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We introduce a quantum optics platform featuring the minimal ingredients for the description of a spintroni-
cally pumped magnon condensate, which we use to promote driven-dissipative phase transitions in the context
of spintronics. We consider a Dicke model weakly coupled to an out-of-equilibrium bath with a tunable spin
accumulation. The latter is pumped incoherently in a fashion reminiscent of experiments with magnet-metal
heterostructures. The core of our analysis is the emergence of a hybrid lasing-superradiant regime that does not
take place in an ordinary pumped Dicke spin ensemble, and which can be traced back to the spintronics pumping
scheme. We interpret the resulting nonequilibrium phase diagram from both a quantum optics and a spintronics
standpoint, supplying a conceptual bridge between the two fields. The outreach of our results concern dynamical
control in magnon condensates and frequency-dependent gain media in quantum optics.
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I. INTRODUCTION

The theme of dynamical phase transitions enabled by
the interplay of interactions, drive, and dissipation perme-
ates different branches of quantum many-body physics, such
as quantum optics [1,2], cold atoms [3,4], and nonequilib-
rium solid-state physics [5–7]. The interest in them ranges
from practical applications in dynamical control to the fun-
damentals of statistical mechanics. The exploration and
understanding of nonequilibrium phases would benefit from
a unifying language, which, however, remains elusive due to
the diversity of microscopic ingredients, relevant scales, and
engineering capabilities across the various platforms.

In this paper, we take the first step in filling this gap by
studying a bare-bones model that offers complementary inter-
pretations pertinent to both spintronics and driven-dissipative
quantum optics, as illustrated in Fig. 1(a). The model is
inspired by typical considerations in spintronics and cavity
quantum electrodynamics (QED) systems and contains the
ingredients that can be implemented in both platforms. We
construct the model by coupling a coherent subsystem to an
incoherent one through weak U(1) symmetric interactions—
the former is a Dicke model featuring a Z2 symmetric
interaction between a spin ensemble and a boson mode, while
the latter is a spin ensemble that can be externally driven
into a given population state. The coherent subsystem is thus
indirectly pumped.

As we will show, the interplay between the spin pumping
and the Dicke coupling opens a parameter space where the
lasing phase, which corresponds to the breaking of U(1) sym-
metry, and the superradiant (SR) phase, which corresponds
to breaking of Z2 symmetry, intertwine and lead to dynami-
cal regimes exhibiting features of both. From the spintronics

point of view, this implies the possibility of magnon lasing
in a system with strongly broken U(1) symmetry. From the
quantum optics perspective, the model proposes an indirect
pumping scheme which can lead to unconventional dynamical
phases. In particular, a dynamical phase emerges with inter-
twined lasing and superradiance features, which results from a
pumping scheme inspired by spintronics while also realizable
in a quantum many-body optics platform. We argue that the
nontrivial implications of our model in both fields can provide
a conceptual bridge between the two communities.

A. Structure of the paper

The paper is organized as follows. First, we motivate this
study from the separate cavity QED and spintronics back-
grounds. We highlight the additional ingredients and briefly
examine their effects on the conventionally expected dynam-
ics in both setups. In Sec. II, we discuss the minimal model
that captures these ingredients and draw parallels between
implementations in the two setups. We also discuss the known
limits of the resulting model. In Sec. III, we solve the dy-
namics of the model in the mean-field approximation and
discuss the dynamical phase diagram, remarking on the sym-
metry breaking in different dynamical phases of the model.
Finally, in Sec. IV we discuss the mechanism to generate
unique dynamical phases and how they can be controlled via
external drive. We conclude in Sec. V by discussing further
developments of the model in light of recent advancements in
the control of the cavity QED and spintronics platforms.

B. Cavity QED background and context

Cavity QED is a field of study that focuses on the inter-
action between light and matter at the quantum level. Over
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FIG. 1. (a) An ensemble of spins-1/2 S (in blue) is coupled to a boson mode (in red) which models a magnon condensate or a cavity boson
which can become macroscopically occupied for large values of the Dicke coupling, λ. It is also coupled to a spin-1/2 subsystem T (in green)
under incoherent spin relaxation and pumping controlled by the spin accumulation μ and temperature T . The population inversion of T can
induce a coherent dynamical response in S, which is the central mechanism explored in this paper. Dissipation with strength κ (in brown) acts
on the boson mode and is shown by a red wiggle line. The model contains the essential ingredients of both quantum optics (b) and spintronics
(c) platforms, as detailed in the main text. Corresponding elements in different setups are highlighted in the same color.

the years, multiple platforms have been proposed and real-
ized as quantum simulators for exploring exotic models and
developing desired phases of matter [8–11]. Specifically, by
combining multiple driving fields, few cavity modes, and
separating particles in a cavity via tweezers, exotic spin-
spin interactions can be realized in cavity QED experiments
[10,12] as well as nonlocal dissipation that leads to more effi-
cient control over quantum correlations [13–15]. Furthermore,
different experiments have varying system sizes, ranging from
a few atoms per cavity, which require a complete quantum
mechanical treatment, to hundreds of thousands of particles
per cavity, which can be treated classically [16–18]. All
these factors make cavity QED setups highly flexible and
promising candidates for realizing various driven-dissipative
models.

In this paper, we introduce a schematic model that well
captures the dynamical features of the setup depicted in
Fig. 1(b). We consider an optical cavity where two species of
two-level atoms, S and T , are coupled to each other as well as
to a common lossy cavity mode. The ensemble S collectively
couples to the cavity photon via a Z2 symmetric term as in the
Dicke model, while the ensemble T is incoherently pumped
and couples to the same photon mode via a spin-boson in-
terconversion U(1) symmetric term as in a Tavis-Cummings
model. Combining these two models together brings us to the
dynamical phase which hybridly inherits properties of both
stationary and nonstationary phases.

