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We study the Wannier-Stark (WS) localization in one-dimensional amplitude-chirped lattices with the jth
on-site potential modulated by a function F j cos(2πα j), where F is the external field with a period determined
by α = p/q (p and q are coprime integers). In the Hermitian (or non-Hermitian) systems with real (or imaginary)
fields, we can obtain real (or imaginary) WS ladders in the eigenenergy spectrum. In most cases with q � 2, there
are multiple WS ladders with all the eigenstates localized in the strong field limit. However, in the lattices with
q = 4, the energy-dependent localization phenomenon emerges due to the presence of both spatially periodic
and linearly increasing behaviors in the on-site potential. About half the number of eigenstates are gathered at
the band center and can extend over a wide region or even the full range of the lattice, even when the field
becomes very strong. Moreover, in the non-Hermitian lattices with odd q, some of the WS ladders become
doubly degenerate, where the eigenstates are evenly distributed at two neighboring sites in a wide regime of
field strength. Our work opens an avenue for exploring WS localization in both Hermitian and non-Hermitian
amplitude-chirped lattices.
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I. INTRODUCTION

Anderson localization [1] is a ubiquitous phenomenon in
disordered physical systems [2,3] which has been experimen-
tally observed in various platforms such as cold atoms [4–6],
light [7–9], microwave [10,11], and photonic lattices [12]. The
localization phase transition occurs with a mobility edge in
three-dimensional systems [13] but is excluded by scaling the-
ory in lower-dimensional systems with random disorders [14].
However, it still happens in systems with correlated disorders,
such as the famous quasiperiodic Aubry-André model [15].
In addition, localization can also emerge in disorder-free sys-
tems, which traces back to the Wannier-Stark (WS) lattice
subjected to a constant electric field [16–20]. The eigenen-
ergies in such systems are equally spaced, forming the WS
ladders with all eigenstates becoming exponentially local-
ized in the strong field limit. Recently, such Stark lattices
have also been exploited to study the many-body localization
phenomenon when further taking the particle interaction into
consideration [21–24]. So far, most studies on WS localiza-
tion focus on systems with uniform fields represented by a
linearly site-dependent potential in the Hamiltonian. If we
further introduce spatially periodic factors and construct the
amplitude-chirped lattices [25], what will happen to the WS
ladder and localization properties remains unexplored.

On the other hand, non-Hermitian physics has become a
research field undergoing explosive development during the
past few years [26–30]. A variety of exotic phenomena, such
as the real spectra in PT -symmetric systems [31–33] and
the non-Hermitian skin effect (NHSE) [34,35], have been re-
vealed. The existence of non-Hermiticity can modify the band
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topology [30,34–36] as well as the Anderson localization tran-
sition [37–41] in a significant way. Recently, non-Hermitian
systems with a uniform field have been studied, where the
continuum of bound states appears when the imaginary field
is weak [42]. When the field gets stronger, imaginary WS
ladders will appear, similar to the real ones in Hermitian
systems [43]. The effect of NHSE on the WS localization has
also been reported in Ref. [44]. It will be interesting to ask
whether the WS ladder and localization will behave similarly
to the real ones in Hermitian systems when the imaginary field
becomes amplitude chirped.

To answer the above questions, we introduce the one-
dimensional (1D) amplitude-chirped lattices in this work,
where the on-site potential is modulated by the function
F j cos(2πα j). Here, F is the external field applied to the
lattice with a period determined by α = p/q (p and q are
coprime real numbers). Depending on whether F is real or
imaginary, we can obtain real or imaginary WS ladders in the
eigenenergy spectrum as the field strength increases. The pres-
ence of spatially periodic and linearly increasing factors in the
on-site potential leads to fascinating phenomena that cannot
happen in conventional WS ladders (i.e., the case α = 1 in
our model). In most cases with q � 2, there are multiple WS
ladders with the same or different level spacings, and all the
eigenstates become localized in the strong field limit. How-
ever, in the lattices with q = 4, we find that energy-dependent
localization phenomenon will emerge, where about half the
number of eigenstates are centered around the zero energy at
the band center and can extend to a wide region or even the full
range of the lattice, even though the field becomes very strong.
In addition, in the systems with imaginary field and odd q,
some of the WS ladders are doubly degenerate in a wide range
of field strength, and the corresponding eigenstates are evenly
distributed at two neighboring sites instead of one single site.
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Our work unveils the exotic properties of WS localization in
both Hermitian and non-Hermitian amplitude-chirped lattices.

