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Spin squeezing protocols successfully generate entangled many-body quantum states, the key pillars of the
second quantum revolution. In our recent work [Phys. Rev. Lett. 129, 090403 (2022)] we showed that spin
squeezing described by the one-axis twisting model can be generated in the Heisenberg spin-1/2 chain with
periodic boundary conditions when accompanied by a position-dependent spin-flip coupling induced by a single
laser field. In this work, we show analytically that the change in boundary conditions from the periodic to the
open ones significantly modifies spin squeezing dynamics. A broad family of twisting models can be simulated
by the system in the weak-coupling regime, including one- and two-axis twisting under specific conditions,
providing the Heisenberg level of squeezing and acceleration of the dynamics. Our analytical findings are
confirmed by full numerical simulations.
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I. INTRODUCTION

Neutral atom arrays have recently emerged as promising
platforms for realizing programmable quantum systems [1–3].
Based on individually trapped cold atoms in optical lattices
[4] and tweezers with strong interactions between Rydberg
states [5], atom arrays have been utilized to explore physics
involving Hubbard and Heisenberg models [6–10]. It has
been shown that indistinguishable Hubbard bosons serve as
a platform for the generation and storage of metrologically
useful many-body quantum states [11–15]. In some regime
of parameters, arrays of ultracold atoms simulate chains of
distinguishable spins (qubits) which are perfectly suitable
for quantum information tasks and the generation of mas-
sive nonclassical correlations, including Bell correlations and
nonlocality [16–19]. These quantum many-body systems are
crucial resources for emerging quantum technologies [20,21].

Systems composed of ultracold fermions in optical lat-
tices are also attracting a lot of attention currently in the
context of the generation of nonclassical states (see, e.g.,
[22–24]). In particular, in our recent work [25], we showed
that in a lattice of strongly interacting ultracold fermionic
atoms involving two internal states, it is possible to gener-
ate nonclassical correlations when adding position-dependent
atom-light coupling. The Fermi-Hubbard model describing
the system under periodic boundary conditions (PBCs) can
be cast onto an isotropic spin-1/2 Heisenberg chain in a deep
Mott regime, while the atom-light coupling can be considered
a position-dependent spin flipping. To generate spin squeezing
the Ramsey-type spectroscopy scheme is considered [25], as
illustrated in Fig. 1. As soon as the atoms are put in a coherent
superposition of two internal states by an electromagnetic
pulse, an additional weak atom-laser coupling is turned on.
This coupling activates the general mechanism in the PBC

case: it induces excitation of a pair of spin waves with oppo-
site quasimomenta. These spin waves extend over the entire
system, allowing individual atoms to interact “effectively”
and establish nontrivial quantum correlations [22,23,25–27].
When the desired level of spin squeezing is established, the
spin-flip coupling is turned off, but the quantum correlations
survive and are stored deep in the Mott insulating phase. We
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FIG. 1. Illustration of the Ramsey-type spectroscopy scheme.
(a) Preparation of the initial spin coherent state. (b) The excitation
of spin-wave states (different colored lines) by the spin-flip cou-
pling serves as an intermediate state to induce “effective” interaction
and establish correlations between elementary spins. (c) Turning
off the coupling freezes the dynamics, and the spin-squeezed states
are stored in the Mott insulating phase. (b) and (c) illustrate an
example of a configuration of spins. Yet the resulting state during
and at the end of evolution is a superposition of various possible
configurations, including the initial one presented in (a).
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showed that an isotropic Heisenberg spin-1/2 chain with weak
position-dependent spin-flip coupling generates spin squeez-
ing dynamics given by the one-axis twisting (OAT) model.
Furthermore, we numerically observed that open boundary
conditions (OBCs) change the spin squeezing dynamics.
Depending on the coupling parameters, an acceleration of
squeezing generation was observed with the same or a similar
level of squeezing [25].

In this paper, we provide a detailed analytical and
numerical analysis of the impact of OBCs on the spin
squeezing dynamics in Heisenberg spin chains. To this end,
we develop a spin-wave theory for OBCs by modifying the
coordinate Bethe ansatz [28]. Next, by using the Schrieffer-
Wolf transformation [23,29–32] we derive the effective model
in terms of collective spin operators to describe the squeezing
dynamics generated in the weak-coupling regime. For OBCs
the coupling leads to the excitation of a superposition of spin
waves with different energies and amplitudes rather than a
pair of spin waves with opposite quasimomenta, as is the case
for PBCs. This still allows individual atoms to correlate and
generate squeezing. However, the excitation of a superposition
of spin waves complicates the form of the effective model. We
analyze this unconventional model in detail, identifying the
initial conditions and the coupling parameters for spin squeez-
ing generation with the level given by the OAT and two-axis
countertwisting (TACT) models [25,33,34]. Consequently,
we show that it is possible to generate a Heisenberg level
of squeezing in spin-1/2 Heisenberg chains under OBCs. In
addition, we show that the corresponding timescale of the best
squeezing is reduced with respect to PBCs while keeping the
same perturbation level. Our analytical findings are confirmed
by full numerical simulations. The results obtained can be
used in current state-of-the-art experiments with ultracold
atoms in optical lattices [35–37] and tweezer arrays [38,39].

II. HEISENBERG MODEL AND SPIN-WAVE
STATES FOR OBCs

Let us concentrate on a specific physical system composed
of a total even number N of fermionic ultracold atoms loaded
into a one-dimensional optical lattice potential with N sites.
Each atom has two internal states, |↑〉 and |↓〉, corresponding
to a spin-1/2 degree of freedom. The atoms are assumed
to occupy the lowest Bloch band, interact through s-wave
collisions, and hence can be described by the Fermi-Hubbard
model.