Experimentally engineering photon-matter interaction with
one spin species and one cavity mode is nowadays at its state
of the art [9]. While combining two spin species may be
challenging, the first steps have been taken, such as consid-
ering multicomponent BECs in a cavity [19–21] or building
an effective spin representation based on different degrees of
freedom, for example, momentum spin states and internal spin
states [22,23].

C. Spintronics background and context

Our motivation to separate the coherent (S) and incoherent
(T ) spin subsystems stems from a solid-state viewpoint, to al-
low quantum correlations to settle in without much disruption
from direct pumping processes. Considering magnet-metal
heterostructures [24–32] as a primary example, the magnet

layer has a stiff order parameter accompanied by coherent
excitations [33], while itinerant electrons carrying incoherent
spins in the metal layer are more amenable to external control
[34]. One of the consequences of the magnet being a strongly
interacting system is the propensity of a long-wavelength
magnon to undergo (Bose-Einstein) condensation [35–37],
which is mimicked by the boson mode in our model. In a
magnet, such condensation can manifest as a static phase
transition [38] or a dynamical one with the magnetic order
parameter precessing spontaneously [39–41], bearing anal-
ogy to the SR and lasing transitions, respectively. As shown
in Fig. 1(c), a magnon condensation can be triggered by
electrically pumping the heterostructure [42–46]. A spin ac-
cumulation is induced via the spin Hall effect in the metal
[47–52] and exerts a spin torque [53–55] on the magnetic
dynamics by interfacial magnon-electron scatterings. Such a
torque can overcome the intrinsic magnon decay and main-
tain a quasiequilibrium condensate of magnons. In addition,
the magnon condensate and the thermally occupied short-
wavelength magnons undergo coupled dynamics, previously
described by a two-fluid theory [56]. Our model, though much
simplified from this practical scenario, allows for a full treat-
ment of the interplay of spin pumping, coupling between the
interacting magnetic excitations and the pumped reservoir,
and dissipative effects.

We remark that the model considered in this paper should
not be regarded as an ab initio description of the spin-
tronic setup depicted in Fig. 1(c), rather it captures the key
conceptual elements, especially from a symmetry point of
view. To give more details, the interactions between long-
wavelength a and short-wavelength S magnons in magnets
are likely to involve higher-order terms in the spin opera-
tors, while here it is set to be a Z2 symmetric interaction,
which can be an oversimplification. On the other hand, from
the symmetries point of view, Z2-type of U(1) breaking
commonly exists in magnetic materials, for example, due to
crystalline anisotropy, and a Dicke term gives the desired
symmetry. This induces ellipticity in magnon lasing, where
the spontaneous precession of the magnon condensate is non-
circular due to an oscillating magnitude. As we will show, a
interesting form of magnon lasing, more dramatic than ellip-
ticity, may arise when the U(1) breaking term is sufficiently
strong.
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II. MODEL

The minimal model that captures the cavity QED setup
in Fig. 1(b) and metal-magnet heterostructure in Fig. 1(c) is
given in Fig. 1(a). Here we consider a Dicke sample [57–61],
which consists of an ensemble S of N spin-1/2’s collectively
coupled to a boson mode a of frequency ωc, weakly interact-
ing with an ensemble T of an additional set of N spins. The
level splitting of spins in subsystem S (T ) is ωz (ω′

z). The full
Hamiltonian reads

H = ωca†a + ωzSz + ω′
zT z + λ√

N
(a + a†)(S+ + S−)

+ η√
N

(aT + + a†T −) + η′

N
(S+T − + S−T +), (1)

where a and a† are boson annihilation and creation opera-
tors mimicking the magnon condensate or the cavity photon,
while the collective spin operators S− = ∑N

i=1 σ−
i and T − =∑N

i=1 τ−
i describe two various spin species in a cavity QED

setup or thermal magnons and spins of conducting electrons
in magnet-metal heterostructure. Here σα

i and τα
i with α =

x, y, z are spin-1/2 operators and σ± = (σ x ± iσ y). Here, we
have introduced the Dicke coupling λ, a small boson-spin
interconversion term η, and a small spin exchange coupling
η′, the latter two quantifying the strength of U(1) symmetric
interactions between the spin ensemble T with the boson
mode a and spin ensemble S , respectively. All couplings are
normalized such that every term in the Hamiltonian Eq. (1)
scales linearly with the system size N .

The pumping and dissipative effects are described by the
following Lindblad master equation [62] for the joint density
matrix of the total system:

dρ

dt
= −i[H, ρ] + κD[a] + γ↑

N∑
i=1

D[τ+
i ] + γ↓

N∑
i=1

D[τ−
i ].

(2)

Here, the dissipators D[x] ≡ xρx† − 1/2{x†x, ρ} are defined
as usual. The ensemble T is driven incoherently and, in the
steady state of the Lindblad, reaches a grand canonical state
parameterized by temperature T and spin accumulation μ as a
result of the spin pump and loss rates γ↑ = γt/[1 + eβ(ω′

z−μ)]
and γ↓ = γt/[1 + e−β(ω′

z−μ)], where β =T −1 > 0 and γt =
γ↑ + γ↓ � 0. In Eq. (2), we have neglected spin dephasing
effects [57]. In cavity QED, the Lindbladian (2) models spin
pumping, used to induce the lasing phase [60,63], while in
spintronics it mimics the fact that the spin accumulation be-
tween metal and magnet layers in Fig. 1(c) results from the
spin Hall effect and, thus, can be controlled by changing
the current in the metal layer [47–52]. When μ > ω′

z, the
incoherent subsystem T experiences a population inversion
which can be transferred to the rest of the system via η and η′
and triggers a lasing instability.