This paper is organized as follows. In Sec. II, we introduce
the 1D lattices with amplitude-chirped on-site potential and
the corresponding model Hamiltonian. In Secs. III and IV,
we discuss the Hermitian case with real fields and the
non-Hermitian case with imaginary fields, respectively. The
summary is given in Sec. V.

II. MODEL HAMILTONIAN

We consider the 1D amplitude-chirped lattices described
by the following model Hamiltonian:

H1 =
∑

j

F j cos(2πα j + φ)c†
j c j + t (c†

j c j+1 + c†
j+1c j ), (1)

where c†
j (c j) is the creation (annihilation) operator of spinless

fermions at the jth site, with Vj = F j cos(2πα j + φ) being
the on-site potential. F is the external field applied to the 1D
lattice and α = p/q, with p and q being coprime integers,
determines the period of on-site modulation. j is the site index
and φ is a phase which is set to be 0 in this work. t is the
hopping amplitude between the nearest-neighboring sites, and
we will take t = 1 as the energy unit throughout this paper.
If α = 1, the Hamiltonian reduces to the conventional Stark
lattices with a uniform field, where all the eigenstates become
localized at a single lattice site when F is strong. If α < 1,
the coexistence of linearly increasing and periodic behaviors
in the on-site potential will result in various interesting phe-
nomena in the WS ladder, as will be revealed in the following
sections. The size of the lattice is L. In this work, we mainly
consider the case with 1 � j � L and φ = 0. Notice that by
choosing different ranges of j or different values of φ, the
eigenenergy spectra would be different, but the features of
the WS ladder and localization will be the same, see the
Appendix.

In Ref. [25], two such on-site potentials shown in Eq. (1)
with opposite spatial variation are introduced to achieve a
zero crossing of the coupling between energy bands. Such
lattices can be constructed by using lattice potentials realized
in Raman configuration. The positive and negative two-photon
detunings are used to realize the spatial chirp of the on-site
potential. Our model discussed in this work can also be exper-
imentally realized in similar platforms, and we will focus on
the WS localization phenomenon in such systems.

In addition to the Hermitian WS ladder with real fields, we
also consider the non-Hermitian WS ladder by taking the field
imaginary. The Hamiltonian is

H2 =
∑

j

iF j cos(2πα j + φ)c†
j c j + t (c†

j c j+1 + c†
j+1c j ).

(2)
Notice that the WS ladder in non-Hermitian systems has been
investigated in several recent works [43,44]. The model stud-
ied in these works corresponds to our model with α = 1. By
combining the interesting property of non-Hermiticity and the
WS ladder, we can expect many more phenomena that cannot
happen in the Hermitian cases.

As the field strength increases, the eigenstates in the Stark
lattices will become localized. To characterize the localization

FIG. 1. Energy spectrum as a function of F for H1 with (a1)
α = 1, (b1) α = 1/2, and (c1) α = 1/3. The color bar indicates the
IPR value of the eigenstate. The lower panel shows the correspond-
ing WS ladder with F indicated in the figures. The insets depict
the distribution or the IPR values of the eigenstates. The arrow in
(b2) indicates the zoom-in of the spectrum around zero energy. The
numeric label in (c2) indicates the turning point where the energy
changes from negative to positive. Here we set L = 120 and φ = 0.

property of eigenstates, we calculate the inverse participation
ratio, which is defined as

IPR =
∑

j

|ψn, j |4
(〈ψn|ψn〉)2

, (3)

where ψn, j is the jth component of ψn. For extended states,
the IPR value is close to 0, while for localized states, the IPR
is of order O(1).

