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Impact of clustering of substitutional impurities on quasiparticle lifetimes and localization

Jack G. Nedell ,1,2,* Michael Vogl ,3,4 and Gregory A. Fiete 1,5

1Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
2Department of Physics, Cornell University, Ithaca, New York 14853, USA

3Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
4Interdisciplinary Research Center (IRC) for Intelligent Secure Systems, KFUPM, Dhahran, Saudi Arabia

5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 27 March 2023; revised 21 June 2023; accepted 7 September 2023; published 18 September 2023)

Motivated by the observation and prediction of clustering behavior for impurities substituted into the host
lattice of a real material and the dramatic impact this can have on electronic properties, we develop a simple
approach to describe such an effect via the electron self-energy. We employ a disorder-averaged T -matrix
expansion taken to second order, which we modify to include a clustering probability parameter. This approach
circumvents the need for specific cluster probability distributions, simplifying greatly the analysis of clustered
impurities. To gain analytical insights, we study a nearest-neighbor square lattice tight-binding Hamiltonian
with clustered impurity substitutions to investigate clustering of off-diagonal hopping impurities. We find that
our T -matrix approach is in excellent agreement with exact numerical results from a tight-binding computation
performed with the KWANT package. We observe a variety of interesting impurity clustering-induced effects in the
self-energy such as the suppression of quasiparticle lifetimes at certain momenta and an increase in localization,
as indicated by the inverse participation ratio. The KWANT results are reproduced in our modified T -matrix
approach. In addition, our method allows for a full analytical treatment of clustering effects which can aid in
physical insight.
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I. INTRODUCTION

The interplay between disorder and the electronic proper-
ties of two-dimensional (2D) materials [1] is of great interest.
Of particular importance are the questions of how to control
and minimize undesirable disorder effects and how to harness
disorder to achieve desirable physical properties (e.g., quan-
tized responses such as what occurs in the quantum Hall effect
or quantum anomalous Hall effect).

An interesting yet underappreciated aspect of disorder in
materials is the spatial configuration of impurities, which most
often is not taken into account since a disorder average is
typically employed. In a given material, do impurities cluster,
or are they well separated? In general, it is nontrivial to find
the energetically most favorable configuration of impurities,
whether they are adsorbed atoms on a material surface or
chemically substituted within a host material lattice. Various
density functional theory studies were performed to address
this question for numerous host materials and impurity types,
for instance, in studies that investigate impurities substituted
into [2] or adsorbed by [3] the surface or the bulk [4] of
materials. Often, one finds that impurities show a preference
for clustering with clusters of certain preferred sizes. The
details of this effect depend on the host material, the impurity
type, temperature, and the concentration of impurities.

Likewise, similar clustering behavior has been observed or
induced experimentally. For instance, adatoms on the surface
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of graphene have been observed to emerge in clusters [3,5],
and a recent study demonstrated the formation of large ni-
trogen clusters substituted into the graphene lattice, with a
reported increase in conductivity [6].

There have also been theoretical studies of substitutional
impurities in graphene [7–11] and studies of the effect of
impurity clusters [12,13] on electronic properties. Substitu-
tional impurities in materials are known to harbor localized
states [14], which for graphene [9] has been suggested to play
an important role in the transport properties of nanoribbons
as transport varies dramatically with specific disorder con-
figuration, relative to the edges of the system [7]. Another
interesting effect is a recently predicted metal-to-insulator
transition in disordered graphene [15].

Finally, it is important to contextualize this investiga-
tion in relation to earlier works. Studies on the theory
of random binary alloys, which received heightened atten-
tion in the 1970s [16,17], were done in the framework of
the coherent potential approximation (CPA). This previous
work expanded on details of scattering by large clusters of
impurities, including impurities with off-diagonal disorder,
which will be our focus as well. In addition, early theoret-
ical work on carrier lifetimes in disordered semiconductors
identified that the impact of isolated impurities on carrier
lifetimes could not readily be extrapolated to impurities which
were clustered together [18]. These past and present re-
search efforts set the stage for the investigation we present
here.

Using a T -matrix expansion, we compute the self-energy
of a nearest-neighbor tight-binding model on a square
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lattice with off-diagonal (hopping) impurities. We compare
the results for an ordinary T -matrix description of isolated
impurities to our T -matrix model, which allows us to take
into account clustering of neighboring impurities. We pit
these results against a disorder-averaged self-energy obtained
from exactly solved finite systems realizing the same disor-
der model. We find that clustering contributes nontrivially to
the self-energy, especially the imaginary part. We find our
T -matrix approach is in excellent agreement with exact nu-
merical results. Yet it requires almost no additional technical
know-how beyond the standard T -matrix approach and thus is
of great practical utility.

