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Non-Hermitian gauged laser arrays with localized excitations: Anomalous threshold

and generalized principle of selective pumping
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We investigate non-Hermitian skin modes in laser arrays with spatially localized excitation. Intriguingly, we
observe an unusual threshold behavior when selectively pumping either the head or the tail of these modes:
both cases exhibit the same lasing threshold and hence defy the conventional principle of selective pumping,
which aims to maximize the overlap between the pump profile and the target lasing mode. To shed light on
this enigma, we reveal a previously overlooked phenomenon, i.e., energy exchange at non-Hermitian coupling
junctions with the photonic environment, which does not occur with uniform gain or loss. Utilizing a transfer
matrix approach, we elucidate the mechanism of this anomalous threshold behavior, which is determined by the
specific physical realization of the non-Hermitian gauge field (i.e., using gain, loss, or their mixture). Finally,
we derive a generalized principle of selective pumping in non-Hermitian arrays, which shows that the decisive
spatial overlap is given by the triple product of the pump, the lasing mode, and its biorthogonal partner. Our study
provides a glimpse into how the two forms of non-Hermiticity, i.e., asymmetric couplings and a complex on-site
potential, interact synergetically in laser arrays, which may stimulate further explorations of their collective

effects in photonics and related fields.
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I. INTRODUCTION

Spatially selective pumping is a widely employed tech-
nique in driven-dissipative systems, where the excitation
energy, or “pump,”’ is concentrated on specific regions of the
system under study [1-21], typically using materials with a
broad gain spectrum and an incoherent source at a frequency
higher than that of the target mode. By spatially overlapping
the pump with the targeted mode, this approach provides a
means of single- and few-mode excitation, complementary to
spectrally coherent drive, especially in scenarios where the
density of states exceeds the inverse spectral resolution of the
coherent excitation source.

Using spatially selective pumping, early experiments
in side-pumped solid state lasers demonstrated Hermite-
Gaussian modes [1,2] and ray modes [3]. Subsequently, the
advent of microcavity lasers [22-24] has elevated spatially
selective pumping to an indispensable tool for exciting and
observing wave-chaotic modes [4,5], reducing lasing thresh-
old [6,7], enhancing output power [8], tailoring emission
directionality [9-12], and controlling modal interaction and
multimode lasing behaviors [13—15]. In addition, spatially
selective pumping has also been successfully employed to
manipulate properties of random lasers [16—-18] and induce
pattern formations in exciton-polariton condensates [19-21].
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More recently, spatially selective pumping has attracted
considerable interest in photonic molecules and lattices. For
example, it is fundamental to non-Hermitian photonics based
on quantum inspired symmetries [25,26], such as parity-time
symmetry that requires judiciously placed elements of op-
tical gain and loss. Non-Hermitian degeneracies known as
exceptional points, as well as the phase transitions across
them, have been observed using spatially selective pumping
[27,28], showcasing their remarkable sensitivity to changes in
system parameters. Coupled with carrier dynamics, spatially
selective pumping has also provided a means to tune non-
linear properties of coupled semiconductor (class B) lasers
[29-33]. Furthermore, spatially selective pumping has facil-
itated the excitation of Hermitian flat band [34] and enabled
the tuning of its localization length [35]. Building upon the
non-Hermitian extension of particle-hole symmetry, spatially
selective pumping has been utilized to propose non-Hermitian
flat bands [36,37] and zero-mode lasers with tunable spatial
profiles [38]. Moreover, it provides a convenient route to study
topologically protected photonic edge and corner states, with-
out the need for resonant excitation. By focusing the pump at
the edges of the system, such an approach has demonstrated
localized edge states in one-dimensional (1D) lattices [39—41]
and propagating chiral edge states in two-dimensional (2D)
systems [42]. Notably, spatially selective pumping has shown
the capability to redefine the system boundary, allowing steer-
ing of these chiral edge states on demand [43].

In this work, we probe a category of uniquely non-
Hermitian topological edge and corner states with spatially
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selective pumping, i.e., those arising from the phenomenon
known as the non-Hermitian skin effect [44-50]. In the pres-
ence of a spatially uniform non-Hermitian gauge field, a
significant proportion of the system’s eigenmodes are local-
ized toward one edge or corner of the system, which holds
in both 1D and higher-dimensional systems. By varying this
imaginary gauge field spatially, one can also achieve local-
ization at any target position [51], including one corner, all
corners, or any interior point, as recently demonstrated using
a 2D array of optical microring resonators [52—-54]. Despite
their similarly localized spatial profiles to those rooted in
Hermitian symmetry and topology [40—42], spatially selective
pumping has not been studied systematically for these non-
Hermitian gauged laser arrays.