III. HERMITIAN SYSTEMS WITH REAL FIELDS

We first check the Hermitian case shown in Eq. (1), where
the system is subjected to a real field. The numerical re-
sults given in this work are obtained by diagonalizing the
Hamiltonian matrices of the 1D amplitude-chirped lattices
under open-boundary conditions. If α = 1, we get the con-
ventional WS ladder in the strong-field limit with Em = mF
with m = 1, 2, . . . . The eigenstate corresponding to the nth
largest eigenenergy is localized at the nth site in the lattice.
In Fig. 1(a1), we plot the energy spectrum of the system with
α = 1 as a function of F . The IPR value indicates that the
states are localized when F is large. The WS ladder at F = 2
is shown in Fig. 1(a2), where the inset depicts the distribution
of one localized eigenstate. Next, we will take α = p/q and
check the WS localization in such systems.

When α = 1/2, we get Vj = ±F j for even and odd j′s,
a staggered on-site potential with the amplitude increased
linearly. In the strong-field limit, the eigenenergy spectrum
is Em = ±2mF with m = 1, 2, . . . . In Fig. 1(b1), we plot the
spectrum as a function of F . When the field is strong, there are
two WS ladders in the eigenenergy spectrum: one negative
and the other positive. The level spacing of both ladders is
δE = 2F . All the eigenstates are localized, and the IPR values
are very close to 1, as shown by the inset in Fig. 1(b2).
Notice that the eigenstates are more localized when compared
with the conventional Stark lattice (i.e., α = 1 in our model).
Besides, at E = 0, which is the band center, the level spacing
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FIG. 2. (a) and (b) Two WS ladders with negative energies in the
system with α = 1/3 and F = 1. The level spacings in these two
ladders are the same. (c) Variation of IPR as the field F increases.
Other parameters: L = 120, φ = 0.

becomes larger than 2F . For example, in Fig. 1(b2), the level
spacings between n = 60 and 61 levels are larger than 2 when
F = 1, separating the spectrum into two ladders, as shown by
the zoom-in around zero energy. The IPR also shows a dip
from 1 to about 0.8 at the spectral center. Thus, in the chirped
lattice with α = 1/2, we can obtain two WS ladders in the
eigenenergy spectrum.

If α = 1/3, we find three WS ladders in the spectrum when
F is strong, as shown in Fig. 1(c1). From Fig. 1(c2), we can
see that about two-thirds of the eigenenergies are negative.
The IPR values for the corresponding eigenstates are constant.
By zooming in on the spectrum, we can find two WS ladders
in this region with the level spacing between the neighbor-
ing eigenenergies being δE = 3F/2, which are respectively
labeled by odd and even indices in the spectrum, see Figs. 2(a)
and 2(b). As F increases, these states become more localized
as the IPR values gets larger (see Fig. 1). The other one-
third of eigenenergies form another WS ladder with E > 0
and δE = 3F , which are more localized than those with E < 0
since the IPR values jump to 1. The WS ladders here can be
explained as follows. In the strong-field limit, the eigenenergy
is determined by the diagonal term Vj = F j cos(2 jπ/3) in the
Hamiltonian, which gives two sorts of eigenvalues: −F j/2 for
mod ( j, 3) = 1 and 2, and F j for mod ( j, 3) = 0. The period
of cosine function is 3, so the level spacings in the WS lad-
ders are 3F/2 and 3F , respectively. So, for the eigenenergies
E < 0, there are two WS ladders, each with the same level
spacing δE = 3F/2, as shown in Figs. 2(a) and 2(b). On the
other hand, from the perspective of IPR, we can find two
plateaus: one plateau with IPR < 1 for the states with E < 0,
while the other plateau with IPR = 1 for the E > 0 states.
Besides, the IPR values for the eigenstates with E < 0 will
gradually increase as the field strength F grows, see Fig. 2(c).