We proceed to use this self-energy to understand how elec-
tronic properties of the system vary with the concentration
of impurity clustering. In particular, we compute the den-
sity of states, quasiparticle lifetime, and inverse participation
ratio, which gives us an indication of localization properties.
This analysis complements the results of previous studies,
demonstrating increased localization and a decrease in the
zero-energy density of states for increased clustering. These
results are summarized in the figures.

Our paper is organized as follows. In Sec. II we introduce
the tight-binding model, including disorder, on the square
lattice that we will use for our study of impurity clustering. In
Sec. III we introduce the T -matrix approach and present ana-
lytical results for isolated and clustered impurities. In Sec. IV
we present numerical results for disorder effects related to the
clustering of impurities. Finally, in Sec. V we present the main
conclusions of our work.

II. MODEL

As a platform for our investigation of impurity clustering
effects we choose a tight-binding model on a square lattice.
This model consists of only nearest-neighbor hoppings. This
choice of model has the advantage that much analytic progress
is possible and will therefore allow for deeper insights into our
treatment of impurity clustering. However, our main results
are more general and do not depend on this specific Hamilto-
nian or lattice.

The Hamiltonian of the clean lattice may be written as a
sum over the lattice sites of the model ri and the nearest-
neighbor displacement vectors δ,

Ĥ0 = −t
∑
ri,δ

ĉ†(ri )ĉ(ri + δ). (1)

Fourier transforming to a crystal momentum basis, one ob-
tains the dispersion relation ξk = −2t[cos(kxa) + cos(kya)],
where a is the lattice spacing. We take t = 1 and a = 1.

Next, we introduce to this model a set of lattice site “sub-
stitutions.” If the original lattice is made up of atoms of type
A and we replace select lattice sites with atoms of type B,
hoppings between atoms are no longer only t = tAA (hopping
among A atoms) and may also be tAB = tBA (hopping between
A and B atoms) or tBB (hopping among B atoms). The full
Hamiltonian we consider is Ĥ = Ĥ0 + Ĥimp, where Ĥimp is the
impurity Hamiltonian. We write the impurity Hamiltonian in
terms of the set of impurity coordinates {Ri} and the hopping

corrections t ′ = t − tAB and t ′′ = 1
2 (t + tBB − 2tAB),

Ĥimp =
∑
Ri,δ

�t (Ri, δ)[ĉ†(Ri )ĉ(Ri + δ) + H.c.], (2)

with the hopping term �t (Ri, δ) = t ′−t ′′ ∑
R j

δ(Ri + δ − R j )
replacing hoppings appropriately. In the standard treatment
of impurities which implicitly assumes they do not neighbor
each other on the lattice, we have simply �t (Ri, δ) = t ′, i.e., a
dependence of the neighboring lattice positions does not enter
the hopping correction and only one sum over the impurity
coordinates is needed in the impurity Hamiltonian. Note that
even in a “simpler” case of tAB = tBB, this additional sum
over lattice sites and the associated terms in the T -matrix
expansion are still needed to correctly account for neighboring
impurities.

III. SELF-ENERGY COMPUTATION

We study the effect of the impurities on the self-energy
appearing in the single-particle Green’s function. The imagi-
nary part will reflect electron lifetime effects, and the real part
will reflect energy renormalizations. The self-energy serves as
a scheme to describe the disorder-averaged Green’s function
of a system in terms of the undressed Green’s function of
the “clean” system, G0(iωn, k) = 1

iωn−ξk
(where ωn are the

Matsubara frequencies), as follows:

〈G(iωn, k)〉dis = 1

iωn − ξk − �(iωn, k)
= 1

G−1
0 − �

. (3)

Note that while many self-energy approximations depend
only on (Matsubara) frequency, here, our approach yields a
momentum-dependent term as well.

