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Transport regimes for exciton polaritons in disordered microcavities
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Light-matter coupling in a planar optical cavity substantially modifies the transport regimes in the system
in the presence of a short-range excitonic disorder. Based on a master equation for a resonantly coupled
exciton-photon system, and treating disorder scattering in the Born-Markov approximation, we demonstrate
the onset of ballistic and diffusive transport regimes in the limits of weak and strong disorder, respectively.
We show that transport parameters governing the crossover between these two regimes strongly depend on the
parameters characterizing light-matter coupling, in particular Rabi energy and detuning between excitonic and
photonic modes. The presented theory agrees with recent experimental data on transport in disordered organic
microcavities.
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I. INTRODUCTION

Bright excitons are bound states of electrons and holes,
which can be created optically in direct band gap materials.
These composite quasiparticles can be used for a variety of
optoelectronic applications [1–3]. There exist, however, cer-
tain obstacles, which make direct applications of excitons
problematic. In particular, being massive particles optically
created, excitons usually have small group velocity. In real-
istic samples, where disorder is always present, this leads to
very short dephasing times and, consequently, short character-
istic propagation lengths of excitons, which becomes a major
problem in such fields as photovoltaics [4,5].

Excitonic transport and the ways to enhance it were widely
studied in the literature [6–11]. An attractive option consists
of resonant coupling of an excitonic transition to a photonic
mode of an optical cavity. If the energy of this coupling ex-
ceeds all characteristic broadenings in the system, the regime
of strong light-matter coupling is established and a novel type
of quasiparticle, the exciton-polariton, is formed. Being of
hybrid nature, polaritons combine the properties of light and
matter particles forming them. In particular, from the photonic
component they inherit extremely small effective mass (about
10−5 of the mass of free electrons) and macroscopically large
coherence length [12], while the presence of the excitonic
component enables the sensitivity of polaritons to external po-
tentials and, in particular, allows efficient polariton scattering
on excitonic disorder potential [13].

Recently, it has been observed that mixing with the pho-
tonic mode significantly modifies the transport properties of
polaritons at low temperatures as compared to bare excitons in
both organic [14–19] and inorganic [20,21] microcavities. In
general, in samples with high photonic fractions the ballistic
transport regime is usually established, whereas crossover to
the regime of diffusive transport occurs when the excitonic

fraction is increased, as was recently unambiguously demon-
strated in Ref. [14].

This effect has a clear qualitative explanation. Indeed, at
low temperatures when short-range impurity scattering gives
a major contribution to the transport, it affects only the ex-
citonic part of the wave function of a polariton, while the
photonic part remains coherent. This results in experimentally
observable narrowing of a polariton’s linewidth due to the
suppression of excitonic inhomogeneous broadening [20], the
effect known as polariton motional narrowing. While the first
theoretical description of this effect was developed decades
ago [22], a microscopic theory of the crossover between
different transport regimes in real space related to it is still
lacking. The creation of such a theory is an actual task, specif-
ically in light of the recent revival of experimental activity in
this field [14,20].

In the present work we aim to fill this gap. We use
the density matrix formalism [23–26] to derive a master
equation for polaritons in microcavities in the presence of
randomly located impurities. We show that for excitons, equa-
tions describing both diffusive [8,27] and ballistic propagation
[28] can be derived from the master equation in the limits
of strong and weak disorder, respectively. For polaritons, we
use the adiabatic elimination technique [29] to get rid of the
upper polariton branch in the limit when characteristic energy
of the disorder potential is smaller then the Rabi splitting.
The analysis of the dynamics of lower polaritons allowed
us to demonstrate that the increase of the photonic fraction
enhances group velocity of the excitations and suppresses the
scattering on a short-range disorder potential, which leads
to a crossover from the diffusive to ballistic propagation
regime. Expressions for relevant quantitative characteristics
describing such a crossover, such as the polaritonic relaxation
time and diffusion coefficient [30,31], are derived. Our re-
sults contribute to the understanding of the relation between
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motional narrowing and regimes of the polariton dynamics in
real space.

II. THE MODEL

We consider a 2D planar microcavity formed by two Bragg
mirrors with a quantum well (QW) with an excitonic transi-
tion embedded in an antinode of a confined cavity mode and
brought close to the resonance with it, as shown schematically
in Fig. 1. We neglect the effects of polariton nonlinearities in
the present study; a finite lifetime is not expected to modify
the transport regimes and is neglected in our further dis-
cussion. Moreover, the lifetime of photons in high-quality
samples can be as long as hundreds of picoseconds [32].

The resonant interaction between excitons and photons
leads to the establishment of the strong-coupling regime and
formation of cavity polaritons, which will be the focus of
our attention. Initially coherent polariton wave packets with
controllable parameters can be created in the system by a
focused pulse of a coherent light. The presence of a short-
range disorder in the QW will create an effective random
scattering potential affecting the excitonic part of the polariton
wave function, and polaritons will thus gradually lose their
coherence. This will affect their real-space dynamics, which
will change from ballistic to diffusive, as we will show below.