The WS ladders discussed above show different IPR val-
ues, meaning that some eigenstates are more localized than
others. We may ask whether extended states still exist in such
systems even when the field is strong. Thus, we further investi-
gate the system with q = 4. In Fig. 3(a), we present the energy
spectrum of the amplitude-chirped lattice with α = 1/4. The
IPR values indicate that the states with energies away from
zero are all localized. We further find that about half the
number of eigenenergies is close to the zero energy at the
band center. For example, in the lattice with L = 120, the 31th
to 90th eigenenergies are gathered around zero, see Fig. 3(b).
The IPR values of the corresponding eigenstates near the band
center are much smaller than other states, indicating that they
are not localized, as shown in Fig. 3(c). As the eigenenergy

FIG. 3. (a) Eigenenergy spectrum of the chirped lattice with α =
1/4. The color bar indicates the IPR values of eigenstates. (b and c)
Spectrum and IPR value at F = 1. (d–f) Distribution of eigenstates.
The lattice size is L = 120 and the phase φ = 0.

moves closer to zero, the eigenstate extends to broader regions
and even to the whole 1D lattice, as exhibited in Figs. 3(d)–
3(f). In addition, we have two WS ladders with the same level
spacing. The central region in the spectrum does not form WS
ladders. This is because, in the strong field limit, we have
Vj = F j cos( jπ/2), which is zero when j is odd, so there will
always be half the number of eigenenergies close to zero when
taking the hopping terms into consideration. The remaining
eigenenergies, on the other hand, are determined by Vj = F j
or −F j for even j, which correspond to the two ladders in
the spectrum. Since the period is 4, the level spacing of the
ladder is 4F . It is interesting to find that due to the existence of
both periodic and linearly increasing behaviors in the on-site
potential, the WS localization can be energy dependent. The
states near the band center are extended, while the others are
localized. We have also checked the systems with α = 1/6
and 1/8 (see the Appendix), but all the states are localized,
and no extended states are observed in the strong-field limit,
see the Appendix. The reason might be that as q increases,
the number of diagonal terms with Vj = 0 in the Hamiltonian
matrix will be smaller and the nonzero terms will take over,
leading to the localization of all eigenstates.

By increasing F , these energies in the middle of the spec-
trum of the system with α = 1/4 will move closer to zero,
while the IPR values keep almost unchanged even when the
field becomes very strong, as shown in Figs. 4(a) and 4(b). The
other states are localized at one site with IPR close to 1 and
form the WS ladder in the spectrum with a constant spacing
of 4F . As the system size increases, the IPR values of the
states at the band center (i.e., states with 0.25 < n/L < 0.75)
will become smaller, indicating that the states are more ex-
tended, as shown in Fig. 4(c). In Fig. 4(d), we also present the
spectra under different lattice sizes and find that the features
discussed above remain unchanged. Therefore, the existence
of extended states in the chirped lattice with α = 1/4 is in-
dependent of the system size. Similar phenomena also occur
in systems with other parameters, such as α = 3/4. So the
energy-dependent localization will always be present in the
1D amplitude-chirped lattices with q = 4.

In the Appendix, we provide more numerical results for
the 1D amplitude-chirped lattices with different values of α
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FIG. 4. Energy spectrum and IPR values for the chirped lattices
with α = 1/4 and different lattice sizes L or field strengths F . (a) The
spectrum in the middle near zero energy. (b) IPR values under differ-
ent F . Here the lattice size is L = 120. (c) The change of IPR values
of the system with F = 1 under different sizes. (d) The spectrum
at F = 2 under different sizes. The site number is normalized with
respect to the lattice size L. Other parameters: φ = 0.

and φ, and combined with the ones we discussed above, we
can conclude that the level spacing of the WS ladders in the
strong-field limit can be described by the following function:

δE = |Fq cos(2πk/q + φ)|, (4)

where k is an integer chosen from the sequence (1, 2, . . . , q).
This is understandable since in the strong-field limit, the en-
ergy spectrum will be determined by the on-site modulation,
which is increases linearly with j, and the period of cosine
function is q.