In the dissipative dynamics of Eq. (2), we have also consid-
ered photon loss with rate κ to model finite linewidth of the
cavity photon. The relaxation of the collective bosonic mode
in a magnet, on the other hand, depends self-consistently on
its dynamics [64]. We therefore consider, as an alternative,
a viscous damping of the magnon condensate whenever the

direct applications to spintronics are pertinent. In terms of
magnetic dynamics, the phenomenological Gilbert damping
[65] slows down the coherent precession of the order parame-
ter and brings it towards the global equilibrium state [54,66].
Interestingly, our results remain qualitatively unaltered un-
der dissipation through photon loss or Gilbert damping, see
Appendix C.

Since our model (1) describes collective all-to-all in-
teraction between spins, all quantum effects come from
the noncommutativity of collective spins [Sα/N,Sβ/N] =
iεαβγSγ /N2 ∝ 1/N , which sets the effective Planck’s con-
stant of the model heff ∝ 1/N [67,68], (identical commutation
relations hold for T spins). Thus, in the thermodynamic
limit, N → ∞, the mean-field treatment becomes exact
[59,69,70]. From now on, we use the normalized variables
a ∝ a/

√
N, S ∝ S/N, T ∝ T /N , as is customary in the

treatment of systems with collective light-matter interactions
[57–59]. See Appendix A for the mean-field equations of
motion of the normalized variables.

We start analyzing the model by revisiting some estab-
lished dynamical regimes of the Hamiltonian in Eq. (1). The
detailed solutions in the following two limits are discussed in
Appendix B.

A. Dicke model

For η = η′ = 0, we recover the Dicke model [59,71],
which models photon-matter interaction in cavity QED.
This model has been studied extensively theoretically
[58,60,71,72] and implemented in few experimental platforms
[18,73,74]. In the N → ∞ limit, the Dicke model describes a
second-order phase transition from the normal state (NS), in
which 〈Sz〉 = ±1/2 and 〈a†a〉 = 0 to a SR phase, which is
associated with the spontaneous breaking of Z2 symmetry of
the Hamiltonian and corresponds to 〈Sx〉 �= 0 and 〈a†a〉 �= 0.
Here 〈.〉 stands for the ensemble-averaged value of an ob-
servable. This picture remains qualitatively valid when small
couplings η and η′ are switched on while the spin pumping is
weak, namely, γ↑ < γt/2 [cf. Fig. 2(a)].

B. Tavis-Cummings model

The limit η′ = λ = 0 corresponds to the incoherently
pumped Tavis-Cummings model [57,59,63,75–77]. The sys-
tem in this case is endowed with a U(1) symmetry, corre-
sponding to conservation of the total number of excitations
of the spins and the boson.

For γt  η, η′, the system quickly relaxes towards a
steady state with 〈T z〉 ≈ (γ↑ − γ↓)/(2γt ) ≡ τ z

0 and 〈T ±〉 ≈
0. For γ↑/γt � 1/2 + κγt/(8η2) + κγt (ωc − ω′

z )2/(2η2(κ +
γt )2), the nontrivial solution arises, where the symmetry is
dynamically broken with 〈a〉 and 〈T x,y〉 undergoing oscilla-
tions. At long times, both 〈T z〉 and the photon number n
approach the steady values set by the pumping rates γ↑/↓;
see Appendix B for more details. To acquire some intuitive
insights, we take a look at the ωc ≈ ω′

z ≡ ω limit. In this case,
the lasing solution is only possible when the photon loss rate is
below a critical value, κ < κc = 4η2/γt . In other words, given
a finite photon loss rate, the lasing will be suppressed in the
fast-relaxing (γt → ∞) limit.
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FIG. 2. Dynamical phases resulting from the interplay of spin
pumping and Dicke coupling. (a) For γ↑ < γt/2, the usual critical
coupling (λc � 0.5) associated to the Dicke transition separates the
normal (NS) from the superradiant (SR) phase. For γ↑ > γt/2, the
normal state becomes unstable, and observables in the ensemble S
oscillate with zero average value of Sx in region L1, and around
one of the minima of the SR phase in region L2, as shown in the
Bloch spheres. Inside the irregular (IR) region the motion of the
collective spin covers uniformly a large part of the Bloch sphere
without any structured pattern and is suggestive of chaotic behavior.
(b)–(d) The absolute value of time-averaged 〈Sx〉 (dashed line) and
amplitude of its oscillations (solid line) along transition lines 1–3 in
the main inset (a). Here we have chosen ωc = ωz = ω′

z = 1, γt = 1,
η = η′ = 0.1, κ = 0.06.

III. DYNAMICAL PHASE DIAGRAM

By turning on the Dicke coupling λ together with sizable
spin pumping in the weakly coupling limit (η, η′ → 0+), we
generate the diagram of dynamical responses [cf. Fig. 2(a)] in
mean-field treatment. In Appendix A, we present the associ-
ated equations of motion; we also analyze the breakdown of
the mean field from finite N corrections in Appendix E.

For strong pumping (γ↑ > γt/2), the spins in the ensemble
S display long-lived oscillatory dynamics [see trajectories
on the Bloch sphere in Fig. 2(a)]. Region L1 in Fig. 2(a)
resembles the regular lasing [63] discussed above, while L2
features SR oscillations. The transition from L1 to L2 occurs
around values of the Dicke coupling ∼λc, with a nonvanish-
ing time average of 〈Sx〉 in L2. In this phase, we observe
persistent oscillatory dynamics reminiscent of lasing around
one of the symmetry-broken states of the Dicke model. Such
SR oscillations would not arise by direct pumping the Dicke
model through the Lindblad channels in Eq. (2) but rather a
result of the pumping scheme in Fig. 1 inspired by spintronic
scenarios. In return, the emergence of this dynamical phase
is also implicative for further possibilities of dynamical phe-
nomena in spintronics. In this regard, the dynamical phase

L2 is a conceptual bridge between the quantum optics and
spintronics communities which we are aiming to lay out in this
work. Notice that despite the pumped subsystem experiencing
population inversion, the spin ensemble S remains in a state
with negative 〈Sz〉 in both phases L1 and L2.