We assume the interaction dominates over the tunneling
and the system is in the Mott insulating phase at half fill-
ing when double occupancy of a single site is energetically
unfavorable. The second-order processes, obtained with a
projection onto the manifold of single occupancy of lattice
sites, lead to the nearest-neighbor spin-exchange interac-
tions [23,23,25,29–32]. The spin dynamics of this system is
well captured by the isotropic Heisenberg (spin-exchange)
model [40,41],

ĤSE = JSE

N−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + Ŝz

j Ŝ
z
j+1 − 1

4

)
, (1)

where JSE represents the spin-exchange energy; Ŝ+
j =

â†
j,↑â j,↓, Ŝ−

j = â†
j,↓â j,↑, Ŝ±

j = Ŝx
j ± iŜy

j , and Ŝz
j = (n̂ j,↑ −

n̂ j,↓)/2 are on-site spin operators; and we take h̄ = 1. The
fermionic operators â j,s annihilate an atom in the jth lattice
site in the state s ∈ {↑,↓}, and n̂ j,s = â†

j,sâ j,s is the corre-
sponding on-site operator of the number of atoms. We also
introduce the collective spin operators Ŝσ = ∑

j Ŝσ
j , with σ =

x, y, z,±. The analytical form of the energy spectrum of the
Hamiltonian (1) and corresponding eigenstates for PBCs are
known from 1931 due to the famous work of Bethe [28]. Their
counterpart for OBCs is less explored, to our knowledge.

The Hamiltonian (1) is spherically symmetric with respect
to spin rotation. Thus, eigenstates of ĤSE can also be taken to
be eigenstates of the square of the total spin Ŝ2 = Ŝ2

x + Ŝ2
y +

Ŝ2
z and its z projection Ŝz with eigenvalues S(S + 1) and m,

respectively. To understand the spin squeezing dynamics let
us first recall the analytical form of two energy manifolds of
ĤSE characterized by the largest values of the total spin.

The first energy manifold corresponding to the total spin
quantum number S = N/2 is spanned by Dicke states |m〉 ≡
|N/2, m〉, which are zero-energy eigenstates of ĤSE. They
can be represented in terms of the all-spin-up state affected
N/2 − m times by the collective spin lowering operator Ŝ−:

|m〉 =
√

(N/2 + m)!

(N/2 − m)!(N )!
ŜN/2−m

−
N⊗

j=1

|↑〉 j, (2)

where the quantization axis is chosen to be along the z direc-
tion: Ŝz

j |↑〉 j = 1/2|↑〉 j and Ŝz
j |↓〉 j = −1/2|↓〉 j . Alternatively,

the Dicke states |m〉 can be defined by using the rising op-
erator Ŝ+ ≡ (Ŝ−)† in the place of Ŝ− when replacing m and
|↑〉 j with −m and |↓〉 j , respectively, on the right-hand side
of (2). The Dicke states are eigenstates of ĤSE with zero
eigenenergies for both PBCs and OBCs. Altogether, there
are N + 1 Dicke states corresponding to different values of
m ∈ (−N/2,−N/2 + 1, . . . , N/2).

The second energy manifold to be considered is spanned
by the spin-wave states [23,25,42,43] containing one spin
excitation and characterized by the total spin quantum number
S = N/2 − 1. In the case of OBCs one can analytically solve
the eigenproblem of these states for the Hamiltonian (1) by
using the coordinate Bethe ansatz modified appropriately to
account for the difference arising from the two boundary
points; see Appendix A for a derivation. This leads to the
following form of the spin-wave states:

|m, q〉 = ±
√

NcN/2,±m

N∑
j=1

p(q)
j Ŝ±

j |m ∓ 1〉, (3)

where

cN/2,±m =
√

N − 1

(N/2 ∓ m)(N/2 ∓ m + 1)
. (4)

The sign ± in Eq. (3) for |m, q〉 corresponds to two equivalent
definitions of the spin waves in terms of the on-site spin
raising and lowering operators Ŝ±

j acting on the Dicke states.
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Furthermore, the coefficients featured in Eq. (3) are

p(q)
j =

√
2

N
cos

[
π

N

(
j − 1

2

)
q

]
. (5)

Altogether, there are (N − 1)2 different spin-wave states cor-
responding to various combinations of quantum numbers
m ∈ (−N/2 + 1,−N/2 + 2, . . . , N/2 − 1) and q = 1, 2, . . . ,

N − 1. The corresponding eigenenergies Eq do not depend on
the spin projection quantum number m and read

Eq = JSE

[
cos

(
π

N
q

)
− 1

]
. (6)

Note that for OBCs the amplitudes p(q)
j given by Eq. (5) rep-

resent standing waves. They thus differ from the solution for
PBCs, where the amplitudes p(q)

j = N−1/2ei2πq j/N are plane
waves [43]. This has substantial consequences for the cou-
pling mechanism and the spin squeezing dynamics analyzed
in Secs. IV and V.

III. PROTOCOL FOR DYNAMICAL GENERATION
OF SPIN SQUEEZING

In order to generate spin squeezing in this Heisenberg spin-
1/2 chain with OBCs described by Hamiltonian (1) we add
an atom-light coupling which induces position-dependent spin
flipping. The resulting system Hamiltonian Ĥspin reads

Ĥspin = ĤSE + Ĥ↑↓, (7)

Ĥ↑↓ = �

2

N∑
j=1

(ei(φ j−φ0 )Ŝ+
j + e−i(φ j−φ0 )Ŝ−

j ), (8)

where the extra term Ĥ↑↓ represents the sum over the on-site
spin-flip coupling with amplitude � and position-dependent
phase φ j, where φ = π cos(α)λlatt/λL can be tuned by prop-
erly choosing an angle α between laser beams producing the
optical lattice and the direction of the laser field inducing the
coupling. The two beams are characterized by the wavelengths
λlatt and λL, respectively (see, e.g., [25]). Here, φ0 ∈ [0, 2π )
is the global offset phase of the coupling lasers, which can
be interpreted as the transformation of Ĥ↑↓ due to the global
spin rotation around the z axis by the angle φ0. Equivalently, it
can also be interpreted as the spin rotation for the initial state
around the same z axis and by the same angle φ0, but in the
opposite direction.

In the case of PBCs, the coupling phase φ should
be commensurate with 2π/N , namely, φ = 2πn/N , where
n = 1, 2, . . . , N − 1, to ensure the periodicity of Ĥ↑↓ [25].
Here, however, we are interested in OBCs, and therefore, φ

can take any real values apart from the trivial one φ = 0 or
φ = 2π , for which Ĥ↑↓ does not provide coupling between
the Dicke and spin-wave state manifolds needed for the gen-
eration of spin squeezing.