Recently, single-particle mobility edges have been re-
ported in the 1D mosaic lattices with linearly increasing
on-site potential subjected to equally spaced sites [45]. The
amplitude-chirped lattices we propose here provide another
way to obtain energy-dependent localization phenomenon in
Stark lattices. The coexistence of spatial period and linearly
varying factors in the on-site potential will result in extended
states, which can survive in the Stark lattices even in the
strong-field limit.

IV. NON-HERMITIAN SYSTEMS WITH
IMAGINARY FIELDS

Now we turn to the non-Hermitian case by replacing F
with iF in the Hamiltonian, as shown in Eq. (2). Most phe-
nomena are the same as in the Hermitian WS ladder discussed
in the previous section, except that the energies are imaginary
instead of real. However, there are some unique features that
do not exist in the Hermitian systems. In the lattice with
α = 1, when the imaginary field is small, the energy spectrum
will be continuous in the complex plane, which is reported
in Ref. [42]. When F becomes stronger, an imaginary WS
ladder appears [43,44]. In the following, we will discuss the
WS ladders in the amplitude-chirped lattices with imaginary

fields. In Fig. 5, we present the real and imaginary parts of
the eigenenergies in systems with different α′s. As the field
gets strong enough, the spectra will always become purely
imaginary. In the bottom panel of Fig. 5, we present the
imaginary WS ladders at the strong-field limit, which behave
similarly to the real WS ladders discussed above. One inter-
esting difference happens in lattices with α = 1/3 and 1/5.
For instance, in the lattice with α = 1/3 shown in Fig. 5(c3),
it seems that the spectrum is split into two ladders. In fact,
about two-thirds of the eigenenergies have negative imaginary
parts and they actually form two ladders that are identical, i.e.,
the ladder is twofold degenerate, as shown by the zoom-in.
Moreover, we find that the IPR values for this part locate at
0.5 and keep unchanged for a wide regime of F . To verify this,
we calculate the IPR values under different F and L = 120,
which are presented in Fig. 6(a). When the field is weak, e.g.,
F = 0.01, the IPR value is close to zero. As F increases, the
IPR value becomes larger and split into two parts, correspond-
ing to the different ladders in the spectrum. The IPR values for
the lowest 80 states are shifted to 0.5 gradually, while those
for the remaining 40 states are shifted close to 1. The IPR
values show a sharp jump near n = 80. We further plot the IPR
value of the 50th eigenstate as a function of F and find that it
is pinned at 0.5 in a wide regime with 0.52 < F < 4. When
F > 4, the IPR will increase again. This is quite different from
the Hermitian case, where the IPR values always increase
when the field strength grows, see Fig. 2(c). The states with
IPR = 0.5 also exhibit a distinctive distribution in the lattice.
They are evenly distributed on two neighboring sites, while
the states with IPR = 1 are localized at a single site, as shown
in Fig. 6(c).

The reason behind this phenomenon can be explained as
follows. For the states with IPR = 0.5, the energy is twofold
degenerate. For each eigenenergy, there are two linearly inde-
pendent states. Suppose that there is one state localized at the
jth site and denoted by | j〉, while the other is localized at the
( j + 1)th site and denoted by | j + 1〉. These two states will
hybrid and lead to the following two states:

|ϕ1〉 = 1√
2

(| j〉 + | j + 1〉); |ϕ2〉 = 1√
2

(| j〉 − | j + 1〉).

(5)
So, the two states distribute on two neighboring sites with
equal weight. When F gets stronger than 4, the twofold degen-
eracy in the spectrum will be removed, as shown in Fig. 6(d).
The IPR values of the states will not be pinned at 0.5 but be-
come larger instead. Correspondingly, the eigenstates are not
evenly distributed at the two neighboring sites, see Figs. 6(e)
and 6(f). These features also exist in the lattice with α = 1/5
and other non-Hermitian chirped lattices with odd q. So, even
though the imaginary WS ladders are similar to the real ones
in Hermitian systems, the eigenstates behave differently in
certain cases. This reveals the difference between Hermitian
and non-Hermitian systems.

