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Lattice dynamics and thermodynamics for δ-plutonium from density functional theory
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We present results from density functional theory (DFT) calculations of the lattice dynamics (phonons) and
thermodynamics for δ-phase plutonium. The fully relativistic electronic structure is calculated assuming a three-
dimensional noncollinear magnetic structure in conjunction with DFT and the general gradient approximation
for the electron exchange and correlation interactions. The electronic-structure model is further enhanced by
addressing strong orbital-orbital coupling via the conventional orbital-polarization (OP) scheme as has been
successfully done for plutonium. The temperature dependence of the phonons is calculated within the self-
consistent ab initio lattice dynamics approach. The obtained phonons compare very well with measurements
although a modest overestimation of the transverse L-point [ξξξ ] phonon is acknowledged. Calculated thermal
vibration amplitudes and the associated Debye-Waller temperatures are close to experiments. Lattice, electronic,
and magnetic contributions to the heat capacity are predicted and consistent to a few percent with that deduced
from experimental data. Good agreement is only achieved when a magnetic contribution to the specific heat is
recognized. The parameter-free DFT+OP electronic model is thus capable of predicting phonon properties and
thermodynamic behavior of δ-phase plutonium rather accurately.
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I. INTRODUCTION

Plutonium metal remains a puzzle with an extraordinary
phase diagram and other fascinating properties driven by its
electronic structure for which there is currently no consen-
sus [1]. The nature of the 5 f electrons has been described
in theoretical models ranging from localized [2,3], to par-
tially localized [4–7], delocalized-fluctuating [8], delocalized
but perturbed by significant relativistic and magnetic effects
[9], or nonmagnetic with delocalized 5 f -band states [10].
Ironically, underscoring the confusion, two extremes of these
5 f -electron theories, the strongly localized [3] and the non-
magnetic delocalized [10], have been suggested to govern
the 5 f -electron bonding and formation of the monoclinic
ground-state α phase of plutonium. Regardless, if one seeks
a theory that can bridge the α-δ transition, only models that
describe the 5 f electrons as delocalized (itinerant) or bonding
survive [8,9]. Nonetheless, models specific for either the face-
centered-cubic (fcc) δ phase [4–7] or the monoclinic α phase
[3,10] may provide some limited insight into plutonium.

Naively, one expects experiments to identify the appropri-
ate theory quickly, but plutonium does not make it easy. For
example, focusing on the δ phase, photoemission data agree
well with three very different models [2,5,9], as discussed
in Ref. [11], and phonons are also well described by starkly
contrasting theories [2,12,13]. After years of controversy
regarding their existence, neutron-scattering experiments dis-
covered magnetic moments [14]. Still, the measured magnetic
form factor is equally well interpreted in a localized [14]
or a delocalized [9] 5 f -electron model. Although magnetism
is interesting in its obscurity, our opinion is that the nature
of the 5 f electrons in terms of their bonding character is
more central to understanding plutonium than the details of
the magnetism. For example, a dynamic moment [14] can

for practical purposes be appropriately modeled by a static
magnetic configuration, either in a paramagnetic disordered
magnetic model [15] or, as has been suggested more recently,
a noncollinear magnetic structure [13]. The reason is straight-
forward; if the moments fluctuate, the corresponding energy
states must be close. Therefore, an appropriately chosen non-
fluctuating (static) magnetic state must also be close in energy.

In this paper we return to the issue of lattice dynamics of
δ-plutonium. We mentioned that phonons have rather success-
fully been calculated before (see a close comparison between
various 5 f -electron models in Ref. [13]). In all these theories,
however, two features in the phonon dispersions disagree with
experiments [16], namely, (i) the slope of the lower-energy
transverse (T1) X−Γ phonon approaching the Γ point, and
(ii) the L-point transverse [ξξξ ] phonon (LT ). For (i), the slope
is too stiff in the modeling, and for (ii), the LT phonon is pre-
dicted to have significantly too high energy (frequency). We
shall discuss the possible causes of these two inconsistencies.
In addition, we calculate and present the thermal dependence
of the δ-plutonium phonon dispersions. From these phonon re-
sults we deduce elastic-thermal behavior and thermodynamic
properties such as thermal atomic mean-square displacements
(vibration amplitudes) and their thermal dependence in terms
of the Debye-Waller temperature. Considering phonon, elec-
tronic, and magnetic contributions, we calculate and compare
the heat capacity with experiments.