We now discuss the role of symmetries in the oscillatory
dynamics displayed in L1 and L2, and in the transitions
between these two different regimes. For λ = 0, the photon
number n does not oscillate. A nonzero value of λ breaks
the U(1) symmetry and oscillations in n can be attributed to
ellipticity [78] in the spontaneous procession in the absence of
Sz conservation. In fact, the dynamics are instead governed by
a Z2 symmetry, reflected in the observation that the oscillatory
frequency of n and 〈Sz〉 is twice that of 〈Sx〉. The time-
averaged value of 〈Sx〉 becomes nonzero at the transition from
L1 to L2, which can be explained by the spontaneous breaking
of the Z2 symmetry upon increasing the Dicke coupling λ [cf.
Fig. 2(c)]. The transition from the SR region to the L2 region
appears as a crossover in finite-time numerical data, as the
damping of the oscillations of 〈Sx〉 critically slows down upon
approaching the transition point from the SR side, hence the
time-averaged amplitude of the oscillations in long but finite
time windows smoothly grows, blurring the expected singular
behavior at the phase boundary [cf. Fig. 2(b)] associated to the
dynamical spontaneous symmetry breaking of the U(1) sym-
metry. Finally, in the transition from NS to L2, the absolute
value of the time average of 〈Sx〉, as well as its amplitude,
build up [cf. Fig. 2(d)].

This dynamical phase diagram with competing stationary
(NS, SR) and oscillatory (L1, L2, IR) phases is of great
interest to spintronics, since it emerges from the interplay
of incoherent spin pumping and ellipticity. We now briefly
discuss some possible implications of our results. In previous
studies, magnon conservation is taken to be an important in-
gredient in the study of coherent spin-wave lasing or magnon
Bose-Einstein condensation in pumped magnetic systems
[42,43]. The magnon lasing [39] features a convergence to a
steady condensate density and a circular precession [42,43].
In our model, however, we explicitly induce a Dicke term that
breaks U(1) symmetry. For a small Dicke coupling, the spin
trajectory in the L1 lasing phase becomes elliptical instead of
perfectly circular. It is similarly expected that for a magnon
condensate, an explicit U(1) breaking induces an ellipticity
in the spontaneous precession [79], accompanied by an os-
cillation of the condensate density. On the other hand, the
emergence of the L2 phase is a much more dramatic effect,
as the spin oscillation spontaneously breaks into two separate
pockets, which cannot be described by any quasiequilibrium
treatment. This behavior suggests that in the spintronic setup,
an exotic form of lasing can be induced in the strongly U(1)
breaking regime lacking magnon conservation. This opens the
possibility to study spin-wave lasing phenomena in a regime
where both the Z2 interaction and spin pumping are sizable,
and suggests richer phenomena accompanying nonequilib-
rium phase transitions in spintronic devices.

We also remark that during the electrical pumping, angular
momentum transfers reciprocally between the magnet and
metal [55]: As the itinerant electrons exert a spin torque to
establish the magnon lasing, the coherent magnetic precession
simultaneously pumps a spin current back into the metal [80],
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FIG. 3. (a) Dynamics of the photon number n with parameters as in Fig. 2, with the exception of ω′
z, which is chosen in resonance with

the upper polariton frequency (ω′
z � U). Insets show a stretched time axis. The system is prepared in the SR state and evolves with system

parameters γ↑ and λ inside region L1. The initial stage of dynamics is governed by the decaying lower polariton mode, while at stage C
the upper polariton mode undergoes the dynamical instability triggered by the resonance with the incoherent subsystem; accordingly, the
photon number starts to grow until it saturates around times t � 500. At long times, n oscillates at the upper polariton frequency, see stage
D. This is illustrative of the spin ensemble T acting as a frequency-dependent gain medium. (b) The effective decay rate for the photon
number n ∝ exp(−κeff t ) extracted in stage A (blue circles) and stage C (red triangles) of dynamics in (a), as a function of the frequency of
the incoherent subsystem ω′

z. Close to the resonant frequency of the upper polariton, U = 1.63, the effective damping κeff = 2κU can change
signs, indicating a dynamical instability, which results in the polariton lasing. Solid lines show analytical dependence according to Eq. (4).

triggering transverse spin dynamics. Therefore, suppressing
the transverse spin dynamics in the metal can be detrimental
to magnon lasing, as consistent with the consequence of a fast-
relaxing incoherent subsystem in the Tavis-Cumming model,
cf. Sec. II B. Also see below Eq. (5) for related discussion.

IV. POLARITON LASING

Observables in the L1 and L2 phases show signatures of
upper (U) and lower (L) polariton modes [58], which are sym-
metric (U) and antisymmetric (L) linear superpositions of spin
and boson fields, describing light-matter hybridization via the
Dicke coupling λ. To appreciate this point, we rewrite the
interaction term in Eq. (1) as Hint = (ηa + η′S−)T + + H.c.,
which is suggestive that pumping the T ensemble can excite a
superposition of light and matter in the S system. Thus, upper
or lower polaritons can be excited in the system, depending
on whether the two couplings have the same or opposite signs,
jointly with the resonance condition, ω′

z � U/L, where within
NS the eigenfrequencies read [58]

U/L =
√(

ω2
c + ω2

z ±
√(

ω2
c − ω2

z

)2 + 16λ2ωzωc
)
/2. (3)

The effective decay rates of the two polariton modes ψU,L

depend on the frequency of the incoherent subsystem ω′
z and,

in particular, for η = η′, it can be analytically estimated as

κU = κ/4 − η2(γ↑ − γ↓)/
[
(ω′

z − U)2 + γ 2
t /4

]
. (4)

By tuning ω′
z close to U, it is possible to obtain a negative

effective decay rate (κU < 0) for γ↑ > γ↓ that induced dynam-
ical instabilities into the system.