In the linear regime, when exciton-exciton interactions can
be neglected, the dynamics of the system can be described
with the following model Hamiltonian:

H =
∑

k

[εx(k)b†
kbk + εc(k)a†

kak + h̄�R(b†
kak + a†

kbk)]

+
∑
kk′

Vkk′ b†
k′ bk, (1)

where bk, ak are excitonic and photonic field operators,
εx(k), εc(k) are the dispersions of bare excitons and photons,
�R is the Rabi frequency controlling the strength of exciton-
photon interaction, and finally, Vkk′ is the matrix element
of a short-range excitonic disorder potential. In our further
consideration we approximate the photonic dispersion by a
parabola, εc(k) = h̄2k2/2mph, where mph is an effective mass
of a cavity photon, and take the excitonic dispersion flat,
εx(k) = δ = constant. The distance

δ = εc(0) − εx(0) (2)

is an important parameter of the system governing the per-
centage of excitonic and photonic fractions in a polariton.

For our purposes it is convenient to represent the Hamilto-
nian as a sum of the unperturbed Hamiltonian H0 describing
excitons and photons in a spatially uniform system and the
perturbation HV accounting for the interaction of excitons
with the disorder,

H = H0 + HV , (3)

FIG. 1. (a) Schematic illustration of a microcavity consisting of
two Bragg mirrors and a quantum well with an excitonic transition
brought close to the resonance with a confined photonic mode.
(b) The illustration of propagation of different types of the excitations
in the system in the presence of a random short-range potential.
Bare excitons have small group velocity, experience strong scattering
on the disordered potential and, therefore, are subject to random
walks leading to the onset of the diffusive transport regime. On the
contrary, photons have very high group velocities, do not experience
any scattering on short-range potential at all, and propagate bal-
listically. Polaritons are hybrid particles for which an intermediate
transport regime is established, which becomes closer to ballistic
or diffusive depending on excitonic and photonic fractions which
can be controlled by change of a cavity detuning. (d) Dispersion
characteristics of upper (red solid line) and lower (blue solid line)
polaritons calculated for the following parameters of the system:
photonic effective mass mph = 0.8 × 10−5me, Rabi energy h̄�R =
12.5 meV, cavity detuning δ = −10 meV. The dashed black lines
show the dispersion of the noninteracting photons and excitons. The
hybridization is strongest at the wave vectors corresponding to the
crossing of the photonic and excitonic dispersions. Changing the de-
tuning between the resonant frequency of the cavity and the exciton
frequency �E , it is possible to control both the effective mass of the
polaritons [panel (e)] and excitonic and photonic fractions [Hopfield
coefficients; panel (g)]. Note that for a given value of the detuning,
Hopfield coefficients depend on in-plane momentum of a polariton k
[panel (f)].

where

H0 =
∑

k

(εx(k)b†
kbk + εc(k)a†

kak + h̄�R(b†
kak + a†

kbk)) (4)
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and

HV =
∑
kk′

Vkk′ b†
k′ bk. (5)

The first part of the Hamiltonian H0 can be diagonalized
by moving to the polaritonic basis with use of the unitary
transformation

ck+ = α+bk + α−ak, (6a)

ck− = α+ak − α−bk, (6b)

where ck± are operators of upper and lower polaritons, and
α± are Hopfield coefficients corresponding to excitonic and
photonic fractions in them.

As a result one gets

H0 =
∑

k

(E+c†
k+ck+ + E−c†

k−ck−), (7)

where

E±(k) = εc(k) − εx(k)

2
±

√(
εc(k) − εx(k)

2

)2

+ (h̄�R)2

(8)
are dispersions of the polariton modes. E±, α± are illustrated
by panels (c)–(f) of Fig. 1.

To describe the dynamics in our system, we start from the
Liouville–von Neumann equation for the full density matrix,

∂tρ = − i

h̄
[H0, ρ(t )] − i

h̄
[HV , ρ(t )], (9)

which we treat in the Born-Markov approximation [23,24].
This allows us to get the following master equation:

∂tρ = − i

h̄
[H0, ρ(t )]

−
〈
M0

1

h̄2

[
HI

V (t ),
∫ t

0
dt ′[HI

V (t ′), ρI (t )
]]

M†
0

〉
c

, (10)

where

M0 = exp

(
− i

h̄
H0t

)
(11)

and

HI (t ) = M†
0 HI

V (t )M0 (12)

denotes the scattering Hamiltonian in the interaction picture.
The brackets 〈 〉c denote averaging on the noncorrelated im-
purity’s position (for details see Appendix A).