A. T -matrix approach

In this work we make use of the disorder-averaged T ma-
trix. It can be written in terms of the impurity Hamiltonian
and the undressed square lattice Green’s function G0 as an
expansion in the hopping correction [19]:

T̂ = 〈Ĥimp + ĤimpĜ0Ĥimp + · · · 〉dis. (4)

Here, the disorder average 〈· · · 〉dis consists of an integration
over the impurity coordinates, divided by the total area, i.e., an
average over a uniform distribution. Averaging over a nonuni-
form probability distribution for the impurity locations would
require more care, but we circumvent this in our discussion
of impurity clusters. In what follows we will consider first
the case of isolated impurities, which follows a standard treat-
ment. Afterward, we consider the case of clustered impurities,
which we are able to treat semiheuristically via the introduc-
tion of a clustering probability.

1. Isolated impurities

Operating under the assumption that impurities are iso-
lated, i.e., impurities do not occupy neighboring sites, the
self-energy can be taken as the number of impurities times
the disorder-averaged T matrix for a single impurity, �kk′ =
NimpTkk′ . The infinite T -matrix series can be summed analyt-
ically, which we discuss in Appendix A. From this series, the
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FIG. 1. Density of states for zero disorder ρ0 and for disorder
at a concentration of σ = 0.1. Hopping parameters used are t = 1
for the hoppings in the clean system and tAB = 0.9 and tBB = 1.1
for hoppings to impurity substitutions and between impurities. In the
plot, we compare the kernel polynomial method (KPM) expansion on
a finite model system of 401×401 lattice sites, which was computed
in KWANT [21], with our T -matrix result (integrals were obtained
with the QUADPY package [22]). Details of the model implementation
for the finite system are discussed in Sec. III B.

T -matrix self-energy for isolated hopping impurities on the
square lattice, in terms of the dimensionless hopping correc-
tion t ′ and the impurity concentration σ = Nimp

N , is given by

�T (ω, k) = −t ′σ
d (ω)

[
a(ω)ξ 2

k + b(ω)ξk + c(ω)
]
, (5)

where we have defined the coefficients as

a(ω) = t ′g(ω), (6)

b(ω) = −2[1 + t ′(ωg(ω) − 1)], (7)

c(ω) = ωt ′[ωg(ω) + 1], (8)

d (ω) = t ′2[ωg(ω) − 1] − 2t ′[ωg(ω) − 1] − 1. (9)

The form of this T -matrix-based self-energy is similar to
that obtained previously for an isolated impurity in graphene
[9]. The term g(ω) appearing in the expressions above is given
by g(ω) = ∫

BZ
d2k

(2π )2 G0(ω, k), the integral of the undressed
square lattice Green’s function over the first Brillouin zone.
The integral may be evaluated as an elliptic integral of the
first kind, written in modulus form [20],

g(ω) =
∫ π

−π

∫ π

−π

dk
(2π )2

1

ω + iη − ξk
= 2

πω
K

(
4t

ω

)
, (10)

where the Matsubara frequency has been analytically con-
tinued to real frequencies as ωn → ω + iη with η = 0+. An
interesting and measurable quantity that can be found from
the T -matrix self-energy is the density of states (DOS), which
we plot in Fig. 1.

From Fig. 1 we find that there is good agreement between
the DOS as computed with the isolated-impurity T matrix
and the random-impurity numerical result obtained in KWANT

[21] with the kernel polynomial method (KPM), the details

of which are given in Appendix B. It should be stressed
that we have this good agreement despite the fact that our
numeric computation allows for neighboring impurities with
the different hopping parameter tBB. This is in contrast to
the T -matrix result, which assumed isolated impurities. Our
result demonstrates the relatively wide range of applicability
of the isolated-impurity assumption for random uniform dis-
tributions of impurities. This agreement is intuitive for small
concentrations, as at low concentration in random uniform
impurity distributions it is unlikely impurities will neighbor
one another. We see good agreement here even up to the
larger concentration of σ = 0.1 due to the small values of the
corrections to the hoppings. We will later see that the most
interesting clustering effect in this regime is not of the DOS.

One main difference from the computed DOS can be
observed at ω = 0, where the KPM result is suppressed
compared with the isolated-impurity T -matrix result. Later
analysis with our clustered-impurity method will show that
while this type of suppression does occur due to clustering
of impurities, the magnitude of the suppression is larger than
would be expected from impurity clustering alone; a compu-
tation of the DOS performed using the KPM on an impurity
distribution with zero clustering shows the same suppression,
and as such, we can attribute this to a numerical quirk of the
method rather than a sign of interesting physics.