The boson annihilation operator a can be written as the
sum of upper and lower polaritons, and thus both modes
contribute to the dynamics of photon number n = 〈a†a〉. How-
ever, their effective decay rates are different, giving rise to
different short- and long-time behaviors of the dynamics of

n. This can be seen explicitly by considering a quench from
the stationary SR phase to the nonstationary lasing phase, as
shown in Fig. 3(a). Here, we initialize the system in the SR
steady state of the Dicke model with photon losses (λ = 0.6
and κ = 0.06) and let it evolve with parameters characteristic
of the L1 phase (λ = 0.2, γ↑ = 0.9) while keeping ω′

z ≈ U.
We now discuss the multistage dynamics [as marked by A–D
in Fig. 3(a)] associated with this protocol. Inside the SR phase,
the difference between the amplitudes of upper and lower
modes can be estimated using the Holstein-Primakoff analysis
[58] as

|ψU|
|ψL| =

∣∣∣∣∣1 − 2λ(ωc + iκ/2)/
(
ω2

c + κ2/4
)

1 + 2λ(ωc + iκ/2)/
(
ω2

c + κ2/4
)
∣∣∣∣∣ ≈

∣∣∣∣1 − 2λ/ωc

1 + 2λ/ωc

∣∣∣∣,
which is much smaller than 1 close to λc. Thus, initializing
a system in the SR phase corresponds to setting it into a
lower polariton mode. As we fix ω′

z ≈ U and set the rest
of the parameters to be such that κU < 0, the upper polariton
in this scenario is exponentially enhanced at the beginning
of the dynamics, while the lower polariton has κL > 0 and
thus decays. Therefore, immediately after the quench (A), the
photon field has a sizable overlap with the lower polariton
mode. Since in the initial SR steady state the boson is enslaved
to matter [〈a〉 = −2λ/(ωc − iκ/2)〈S−〉], the amplitude of the
lower mode is larger than the amplitude of the upper one.
However, as the lower mode starts to decay and the upper
one is enhanced, their amplitudes become comparable (B)
and we observe beating at their two frequencies. At stage
(C), the photon number increases while the lower mode is
largely suppressed. As a result, for long times (D), the oscilla-
tory dynamics of the system is solely governed by U. Such
circumstances cannot occur in a more conventional driven-
dissipative Dicke model [75] since, in that case, both upper
and lower modes would be enhanced and survive at long
times.

104302-5



OKSANA CHELPANOVA et al. PHYSICAL REVIEW B 108, 104302 (2023)

Finally, we verify the dependence in Eq. (4) numerically
by studying the relaxation of the system after quenching from
the SR phase to the nonstationary lasing phase. We extract
the effective decay rate of the photon mode, which is given
by n = 〈a†a〉 ∝ exp(−κefft ), in different parametric regimes.
Depending on the level splitting of the T spins, ω′

z, κeff can
be varied. Figure 3(b) shows the effective damping κeff of the
photon mode as a function of ω′

z. The effective damping coef-
ficients κU/L of the lower and upper modes are extracted from
the dynamics of n at short [stage (A) in Fig. 3(a)] and long
[stage (C) in Fig. 3(a)] timescales, respectively. As one can
see from Fig. 3(b), both damping coefficients have a minimum
close to the resonance upper polariton frequency. Also, for
all frequencies ω′

z, the damping of the lower mode is faster
than that of the upper polariton, which is why we observe
oscillations at long times with frequency U only. The upper
mode is long-lived and can even be enhanced via pumping
when ω′

z is close enough to the upper polariton frequency U,
resulting in lasing.

If the system is pumped resonantly with the upper polariton
frequency ω′

z � U, the critical value of γ↑ at which the lasing
region occurs can be estimated as

γ↑
γt

� 1

2

(
κγt

16η2
+ 1

)
, (5)

following a calculation similar to the one in Sec. II B. This
also constrains the condition between pumping/relaxation
rates and coherent coupling η under which non-stationary
phases can be observed, i.e., the right-hand side of Eq. (5)
cannot exceed 1. Otherwise, the typical relaxation time of the
incoherent subsystem T ∝ 1/γt is faster than growing time
of the coherent subsystem [59,60], which means that mutual
dynamics of the coherent and incoherent parts does not have
time to establish itself. For the polariton mode, lasing is ob-
tained at a pumping frequency smaller than the conventional
threshold for lasing ω′

z � U +
√

4η2(γ↑ − γ↓)/κ − γ 2
t /4.

Similarly, the lower polariton mode can be resonantly
pumped when η = −η′. In this case, the effective damp-
ing for both modes have a minimum at the lower polariton
frequency L.

V. CONCLUSION AND OUTLOOK

In this paper, we bridge cavity QED and spintronics
communities by suggesting the model that could find the
implementation in both areas. We have captured the essential
overlapping ingredients with a particular focus on the sym-
metry properties and shown that our approach can promote
discovery of new dynamical phases with nontrivial interpre-
tation from both standpoints. A further development of our
model (1) and the accessibility of different parametric regimes
in different platforms can be inspiring for the study of emer-
gent dynamical phenomena in general.

A natural next step forward would consist of studying
collective spin squeezing in the lasing regime [81–83], with
the perspective of entanglement manipulation in spintronics
platforms. This can be addressed, for instance, by simulating
numerically exact dynamics at finite N [84,85].

Recent studies have shown the usefulness of nonlocal dis-
sipation in generating entanglement between distant qubits
in both fields of quantum optics and spintronics, by inves-
tigating spins immersed in an optical cavity [14,15,86] and
nitrogen-vacancy qubits in proximity to a magnetic medium
[87]. For the latter, dynamical phase transitions in the magnet
controlled by electrical pumping may provide an efficient tun-
ability of nonlocal dissipation, which could be studied along
the lines of this paper.

