(
ω

(k)
1,cat − ω

(k)
0,cat

)⎞⎠
= exp

(
i
(
π + O

(
λk�L/nop

)))
. (B29)

Thus, we could introduce the exponent ν and write the spectral gap deviations for finite size systems as

ω̃1,cat − ω̃0,cat = π + (δω1,cat − δω0,cat ) = π + O(λL/ν ),

ν � nop. (B30)
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APPENDIX C: DERIVATION OF EFFECTIVE HAMILTONIAN FOR STRONGLY INTERACTING CASES

For the model in Eq. (35), with strong interactions J ∼ 1, we need to include all higher-order terms Jn using the BCHD
formula

eAeB = e
∑∞

n=1
(−1)n+1

n

∑
p j +q j >0,p j ,q j�0

[A(p1 ) ,[B(q1 ) ,[...,[A(pn ) ,B(qn ) ]... ]
(
∑n

j=1 (p j +q j ))
∏n

j=1 p j !q j !
. (C1)

Here we keep terms up to perturbation strength λ1, while include all powers of J . Then,

e−i
∑

j Jτ z
j τ

z
j+1 eiλ

∑
j (cos(h)τ x

j −sin(h)τ y
j ) = ei

∑
j (−Jτ z

j τ
z
j+1+λ(cos(h)τ x

j −sin(h)τ y
j ))+iλH ′

, (C2)

where

H ′ =
∞∑

n=1

(−1)n+1

n

∞∑
p1...pn=0

(−iJ )p1+p2+···+pn

(1 + ∑n
j=1 p j )

∏n
j=1 p j!

[(
τ z

j τ
z
j+1

)(p1+p2+···+pn )
, cos(h)τ x

j − sin(h)τ y
j

]

=
∞∑

n=1

(−1)n+1

n

∞∑
r=1

(−iJ )r

r + 1

[(
τ z

j τ
z
j+1

)(r)
, cos(h)τ x

j − sin(h)τ y
j

] ∑
p1+···+pn=r

1

p1!p2! . . . pn!

=
∞∑

n=1

(−1)n+1

n

∞∑
r=1

(−iJ )r

r + 1

[(
τ z

j τ
z
j+1

)(r)
, cos(h)τ x

j − sin(h)τ y
j

]nr

r!

=
∞∑

n=1

(−1)n+1

n

∞∑
r=1

(−iJn)r

(r + 1)!

[(
τ z

j τ
z
j+1

)(r)
, cos(h)τ x

j − sin(h)τ y
j

]
. (C3)

Now, use [( ∑
j

τ z
j τ

z
j+1

)(1)

,
∑

k

cos(h)τ x
k − sin(h)τ y

k

]
=

∑
j

i
(

cos(h)τ y
j + sin(h)τ x

j

)(
τ z

j−1 + τ z
j+1

)
,

[( ∑
j

τ z
j τ

z
j+1

)(2)

,
∑

k

cos(h)τ x
k − sin(h)τ y

k

]
=

∑
j

(
cos(h)τ x

j − sin(h)τ y
j

)
2
(
1 + τ z

j−1τ
z
j+1

)
,

[( ∑
j

τ z
j τ

z
j+1

)(3)

,
∑

k

cos(h)τ x
k − sin(h)τ y

k

]
=

∑
j

i
(

cos(h)τ y
j + sin(h)τ x

j

)
4
(
τ z

j−1 + τ z
j+1

)
, (C4)

which gives [(∑
j

τ z
j τ

z
j+1

)(2m−1)

,
∑

k

cos(h)τ x − sin(h)τ y
k

]
=

∑
j

i
(

cos(h)τ y
j + sin(h)τ x

j

)
22(m−1)(τ z

j−1 + τ z
j+1

)
,

[( ∑
j

τ z
j τ

z
j+1

)(2m)

,
∑

k

cos(h)τ x − sin(h)τ y
k

]
=

∑
j

(
cos(h)τ x

j − sin(h)τ x
j

)
22m−1

(
1 + τ z

j−1τ
z
j+1

)
. (C5)