Section II deals with computational details and method-
ology, and in Secs. III and IV we present our results and
conclusions.

II. COMPUTATIONAL DETAILS AND METHODOLOGY

We model plutonium from first principles as a material
with delocalized 5 f -band electrons that correlate through spin
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polarization, spin-orbit coupling, and orbital polarization [9]
within density functional theory (DFT). The fundamental and
necessary assumption in DFT relates to electron exchange
and correlation, and the generalized gradient approximation
is generally preferred for actinides including plutonium. The
Perdew-Burke-Ernzerhof (PBE) form is adopted here [17].
We are foregoing the most accurate all-electron methods
for the more efficient VASP pseudopotential method [18,19],
where we have implemented variational orbital polarization
(OP) as previously described in detail [20,21]. The Racah
parameter of 65 meV, necessary in the DFT+OP formulation,
has been calculated self-consistently with a separate all-
electron full-potential linear muffin-tin orbital method [20]. In
addition, we apply a simple fix for the p states that otherwise
cause issues due to the spin-orbit interaction; see discussions
and references in Ref. [20]. The procedure is to ignore the
spin-orbit coupling for the p states.

The magnetic configuration is treated as a constraint to
the calculations, and we have chosen to adopt the three-
dimensional noncollinear 3Q arrangement proposed recently
by Rudin [13]. The 3Q label (sometimes referred to as 3k) is
due to the spin structure that combines three (equivalent) wave
vectors Q in each of the three dimensions for the correspond-
ing spin component. This configuration results in a structure
where all equivalent bonds have the same bonding character,
a feature also shared by the disordered moment model [15].
For these two magnetic states, the fcc structure is dynami-
cally stable while for an antiferromagnetic configuration, such
as L10, this is not the case [12,13,22]. Hence, the present
electronic-structure model is as Rudin’s [13], including orbital
polarization and the modification of the spin-orbit coupling
for the p states [20]. The physical effect of orbital polarization
in plutonium is a stabilization (lowering of the energy) of
the δ phase relative to the α phase (and other phases) for a
more accurate representation of the phase diagram, while at
the same time producing better atomic volumes for all six
plutonium polymorphs [23]. We refer to our review paper for
more details on DFT+OP and plutonium [9].

In VASP, the electronic states are treated with the projector
augmented-wave method [24], with Fermi-Dirac broadening
(0.2 eV), and a cutoff energy for the plane waves of 500
eV. Calculations with much smaller Fermi-Dirac broaden-
ing around 0.05 eV introduced insignificant changes to the
phonon spectra, suggesting an insensitivity to the broadening
scheme.

In Fig. 1, we compare the small-displacement-method
[25] phonon calculations utilizing our 3Q DFT+OP approach
together with Rudin’s 3Q DFT results [13]. Here, the lat-
tice constant is kept close to the experimental (T = 600 K),
a = 4.64 Å, for both calculations. This value is reasonably
close to our DFT+OP (zero-temperature) equilibrium value
(4.613 Å), but rather expanded relative to Rudin’s equilibrium
DFT lattice constant [13] (4.52 Å). For the lattice dynamics
calculations, we utilize a 64-atom supercell with one atomic
displacement of δa=(0.004, −0.004, 0.004) relative to the
supercell Bravais lattice vectors and the phonons are obtained
in the harmonic approximation at zero temperature [25]. The
two calculations produce similar phonons that agree well with
experiments, except in two places. Notice in Fig. 1 that the
slope corresponding to the elastic constant C′ is too large and