Finally, we did not include here the effect of short-range
spin interactions breaking permutational symmetry. This is, in
general, a challenging task since it requires a full many-body
treatment of dynamics. However, we expect that, deep inside
the various phases, the dynamical phenomena discussed here
will still hold in analogy with the character of other nonequi-
librium phases in spin systems with competing short- and
all-to-all interactions [68,88,89].

Our results can be considered as a roadmap to build a gen-
eration of spintronics experiments inspired by quantum optics,
with a focus on dynamical phase transitions in heterolayer
structures. Scaling up our proof of concept to more concrete
platforms appears to be an exciting future direction.
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APPENDIX A: STABILITY ANALYSIS

The mean-field equations of motion used to derive the
phase diagram in Fig. 2(a) read

d〈a〉
dt

= −iη〈T −〉 − (iωc + κ/2)〈a〉 − iλ(〈S+〉 + 〈S−〉)

d〈Sz〉
dt

= iλ(〈a〉 + 〈a†〉)(〈S−〉 − 〈S+〉)

+ iη′(〈T +〉〈S−〉 − 〈T −〉〈S+〉)

d〈S−〉
dt

= −iωz〈S−〉 + 2iλ(〈a〉 + 〈a†〉)〈Sz〉 + 2iη′〈T −〉〈Sz〉

104302-6



INTERTWINING OF LASING AND SUPERRADIANCE … PHYSICAL REVIEW B 108, 104302 (2023)

d〈T z〉
dt

= iη(〈a†〉〈T −〉 − 〈a〉〈T +〉) − iη′(〈T +〉〈S−〉

− 〈T −〉〈S+〉) + γ↑ − γ↓
2

− γt 〈T z〉
d〈T −〉

dt
= −(iω′

z+γt/2)〈T −〉+2iη〈a〉〈T z〉 + 2iη′〈T z〉〈S−〉,
(A1)

where 〈.〉 stands for the ensemble-averaged value of an ob-
servable. Here we neglected higher order correlations which
are all suppressed as 1/N , approximating 〈AB〉 ≈ 〈A〉〈B〉. This

approximation is exact in the N → ∞ limit [57]. All variables
in Eqs. (A1) are intensive, since they are normalized in such
a way that they are independent of the number of spins N as
N → ∞.

From the equation above, we study the instabili-
ties of the NS. By perturbing with small fluctuations
around the NS expectation values 〈a〉 = 〈a〉0 + δa, 〈S−〉 =
〈S−〉0 + δS−, 〈T −〉 = 〈T −〉0 + δT −, (with 〈a〉0 = 〈S−〉0 =
〈T −〉0 = 0, 〈Sz〉 = −1/2 and 〈T z〉 = (γ↑ − γ↓)/(2γt )), we
can find a linear system of equations for these deviations
from the NS, which can be written in the form ẋ = Ax, where
x = (δa, δa∗, δS−, δS+, δT −, δT +)T . This matrix reads

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−iωc − κ
2 0 −iλ −iλ −iη 0

0 iωc − κ
2 iλ iλ 0 iη

−iλ −iλ −iωz 0 −iη′ 0
iλ iλ 0 iωz 0 iη′

2iη〈T z〉 0 2iη′〈T z〉 0 −iω′
z − γt

2 0
0 −2iη〈T z〉 0 −2iη′〈T z〉 0 iω′

z − γt

2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A2)

By performing a stability analysis [75], one can distinguish
the set of parameters for which the NS is stable (cf. Fig. 4).
The white region with all negative eigenvalues corresponds
to the stable normal phase. The purple region with one real
positive eigenvalue matches the boundary of the SR phase in
Fig. 2(a). The yellow region with two positive complex conju-
gate eigenvalues corresponds to lasing. The parameters in the
orange region corresponds to the three positive eigenvalues of
the matrix Eq. (A2). The boundary between the SR and NS
is well approximated by the λc of the Dicke model [58,75].
However, this simple stability analysis does not capture the

FIG. 4. Stability analysis of the normal state. The parameters
are the same as in Fig. 2(a). The stable normal state is indicated in
white. The purple color corresponds to one real positive eigenvalue
of the matrix A and it indicates superradiance. The yellow region
corresponds to two complex conjugated eigenvalues with positive
real part and it corresponds to the lasing region. The orange region
corresponds to the three positive eigenvalues. Here ω = ω′

z.

difference between dynamical phases such as L1, L2, and
IR in Fig. 2(a), which require a through evaluation of the
far-from-equilibrium dynamics encoded in Eqs. (A1).

When we pump the system at a frequency resonant with
the upper polariton frequency, ω′

z ≈ U, the boundary of the
lasing region can undergo drastic changes. As shown in Fig. 5,
in this case the boundary between the NS and lasing phase is
solely set by the critical value of pumping rate γ↑/γt and does
not depend on λ.

APPENDIX B: DICKE AND TAVIS-CUMMINGS MODELS

In this Appendix, we examine two known limits of the
model (1) and their mean-field solutions.

FIG. 5. Stability analysis with the resonance condition ω′
z = U.

The rest of the parameters are the same as in Fig. 2(a). The vertical
boundary between normal state (white) and lasing (yellow) is given
by the critical pumping rate γ c

↑ ≈ 0.7γt [see Eq. (5)].