2. Clustered impurities

To allow impurities to neighbor one another in our model,
we must work with the full impurity Hamiltonian in Eq. (2).
We take the first two terms in the T -matrix series expan-
sion, which correspond to one- and twofold scattering from
a single impurity. Terms corresponding to multiple-fold scat-
tering from multiple distinct impurities or distinct clusters
of neighboring impurities are discarded in accordance with
the T -matrix approximation. Full summation of this T -matrix
series, which at order n describes n-fold scattering by a single
impurity or by up to n neighboring impurities in a cluster,
is a much greater task in our case than in the case for iso-
lated impurities. Thus, we restrict ourselves to the first two
terms. We note that the reason for this is that the first nonva-
nishing imaginary contribution to the self-energy appears at
quadratic order in the hopping corrections, and we therefore
want to capture the impact of this contribution. For an analytic
approach to systems where large impurity clusters and many-
fold scattering are important, CPA methods [16,17] would be
preferred.

To model the clustering of impurities, we employ a semi-
heuristic approach. The T -matrix includes terms ∝ σ 2, where
σ is the probability of placing an impurity at a given lattice
site. These terms, i.e., terms of higher than linear order in
σ , correspond to scattering off neighboring impurities. In
the random uniform distribution of impurities, the expected
number of impurities occupying sites neighboring a known
impurity (or any set of four sites, for that matter) is simply 4σ .
In our approximation, we consider a clustering distribution
of some kind, in which impurities are more likely to cluster
than in the random uniform case, and make an appropriate
replacement of the expected number of impurities neighbor-
ing a known impurity, 4σ → p×〈Nnn〉, where the statistical
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parameter p ∈ (0, 1) represents the proportion of impurities
in the distribution which belong to clusters and 〈Nnn〉 ∈ (1, 4)
is the expected number of impurity neighbors possessed by an
impurity site known to belong to a cluster. For clusters of two
impurities, this value is exactly 〈N2

nn〉 = 1, as each site in a pair
must neighbor a single other site, while for clusters of three it
is 〈N3

nn〉 = 4
3 because, for all clusters of three neighboring lat-

tice sites on the 2D square lattice, two of the sites neighbor one
impurity while one site neighbors two. Meanwhile, in clusters
of arbitrarily large size, we would have 〈N∞

nn 〉 = 4, with the
assumption that clusters form compact domains with cluster
area scaling faster than the cluster perimeter, which is ener-
getically the valid assumption to make. As the numerics for
this investigation use primarily small system sizes resulting in
relatively small clusters, we simplify our equations by taking
〈Nnn〉 ≈ 1 in this paper. The general form with larger values
of 〈Nnn〉 is not difficult to implement, but we choose instead
to work only with the proportion of clustered impurities p in
our numerical scheme. In applying this method to clustered
impurities which follow some distribution, p is the general
parameter representing the expected value of the number of
impurity nearest neighbors of another impurity.

Let us now illustrate for our example how such a substi-
tution is made by explicitly evaluating the first-order term in
the T -matrix expansion, 〈Himp〉dis. This begins with evaluating
the term in the random uniform distribution of impurities.
Expressing this in terms of 〈k|Himp|k′〉,

T (1) = 1

N2

∑
Ri,R j ,δ

(eik′ ·δ + e−ik·δ)

×
∫

d2Rid
2Rj[t

′ − t ′′δ(Ri + δ − R j )]e
iRi ·(k′−k)

= δk,k′
−2ξk

N2

(
NNimpt ′ − N2

impt ′′)
= −2ξkδk,k′ (σ t ′ − σ 2t ′′),

where the dependence on the number of impurities Nimp and
the number of total sites in the system N may be reduced to
their ratio, the impurity concentration σ .

The generalization to impurity clustering occurs with terms
of order σ 2 and greater. In the term above, for example, σ 2

represents the probability that any one site and its neighbor
in any one direction both host an impurity. In the random
uniform distribution of impurities, these impurity occupancy
probabilities are independently σ , leading to a proportionality
with σ 2. We are interested, however, in clustered distributions,
where impurity occupancy on a site and impurity occupancy
of neighboring sites are not, a priori, independent. To model
this, we keep the probability for impurities to occupy isolated
sites as σ , but in the correction terms which correspond to
the case of neighboring impurities, we assume that occu-
pancies of these sites neighboring an existing impurity all
occur independently with variable probability p