FIG. 1. Zero-temperature harmonic phonons obtained from the
small-displacement method and x-ray thermal diffuse scattering at
300 K for 2 at. % Ga [16]. DFT refers to Rudin’s results [13] and
DFT+OP denotes present results. The red-dashed lines correspond
to measured elastic constants [16]. The lattice constant in the calcu-
lations is 4.64 Å while it is 4.625 Å for the 2 at. % Ga alloy.

the LT zone-boundary phonon is too stiff. The calculated C′ is
overestimated by about 20%, and the LT phonon is about 67%
too large. It is worth noting that the calculations are performed
for pristine and perfect plutonium while the sample in the
experiments is a Pu-Ga alloy with various imperfections due
to the nature of radiation damage in plutonium. We will return
and discuss the discrepancies for C′ and the zone-boundary
phonon in the Results section.

First-principles temperature effects on δ-plutonium′s
phonon dispersions are addressed here by the relatively ef-
ficient self-consistent ab initio lattice dynamics (SCAILD)
method [26]. Analogous to the small-displacement phonon
calculation at zero temperature, we describe the fcc struc-
ture with a 64-atom supercell and consider five temperatures,
100, 300, 400, 500, and 600 K, while maintaining a fixed
lattice constant at 4.64 Å. SCAILD, however, goes beyond
the harmonic approximation and includes phonon-phonon in-
teractions, thus taking anharmonic effects into account. For
normal metals, one must consider thermal expansion but in
the case of δ-plutonium, and particularly the 2 at. % Ga alloy,
it is essentially zero due to the invar effect [27]. The invar
effect has not been fully explained, but spin fluctuations [9,28]
and anomalous phonon behavior [13] likely play important
roles. SCAILD is an iterative method, and one must carefully
confirm convergence before presenting a conclusive result. In
the Results section we show explicitly the convergence of the
free energies for the various temperatures.

The heat capacity Cv is calculated at a constant volume
(lattice constant 4.64 Å). Because thermal expansion is near
zero for δ-plutonium and the Ga-stabilized alloys [27], this is
a reasonable approximation of the measured specific heat at
constant pressure Cp. We divide the heat capacity into three
terms,

Cv (T ) = Clat
v (T ) + Cel

v (T ) + Cmag
v (T ), (1)
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and we ignore any explicit contribution associated with
electron-phonon coupling. There are phenomenological ex-
pressions for this contribution, but no straightforward way to
compute from first principles. In Eq. (1), the first lattice term
is determined from the SCAILD phonon density of states,
while the second electronic term is modeled by the electronic
density of states at the highest occupied energy level (Fermi
level), D(EF ), as

Cel
v (T ) = π2

3
D(EF )k2

BT = γelT . (2)

The kB parameter is the usual Boltzmann constant and γel the
Sommerfeld electronic coefficient.

The last term in Eq. (1) is typically a small con-
tribution from magnetism, and for δ-plutonium we have
previously introduced a spin-fluctuation model where longi-
tudinal spin fluctuations thermally populate excited energy
states, ELSF(T ), that have been calculated [9,28]. These
excitation energies deviate only slightly from linear with tem-
perature and can be very accurately represented with a cubic
polynomial for easy differentiation. From these excitation en-
ergies we establish the magnetic contribution to the specific
heat as the partial derivative,

CLSF
v (T ) =

(
∂ELSF

∂T

)
V

. (3)

In principle, there should also be a magnetic contribution
from transverse modes in a spin-fluctuation system, but we
still need to develop the formalism to calculate this contribu-
tion. However, as we alluded to in the Introduction, transverse
(rotating in space) spin fluctuations in δ-plutonium, based on
our noncollinear calculations, are not expected to absorb much
heat. Energies associated with such excitations are small and
therefore the associated heat-capacity contribution is antici-
pated to be limited.

Strictly, the calculated heat-capacity contributions are all
obtained at a constant volume, but as outlined above, the
thermal expansion is negligible in the δ-plutonium system, so
Cv is a good approximation of Cp derived from experimental
data at ambient conditions.