104302-7



OKSANA CHELPANOVA et al. PHYSICAL REVIEW B 108, 104302 (2023)

In the limit of η = η′ = 0, our model is reduced to the
Dicke model with a spontaneous Z2-breaking transition.
For λ < λc = √

ωz(ω2
c + κ2/4)/(4ωc), the stationary state of

Eq. (A1) is 〈a〉 = 〈Sx,y〉 = 0 and 〈Sz〉 = ±1/2. For λ � λc, a
pair of nontrivial solutions breaking the Z2 symmetry appear,
such that 〈Sz〉 = −(1 − λ2

c/λ
2)/2, 〈Sx〉 = ±

√
1/4 − 〈Sz〉2,

〈a〉 = −2λ〈Sx〉/(ωc + iκ/2).
The other limit η′ = λ = 0 corresponds to the incoher-

ently pumped Tavis-Cummings model. For γt  η, η′, the
last line of the mean-field equations of motion in Eq. (A1)
shows a quick relaxation towards a steady state with 〈T z〉 ≈

(γ↑ − γ↓)/(2γt ) ≡ τ z
0 and 〈T ±〉 ≈ 0. The system is driven

into a mixed state with a relative population of up and down
spins controlled by the ratio γ↑/γt . Nontrivial solutions of the
mean-field equations of motion (A1) that break dynamically
the symmetry can be expressed in the form (see, for instance,
Refs. [76,77])

〈a〉 → a0e−i�t , 〈T ±〉 → T ±
0 e±i�t , (B1)

where � is a characteristic frequency to be self-consistently
determined. Substituting Eqs. (B1) into Eqs. (A1), one obtains

� = κω′
z + γtωc

κ + γt

〈T z〉 = γtκ

2η2

(
(ωc − ω′

z )2

(κ + γt )2
+ 1

4

)

T ±
0 =

√
γtτ

z
0κ

η2

(
(ωc − ω′

z )2

(κ + γt )2
+ 1

4

)
− γ 2

t κ2

2η4

(
(ωc − ω′

z )2

(κ + γt )2
+ 1

4

)2

. (B2)

Further simplification is possible in the ωc ≈ ω′
z ≡ ω limit,

� = ω

〈T z〉 = γtκ

8η2

〈T ±〉 =
√

γtτ
z
0κ

4η2
− γ 2

t κ2

32η4
e±iωt

n = γt

κ

(
τ z

0 − 〈T z〉), (B3)

from which it is clear that the lasing solution exists only if the
photon loss rate is below a critical value κ < κc = 4η2/γt .

APPENDIX C: GILBERT DAMPING

For the magnon condensate mode, dissipation in the form
of Gilbert damping slows down the spontaneous precession
of the magnetic order parameter like a viscous drag [54].
It is particularly suitable in the weak-damping scenario to
describe the relaxation of the precessional motion back to the
equilibrium state (in the absence of external pumping) along a
spiral trajectory without losing coherence. The semiclassical
Landau-Lifshitz-Gilbert equation [65,90,91] of a spin s reads
ds/dt = s × heff − αGs × ds/dt , where heff is an effective
Zeeman field fixing the equilibrium spin orientation and αG

is the Gilbert damping. A small-angle spin precession can be
mapped to the motion of a harmonic oscillator with creation
and annihilation operators [92] a† and a, where sz = s −
a†a ≈ s with s being the spin length. The Landau-Lifshitz-
Gilbert equation in the lowest order thus becomes (1 +
isαG)d〈a〉/dt = −iωc〈a〉, where ωc = |heff|. Such a form
of the viscous drag can also be derived by coupling the
bosonic mode a to an Ohmic bath and eliminating the bath
degrees of freedom following a standard Caldeira-Leggett
derivation [62].

For the model (1), the Gilbert damping modifies the mean-
field equation of motion for the expectation value of the
bosonic mode into

(1 + iκ/2)
d〈a〉
dt

= − i(ωc − �̃)〈a〉 − iη〈T −〉

− iλ(〈S+〉 + 〈S−〉) + B(t )√
N

. (C1)

Here �̃ is a Lamb shift and B(t ) is the noise term that results
from the bath [62]. This term is suppressed as 1/

√
N for large

N , therefore vanishing in the mean-field limit. The dynamical
phase diagram with this type of dissipation is plotted in Fig. 6.
Here we fixed ω̃c = ωc − �̃ = 1 and κ = 0.04. Qualitatively,
the diagram remains the same as if we used photon losses;

FIG. 6. Dynamical phase diagram with Gilbert damping [see
Eq. (C1)]. All parameters are as in Fig. 7 and the color code follows
Fig. 2(a).
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FIG. 7. Stability analysis for model with Gilbert damping. All
parameters are as in Fig. 2(a), κ = 0.04, and the color code follows
Fig. 4.

we still recognize five different dynamical responses as su-
perradiance, NS, and lasing and SR persistent oscillations
(L1 and L2), as well as irregular dynamics (IR), although
the boundaries between phases are quantitatively modified.
Results are in a good agreement with predictions obtained
from the stability analysis (cf. Fig. 7).

APPENDIX D: INSTABILITIES FROM
ADIABATIC ELIMINATION

We now work out analytically some dynamical properties
of our system in the limit of a fast relaxing bath [93], known
as adiabatic elimination of the bath in quantum optics. We
choose γt large enough compared to η and η′ to induce re-
laxation of the incoherent subsystem T much faster than the
dynamics of the coherent one S . Following Refs. [94,95], we
can enslave the spins of the incoherent ensembles to those of
the Dicke system by setting the time derivatives of the former
to zero:

〈T −〉 � 2〈T z〉(ω′
z + iγt/2)

ω′2
z + γ 2

t /4
(η〈a〉 + η′〈S−〉) + ...,

〈T +〉 � 2〈T z〉(ω′
z − iγt/2)

ω′2
z + γ 2

t /4
(η〈a†〉 + η′〈S+〉) + ...