Spatiotemporal dynamics of a polariton ensemble is de-
termined by a time evolution of a single-particle polariton
density matrix [23]

ρζ1,ζ2 (r, r′, t ) = (2π )2

A

∫
ρζ1,ζ2 (k, k′, t )ei(k′r′−kr), (13)

where ζ1,2 = ± corresponds to the upper and lower polariton
branches, A is the area of a sample, and

ρζ1,ζ2 (k, k′, t ) = 〈
c†

kζ1
ck′

ζ2

〉 = Tr
(
ρc†

kζ1
ck′

ζ2

)
. (14)

Note that ρ−,−(r, r, t ) and ρ+,+(r, r, t ) correspond to the den-
sities of lower and upper polaritons in the real space, while
ρ−,−(k, k, t ) and ρ+,+(k, k, t ) to corresponding occupancies

in the k space. The terms ρ+,−(k, k, t ) and ρ−,+(k, k, t ) de-
scribe the interbranch correlations.

The dynamic equation (11) for the correlators defined in
Eq. (14) reads

∂tρζ1,ζ2 (k, k′, t ) = i

h̄
[Eζ1 (k) − Eζ2 (k′)]ρζ1,ζ2 (k, k′, t ) − 1

h̄2 S.

(15)

Without the last term on the right-hand side this equa-
tion describes coherent (ballistic) polariton propagation. The
diffusion of the polaritons occurs due to the scattering on the
impurities and this effect is accounted for by the second term
in Eq. (15). The detailed derivation of (15) and the expression
for the scattering term S can be found in Appendix B. It is
worth noticing that the first part of Eq. (15) without scattering
term S is an analog of the Schrödinger equation and, therefore,
Eq. (15) can be applied not only for description of transport
effects but also for description of quantum effects.

Let us make a remark on the applicability of the perturba-
tion theory. The particle transport can be described within the
Born-Markov approximation provided that 〈E〉τ0

h̄ � 1 [26,30]
where 〈E〉 denotes average particle energy and τ0 is the re-
laxation time defined in (30). A similar approach based on
the derivation of the equations for a 2 × 2 density matrix was
implemented in [25,26] for the problem of the polariton’s spin
dynamics.

III. EXCITON TRANSPORT

Before we analyze in detail the case of polaritons, where
the role of photonic fraction is essential, let us consider the
simpler case of bare excitons. We set the Rabi frequency to
zero, �R = 0, and thus reduce the problem to the evolution of
a single scalar bosonic field.

The dynamic equations (15) then reduce to

∂

∂t
ρ(k, k′, t ) = i

h̄
[E (k) − E (k′)]ρ(k, k′, t ) − 1

h̄2 S, (16)

where

S = π
n

A
h̄

∑
q

|Uq|2{[ρ(k, k′, t ) − ρ(k + q, k′ + q, t )]

× [δ(E (k) − E (k + q)) + δ(E (k′) − E (k′ + q))]}.
(17)

In these formulas n is the impurity concentration that appears
in the scattering term after averaging with respect to random
impurity positions, Uq = ∫

d2re−iqrV (r) is a single impurity
potential’s Fourier component, and V (r) is a single impurity’s
potential. The quantity A is the sample area defining the al-
lowed values of q. Taking the limit A → ∞ the summation
over q can be substituted with integration

∑
q → A

(2π )2

∫
d2q.

So the area A cancels out from the expression for the scattering
rate which becomes proportional to n|Uq|2.

Equation (16) with the scattering term (17) well describes
two transport regimes in the limits of weak and strong disor-
der. The first one corresponds to the ballistic transport. Indeed,
for a spatially uniform system Uq = 0 and then Eq. (16) is
nothing else but a well known Schrödinger equation written
for the density matrix of a pure state in k representation. In this
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regime one recovers a standard dispersion of a wave packet
corresponding to a massive quantum particle. The size of an
envelope �r(t ) given by average radius for axially symmetric
distributions with k0 = 0 scales linearly with time [28],

�r(t ) = 〈r〉 t→∞−−−→ at . (18)

In the second limit of strong disordered potential, dephas-
ing which accompanies the impurity scattering leads to the
fast suppression of the correlations between states correspond-
ing to different k, so that nonzero elements of the matrix of
the correlators ρ(k, k′) group around its diagonal (see Fig. 5
in Appendix C). The transport is now described by kinetic
equations of the Boltzmann type, which can be derived from
Eq. (16) by moving to the Wigner representation [31]. The
transport of excitons is purely diffusive [27] with asymptotic
for the beam width scaling as

�r(t )
t→∞−−−→ at0.5. (19)

To check that the asymptotics above are correct and to con-
sider the intermediate case of a mixed transport, we performed
the numerical simulations of two-dimensional excitonic prop-
agation for different disorder strengths characterized by the
parameter n|U |2. We took excitonic mass to be twice the
mass of a free electron and used the s-wave approximation
for the disorder scattering, taking the corresponding matrix
element to be q-independent, Uq = U . The initial distribution
of excitons was taken in the form of a coherent Gaussian
packet

ρ(t = 0) ∼ e− k2
r +k′

r
2

2δkr , (20)

with δkr = 0.085 µm−1. For details about the numerical pro-
cedure see Appendix C.