III. RESULTS

In this section, we will introduce our temperature-
dependent results. The SCAILD method is employed for
this purpose and because it is a self-consistent approach,
one must carefully ensure that the results are converged. For
δ-plutonium, the process converges very effectively as shown
in Fig. 2 which displays the lattice free energy as a function
of SCAILD iterations for the various temperatures. The en-
ergies are shifted as noted in the plot for clarity. The phonon
frequencies and phonon density of states also converge to a
degree where no changes between iterations could be detected
in a graphical representation.

Several calculations [2,12,13] of the phonon dispersions
of the δ phase, all unalloyed at zero temperature, are in
rather good agreement with the room-temperature measure-
ment of the 2 at. % Ga alloy [16]. However, we show in
Fig. 1 that the phonon dispersions associated with the elastic
constant C′ and the zone-boundary transverse L-point phonon

FIG. 2. Lattice free energies obtained from SCAILD at various
temperatures as functions of the number of SCAILD iterations. The
lattice constant is 4.64 Å.

are overestimated by about 20% and 67%, respectively. These
are substantial discrepancies also present in other modelings
[2,12,13]. Possible reasons for these inaccuracies could be that
the calculations ignore the Ga content in the measured alloy or
that temperature plays a role. Here, we address these possibil-
ities and first note that calculations for C′ as a function of Ga
content in the δ phase show very strong Ga-induced softening
of the order of 10% for the 2 at. % Ga alloy [29]. Hence, to a
large degree, this explains the stiffer corresponding phonons
for the unalloyed phase considered in the modeling. We have
also performed so-called frozen phonon calculations for the
zone-boundary phonon in question. This was done along
the lines of what we published previously [30], but here for the
2 and 4 at. % Ga alloy within a sophisticated alloy treatment,
namely, the coherent-potential approximation (EMTO-CPA-
DLM; see Ref. [30] for details). These results are shown in
Fig. 3. Notice that the LT phonon depends close to linearly on
Ga content (at a fixed lattice constant, 4.64 Å) with a negative

FIG. 3. Relative zone-boundary phonons obtained from frozen-
phonon calculations with EMTO-CPA-DLM for the alloy treatment,
at lattice constant 4.64 Å. The line represents a linear fit to the data.
The dashed lines indicate the LT phonon for the 2 at. % Ga alloy.
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FIG. 4. Relative LT phonon as a function of lattice constant
calculated from the small-displacement phonon method at zero tem-
perature. The solid line is a linear fit and the dashed lines indicate
the lattice constant for the 2 at. % Ga alloy and the corresponding LT

phonon.

slope. At 2 at. % Ga, the calculations suggest a modest soft-
ening of about 5%. There is also a volume effect because the
2 at. % Ga has a smaller lattice constant (4.625 Å) than our
phonon calculations assume (4.64 Å).

Next, we investigate the effect of the volume change on
the LT phonon driven by Ga. Rudin [13] already showed that
the LT phonon softens considerably with decreasing lattice
constants. Here, we utilize the DFT+OP electronic structure
and the small-displacement method at zero temperature and
calculate full phonon spectra as functions of lattice constants.
The results look like Rudin’s [13], so they are not shown
again, so instead we focus on the magnitude of the LT phonon.
In Fig. 4 we plot the relative LT phonon magnitude for several
lattice constants and aside from some numerical noise they
fall on a line that suggests a 5% decrease of the LT phonon
for the change in volume due to the 2 at. % Ga. Hence, the
total Ga effect on this zone-boundary phonon is about 10%
when the alloy volume is considered. Next, we investigate the
temperature dependence of the phonons to see if that is a cause
of the predicted error for LT .