〈T z〉 � (γ↑ − γ↓)/2γt + ..., (D1)

where we neglect terms in higher orders of 1/γt . This is
equivalent to assuming that spins in the T ensemble have
already reached their steady state. When substituting Eq. (D1)
into the equations of motion for the normalized cavity mode
and for the spins of the coherent subsystem S , we find

〈ȧ〉 = −
(

iωc + κ

2

)
〈a〉 − iη

(
2η〈T z〉

ω′
z − iγt/2

〈a〉

+ 2η′〈T z〉
ω′

z − iγt/2
〈S−〉

)
− iλ(〈S+〉 + 〈S−〉). (D2)

The dissipative dynamics of the subsystem S and the photon
mode can now be described with Lindblad terms with effec-
tive jump operators L1 = √

γ↑τ+
i and L2 = √

γ↓τ−
i , given in

terms of a and S− through Eqs. (D1). From Eq. (D2), we find

〈ȧ〉 = (−iω̃ − κ̃ )〈a〉 − iλ(〈S+〉 + 〈S−〉) − 2iηη′〈T z〉
ω′

z − iγt/2
〈S−〉,

(D3)

where

ω̃ = ωc − 2η2ω′
z〈T z〉

ω′2
z + γ 2

t /4
, κ̃ = κ

2
− γ↑ − γ↓

2

η2

ω′2
z + γ 2

t /4
.

(D4)

According to the last formula in Eqs. (D4), when the inco-
herent ensemble is in the population inverted state, the photon
mode becomes effectively pumped due to the weak interaction
with T . If this pumping overcomes the photon decay κ , the
photon number starts to grow and dynamical instabilities are
triggered.

The equation that effectively governs the dynamics of the
coherent subsystem can be derived in the same way and reads

〈Ṡ−〉 = − iωz〈S−〉 + 2iλ(〈a〉 + 〈a†〉)〈Sz〉

+ 2iη′(ω′
z + iγt/2)(γ↑ − γ↓)〈Sz〉
γt

(
ω′2

z + γ 2
t /4

) (η〈a〉 + η′〈S−〉).

Here the effective contribution from the dissipator has the
form

〈Ṡ−〉 ∝ η′(γ↑ − γ↓)(−〈Sz〉)

ω′2
z + γ 2

t /4
(η〈a〉 + η′〈S−〉).

Therefore, for regions with γ↑ > γ↓, spins in the system are
effectively pumped by a rate proportional to the magnetization
along ẑ, provided 〈Sz〉 is negative (as it occurs in the NS or in
the SR phase).

FIG. 8. Fit of the timescale tE ∝ N δ with δ � 0.5 as a function
of number of spins in the system, N , within the lasing region. We
extract tE as the time when the ratio between second cumulants and
mean-field expectation values becomes of order ∼0.1.
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FIG. 9. (a) Amplitude of the oscillations of the 〈Sx〉 (solid line) and absolute value of the time-averaged 〈Sx〉 (dashed line) as a function of
λ. We choose all parameters as in Fig. 2 and fixed γ↑ = 0.9γt . The colors are the same as in Fig. 2. Yellow, orange, and red colors correspond
to L1, L2, and IR phases, respectively. (b) Dynamics of the spin 〈S〉 on the Bloch sphere inside L1 and L2 regions for different values of λ.

Note that inside the L2 region, depending on the initial conditions, one of two trajectories is possible with opposite time-averaged values of
〈Sx〉t = ±sx

0.

Adiabatic elimination of the incoherent subsystem gives
correct predictions for λ = 0. For λ �= 0, light and matter
hybridize and a separate analysis is required, see Sec. IV.

APPENDIX E: SEMICLASSICAL ANALYSIS

In models with collective, permutation-symmetric interac-
tions, one can consider the leading effect of 1/N corrections
beyond mean field by including second-order connected cor-
relation functions [96,97]. In general, for finite values of N , all
higher order connected correlations are relevant for dynamics;
however, their effect is expected to be parametrically small
in increasing powers of 1/N (if N is large). This is at the
root of the solvability of models with all-to-all interactions
mediated by a common bosonic mode, as in our system: the
BBGKY hierarchy [98,99] closes when large system sizes
are considered, allowing for nonperturbative solutions in the
couplings governing both unitary or dissipative dynamics.

We include two-point connected correlation functions
which couple to mean-field motion, neglecting third and
higher order cumulants by approximating three point func-
tions by their disconnected component

〈ABC〉 � 〈AB〉〈C〉 + 〈AC〉〈B〉 + 〈BC〉〈A〉 − 2〈A〉〈B〉〈C〉.
We simulate the dynamics and compare them with the mean-
field solution to estimate the timescale, tE , where cumulants

have sufficiently grown to invalidate the mean-field descrip-
tion. We find that inside the L1 phase, tE scales as the square
root of the number of spins (cf. Fig. 8). After tE , one would
have to take into account higher order correlations to correctly
predict the dynamics. At times t ∼ O(N ), the dynamics of
correlations undergo phase diffusion [100,101].

APPENDIX F: DIFFERENCE BETWEEN L1
AND L2 REGIONS

In this section, we consider how the transition between
phases L1 and L2 is captured in dynamics of observables. As
we pointed out in Sec. III, inside the L1 region the dynam-
ics have unbroken Z2 symmetry. Spins components oscillate
in time; the frequency of oscillations of 〈Sz〉 is twice the
frequency of oscillations of 〈Sx〉 and 〈Sy〉. These latter two
observables have zero time average. By increasing λ above λc,
the time-averaged value of 〈Sx〉 becomes finite 〈Sx〉t = ±sx

0
while the amplitude of oscillations decreases. In Fig. 9(a), the
amplitude of oscillations (solid line) and absolute value of the
time-averaged 〈Sx〉 (dashed line) are plotted as functions of
λ. In Fig. 9(b), trajectories of 〈S〉 for different values of λ are
shown. Note that for λ > λc, depending on initial conditions,
one of two trajectories (red or blue lines) is possible with
time-averaged 〈Sx〉t = ±sx

0, respectively.
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