The initial state that is convenient to start the evolution is
the spin coherent state

|θ, ϕ〉 = e−iŜzϕe−iŜyθ

N⊗
j=1

|↑〉 j, (9)

where all the spins point in the same direction parameterized
by the spherical angles θ and ϕ. In general, the spin coher-

ent state (9) belongs to the Dicke manifold of the total spin
S = N/2 and hence can be expressed in the basis of the Dicke
states (2) as

|θ, ϕ〉 =
N/2∑

m=−N/2

am|m〉, (10)

where

am =
√(

N
N
2 + m

)
cos

N
2 +m

(
θ

2

)
sin

N
2 −m

(
θ

2

)
ei( N

2 −m)ϕ (11)

are coefficients of decomposition.
The subsequent evolution of the initial state is defined

by the unitary operator Û = e−it Ĥspin . To quantify the level
of squeezing generated in time we use the spin squeezing
parameter

ξ 2 = N (�Ŝ⊥)2
min

〈Ŝ〉2
, (12)

where the length of the mean collective spin is 〈Ŝ〉 and the
minimal variance of the collective spin orthogonal to its di-
rection is (�Ŝ⊥)2

min [44].
Nontrivial quantum correlations are produced in the weak-

coupling regime, where the characteristic energy of the
coupling Hamiltonian Ĥ↑↓ is smaller than that of the spin-
exchange term ĤSE. In the next section, we derive the effective
model describing the spin squeezing dynamics in terms of
collective spin operators.

IV. EFFECTIVE MODEL

When the spin-flip coupling is weak compared to the en-
ergy of the spin exchange, the dynamics of the initial spin
coherent state |θ, ϕ〉 governed by the spin Hamiltonian Ĥspin

within the Dicke manifold can be well approximated using
perturbation theory. Therefore, the coupling term Ĥ↑↓ can be
treated as a perturbation. For reasons that will be explained
later, let us rephrase this operator in the following way:

Ĥ↑↓ = ˆ̃H↑↓ + vxŜx + vyŜy, (13)

where

ˆ̃H↑↓ = �

2

N∑
j=1

(α+
j Ŝ+

j + α−
j Ŝ−

j ). (14)

Here, α±
j = e±i(φ j−φ0 ) − A±, with A± = 1

N

∑
j e±i(φ j−φ0 ), and

vx = �Re[A+]/2, and vy = −�Im[A+]/2. The separation of
the two last terms in (13) is made in such a way that α±

j sum
up to zero. Note that vx and vy are nonzero only for phases φ

incommensurate with 2π/N .

A. First- and second-order contributions

The operator ˆ̃H↑↓ on the right-hand side of (13) induces the
coupling between the Dicke and spin-wave state manifolds,
while the remaining ones directly couple the Dicke states and
represent the first-order perturbation term

Ĥ (1)
eff = vxŜx + vyŜy. (15)
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To generate spin squeezing one needs to take into ac-
count the second-order contribution induced by ˆ̃H↑↓. It
can be obtained via the Schrieffer-Wolf transformation
[23,23,25,29–32], leading to

Ĥ (2)
eff = ÎN/2

ˆ̃H↑↓ĜN/2−1
ˆ̃H↑↓ ÎN/2, (16)

where ÎN/2 = ∑
m |m〉〈m| is the unit operator for projection

onto the Dicke manifold and ĜN/2−1 = ∑
q �=0,m

|m,q〉〈m,q|
−Eq

is an
operator which sums projectors onto the spin-wave state man-
ifold with the corresponding energy mismatch denominator
−Eq. The matrix elements of (16) are

〈m′|Ĥ (2)
eff |m〉 = −

∑
m′′,q

〈m′| ˆ̃H↑↓|m′′, q〉〈m′′, q| ˆ̃H↑↓|m〉
Eq

. (17)

The details of the transformation and its application to the
Heisenberg spin-1/2 chain with spin-flip coupling can be
found in the Supplemental Material of Ref. [25]. In the follow-
ing, we focus on the derivation of the effective Hamiltonian
Ĥ (2)

eff and its representation in terms of the collective spin
operators.

Let us start by expressing the action of ˆ̃H↑↓ on Dicke states,
namely,

ˆ̃H↑↓|m〉 = �

2
|�, m + 1〉+ + �

2
|�, m − 1〉−, (18)

where states |�, m ± 1〉± = ∑
j α

±
j Ŝ±

j |m〉 can be expanded in
terms of the spin-wave states |m ± 1, q〉 as

|�, m ± 1〉± =
√

NcN/2,±m+1

∑
q

f ±
q |m ± 1, q〉. (19)

Here, cN/2,±m+1 are given by Eq. (4), and

f ±
q =

∑
j

p(q)
j α±

j =
∑

j

p(q)
j e±i(φ j−φ0 ), (20)

with f +
q = ( f −

q )∗ because p(q)
j is real. Note that the spin-flip

term ˆ̃H↑↓ couples each Dicke state |m〉 with a superposition
of spin-wave states (19) characterized by energies Eq. This is
different from the PBC case, where Ĥ↑↓ couples each Dicke
state with a pair of spin-wave states of well-defined quan-
tum numbers q = ±φN/(2π ) set by the coupling phase φ

[25]. An example of the amplitude of elementary couplings
f +
q to the |m, q〉 states is presented in Fig. 2. We can see

that, indeed, the coupling could be non-negligible even to the
lowest state |m, q = 1〉. Therefore, the perturbative regime is
defined by the smallest energy gap, namely, � � |Eq=1| =
JSE| cos(π/N ) − 1|.

The relevant matrix elements of the second-order contribu-
tion can be written as

〈m′′, q| ˆ̃H↑↓|m〉 = �

2
N−1/2c−1

N/2,m+1 f +
q δm′′,m+1

+ �

2
N−1/2c−1

N/2,−m+1 f −
q δm′′,m−1, (21)

where the coefficients N−1/2c−1
N/2,±m+1 come from the scalar

product between the Dicke state |m〉 and states |�, m ± 1〉±.

0 1 2 3 4 5 6 7 8

φN/(2π)

1

2

3

4
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6

7

0.0

0.2

0.4

0.6

0.8

FIG. 2. The absolute values of the normalized coefficients
| f +

q |N−1/2 are shown by color versus the coupling phase φ ∈ R
and the spin-wave quantum number q ∈ Z for an arbitrary φ0 when
N = 8.