Thus,

H ′ =
∞∑

n=1

(−1)n+1

n

∞∑
m=1

(
(−iJn)2m−1

(2m)!
22m−2i

(
cos(h)τ y

j + sin(h)τ x
j

)(
τ z

j−1 + τ z
j+1

)

+ (−iJn)2m

(2m + 1)!
22m−1( cos(h)τ x

j − sin(h)τ y
j

)(
1 + τ z

j−1τ
z
j+1

))

=
∞∑

n=1

(−1)n+1

n

(
1

−4iJn
(−1 + cos(2Jn))i

(
cos(h)τ y

j + sin(h)τ x
j

)(
τ z

j−1 + τ z
j+1

)

+ 1

−4iJn
(2iJn − i sin(2Jn))

(
cos(h)τ x

j − sin(h)τ y
j

)
(1 + τ z

j−1τ
z
j+1)

)

104309-27



BIAO HUANG PHYSICAL REVIEW B 108, 104309 (2023)

=
∞∑

n=1

(−1)n

4Jn2

(
(−1+ cos(2Jn))

(
cos(h)τ y

j + sin(h)τ x
j

)(
τ z

j−1+τ z
j+1

)+(2Jn − sin(2Jn))
(

cos(h)τ x
j − sin(h)τ y

j

)(
1 + τ z

j−1τ
z
j+1

))

= 1

4J

(
f (J )

(
cos(h)τ y

j + sin(h)τ x
j

)(
τ z

j−1 + τ z
j+1

) + g(J )
(

cos(h)τ x
j − sin(h)τ y

j

)(
1 + τ z

j−1τ
z
j+1

))
, (C6)

where

f (J ) = 1

4J

(
π2

12
+ Li2(−e−2iJ ) + Li2(−e2iJ )

2

)
,

g(J ) = 1

4J

(
−2J ln(2) + Li2(−e−2iJ ) − Li2(−e2iJ )

2i

)
, (C7)

and Lis(z) is the polylogarithm function

Lis(z) =
∞∑

k=1

zk

ks
. (C8)

Thus, we recover the results in Eq. (42).
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V. Vuletić, and M. D. Lukin, Probing many-body dynamics
on a 51-atom quantum simulator, Nature (London) 551, 579
(2017).

104309-29

https://doi.org/10.1103/PhysRevResearch.2.033070
https://doi.org/10.1103/PhysRevA.99.033618
https://doi.org/10.1103/PhysRevLett.121.093001
https://doi.org/10.1103/PhysRevB.99.144304
https://doi.org/10.1103/PhysRevB.102.224309
https://doi.org/10.1103/PhysRevB.102.214207
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1146/annurev-conmatphys-031620-101617
https://arxiv.org/abs/2011.14583
https://doi.org/10.1038/s41567-022-01891-7
https://arxiv.org/abs/2303.10238
https://doi.org/10.1103/PhysRevX.12.031037
https://doi.org/10.1103/PhysRevLett.129.133001
https://doi.org/10.1103/PhysRevX.10.011043
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevLett.119.150602
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevB.102.125134
https://doi.org/10.1103/PhysRevResearch.2.033262
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevE.104.054105
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevLett.131.106301
https://doi.org/10.1103/PhysRevLett.130.250405
https://doi.org/10.21468/SciPostPhys.12.6.201
https://doi.org/10.1103/PhysRevB.103.024203
https://doi.org/10.1126/science.abq5769
https://doi.org/10.1103/PhysRevB.82.172402
https://doi.org/10.1103/PhysRevB.97.245122
https://doi.org/10.1103/PhysRevX.11.021008
https://doi.org/10.1088/1361-648X/ac03d2
https://doi.org/10.1038/s41586-022-04854-3
https://arxiv.org/abs/2108.00942
https://doi.org/10.1038/nature24622


BIAO HUANG PHYSICAL REVIEW B 108, 104309 (2023)

[65] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini,
S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho,
S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin,
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