4 , such that
a random impurity belongs to a cluster with probability p.
Using this simple scheme, the above term would be modified
as −2ξk(σ t ′ − σ 2t ′′) → −2ξk(σ t ′ − σ p

4 t ′′).
Applying this modification to the impurity-averaged T

matrix at second order, T = 〈Himp + HimpG0Himp〉dis, the self-

energy may be written as follows:

�(ω, k) = −αξk

+
∫

BZ

d2q

(2π )2
[β(ξk + ξq)2 − γ (ξ0 + ξk+q)]G0

q,

(11)

with

α = 2σ t ′ − σ p

2
t ′′, (12)

β = σ (t ′)2 − σ pt ′t ′′ + σ p2

4
(t ′′)2, (13)

γ = σ p(t ′′)2. (14)

As it turns out, the integral involved in Eq. (11) is again
tractable in terms of elliptic integrals. We introduce the func-
tion h(ω), which is Eq. (3.148) in Ref. [23],

h(ω) =
∫

BZ

d2q

(2π )2

cos(qx )

ω + iη − ξq

= 2

πω

[(
ω

t
+ 2

)
�

(
−4t

ω
,

4t

ω

)
−

(
ω

t
+ 1

)
K

(
4t

ω

)]
,

(15)

where K(k) and �(n, k) are the complete elliptic integrals of
the first and third kind, respectively, where an analytic contin-
uation ω = ω + iη is implicit. We have also kept the hopping
parameter t symbolic in this expression to make the units
clear, although, as mentioned, we set t = 1 for our numerics.
In terms of g(ω) and the function h(ω), we can express the
self-energy as

�(ω, k) = −αξk + β[(ω + ξk )2g(ω) − 2ξk − ω]

− γ [ξ0g(ω) + ξkh(ω)]. (16)

The analytical result, Eq. (16), is the main result of this sec-
tion. It is exact at the level of approximation at which we are
working and contains the information about the clusters of the
impurities from Eqs. (12)–(14).

B. Exact numerical treatment of clustered impurities

For a more complete investigation of the physics at hand
and to corroborate the correctness of our treatment of impurity
clustering, we also compute the self-energy of exact numerical
realizations H of the Hamiltonian in Eq. (2). The Green’s
functions are computed as G = [(ω + i)1 − H]−1, where ω is
the energy and η is a small numerical factor that was inserted
for convergence, chosen to be η = 0.01.

In our computations we considered a lattice with N =
61×61 sites. Inside the lattice we placed Nimp impurities,
which corresponds to an impurity concentration σ = Nimp/N .
Of the Nimp impurities a percentage p (called the clustering
probability) was generated such that they are part of a cluster
of impurities with random size. The remaining (1 − p)Nimp

impurities were placed randomly but isolated from other im-
purities or clusters. For more details on this algorithm, see
Appendix C. This algorithm for generating impurity distribu-
tions was generated with the intent that it is nonspecific in
the choice of cluster sizes in the same way that our analytic
T -matrix approach is; that is, there is not a preference for a
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FIG. 2. The self-energy: real part (top row) and imaginary part (bottom row). (a) and (d) are the result of the numerical averaging of
finite model Green’s functions, while the other panels show the T -matrix results (b) and (e) neglecting and (c) and (f) including neighboring
impurities. These plots are computed for parameters (σ, tAB, tBB ) = (0.05, 0.9, 1.1) at an impurity clustering of p = 0.3.

specific type of cluster, merely some fixed probability that
each impurity neighbors another. This can also be expected
to be true in various experimental scenarios, which is part of
the reason that we consider this case.

To find the disorder-averaged self-energy we applied the
following numerical procedure. For a desired concentration
of σ and clustering probability p, a disorder-averaged Green’s
function was obtained by averaging nave = 20 disorder real-
izations. The averaged self-energy in position space was then
obtained as � = (G0)−1 − 〈G〉−1

avg. We then transformed to an
approximate crystal momentum basis with the discrete Fourier
transform matrix,

Ui j = 1√
N

eiki ·r j , (17)

where the self-energy was obtained as �kk′ = U †�rr′U . The
diagonal components, which dominate the numerically aver-
aged self-energy, were then extracted for comparison with the
T -matrix method. Off-diagonal elements correspond to scat-
tering between crystal momentum eigenstates. While these
elements may be relevant in a single disorder realization,
they vanish analytically in the disorder-averaged framework
and, likewise, are observed to vanish in our numerical dis-
order average. The motivation for this disorder average is
self-averaging systems, as off-diagonal scattering is likewise
negligible in these very large systems with homogeneous dis-
order.