The nonzero matrix elements of the second-order term (17),
namely, Hm′,m = 〈m′|Ĥ (2)

eff |m〉, read

Hm,m = −(
c−2

N/2,m + c−2
N/2,−m

)
(N − 1)χz, (22)

Hm,m−2 = c−1
N/2,m−1c−1

N/2,−(m−1) (N − 1)χx, (23)

Hm,m+2 = c−1
N/2,m+1c−1

N/2,−(m+1) (N − 1)χx, (24)

where

χz = �2

4NJSE(N − 1)

N−1∑
q=1

f +
q f −

q

cos
(

π
N q

) − 1
, (25)

χx = �2

4NJSE(N − 1)

N−1∑
q=1

( f −
q )2

cos
(

π
N q

) − 1
. (26)

Comparing the matrix elements presented in Eqs. (22)–(24)
with the matrix elements of the appropriate collective spin
operators, the second-order perturbation contribution can be
represented in operator form as

Ĥ (2)
eff = −2χz

(
Ŝ2 + Ŝ2

z

) + Re[χx](Ŝ2
+ + Ŝ2

−)

+ iIm[χx](Ŝ2
+ − Ŝ2

−), (27)

as explained in Appendix B. The full effective Hamiltonian is
a sum of the first- and second-order contributions:

Ĥ (φ0 )
eff = Ĥ (1)

eff + Ĥ (2)
eff . (28)

B. Choosing the offset phase φ0 = φ(N + 1)/2

In what follows, we will take the value of the global
coupling phase to be φ0 = φ(N + 1)/2, so that vy entering
Eqs. (13) and (15) and the imaginary part of χx vanish, i.e.,
vy = Im[χx] = 0 (see Appendix C). This simplifies the form
of the effective model, leading to

Ĥ (φ0 )
eff = −2χz

(
Ŝ2 + Ŝ2

z − ηŜ2
x + ηŜ2

y + γ Ŝx
)
, (29)
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FIG. 3. The parameters η (top panel) and γ (bottom panel) of the
effective model (29) versus the coupling phase φ are marked by black
and orange lines, respectively, for N = 8, � = |Eq=1|/10, and φ0 =
φ(N + 1)/2. The values of η and γ for commensurate phases are
marked by open circles. The regions shaded in blue present examples
when η < 0, while the one shaded in red shows an example when
η > 0.

where η = χx/χz and γ = vx/χz. This specific choice of
phase φ0 does not involve a loss of generality because the
full effective Hamiltonian (28) containing Ĥ (1)

eff and Ĥ (2)
eff in

Eqs. (15) and (27) is related to that given by Eq. (29) via a
unitary transformation set by the global rotation around the z
axis through the angle φ0.

In Fig. 3 we show the variation of the two parameters
of the effective model (29), namely, η and γ , versus φ.
The commensurate phases corresponding to φ = 2πn/N , with
n ∈ [1, N − 1], are marked by open points in Fig. 3, for which
we have γ = 0. In this case, we numerically observe that
η = −1/2 for φ �= π and η = −1 for φ = π . In addition, we
have also analytically found that

χz = − �2

4JSE(N − 1)

2

cos(φ) − 1
, (30)

χx = �2

4JSE(N − 1)

1

cos(φ) − 1
(31)

for commensurate phases φ = 2πn/N , apart from φ = π ,
where

χz = −χx = − �2

4JSE(N − 1)
. (32)

The derivation is presented in Appendix E. The noncommen-
surate coupling phases φ result in both positive and negative
values of the parameter η, which is independent of JSE, �, and
N . On the contrary, the coefficient γ depends on the system
parameters and scales as γ ∝ NJSE/�.

In this way, we derive the second-order contribution
(27) and, consequently, the effective model (29), showing
that the boundaries significantly modify the spin squeezing

Hamiltonian with respect to PBCs, in which one arrives at
the effective Hamiltonian in the form of the OAT model,
namely, Ĥeff = −χπ Ŝ2

x for φ = π and Ĥeff = χφ Ŝ2
z for φ �= π

[25]. Therefore, it is not only the timescale that is changed
due to the OBCs but the entire dynamics as well. This is
a counterintuitive result because, usually, the PBC describes
well the system in the limit of large N .

V. SPIN SQUEEZING FOR OBCs

In this section, we analyze the unitary evolution of the
spin squeezing parameter governed by the effective spin
Hamiltonian (29). We distinguish two cases depending on the
commensurability of the coupling phase φ. We demonstrate
that if the coupling phase is commensurate, the resulting
model (29) can be either OAT for φ = π or nonisotropic
TACT for φ �= π . However, the most general case of non-
commensurate phases gives rise to a squeezing dynamics
not simulated by the conventional OAT and TACT twisting
models.

A. Spin squeezing with commensurate phase

Tuning the value of the coupling phase φ to the integer
multiple of 2π/N simplifies the problem. In particular, by
taking φ = π we have η = −1, and the effective Hamiltonian
(29) acquires the form of the OAT one, namely,

Ĥeff = 4χzŜ
2
y , (33)

where we omitted a term proportional to Ŝ2, as it only shifts
the origin of energy. The convenient initial spin coherent states
are the ones polarized in the x-z plane, namely, |θ, ϕ = 0〉 for
any θ . The best level of squeezing ξ 2

best ≈ N−2/3 is achievable
for times tbest ≈ N−2/3|4χz|−1 in the large-N limit according
to the OAT dynamics [33,45]. Next, taking the analytical ex-
pression (32) for χz, we obtain tbest ≈ N1/3JSE/�2. Therefore,
the twisting dynamics is essentially the same as for PBCs [25].
The only difference is that for OBCs the resulting timescale
is four times shorter than in the PBC case for the same per-
turbation level �. Acceleration of the best squeezing time
takes place because of a broader range of amplitudes p(q)

j
contributing to the generation of spin squeezing.