V. SUMMARY

In this work, we have introduced one-dimensional
amplitude-chirped lattices, where the WS localization phe-
nomenon is investigated in both Hermitian and non-Hermitian
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FIG. 5. Energy spectrum and WS ladders in the non-Hermitian chirped lattices with different α. The top and middle panels are the real
and imaginary parts of eigenenergy as a function of F . The color bar indicates the IPR value of each eigenstate. The bottom panel presents the
imaginary WS ladders under a specific field with the insets being the IPR values for the entire ladder. The eigenenergies are sorted according
to the imaginary parts. The lattice size is L = 120 and φ = 0.

cases. We find that the presence of both spatially periodic and
linear growing behaviors in the on-site potential leads to a
variety of interesting phenomena that cannot be observed in
conventional Stark lattices with only a uniform field. In the
strong-field limit, the energy spectrum splits into several WS
ladders with different level spacings. Most interestingly, in
cases such as α = 1/4, not all the eigenstates are localized
even when the field becomes very strong. Almost half the
number of eigenenergies are gathered around the zero energy
at the band center, and the corresponding eigenstates can
extend over a wide region or even the full range of the lattice,
exhibiting the energy-dependent localization phenomenon.
We have also studied the WS ladder in the non-Hermitian

FIG. 6. IPR values and distribution of eigenstates in the non-
Hermitian chirped lattices with α = 1/3. (a) IPR values under
different imaginary fields. (b) The IPR value of the 50th eigenstate
as a function of F . (c) The distribution of eigenstates in lattice with
F = 2. (d), (e), and (f) show the spectrum, IPR, and distribution
of eigenstates in system with F = 4.5. Other parameters: L = 120,
φ = 0.

chirped lattices, where the field is imaginary. The imaginary
WS ladders in the energy spectra are similar to the real ones
in Hermitian systems, but the ladders can be doubly degener-
ate and the eigenstates distribute evenly on two neighboring
sites in some situations. As to the experimental realization,
the amplitude-chirped modulations can be realized in optical
lattices using lasers, as shown in Ref. [25]. Our work unveils
the exotic properties of WS ladders in amplitude-chirped lat-
tices. The model we studied in this work mainly focus on
WS localization under spatially chirped modulations under
open-boundary conditions, and it will be interesting to explore
the time evolution of the states in such systems under periodic
boundary conditions in future work, similar to the one dis-
cussed in the system with constant electric fields [46].
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APPENDIX

In this Appendix, we give more numerical results of the 1D
amplitude-chirped lattices with different parameters.

1. Spectra with α = 1/5, 1/6, 1/7, and 1/8

In the main text, we have discussed the spectral properties
for the 1D Hermitian amplitude-chirped lattices with α =
1/2, 1/3, and 1/4. The results show that due to the coexistence
of linearly increasing and periodic behaviors in the modula-
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FIG. 7. (a1–d1) Eigenenergy spectrum as a function of F for systems with α = 1/5, 1/6, 1/7, and 1/8, respectively. The color bar indicates
the IPR value of the eigenstates. (a2–d2) Corresponding spectra with F = 1. The insets are the IPR values. Here we take φ = 0 and L = 120.

tion, multiple WS ladders will emerge. Here, we give more
numerical results for such systems with larger q values. In
Figs. 7(a1)–7(d1), we present the eigenenergy spectrum as a
function of the field strength F for systems with α = 1/5, 1/6,
1/7, and 1/8, respectively. The IPR values of the eigenstates
indicate that they are localized in the strong-field limit. The
corresponding spectra at F = 1 are shown in Figs. 7(a2)–
7(d2), where WS ladders can be observed. The spectra split
into several parts. The eigenenergies of the parts at band edges
form WS ladders while the central part(s) do not, which is
similar to the case with α = 1/4 in the main text. The level
spacing of the ladders is closely connected by the value of
α. For instance, in the spectrum of system with α = 1/5 and
F = 1 [see Fig. 7(a2)], we find that the whole spectrum is split
into three parts. The first part, i.e., the 1st–49th eigenenergies,
form two WS ladders, where the energies with odd or even
indices have the same level spacing. The numerical result
show that the level spacing here is δE = 4.05, which is very
close to the value |5 cos(4π/5)| = 4.0451. The middle part
in the spectrum (the 50th–102th eigenenergies), however, is
not a WS ladder. On the other hand, the remaining part with
the 103th–120th eigenenergies forms another WS ladder with
level spacing being δE = 5. So the level spacing of the WS
ladder can always be described by a function of the form
δE = |Fq cos(2πk/q + φ)| with k ∈ (1, 2, . . . , q), which is
determined by the period of modulation.