IV. EFFECTS OF IMPURITY CLUSTERING

The exact numerical computation mentioned above pro-
vides us with an approximate self-energy for self-averaging
systems hosting hopping impurities, characterized by the
impurity density σ and clustering probability p. We may now

investigate how clustering impacts the physics of the model.
We perform this analysis with the same parameters, tAB = 0.9
and tBB = 1.1, as before. We do not discuss different values
of (tAB, tBB) because for the regime where our approach is
applicable the self-energy � ∝ (t ′′)2, which tells us that a
change in parameters will mostly just increase the strength
of an observed effect but not its nature.

First, we compare the self-energy for various approaches
in Fig. 2. Note that for the purpose of visual clarity we
have used η = 0.05 rather than η = 0.01 in the plot for the
self-energy. In the perturbative regime, when tAB and tBB are
both reasonably close to the original hopping t , we observe
that the main effect of impurity clustering is imprinted on the
imaginary part of the self-energy. In the real part it primarily
leads to a renormalization of the bandwidth. It is dominated
by the term at first order in the hopping corrections, which
in the perturbative regime has a relatively small effect due to
impurity clustering.

Next, in Fig. 3 we plot the spectral function and quasipar-
ticle lifetime, computed from the self-energy as A(ω, k) =
− 1

π
Im{G(ω, k)} and τ (ω, k) = −1

2 Im{�} . We find that the
spectral function A(ω, k), much like the real part of the
self-energy, changes very little due to impurity clustering.
However, the quasiparticle lifetime is significantly different.
Clustering of impurities here leads to significant suppression
of quasiparticle lifetimes for most of the energy range.

We can visualize this effect even better if we examine
the quasiparticle lifetime along the renormalized energy band
of the model τ (ξ ′

k, k). In Fig. 4 we plot the quasiparticle
lifetime for different values of the clustering probability p.
Because the energy band of the model along which we want
to compute the lifetime is renormalized by the disorder, we
take this renormalization from the first order of the T matrix,
ξ ′

k = (1 + 2σ t ′ − σ p
2 t ′′)ξk, which is the dominant real part
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FIG. 3. Spectral function (top) and quasiparticle lifetime (bot-
tom) for the three computation methods. (a) and (d) are the result
of the numerical averaging of finite model Green’s functions, while
the other panels show the T -matrix results (b) and (e) neglecting and
(c) and (f) including neighboring impurities. These plots are com-
puted for parameters (σ, tAB, tBB ) = (0.05, 0.9, 1.1) at an impurity
clustering of p = 0.3.

of the self-energy and thus the dominant contribution to the
rescaling of the energy band. We observe that with increas-
ing clustering probability p, there is a general flattening of
the lifetime. Maxima, previously located between symmetry
points M and � and at X (that is, specifically at the points
where ξk = 0), are significantly flattened, and we observe
them splitting into two peaks. This effect does not depend on
whether tBB is larger or smaller than t , as the term responsible
for these effects is ∝ (t ′′)2 and therefore depends on only
the difference. An experimental result which may hold some
relevance for this analysis is from Ref. [24], which studied
optically excited states in disordered graphite and observed
a similar phenomenon in which the lifetimes of states close
to the Fermi energy were suppressed most rapidly. While our
model differs significantly from this experiment, it is worth
observing the phenomenological parallel.

We now return to an observation made previously dur-
ing our discussion of the isolated-impurity approximation: at
ω = 0 the numerically computed DOS with random neighbor-
ing impurities was smaller than the value expected from the
analytical result within the isolated-impurity approximation.
To investigate this further and determine whether this may
be a clustering-related effect, we numerically integrate the

FIG. 4. Quasiparticle lifetime along renormalized band ξ ′
k, with

varying cluster parameter p.

FIG. 5. Zero-energy density of states for different impurity con-
centrations as they vary with the clustering parameter.

Green’s function as corrected with the impurity cluster self-
energy at ω = 0. The results are shown in Fig. 5. We observe
that increasing clustering (larger clustering probability p)
leads to a decrease in the density of states at ω = 0. This
decrease is again attributable to the term in the self-energy
∝ (t ′′)2 and will be observed with any values tAB and tBB.
However, the magnitude of the decrease predicted to occur for
larger clustering of impurities is smaller than the difference
observed between the DOS curves in Fig. 1, suggesting that
this particular discrepancy is related to the difference in the
computation methods rather than representative of interesting
physics.