In Fig. 5 we show our SCAILD phonons at a = 4.64 Å
for T = 100, 300, 400, 500, and 600 K. These calculations
indicate an overall softening of the phonons with tempera-
ture. That is an anomalous behavior because in conventional
metals, temperature induces a thermal pressure that leads to
a stiffening of the phonons. But δ-plutonium behaves oppo-
sitely, and its unique phonon characteristics combined with
magnetic effects are likely the reasons for its peculiar thermal
volume expansion and thermal softening of the bulk modu-
lus [28,29]. Returning to the LT phonon (see Fig. 5), it is
insensitive to the temperature in agreement with x-ray thermal
diffuse scattering [16]. The magnitude is somewhat smaller
(0.70 THz) than predicted by the small-displacement method
(0.81 THz) shown in Fig. 1, but the results in Fig. 5 are
more accurate because SCAILD goes beyond the harmonic
approximation and includes anharmonic contributions from
phonon-phonon coupling.

FIG. 5. SCAILD phonons for δ-plutonium at T = 100, 300, 400,
500, and 600 K at lattice constant 4.64 Å.

Our result on the LT phonon, correcting for the Ga content,
is 0.63 THz and that is significantly closer to the x-ray result of
0.485 THz [16] than other modeling (0.8–1.0 THz) [2,12,13].
Nevertheless, a considerable overestimation of about 30%
remains. The reason for this remaining discrepancy is still
being determined. Conceivably, it is related to material im-
perfections due to radiation self-damage in the alloy sample
or a slight growth of α′ phase (monoclinic α-phase alloy) in
the sample. Ultimately, the softening of the [ξξξ ] transverse
mode is important to understand as it may be related to the δ

to α′ phase transition as discussed previously [16].
From our self-consistent phonon calculations, we can ex-

tract the thermally excited atomic mean-square displacements
(mean-square vibration amplitudes) 〈u2〉 that can be directly
compared to measured values for unalloyed δ-plutonium [31].
Most of the experimental data are taken at higher temperatures
than our calculations, but at 600 K we find that theory is rather
close to the observation from a powder diffractometer at the
same temperature [31] (see Fig. 6). Because we calculate the
temperature dependence of 〈u2〉, we can extract the Debye-

FIG. 6. Calculated (solid circles) and measured powder diffrac-
tometer [31] (solid squares) atomic mean square displacement for
unalloyed δ-plutonium. The dashed line is a guide to the eye.
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FIG. 7. Calculated (solid squares) and measured neutron scat-
tering (solid [33] and open [27] circles) heat capacities for the
δ-plutonium system. Measured samples are 5 wt. % Al [33] and
3 at.% Ga [27]. Dashed lines are guides to the eye. See main text
for explanation of the various contributions.

Waller temperature 	DW that is proportional to the inverse
square root of the slope of 〈u2〉 versus temperature. Lawson et
al. [31] report for unalloyed δ-plutonium 	DW = 80 K based
on their measurements while our 〈u2〉 data suggest a slightly
larger value 	DW = 83 K. The corresponding temperatures
for the gallium-stabilized δ-plutonium samples are consider-
ably higher (	DW ∼ 100 K) [32].

The heat capacity is evaluated from Eq. (1) and shown in
Fig. 7, together with experimental data on δ-plutonium alloys
with 5 wt. % Al [33] up to 300 K and 3 at. % Ga [27] up to 600
K. The experimental electronic and phonon contributions are
from the 5 wt. % Al sample [33]. The theoretical data shown
in Fig. 7 are the lattice (phonon) contribution, the electronic
contribution, the magnetic contribution, the sum of electronic
and magnetic contributions, and finally the total heat capacity,
i.e., the sum of all theoretical contributions. We notice in
Fig. 7 the excellent agreement between the measured and
calculated phonon heat capacity at 100 and 300 K, as expected
considering that the phonons in Fig. 1 are in favorable agree-
ment with measurements. The calculated total heat capacity is
also very consistent with the two sets of measurements [27,33]
from 100 to 600 K. Some minor discrepancy is anticipated
because the theory considers an ideal and unalloyed pluto-
nium material while the measured samples are alloys with
natural imperfections. At higher temperatures, vacancies are
produced and other imperfections may anneal contributing to
the heat capacity in real materials but these effects are not
addressed in our ab initio model. Nonetheless, the most sig-
nificant difference between theory and experiment occurs at
the lowest calculated temperature, 100 K. The reason appears
to be that the theoretical electronic and magnetic contributions
underestimate the electronic specific heat at low temperatures.
The electronic specific heat [33] is not explicitly measured
but deduced from subtracting the phonon contribution from
the total, so it should contain any non-phonon-related parts
such as that from spin fluctuation, for example. A possibility
is that an α′ phase is formed at lower temperatures [34], and
that effect is not addressed in our calculations. We are also