The results are shown in Fig. 2. Panel (a) illustrates the time
evolution of an initially coherent wave packet as a function
of the disorder strength

√
nV . One sees that the increase of

disorder slows down the propagation as expected.
An important parameter characterizing the propagation

regime is the propagation exponent, calculated as

s(t ) = d ln(〈r〉)

d ln(t )
. (21)

For the ballistic propagation s = 1 [see Eq. (18)], while
for the diffusive s = 1/2 [see Eq. (19)]. The dynamics of
the propagation exponent is illustrated by panel (b). One can
clearly see that the increase of disorder leads to the gradual
decrease of the asymptotic value of s which corresponds to
the crossover between ballistic and diffusive regimes.

IV. LOWER POLARITON TRANSPORT

Let us now introduce the coupling between the excitonic
and photonic modes, setting �R 
= 0. As was mentioned, in
this case the upper and lower polariton branches E±(k) sep-
arated in energy by h̄�R appear (see Fig. 1). Naturally, the
transport on both of these branches strongly depends on the
corresponding photonic fraction and is thus defined by corre-
sponding Hopfield coefficients.

(a)

(b)

FIG. 2. (a) Time evolution of an initially coherent excitonic wave
packet. Black solid line corresponds to the initial density distribution
divided by factor 5 to make the scale of the curve comparable to
typical scale of the other dependencies; color lines correspond to
the density profiles after t = 8.5 µs for different disordered poten-
tial magnitudes

√
nU . (b) The propagation exponent s(t ) defined

by Eq. (21) as function of time calculated for different disordered
potential magnitudes

√
nU . The asymptotic value of this parameter

close to 1 characteristic for weak disorder indicates that the trans-
port is ballistic. On the contrary, the asymptotic value close to 1/2
characteristic for strong disorder is the signature of the purely diffu-
sive propagation. Intermediate values correspond to mixed transport
regime. The inset shows the dependence of the asymptotic value of
the propagation exponent as function of the disorder strength. The
quadratic dispersion of excitons was considered with the effective
mass mx = 2me.

Let us notice that Eq. (15) contains both intraband correla-
tors ρ++(k, k′), ρ−−(k, k′) defining the distributions of upper
and lower polaritons in real space, and cross-band correlators
ρ±,∓(k, k′). We state the problem as an initial value problem
with both intraband correlators corresponding to the upper
polariton branch and cross-band correlators equal to zero at
t = 0. This allows us to eliminate cross-band correlations
adiabatically [29] in the limit of �Rτ0 � 1, where

1

τ0
= 2π

h̄

n

A
|U |2

∑
k′

δ(E−(k′) − E−(k)). (22)

Indeed, putting

∂

∂t
ρ+− = 0, (23)
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we get

ρ+− ∼ S(ρ+−, ρ++, ρ−−)

E+(k) − E−(k′)
∼ ρ−− |U 2|

�R
. (24)

Due to the fact that E+(k) − E−(k′) ∼ h̄�R and the scattering
terms are bounded from above by τ−1

0 , we can estimate

ρ+− ∼ ρ−−

τ0�R
, (25)

which vanishes in the limit if �Rτ0 � 1, which is usually sat-
isfied in realistic systems with moderate values of the disorder.
Also note that if we assume the scattering to be purely elastic,
for moderate disorders the interband scattering becomes im-
possible because the energy ranges of the upper and the lower
polaritons do not overlap.

Under these assumptions and in the s-scattering limit the
expression for the scattering term S in Eq. (15) reads for upper
and lower polaritons

S± = π
n

A
h̄|U |2ρ±(k, k′, t )

∑
q

[α2
±(k)α2

±(k + q)δ(E (k) − E (k + q)) + α2
±(k′)α2

±(k′ + q)δ(E (k′) − E (k′ + q))]

− π
n

A
h̄|U |2

∑
q

ρ±(k + q, k′ + q, t )α±(k)α±(k + q)α±(k′)α±(k′ + q)[δ(E (k) − E (k + q)) + δ(E (k′) − E (k′ + q))].

(26)

The problem is thus reduced to the problem of the transport of
scalar bosons with nonparabolic dispersion. In this work the
focus is on lower polaritons, but the case of upper polaritons
is fully analogous. As expected, the scattering integral contain
the values of the Hopfield coefficients α±(k), defined by the
detuning between the excitonic and photonic modes δ (see
Fig. 1). It worth noticing that Eq. (15) with scattering terms
(B7) could be used for studying the transport in both strong
and weak coupling regimes. However the cases of weak and
intermediate coupling are beyond the scope of this paper.