Finally, we consider a long-standing feature of disorder
models [14], localization. One may capture numerically how
localized the states in a given physical system are with the
so-called inverse participation ratio (IPR). To get an overall
measure of the level of localization present in our system we
sum the IPR for all states as

IPR =
∑
i, j

|ψ j (xi )|4. (18)

To get a result valid for various impurity configurations
we average the IPR over 10 realizations of the system. In
Fig. 6 we plot the IPR for various values of impurity density
σ and as a function of clustering probability p. We observe an

FIG. 6. Inverse participation ratio (IPR) varying with disorder
concentration and clustering, computed numerically with an average
of 10 systems. Larger IPR indicates more localized states. The error
bars show the standard deviation of the numerical average.
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increase in the IPR, indicating the degree of overall local-
ization present in the states increases with an increase in
clustering probability p.

V. CONCLUSION

Motivated by the known positional correlations of impuri-
ties which arise in the configuration of impurities in materials,
we adopted multiple approaches to investigate the electronic
properties of a square lattice with nearest-neighbor hopping
disorder. In order to account for the clustering effect of im-
purities in a material, we used a semiheuristic approach that
introduces a clustering probability p to determine the likeli-
hood of having an impurity next to a given impurity. Working
with the impurity-averaged T -matrix with this approach, we
were able to obtain an important analytical result, Eq. (16),
that takes into account the impurity distributions with statisti-
cal information contained in Eqs. (12)–(14).

We found good agreement between the numerical and ana-
lytic approaches taken for the perturbative regime of hopping
disorder. A particularly interesting effect is the suppression of
quasiparticle lifetime, with single peaks originally at ω = 0
splitting into two subpeaks with an increase in impurity clus-
tering, as shown in Fig. 4.

Additionally, computing the inverse participation ratio
demonstrated an increase in localization for more clustering
of impurities, as seen in Fig. 6. These combined numerical
and analytical results, which are expressed through the elec-
tron self-energy, will appear in any quantity derived from
the single-particle Green’s function, including electrical and
thermal transport, optical conductivity, and photoemission.
(Note the transport and conductivity will depend on pairs
of single-particle Green’s functions, whereas photoemission
depends only on a single Green’s function.) Our work thus
provides an important link between microscopic impurity dis-
tributions in a material and experimental observables [25].
This should help elucidate the more complex effects of impu-
rity clustering which are not possible to describe with simple
isolated-impurity approximations.

The data and code supporting the results of this paper
are available from the corresponding author upon reasonable
request.
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APPENDIX A: SINGLE-IMPURITY T MATRIX

For a single impurity at coordinate R, the disorder com-
ponent of the Hamiltonian can be written in the crystal

momentum basis as

〈k|Ĥimp|k′〉 = − t ′

N
eiR·(k′−k)(ξk + ξk′ ). (A1)

The n-fold scattering terms in the T -matrix series, when
written as integrals over n − 1 free crystal momenta, form a
recurrence. Following the evaluation of the disorder average,
each term becomes

Tn = σ (−t ′)n
∫ (

n−1∏
i=1

d2ki

(2π )2

)

× · · · ×
(

(ξk0 + ξk1 )
n−1∏
m=1

(ξkm + ξkm+1 )G0
km

)
. (A2)

We find all such integrals may be evaluated in terms of the
integral of the undressed square lattice Green’s function over
the first Brillouin zone,

g�(ω) =
∫ π

−π

∫ π

−π

dk
(2π )2

1

ω + iη − ξk
= 2

πω
K

(
4t

ω

)
, (A3)

which is evaluated as a complete elliptic integral of the first
kind K. The nth term in the T matrix, diagonal in the crys-
tal momentum, is proportional to αnξ

2
k + (βn + γn)ξk + δn,

where the coefficients satisfy the following system of recur-
rence equations:

αn = (ωg� − 1)αn−1 + g�γn−1, (A4a)

βn = (ωg� − 1)βn−1 + g�δn−1, (A4b)

γn = (ωg� − 1)γn−1 + ω(ωg� − 1)αn−1, (A4c)

δn = (ωg� − 1)δn−1 + ω(ωg� − 1)βn−1. (A4d)

Using the easily computed values of these coefficients at
n = 0, 1, exact expressions for the coefficients as a function
of n can be obtained with the help of Mathematica’s RSOLVE.
Finally, summing these coefficients to n = ∞ yields the form
presented in the main text.