ignoring electron-phonon coupling which may be a factor.
Finally, Lawson [27] suggests several different mechanisms at
very low temperatures that are not easily computable within
our first-principles approach and are consequently not ad-
dressed here.

At 300 K, however, the experimental electronic portion
in Fig. 7 is actually very close to the sum of our calculated
electronic and magnetic heat capacities. For the higher tem-
peratures the phonon contribution is flat, and the temperature
dependence is dominated by the electrons in our theory. The
slope is essentially identical to the measurements of the total
Cp at high temperatures [27], suggesting that there are no
additional temperature-dependent contributions. Hence, the
rather large contribution from anharmonic phonons that has
been proposed [27] is inconsistent with our results.

IV. CONCLUSIONS

Our first-principles modeling (no fitting parameters) for δ-
phase plutonium produces good phonons. The only significant
inconsistencies with x-ray measurements, the [ξξ0] slope at
Γ and the [ξξξ ] transverse phonon softening, are present in
previous theoretical modeling but can mostly be explained
by accounting for the 2 at. % Ga content in the measured
sample. Still, a 30% discrepancy remains for the LT phonon
that may be related to imperfections and defects in the sample,
growth of the α′ phase, or deficiencies in our first-principles
modeling.

The temperature dependence of the phonons indicates an
anomalous softening with increasing temperature that, to-
gether with magnetic effects, likely explains the observed
nonconventional thermal behaviors of properties such as
atomic volume and bulk modulus in δ-plutonium. We empha-
size that at least two mechanisms (phonons and magnetism)
are probably responsible for the unique behaviors. Lawson
[27] points out that the alloying dependences of the volume
and the bulk modulus are entirely different: The atomic vol-
ume is strongly Ga-dependent while the opposite is true for
the bulk modulus. Therefore, it seems unlikely that their re-
spective thermal behavior is driven by only one mechanism
but rather is a consequence of a combination of processes.

Our calculated thermodynamic properties, mean-square
atomic displacements 〈u2〉, Debye-Waller temperature 	DW,
and heat capacity, all compare favorably with experiments
considering that our calculations are performed assuming pure
and pristine δ-plutonium. At the same time, the measurements
are conducted on aluminum or gallium alloys with imper-
fections related to radiation-induced self-damage. There may
also be the formation of the α′ phase in the sample at low
temperatures that is not addressed in our theory.

There are of course uncertainties in the calculations as well.
First, for the heat capacity, the electron-phonon coupling is
ignored, which may explain the slight underestimation of the
theory. At low temperatures, the most significant discrepancy
appears where the electronic contribution is proportional to
T 2 and scales with the electronic density of states D(EF ).
This simple Sommerfeld electron model is consistent with
the electron entropies deduced from the electronic structure
but may not accurately represent low-temperature quantum
effects. Additional low-temperature contributions related to
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electron correlation have been suggested [27] but are not
easily addressed within our first-principles approach.

The accuracy and success of the present calculations hinge
on magnetism. Excluding magnetic interactions leads to unre-
alistic bonding with unstable phonons and an underestimated
lattice constant [9]. The importance of magnetism is also
reflected in the heat capacity where we find good agreement
with experiments only when a magnetic, spin-fluctuation, con-
tribution is recognized. Lastly, significant anharmonic effects
at high temperatures, as recently suggested [27], are not con-
firmed by our theory.
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