In another situation, when the coupling phase is not equal
to π , we have η = −1/2, and γ = 0, so the effective Hamil-
tonian (29) reduces to

Ĥeff = 2χz
(
Ŝ2

y − Ŝ2
z

/
2
)
, (34)

where we omitted the term proportional to Ŝ2. Equation (34)
represents the anisotropic TACT with the anisotropy equal
to 1/2. It is worth stressing here that the OBC provides
anisotropic TACT without adding an extra atom-light cou-
pling characterized by two different phases. In the case
of the PBC it was necessary to include two spin-flipping
terms in order to simulate TACT [25]. Let us again con-
sider the initial state for spin squeezing generation to be the
spin coherent state polarized in the x-z plane, |θ, ϕ = 0〉.
The anisotropic TACT given by (34) generates the Heisen-
berg limited level of squeezing ξ 2

best ≈ N−1 on the timescale
tbest ≈ (2χzN

√
2)−1 ln(N/2) [12]. Therefore, taking into ac-

count the system parameters and the relation for χz given
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FIG. 4. Variation of spin squeezing parameter (12) in time for
different values of � when the initial state is |θ = π/2, ϕ = 0〉,
N = 8, φ = π − 2π/N , and φ0 = φ(N + 1)/2. The result for the
effective model (29) is marked by olive crosses, while results for
the coupled Heisenberg model (7) are shown by black lines for � =
|Eq=1|/10 (solid), � = |Eq=1| (dashed)m and � = 2|Eq=1| (dotted).

by (30), we have tbest ≈ JSEln(N/2)| cos φ − 1|/(
√

2�2). In
Fig. 4 we show examples of spin squeezing dynamics for dif-
ferent values of � obtained from exact many-body numerical
simulations, using single occupied Fock states, of the spin-
exchange model ĤSE with coupling Ĥ↑↓. Perfect agreement
with the effective model (29) is observed in the perturbative
regime when � � |Eq=1|. Significant spin squeezing can also
be generated beyond this regime, yet large discrepancies arise
with respect to the TACT dynamics.

It is also worth commenting here on the importance of
the coupling strength � and phase φ to the best squeezing
time. Due to the perturbation regime condition, � scales as
∼N−2. This leads to a very long squeezing time, in principle.
However, dependence on φ, which is hidden in the function
χz, leads to a twofold modification of the time scaling. For
φ close to 0 or 2π the timescale is reduced by N−2. On the
other hand, φ ∼ π does not provide an improvement directly,
but the coupling to the lowest spin-wave states is smaller,
increasing the perturbation regime condition and allowing it
to increase the value of �. In Fig. 5 we plot the variation of the
best squeezing time with the phase φ for a fixed value of the
total number of spins N = 100 obtained from the numerical
simulations of the effective two-mode model (29). We can
see the timescale increases by orders of magnitude for values
of the coupling phase from φ = 2π/N to φ = π and then
decreases symmetrically to φ = 2π (N − 1)/N . Thus, in prac-
tical applications, the optimization of the system parameters
JSE, �, and φ will be necessary to have the shortest possible
timescale.

B. Spin squeezing with noncommensurate phases

The resulting effective model (29) simulated by the cou-
pled Heisenberg model (7) also gives rise to the spin
squeezing generation for noncommensurate coupling phases
φ, i.e., the one which is not equal to integer multiplications of
2π/N . In general, the results depend strongly on the chosen
initial spin coherent state |θ, ϕ〉 and parameters η and γ .

0 20 40 60 80 100

φN/(2π)

10−2

10−1

100

t b
e
st

Ω
2
/
J

S
E

FIG. 5. The best squeezing time tbest multiplied by �2/JSE for
N = 100 to isolate the dependence on the coupling phase φ. The
numerically evaluated values of the best squeezing time using unitary
evolution according to (29) are shown by red points. The correspond-
ing behavior tbest�

2/JSE = ln(N/2)| cos φ − 1|/(
√

2) for φ �= π and
φ0 = φ(N + 1)/2 is shown with by the solid gray line; see text for
more details.

Let us discuss the situation when the initial spin coherent
state is polarized along the z axis: |0, 0〉 = ⊗N

j=1 |↑〉 j . Exam-
ples of the best squeezing and the best squeezing times are
shown in Figs. 6(a)–6(d) for N = 100 from the full numerical
simulations of the effective model (29) using Dicke states
basis (2). A characteristic behavior is the OAT level of best
squeezing for positive values of η, which is demonstrated in
Fig. 6(b). In other cases, when η is negative, the OAT level is
also achieved mainly with η close to zero [see, e.g., Figs. 6(c)
and 6(d)]. It is possible to exceed the OAT level of squeezing
when η approaches the local minimum [see Figs. 6(a), 6(c)
and 6(d)]. Interestingly, the last term in the effective model
(29), namely, γ Ŝx, does not dominate the dynamics even if γ

is orders of magnitude larger than η. In Appendix D we show
the corresponding results for two different initial states. The
OAT level of squeezing can be achieved when the initial state
is polarized along the y axis, |θ = π/2, ϕ = π/2〉. The best
squeezing and times are of the same level as the ones pre-
sented in Fig. 6. On the other hand, if the evolution starts with
the state polarized along the x axis, |θ = π/2, ϕ = 0〉, the
dominant Zeeman-like term γ Ŝx in (29) freezes the dynamics
of the spin state, and only weak spin squeezing is generated
for noncommensurate phases.

VI. CONCLUSIONS AND SUMMARY

We studied in detail the effect of OBCs on the generation of
spin squeezing in one-dimensional isotropic Heisenberg spin-
1/2 chains induced by position-dependent spin-flip coupling
with the offset phase φ0 (8). We extended the spin-wave theory
for the case of OBCs using the coordinate Bethe ansatz. We
analytically derived the effective model in terms of the col-
lective spin operators which describe the squeezing dynamics
in the weak-coupling regime. The resulting effective model
obtained differs significantly from the one under PBCs and
therefore provides an example in which the boundaries sig-
nificantly modify the dynamics of the system. To classify the
squeezing scenarios, we distinguished two cases depending
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FIG. 6. The best squeezing ξ 2
best (green points) and the best squeezing time tbest (red points) are shown in (a)–(d) for different regions of φ.