2. System with j in different ranges

Since the chirped modulation contains both linearly in-
creasing and periodic terms, the energy spectra might depend
on the value of j. If we change the range of j, the linear part
in the modulation would be different, which will modify the
spectrum accordingly. In Fig. 8, we present the spectra and
WS ladders of the system with α = 1/2 and two different
ranges of j: (a) (−L/2 + 1) � j � L/2 and (b) (L + 1) �
j � 2L, which are of the same length as the lattices discussed
in the main text. For the case with (−L/2 + 1) � j � L/2, we
find that the eigenenergy spectrum as a function of F is very
similar to the one with 1 � j � L, as shown in Fig. 8(a1).

However, the level spacing of the WS ladder here is 1 instead
of 2 for the system with F = 1 [see Fig. 8(a2)]. For the
amplitude-chirped modulation F j cos(2πα j), the value of j
determines the range of the function. So, when the largest
value of j is L/2 instead of L, the upper and lower limits are
also cut in half, and the level spacing of the WS ladder is also
halved in the strong-field limit.

On the other hand, if we change the range of j to (L + 1) �
j � 2L, we find that the spectrum splits into two bands, where
the band gap grows almost linearly with the increasing of F ,
as shown in Fig. 8(b1). This is quite different from the ones
we discussed above. The level spacing of the WS ladder is the
same as in the system with 1 � j � L, see Fig. 8(b2). So, even
though the value range of j will modify the spectra structure,
the features of the WS ladder remains the same.

FIG. 8. Energy spectra of the 1D chirped lattices with α = 1/2
and different ranges of j. (a1) and (b1) show the spectra as a function
of F , where the color bar indicates the IPR values of the eigenstates.
(a2) and (b2) show the spectra at F = 1. The lattice size here is L =
120 and the phase is chosen to be φ = 0.
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FIG. 9. Energy spectra of the 1D chirped lattices with φ = π/4
when (a) α = 1/2 and (b) α = 1/3. The inset in (a2) is the IPR value
of the eigenstates of the system with F = 1. The lattice size is L =
120 and j is chosen to be 1 � j � L.

3. System with nonzero φ

The numerical results presented in the main text are per-
formed for lattices with φ = 0; here we consider the case with
nonzero phase. In Fig. 9, we present the energy spectra of the
system with φ = π/4. For the case with α = 1/2, we find that
the spectrum is very similar to the system with φ = 0, only the
level spacing of the WS ladder becomes δE = 2F cos(π/4)
with F = 1, as shown in Fig. 9(a2). For the case with α = 1/3,
the band structure shown in Fig. 9(b2) seems quite different
from the one with φ = 0 in Fig. 1(c2), where the spectrum
split into three parts instead of two. However, the middle part
does not form a WS ladder, as indicated by the zoom-in. There
are still only two WS ladders in the spectrum. Moreover, the
level spacing of the ladder with negative energy is around
2.9, which is close to the value of |3F cos(2π/3 + π/4)| =
2.8978 when F = 1. The level spacing of the ladder with
positive energy is around 2.12, which corresponds to the value
of |3F cos(π/4) = 2.1213 with F = 1. So, the level spacing
of the WS ladders is described by |Fq cos(2πk/q + φ)|, with
k being an integer chosen from the sequence (1, 2, . . . , q).
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