We performed the numerical simulations of the dynamics
of lower polaritons for the same initial conditions as in the pre-
vious section, creating initially a coherent excitonic Gaussian
wave packet given by Eq. (20). We focused on the dependence
of the transport regime on detuning δ, varying it in the interval
[−50,−5] meV, and set the other parameters as in the paper
[20] (mph = 0.8 × 10−5me, h̄�R = 12.5 meV).

The results are shown in Fig. 3. Panel (a) illustrates the
time evolution of an initially coherent lower polariton wave
packet as function of the detuning δ for the fixed value of the
strength

√
nU = 1.5 µm meV. As one can see, the increase of

the negative detuning leading to the increase of the photonic
fraction in a lower polariton enhances the propagation. This
is expected, as disorder scattering is relevant for the excitonic
fraction only.

The dynamics of the propagation exponent for lower po-
laritons is illustrated by the panel (b). One can clearly see that
the increase of negative detuning δ increases the asymptotic
value of s and thus corresponds to the crossover between
diffusive and ballistic regimes, as was recently reported ex-
perimentally [14,20].

We can also derive semiclassical kinetic equations for
the upper and lower polaritons, introducing the semi-quasi-
classical probability distributions with the help of Wigner
representation [31] which could be applied under condition
〈E〉τ0

h̄ � 1 at timescales comparable to the relaxation time,

ρ±(k, r, t ) =
∫

d2κρ±
(

k + κ

2
, k − κ

2
, t

)
exp(iκr). (27)

Assuming the scattering to be elastic so that transitions
between the upper and the lower bands are forbidden, and adi-

abatically eliminating cross-band correlations, one gets from
Eqs. (15) and (B7)

∂

∂t
ρ±(k, r, t ) + v±(k) · ∇ρ±(k, r, t ) = S±(ρ±(k, r, t )),

(28)
where the scattering integrals are

S± = −
∑

q

2π

h̄

n

A
α2

±(k + q)α2
±(k)|Uq|2δ(E±(k + q)

− E±(k))[ρ±(k, r, t ) − ρ±(k + q, r, t )]. (29)

These kinetic equations are very similar to the kinetic
equations for excitons. The main difference is the presence
of Hopfield coefficients in the scattering amplitudes and the
difference of the effective masses of the particles (excitons
and polaritons) by several orders of magnitude. Let us remark
that kinetic equation (28) describes both ballistic and diffusive
transport regimes; however, it does not account for quantum
effects such as interference.

In the considered limit one can introduce the relaxation
times [30] for excitons and polaritons as

1

τ0(k)
=

∑
k′

Wk′k, (30)

where scattering rates for the excitons and polaritons are given
by

W x
k′k = 2π

h̄

n

A
|U |2δ(εx(k′) − εx(k)), (31)

W p
k′k = 2π

h̄

n

A
|U |2α2(k′)α2(k)δ(Ep(k′) − Ep(k)). (32)

It can be easily seen that the ratio of the excitonic and
polaritonic relaxation times is

τx(k)

τ±
p (k)

= α4
±(k)

Dp(k)

Dx(k)
= α4

±(k)
mp(k)

mx(k)
, (33)

where Dx(k), Dp(k) are the excitonic and polaritonic densities
of states.

The dependencies of the relaxation times of lower and up-
per polaritons on detuning δ are shown in Fig. 4. As expected,
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(a)

(b)

FIG. 3. (a) Time evolution of an initially coherent polaritonic
wave packet. The black solid line corresponds to the initial density
distribution divided by factor 2 to make the scale of the curve compa-
rable to the characteristic scales of the other curves; the blue, green,
and red lines correspond to the density profiles after t = 15 ps for
different values of the detuning δ. The magnitude of the disorder
potential is set to

√
nU = 1.5 µm meV. (b) The propagation exponent

s(t ) defined by Eq. (21) as function of time calculated for different
detunings δ. The asymptotic value of this parameter close to 1 char-
acteristic for big negative detunings and photonic character of lower
polaritons indicates that the transport is ballistic. On the contrary,
the asymptotic value close to 1/2 characteristic for small negative
detunings and the presence of a substantial excitonic fraction in lower
polaritons corresponds to the diffusive propagation. Intermediate
values correspond to mixed transport regime. The inset shows the
dependence of the asymptotic value of the propagation exponent as
a function of the detuning and is characteristic of the crossover from
the ballistic to diffusive propagation in good agreement with recent
experiments [14,20].

polaritonic relaxation times exceed the excitonic relaxation
times by several orders of magnitude for realistic experimental
conditions. Naturally, the increase of photonic fraction leads
to the decrease of the relaxation time. Also we would like to
note that the kinetic equations (28) could be used to study
weak localization of polaritons [33,34].