The numerical results for the effective model (29) with N = 100, JSE = 1, � = |Eq=1|/10, φ0 = φ(N + 1)/2, and η > 0 (red shaded areas) or
η < 0 (blue shaded areas). The numerical values of η and γ used in the simulations are shown in the top panels. The two limit cases for the
values of ξ 2

best , namely, OAT and TACT for N = 100, are marked by horizontal green dotted and dashed lines, respectively.

on the commensurability of the coupling phase φ for a well-
defined offset phase φ0 = φ(N + 1)/2. When the coupling
phase is commensurate, the dynamics of spin squeezing is
well captured by the nonisotropic TACT if φ �= π and OAT
for φ = π . The most general case of the noncommensurate
phase φ and arbitrary offset phase φ0 still gives rise to the
simulation of a squeezing model, although not a conventional
one. This is in contrast to the PBC case, where the OAT model
is simulated by the system independently of φ. Our analytical
predictions were confirmed by the full many-body numerical
simulations.

The results presented here show how to produce entan-
gled states in the isotropic spin-1/2 Heisenberg chains with
nearest-neighbor interactions. This is possible through the
addition of the position-dependent spin-flip coupling that is
weak enough to maintain the dynamics within the Dicke man-
ifold and strong enough to excite spin waves that are extended
over the entire system, allowing effective all-to-all interaction
between the individual spins. It is also worth adding that the
dynamics of generated spin-squeezed states can be frozen
at a desired time just by turning off the spin-flipping term.
The results obtained can be verified experimentally by current
state-of-the-art experiments with ultracold atoms.
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APPENDIX A: SPIN-WAVE STATES FOR OBCs

In this Appendix, we are interested in spin-wave states
which are eigenstates of the isotropic Heisenberg model,

ĤSE = JSE

N−1∑
j=1

(
Sz

jS
z
j+1 + Sy

j S
y
j+1 + Sx

j S
x
j+1 − 1

4

)
, (A1)

for N spins and open boundary conditions. In the following,
we will show that the spin-wave states are given by Eq. (3) of
the main text, namely,

|m, q〉 = ±
√

NcN/2,±m

N∑
j=1

p(q)
j Ŝ±

j |m ∓ 1〉. (A2)

In the above equation, the states |m ∓ 1〉 are Dicke states,
while the usage of the on-site rising and lowering operators Ŝ±

j
corresponds to the two ways to define spin-wave states. Note

that Sz|m, q〉 = m|m, q〉, as each term comprising the state
vector (A2) is characterized by the same spin projection m.
Furthermore, Ŝ2|m, q〉 = S(S + 1)|m, q〉, with S = N/2 − 1.
To see this we notice that the states (A2) are constructed in
such a way that

|m, q〉 ∝ ŜN/2−1±m
± |q〉±, (A3)

where the state vector |q〉± ≡ | ∓ (N/2 − 1), q〉 corresponds
to the minimum and maximum values of the spin projection
m = ∓(N/2 − 1). Since [Ŝ2, Ŝ±] = 0,

Ŝ2|m, q〉 ∝ ŜN/2−1±m
± Ŝ2|q〉±. (A4)

Therefore, one needs to find the action of the operator Ŝ2 on
the state vector |q〉±, which is

Ŝ2|q〉± = (
Ŝ2

z + Ŝz + Ŝ−Ŝ+
)|q〉±

=
[(

N

2

)2

− N

2

]
|q〉± +

⎛
⎝∑

j

p(q)
j

⎞
⎠Ŝ±|N/2,∓N/2〉.

(A5)

One can see that the state vectors |q〉± are eigenstates of the
Ŝ2 operator with the spin quantum number S = N/2 − 1 if
the last term in (A5) is zero, i.e.,∑

j

p(q)
j = 0. (A6)

In that case the state vectors |m, q〉 with an arbitrary m are
also the eigenstates of Ŝ2 with quantum number S = N/2 − 1.
Note that the explicit form of the coefficients p(q)

j presented
later in Eq. (A16) does obey the condition (A6).

We are looking for the spin-wave states |m, q〉 which are
eigenstates of the Hamiltonian (A1). Since [ĤSE, Ŝ±] = 0,
using Eq. (A3), one can see that the eigenstates |m, q〉 of
the Hamiltonian ĤSE have eigenenergies Eq which do not
depend on the quantum number m. Therefore, by choosing
the amplitudes p(q)

j in such a way that |q〉± are eigenstates
of the spin-exchange Hamiltonian (A1), the states |m, q〉 for
any magnetization m are also its eigenstates with the same
eigenenergies Eq.

Below we show how to derive the form of p(q)
j for |q〉+

using OBCs. The equations for |q〉− give the same expansion
coefficients p(q)

j and the same eigenenergies Eq. Using the
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coordinate basis vectors

|l̃〉 ≡ Ŝ+
l | − N/2〉 = Ŝ+

l

N⊗
j=1

|↓〉 j, (A7)

the spin-wave states |q〉+ can be represented as

|q〉+ =
N∑

l=1

pl |l̃〉. (A8)

The coefficients pl are evaluated by considering the eigen-
value problem

(H − EI ) �p = 0, (A9)

where I is the identity matrix, �p = (p1, p2, . . . ) and the matrix
elements of H are Hl ′,l = 〈l̃ ′|ĤSE|l̃〉.

The matrix form of eigenproblem (A9) leads to the set of
equations

−JSE

2
p1 + JSE

2
p2 = E p1, (A10)

JSE

2
pl−1 − JSE pl + JSE

2
pl+1 = E pl for l ∈ [2, N − 1],

(A11)

−JSE

2
pN + JSE

2
pN−1 = E pN , (A12)

where (A10) and (A12) are for the boundary sites of the
lattice. We use Puszkarski’s idea [46] and add two virtual
lattice sites p0 and pN+1 subject to the boundary constraints
p0 = p1 and pN+1 = pN . In that case, the set of equa-
tions (A10)–(A12) becomes equivalent to the following set of
bulk equations valid for any l:

JSE

2
pl−1 − JSE pl + JSE

2
pl+1 = E pl . (A13)

The solution to Eq.(A13) can be represented as

pl = p cos [k(l + u)], (A14)

with the corresponding eigenenergies E = JSE(cos k − 1).
The boundary constraint p0 = p1 requires cos(uk) =
cos(uk + k), which is fulfilled for u = −1/2. The second
constraint, pN+1 = pN , leads to the requirement

cos(kN + k + uk) = cos(kN + uk), (A15)

which is fulfilled when k = qπ/N , with q = 1, 2, . . . , N − 1
being an integer. Therefore, we arrive at the required expan-
sion coefficients and the corresponding eigenenergies:

p(q)
l =

√
2

N
cos

[
π

N

(
l − 1

2

)
q

]
, (A16)

Eq = JSE

[
cos

(
π

N
q

)
− 1

]
. (A17)

Note that the value q = 0 is not included here, as in that case,

the coefficients p(q)
l do not depend on l and thus do not obey

the condition (A6). Although such a state with q = 0 is an
eigenstate of the Hamiltonian ĤSE, it belongs to the Dicke
manifold and is characterized by the spin quantum number
S = N/2 and zero eigenenergy.