APPENDIX B: KERNEL POLYNOMIAL METHOD

One of the numerical tools we made use of in investigating
disorder effects was the kernel polynomial method (KPM), as
built into KWANT. Here, we briefly review this method, which
allows efficient determination of the density of states. The
algorithm in KWANT is based on Ref. [26]. For completeness,
we summarize this method briefly.

We are interested in computing the spectral density ρ(E )
of the Hamiltonian operator Ĥ , i.e., for the eigenenergies EK ,

ρ(E ) = 1

N

N∑
k=1

δ(E − Ek ). (B1)

This is accomplished by way of an expansion in the Cheby-
shev polynomials Tn of Ĥ , which may be implemented easily
algorithmically because of the recursion relating the polyno-
mials of successive orders. To perform this expansion, the
Hamiltonian is first rescaled such that Ek ∈ [−1, 1] ∀ k. This
expansion, in terms of the rescaled energy argument and
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Hamiltonian, takes the form

ρ(E ) = 1

π
√

1 − E2

(
μ0 + 2

∞∑
n=1

μnTn(E )

)
, (B2)

where the coefficients μn are computed in terms of the
rescaled Hamiltonian,

μn = 1

N
Tr[TN (Ĥ )]. (B3)

Without delving into the algorithmic details that make this
method so efficient, we can still conclude that the KPM is
of great use to us here—while matrix inversion and eigen-
decomposition of n×n matrices scale as around O(n3), KPM
methods can be as good as O(n) and at least O(n2).

APPENDIX C: CLUSTER GENERATION ALGORITHM

To assess the validity of the clustered-impurity T ma-
trix, we generated distributions of impurities which had a
specified proportion of impurities belonging to clusters. To
generate such distributions, we implemented an algorithm
which counted the number of said impurities as follows.

The core trick of the impurity-generating method was
developing an efficient method for identifying which sites
neighbor impurities and which of these are already occupied
by impurities. For a square lattice of dimensions N×N , we
construct an impurity matrix I, where Ii j = 1 implies the site
indexed (i, j) on the lattice hosts an impurity, while Ii j = 0
implies the lattice site does not host an impurity. Consider then
a 3×3 kernel matrix,

K =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠. (C1)

Now, if we perform a matrix convolution K ∗ I, padding
I with rows and columns of zeros to yield an N + 2×N + 2
matrix, we can construct a new matrix N , which in a fash-
ion analogous to I is defined such that Ni j = 1 implies the

site indexed (i, j) neighbors sites which host impurities and
Ni j = 0 implies the site indexed (i, j) does not neighbor sites
which host impurities,

Ni j =
{

1 if (K ∗ I )i j > 0,

0 if (K ∗ I )i j = 0.
(C2)

From there, a Hadamard (i.e., elementwise) product of N
and I or ¬I can be taken to yield a final matrix with elements
corresponding to impurities which neighbor other impurities
or empty sites which neighbor impurities. In addition, logical
operations can be added simply at any point in the process
to alternatively return only isolated impurities or only sites
which do not host impurities and do not neighbor impurities.
It is additionally possible to use a larger kernel matrix or to
perform these operations in higher dimensions, such that this
process as described could enumerate all sites on a hypercubic
lattice which have nth nearest-neighbor impurities.

In terms of actually generating the distributions, we applied
the preceding method in a simple manner. Given the N×N
sample and the desired impurity concentration and clustering
proportion σ and p, we selectively generate σ pN2 clustered
impurities and σ (1 − p)N2 isolated impurities. First, a ran-
dom set of impurity elements are initially assigned, i.e., by
checking whether a random number on [0,1] is greater than the
desired proportion of initial impurities. Our algorithm used a
random number of initial impurities, between 1 and Nimp/2;
the choice in initialization will affect the sizes of the impurity
clusters. Then, using the above process, impurities are added
to the system only to unoccupied sites which neighbor existing
impurities, until the desired number of clustered impurities is
obtained. Following this, the remaining isolated impurities are
added to sites which do not neighbor impurities, one at a time.

Regardless of the choice in algorithm for placing the
impurities themselves, the kernel convolution method is an
efficient way to enumerate sites which are adjacent to existing
impurities.
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