V. CONCLUSION

In conclusion, we considered the dynamics of polaritons
in a planar microcavity with short-range excitonic disorder.
Based on the master equation for the full density matrix of
the system and treating the disorder scattering in the Born-
Markov approximation we analyzed the crossover between

FIG. 4. The ratios of polaritonic and excitonic relaxation times
as function of the detuning δ. The blue line corresponds to the lower
and the red line to the upper polariton branches. It is seen that the
ratio varies by four order of magnitude if the detuning �E changes
from −50 meV to 50 meV. Such variation of the relaxation times is
caused by the change of the effective mass and Hopfield coefficients
for upper and lower polaritons.

ballistic and diffusive regimes of the polariton transport with
change of the strength of the scattering potential and the
detuning between excitonic and photonic modes. We also
demonstrated that semiclassical kinetic equations and re-
laxation times can be obtained for polaritons. Our results
are in good agreement with experimental data reported in
Refs. [14,20].
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APPENDIX A: TAKING THE AVERAGE ON RANDOM
IMPURITIES’ POSITIONS

We consider uncorrelated delta-functional impurities

Vkk′ = Ukk′

A

∑
i

{exp[−i(k − k′)Ri]}, (A1)

where Ukk′ = ∫
d2reik−k′rV (r) is the potential Fourier com-

ponent, and A is the sample area. Factor 1/A in the above
expression appears due to the plane wave normalization
ψk = eikr√

A
in the expression for matrix component Vkk′ =

〈ψk| V̂ |ψk′〉. For this dependency of Vkk′ on k, k′ the averaging
can be done analytically representing the averaged term as〈 ∑

Vk′′k′′′Vkk′ [c†
k′′ ck′′′ , [c†

kck′ , ρ]]

〉
c

=
∑ 〈∑

i, j

exp[−i(k − k′)Ri] exp[−i(k′′ − k′′′)R j]

〉
c

× Uk′′k′′′Ukk′

A2
[c†

k′′ ck′′′ , [c†
kck′ , ρ]]. (A2)
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In the latter expression the inner sum can be calculated〈∑
i, j

exp[−i(k − k′)Ri] exp[−i(k′′ − k′′′)R j]

〉
c

= Niδk−k′+k′′−k′′′,0 = Niδq1+q2,0, (A3)

where Ni is the impurity’s quantity. Then, finally, we obtain
the expression for the averaged term〈 ∑

Vk′′k′′′Vkk′ [c†
k′′ ck′′′ , [c†

kck′ , ρ]]

〉
c

= n

A

∑
k,k′,q

Uk′,k′−qUk,k+q[c†
k′ ck′−q, [c†

kck+q, ρ]], (A4)

where n = Ni
A is the impurity concentration.

APPENDIX B: DETAILED DERIVATION OF MASTER
EQUATION FOR THE POLARITONS

First the expression for HI
V (t ) has to be derived. To do

this we can express the HI
V (t ) using the exponent of adjoint

representation of H0,

HI
V (t ) = exp

(
i

h̄
H0t

)
HV exp

(
− i

h̄
H0t

)

= exp

(
i

h̄
t · adH0

)
HV ; (B1)

then we calculate the corresponding correlators,

[H0, ck
†
σ1

ck′
σ2

] = [Eσ1 (k) − Eσ2 (k′)]ck
†
σ1

ck′
σ2

. (B2)

From this expression it is obvious that we will have a Taylor
series for the eEσ1 (k)−Eσ2 (k′ ). Finally using formula (A4) we
can calculate the integral and obtain the expression for the
scattering part of the master equation (11)

〈
M0

[
HI

V (t ),
∫ t

0
dt ′[HI

V (t ′), ρI (t )
]]

M†
0

〉
c

= n

A

∑
k,k′,q

Uk′,k′−qUk,k+q

∑
σ1,σ2,s1,s2=±1

σ1 · σ2 · s1 · s2αs1 (k′)

× αs2 (k′ − q)ασ1 (k)ασ2 (k + q) f σ1,σ2
k,k+q(t )

[
ck′ †s1

ck′−qs2
,
[
ck

†
σ1

ck+qσ2
, ρ

]]
, (B3)

where f (t ) is given by (B8).
The dynamics of the polaritonic pulses in the system can be studied by writing evolution equations for correlators

ρζ1,ζ2 (k, k′, t ) = 〈c†
k±ck′ ±〉 = Tr(ρc†

k ζ1
ck′ ζ2

). To do this we use the following fact,

Tr
([

ck′ †s1
ck′−qs2

,
[
ck

†
σ1

ck+qσ2
, ρ

]]
F

) = Tr
(
ρ
[
ck

†
σ1

ck+qσ2
,
[
ck′ †s1

ck′−qs2
, F

]])
, (B4)

where F is an arbitrary operator. To prove this expression we need to use several times cycle permutations under the trace
operation