In Fig. 7 we show a comparison of the numerical solution
of (A10)–(A12) with the analytical results. Perfect agreement
can be seen.

APPENDIX B: MATRIX REPRESENTATION OF SPIN
OPERATORS NEEDED FOR EFFECTIVE MODEL

In the following, we will present the matrix
representation of various spin operators Ŝσ with
σ = z,± by using Ŝ−|S, m〉 = AS,m

− |S, m − 1〉, AS,m
− =√

(S + m)(S − m + 1), Ŝ+|S, m〉 = AS,m
+ |S, m + 1〉, and

AS,m
+ = √

(S − m)(S + m + 1).
The nonzero elements relevant for the relation of the matrix

representation to the corresponding spin operators are

〈N/2, m|Ŝ2
−|N/2, m + 2〉 =

√(
N

2
+ m + 2

)(N

2
− m − 1

)(
N

2
+ m + 1

)(
N

2
− m

)
, (B1)

〈N/2, m|Ŝ2
+|N/2, m − 2〉 =

√(
N

2
+ m

)(
N

2
− m + 1

)(
N

2
+ m − 1

)(
N

2
− m + 2

)
. (B2)

One can show that the right-hand site of Eq. (B1)
equals (N − 1)c−1

N/2,m+1c−1
N/2,−(m+1) and the right-hand side

of Eq. (B2) equals (N − 1)c−1
N/2,m−1c−1

N/2,−(m−1). In addi-

tion, 〈N/2, m|Ŝ2
z |N/2, m〉 = m2, and 〈N/2, m|Ŝ2|N/2, m〉 =

N
2 ( N

2 + 1), while (c−2
N/2,m + c−2

N/2,−m) = 2
N−1 (m2 + N

2 + N2

4 ).

APPENDIX C: EFFECTIVE MODEL AND OFFSET PHASE

The general form of the effective model including the first-
and second-order perturbation terms is

Ĥeff = 2χz
(
Ŝ2 + Ŝ2

z

) − Re[χx](Ŝ2
+ + Ŝ2

−)

− iIm[χx](Ŝ2
+ − Ŝ2

−) + vxŜx + vyŜy, (C1)

which for φ0 = φ(M + 1)/2 leads to (29).
While the general form of the effective Hamiltonian (C1)

includes the mixed term Ŝ2
+ − Ŝ2

− ∝ ŜxŜy + ŜyŜx that compli-
cates the effective model, it can be removed in general by a
proper choice of the global phase factor in the atom-light cou-
pling term. This is done by choosing a phase shift φ0 so that
Im[χx] = 0. In fact, it is sufficient to fulfill Im[( f ±

q )2] = 0 ∀ q
since Im[χx] ∝ ∑

q{Im[( f ±
q )2]/Eq}. By explicitly calculating

f ±
q =

N∑
j=1

p j (q)α±
j =

√
2

N

N∑
j=1

cos

[
π

N
q

(
j − 1

2

)]
ei(φ j−φ0 ),

(C2)
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FIG. 8. The best squeezing ξ 2
best (green points) and the best squeezing time tbest (red points) are shown in (a)–(d) for initial state |θ =

π/2, ϕ = 0〉 and in (e)–(h) for initial state |θ = π/2, ϕ = π/2〉. The numerical results for the effective model (29) with N = 100, JSE = 1,
� = |Eq=1|/10, φ0 = φ(N + 1)/2, and η > 0 (red shaded areas) or η < 0 (blue shaded areas ). The numerical values of η and γ used in the
simulations are shown in the top panels. The two limit cases for the values of ξ 2

best , namely, OAT and TACT for N = 100, are marked by
horizontal green dotted and dashed lines, respectively.

using the geometric series result

N∑
j=1

r j =
{

1−rN

r−1−r if r �= 1,

N if r = 1,
(C3)

we obtain

f ±
q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ei( φ
2 −φ0 )√

2

[
e−iπ( q

2 − Nφ
2π )

N g(q,−φ)

+ eiπ( q
2 + Nφ

2π )
N g(q, φ)

]
if φ �= ± π

N q,

ei( φ
2 −φ0 )√

2
if φ = ± π

N q,

(C4)

where g(q, φ) = sin π ( q
2 + Nφ

2π
)

sin π
N ( q

2 + Nφ

2π
)
. This can also be written as

f ±
q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ei( N+1
2 φ−φ0 )√

2
iq

N

[
(−1)qg(q,−φ)

+g(q, φ)
]
, if φ �= ± π

N q,

ei( φ
2 −φ0 )√

2
, if φ = ± π

N q.

(C5)

Then

Im[( f ±
q )2] ∝

{
sin[(N + 1)φ − 2φ0] if φ �= ± π

N q,

sin(φ − 2φ0) if φ = ± π
N q,

(C6)

for Im[( f ±
q )2] = 0; for all q it follows that

φ0 =
{

N+1
2 φ + π

2 n if φ �= ± π
N q,

φ

2 + π
2 n if φ = ± π

N q,
(C7)

∀ n ∈ Z. Notice we can write the second case result as the first
one without any loss of generality by changing the variable
n = q + n′. As such, Im[χx] = 0 when

φ0 = N + 1

2
φ + π

2
n; ∀ n ∈ Z. (C8)

APPENDIX D: SPIN SQUEEZING
FOR THE INCOMMENSURATE PHASE

We showcased the best squeezing results for the initial
coherent state |θ = 0, φ = 0〉 = ⊗

j |↑〉 j in Sec. V B (Fig. 6).
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Here, we show that other choices for the initial state can pro-
vide different results. They are shown in Fig. 8 for the initial
states |θ = π/2, ϕ = 0〉 [Figs. 8(a)–8(d)] and |θ = π/2, ϕ =
π/2〉 [Figs. 8(e)–8(h)]. The unitary evolution with the initial
state being the eigenstate of Ŝx, |θ = π/2, ϕ = 0〉, shows
practically no squeezing except very close to the commen-
surate phases or when γ is very small [see Fig. 8(a)–8(d)].
On the other hand, when the initial state is the eigenstate of
Ŝy, |θ = π/2, ϕ = π/2〉, the squeezing dynamics is the same
as for the initial state |θ = 0, φ = 0〉, which is presented in
Fig. 6. This is shown in Figs. 8(e)–8(h).