Tr([ck′ †s1
ck′−qs2

, [ck
†
σ1

ck+qσ2
, ρ]]F ) = Tr([ck′ †s1

ck′−qs2
, ck

†
σ1

ck+qσ2
ρ − ρck

†
σ1

ck+qσ2
]F )

= Tr
[(

ck′ †s1
ck′−qs2

ck
†
σ1

ck+qσ2
ρ + ρck

†
σ1

ck+qσ2
ck′ †s1

ck′−qs2

− ck′ †s1
ck′−qs2

ρck
†
σ1

ck+qσ2
− ck

†
σ1

ck+qσ2
ρck′ †s1

ck′−qs2

)
F

]
= Tr

[
ρ
(
Fck′ †s1

ck′−qs2
ck

†
σ1

ck+qσ2
+ ck

†
σ1

ck+qσ2
ck′ †s1

ck′−qs2
F − ck

†
σ1

ck+qσ2
Fck′ †s1

ck′−qs2

− ck′ †s1
ck′−qs2

Fck
†
σ1

ck+qσ2

)]
= Tr

(
ρ
[
ck

†
σ1

ckσ2
,
[
ck′ †s1

ck′−qs2
, F

]])
. (B5)

Finally, substituting the cp
†
ζ1

cp′
ζ2

operator instead F and taking into account correlation relations we get the following expression
for correlators (B7) which contains four terms corresponding to S1−4:[

ck
†
σ1

ck+qσ2
,
[
ck′ †s1

ck′−qs2
, cp

†
ζ1

cp′
ζ2

]] = [
ck

†
σ1

ck+qσ2
,
(
ck′ †s1

[
ck′−qs2

, cp
†
ζ1

]
cp′

ζ2
+ cp

†
ζ1

[
ck′ †s1

, cp′
ζ2

]
ck′−qs2

)]
= [

ck
†
σ1

ck+qσ2
,
(
ck′ †s1

cp′
ζ2
δs2,ζ1δp−(k′−q),0 − cp

†
ζ1

ck′−qs2
δs1,ζ2δp′−k′,0

)]
= δs2,ζ1δp−(k′−q),0

(
ck

†
σ1

[
ck+qσ2

, ck′ †s1

]
cp′

ζ2
+ ck′ †s1

[
ck

†
σ1

, cp′
ζ2

]
ck+qσ2

)
− δs1,ζ2δp′−k′,0

(
ck

†
σ1

[
ck+qσ2

, cp
†
ζ1

]
ck′−qs2

+ cp
†
ζ1

[
ck

†
σ1

, ck′−qs2

]
ck+qσ2

)
= δs2,ζ1δp−(k′−q),0

(
ck

†
σ1

cp′
ζ2
δs1,σ2δk′−(k+q),0 − ck′ †s1

ck+qσ2
δζ2,σ1δp′−k,0

)
− δs1,ζ2δp′−k′,0(ck

†
σ1

ck′−qs2
δσ2,ζ1δp−(k+q),0 − cp

†
ζ1

ck+qσ2
δσ1,s2δk−(k′−q),0). (B6)
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Substituting the expression (B7) to Eq. (B4) we obtain the final result (15) with S = S1 + S2 + S3 + S4 where S1−4 are given
by the following expressions:

S1 = n

A

∑
q

Uk+q,kUk,k+q

∑
σ1,σ2=±

σ1 · ζ1ασ2 (k + q)αζ1 (k)ασ1 (k)ασ2 (k + q) f σ1,σ2
k,k+q(t )ρσ1,ζ2 (k, k′, t ), (B7a)

S2 = n

A

∑
q

Uk′,k′−qUk′−q,k′
∑

σ1,σ2=±
σ2 · ζ2αζ2 (k′)ασ1 (k′ − q)ασ1 (k′ − q)ασ2 (k′) f σ1,σ2

k′−q,k′ (t )ρζ1,σ2 (k, k′, t ), (B7b)

S3 = n

A

∑
q

Uk+q,kUk′,k′+q

∑
σ1,σ2=±

σ1 · σ2 · ζ1 · ζ2ασ1 (k + q)αζ1 (k)αζ2 (k′)ασ2 (k′ + q) f ζ2,σ2

k′,k′+q
(t )ρσ1,σ2 (k + q, k′ + q, t ), (B7c)

S4 = n

A

∑
q

Uk′,k′−qUk−q,k

∑
σ1,σ2=±

σ1 · σ2 · ζ1 · ζ2αζ2 (k′)ασ2 (k′ − q)ασ1 (k − q)αζ1 (k) f σ1,ζ1

k−q,k(t )ρσ1,σ2 (k − q, k′ − q, t ). (B7d)

The functions

f σ1,σ2
k,k′ (t ) = 1 − exp

{ − i
h̄ t[Eσ1 (k) − Eσ2 (k′)]

}
i
h̄ [Eσ1 (k) − Eσ2 (k′)]

. (B8)

The particle transport can be described within the Born-
Markov approximation provided that 〈E〉τ0

h̄ � 1 where 〈E〉
denotes the average particle energy; τ0 is the relaxation time
defined in Eq. (30) [30],

f σ1,σ2
k,k′ (t )

t��E−−−→ π h̄δ(Eσ1 (k) − Eσ2 (k′)), (B9)

and corresponds therefore to the energy conservation during a
scattering act.

APPENDIX C: NUMERICAL PROCEDURE

1. Numerical procedure for only excitonic problem

In the 2D microcavity the elasticity of scattering fixes the
length of the wave vector after scattering |k̃| = |k|. Thus we
can move from integration with respect to d2q to integration
with respect to k̃ = k + q. And then moving to the polar
coordinates and considering properties of δ functions, the
following formulas for (17) were obtained,

S2D(k, k′) = πnh̄|U |2ρ(k, k′, t )[D2D(k) + D2D(k′)]

− πnh̄|U |2(Ik + Ik′ ), (C1)

Ik = 1

(2π )2

∫
dθk̃

[
k
ρ(k̃, k′ − k + k̃, t )

h̄|vk|

]
, (C2)

Ik′ = 1

(2π )2

∫
dθk̃′

[
k′ ρ(k − k′ + k̃, k̃′, t )

h̄|vk′ |

]
, (C3)

where D2D(k) is a density of states. Equation (16) in this case
can be reduced to the system of ODEs with-time independent
coefficients by introducing a mesh in k, k′ space (see Fig. 5).
However, if we take N points for |k| discretization and Nθ for θ

discretization we have a total number of N2N2
θ parameters for

density matrix ρ(k, k′) and N2N3
θ complexity of calculation

of the ODE’s system right part which makes this numerical
problem enormous. Fortunately, for the case when the initial
reversal space distribution profile has axial symmetry such
as a Gaussian profile with k0 = 0 it is possible to reduce
the total number of parameters to N2Nθ and the total right

part calculation complexity to N2N2
θ , which is much better.

In the axial symmetric case the density matrix has symmetry
ρ(R̂(θ )k, R̂(θ )k′, t ) = ρ(k, k′, t ), so we can for example fix
the direction of k = [|k|, 0] and reduce the number of parame-
ters. Finally, the equidistant mesh in k, k′, θk′ were considered.
The integrals in (C1) were approximately replaced by sums
and interpolation was used to approximate points appearing
in the integral approximations which are not contained in the
mesh. Now

ρ(r, r, t ) ∼
∫

dkdk′dθdθ ′kk′e−ikr cos(θ )+ik′r cos(θ ′+θ )

× ρ(k, k′, θ ′, t )

=
∫

dkdk′dθ ′kk′2πJ0(q(k, k′, θ ′)r)ρ(k, k′, θ ′, t ),

(C4)

where J0 is the zero-order Bessel function, and q = |k − k′| =√
k′2 + k2 − 2kk′ cos(θ ′) gives us the real-space distribution.

The accurate calculation of this integral with the function os-
cillating very fast is also an ambitious task. The normalization
condition 2π

∫
dxxρ(x, x, 0) = 1 was taken.

FIG. 5. The pallet shows the initial ρ(kr, k′
r, θ = 0, t = 0) and

final ρ(kr, k′
r, θ = 0, t = 8.5 µs) kr-space distribution profiles for the

diffusive case
√

nU = 0.004 µeV µm. In the diffusive case the profile
constricts to the line kr = k′

r which corresponds to field becoming
more classical. One can recall that the kinetic equation for semiclas-
sical probability distribution ρ(k, r, t ) can be derived from the master
equation (16) using Wigner representation [31] ρ(k + κ

2 , k − κ

2 , t )
and making expansion on small κ .
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2. Numerical procedure for lower-band polaritons

For the lower-band polaritons the master equation looks as follows:

S = π h̄
n

A
|U |2

∑
q

{ρ(k, k′, t )[α2(k)α2(k + q)δ(E (k) − E (k + q)) + α2(k′)α2(k′ + q)δ(E (k′) − E (k′ + q))]}

− π h̄
n

A
|U |2

∑
q

ρ(k + q, k′ + q, t )α(k)α(k + q)α(k′)α(k′ + q)[δ(E (k) − E (k + q)) + δ(E (k′) − E (k′ + q))]. (C5)

The resulting equation is similar to (C1) with inclusion of Hopfield coefficients α. The numerical procedure stays the same.
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