APPENDIX E: CALCULATION OF η

FOR COMMENSURATE PHASES

For commensurate phase φ = 2πn/N , it is possible to
calculate χz and χx analytically. Consequently, one can
obtain η.

We make use of a method originally used in the study of
random walks on lattices [47,48] and also employed to study
excitons in molecular aggregates [49].

For convenience, let us represent Eqs. (25) and (26) in the
following way:

χz = �2

4JSE(N − 1)
F (φ)

diag, (E1)

χx = �2

4JSE(N − 1)
F (φ)

off , (E2)

where we have defined the dimensionless sums F (φ)
diag and F (φ)

off :

F (φ)
diag = 1

N

N∑
j,l=1

Ej,l eiφ( j−l ), (E3)

F (φ)
off = 1

N

N∑
j,l=1

Ej,l eiφ( j+l )−i2φ0 , (E4)

where

Ej,l = 2

N

N∑
q=1

cos
[

πq
N

(
j − 1

2

)]
cos

[
πq
N

(
l − 1

2

)]
cos(πq/N ) − p

. (E5)

Here, we added the q = N term, which is zero, and introduced
p = 1 + ε to avoid divergences. The limit ε → 0+ will be
taken at the end of calculations.

The main idea in finding this sum is to expand the denom-
inator into a geometric series. To achieve this, we rewrite the
denominator in the following way:

cos(πq/N ) − p = −b

2
[1 − b−1eiπq/N ][1 − b−1e−iπq/N ],

(E6)
where

b = p +
√

p2 − 1. (E7)

By using the symmetry of the summand to expand the sum-
mation limits, we can rewrite Ej,l as

Ej,l = −Cj+l−1 − Cj−l − 1

N

1

1 − p
, (E8)

where

Cn = 1

bN

N∑
q=1−N

eiπqn/N

[1 − b−1eiπq/N ][1 − b−1e−iπq/N ]
, (E9)

with C−n = C∗
n . Note that the last term in Eq. (E8) cancels the

added q = 0 term in the summation.
Representing the denominator in terms of the geometric

series, we have

Cn = 1

bN

N∑
q=1−N

∞∑
r=0

∞∑
s=0

eiπq(n+r−s)/N b−(r+s). (E10)

Using

1

N

N∑
q=1−N

eiπq(n+r−s)/N = 2
∞∑

m=−∞
δn+r−s,2Nm, (E11)

we obtain

Cn = 2

b

∞∑
m=−∞

∞∑
r=0

∞∑
s=0

b−(r+s)δn+r−s,2Nm.

Due to the Kronecker delta, the terms in the summation are
nonzero only if s = r + n − 2Nm or, equivalently, if r =
s − n + 2Nm. Assuming that 0 � n < 2N , the integer s =
r + n − 2Nm is s � 0 if m � 0, whereas the integer r = s −
n + 2Nm is r � 0 if m � 1. Therefore, it is convenient to split
the summation over m into a part with m < 1 and one with
m > 0, giving

Cn = 2b−1
∞∑

m=0

∞∑
r=0

b−(2r+2Nm+n)

+ 2b−1
∞∑

m=1

∞∑
s=0

b−(2s+2Nm−n). (E12)

After evaluating the geometric sums, we arrive at

Cn = 2

b − b−1

b−|n| + b−2N+|n|

1 − b−2N
, (E13)

where we have used the relation C−n = C∗
n .

Taking the limit ε → 0+, we obtain

−3NEj,l = 1 − 3 j + 3 j2 − 3l + 3l2 + 3N

− 6 max ( j, l )N + 2N2.
(E14)

Therefore, we can rewrite Eq. (E3) in terms of a double
summation over j > l and a single summation for j = l:

F (φ)
diag = 2

N

N∑
j=1

j−1∑
l=1

Ej,l eiφ( j−l ) + 1

N

N∑
j=1

Ej, j . (E15)

Performing this summation, we obtain

F (φ)
diag = − csc2

(πn

N

)
. (E16)

Remembering that φ = 2πn/N , we can rewrite this as

F (φ)
diag = 2

cos φ − 1
, (E17)

thus proving the identity mentioned in the main text.
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As for F (φ)
off , the steps are analogous; first, we rewrite the

sum (E4):

F (φ)
off = 2

N

N∑
j=1

j−1∑
l=1

Ej,l eiφ( j+l )−i2φ0

+ 1

N

N∑
j=1

Ej, j ei2φ j−i2φ0 .

(E18)

For the initial phase φ0 = φ(N + 1)/2, the summation yields

F (φ)
off = 1

2
csc2

(πn

N

)
, (E19)

or, equivalently,

F (φ)
off = − 1

cos φ − 1
, (E20)

as expected.

Having both F (φ)
diag and F (φ)

off , we can confirm that

η = Re
[
F (φ)

off

]
F (φ)

diag

= −1

2
, (E21)

as clearly seen in Fig. 3.
The exceptional case of φ = π must be considered sepa-

rately for φ0 = φ(N + 1)/2:

F (π )
diag = −F (π )

off = 1. (E22)

In general, for any φ0 we have the following identities:

F (π )
off = 1

2
ei( 2πn

N −2φ0 ) csc2
(πn

N

)
, (E23)

or, equivalently,

F (π )
off = − ei(φ−2φ0 )

cos φ − 1
. (E24)
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Žlabys, G. Juzeliūnas, and E. Witkowska, Phys. Rev. Lett. 129,
090403 (2022).

[26] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).
[27] K. Gietka, A. Usui, J. Deng, and T. Busch, Phys. Rev. Lett. 126,

160402 (2021).
[28] H. Bethe, Z. Phys. 71, 205 (1931).
[29] K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10, L271

(1977).
[30] K. A. Chao, J. Spałek, and A. M. Oleś, Phys. Rev. B 18, 3453
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