Intriguingly, our study reveals an unexpected threshold
behavior when selectively pumping either the head or the tail
of the non-Hermitian skin modes: both cases exhibit the same
lasing threshold and hence defy the conventional principle of
spatially selective pumping. To shed light on this enigma, we
uncover a previously overlooked phenomenon that provides
a key insight into its understanding, i.e., energy exchange
at non-Hermitian coupling junctions with the photonic envi-
ronment, which does not occur with uniform gain or loss.
With selective pumping, however, this energy exchange is
nonzero and varies across the array, depending not only on
the non-Hermitian gauge field but also the position of the
pump.

Importantly, we show that the usual non-Hermitian tight-
binding model, while mathematically rigorous, provides an
incomplete and even misleading physical explanation for this
unusual threshold behavior. Utilizing a transfer matrix ap-
proach instead, we elucidate the mechanism of this anomalous
threshold behavior, which is determined by the specific phys-
ical realization of the non-Hermitian gauge field (i.e., using
gain, loss, or their mixture). Finally, we derive a generalized
principle of selective pumping in non-Hermitian arrays, which
shows that the decisive spatial overlap is given by the triple
product of the pump, the lasing mode, and its biorthogonal
partner.

II. CONVENTIONAL PRINCIPLE
OF SELECTIVE PUMPING

In order to elucidate the breakdown of the conventional
principle of selective pumping (with “spatially” dropped for
conciseness) in a non-Hermitian gauged array, below we pro-
vide a brief overview of this principle. Suppose H is the
passive tight-binding Hamiltonian of an array in the position
basis {|n)} (n = 1,2, ..., N), where N is the size of the array.
With the introduction of a pump with strength D > 0 and
a profile given by F =) fuIn){(n| (f, = 0), the now active
system can be described by H' = (H + iDF') until the system
reaches its lasing threshold, beyond which nonlinear effects
such as gain saturation become important.

Selective pumping aims to increase the spatial overlap be-
tween the pump profile F' and a target mode W,, and when
W,,’s pump utilization surpasses other competing modes, this
target mode becomes the first to reach its lasing threshold.
More specifically, let Dy, D, be the thresholds of a passive
mode W, with uniform and selective pumping, respectively. It
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FIG. 1. Selective pumping an SSH laser array. (a), (b) Intensity
profile of the lasing mode at threshold when pumping the left and
right cavity (orange arrows), respectively. A Gaussian peak is su-
perposed in each cavity. (c), (d) Corresponding trajectories of the
resonances when increasing the pump. Line(s) with an arrow show
the lasing mode(s) and open dots mark the passive resonances. Here
t'/t =1.2,k0/t =0.2,and N = 9.

can be shown that (see Appendix A)
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with the normalizations TrF = N and \IIOT W, = 1. The de-
nominator on the right hand side quantifies the spatial overlap
between W, and the pump profile, and the superscript “7"”
denotes the matrix transpose. A strong (weak) overlap then
leads to a low (high) threshold with selective pumping.

Take the Su-Schrieffer-Heeger (SSH) array [55], for
example:

H = Z(wc — iko)|n)(n| + (tu|n + 1){n| + H.c.).

Here w, is the single-cavity frequency and «y is the cavity
loss. The nearest-neighbor (NN) coupling 7, € R is given by
t (t") when n is odd (even) and H.c. stands for the Hermitian
conjugation of the first term in the brackets. In the passive
case, i.e., without pump, all the energy eigenvalues of H have
the same imaginary part given by —iky [Fig. 1(c)]. With an
odd number of cavities, one of them is a zero mode featuring
Re[w,] — w. = 0 and an example of topological edge states,
localized at the left boundary whent’ > ¢ [Fig. 1(a)]. To excite
this edge mode, we pump just the leftmost cavity to induce
a strong overlap [40,41] and, indeed, this mode is the first to
reach its lasing threshold [Fig. 1(c)]. The approximation (1)
captures this behavior nicely: it gives D;N = 2.74k, close to
its actual value D;N = 2.56«. When we pump the rightmost
cavity instead [Fig. 1(b)], this zero mode has a much reduced
pump utilization and a pair of band-edge modes that overlap
better with the pump become the first lasing modes instead
[Fig. 1(d)], at a higher lasing threshold D;N = 4.36k.

III. NON-HERMITIAN GAUGED ARRAY

A. Anomalous threshold behavior

Now let us focus on a non-Hermitian gauged laser array,
featuring a stronger coupling from right to left (¢ > 1):

H = Z(wc — iko)|n){n| + (tIn + 1){n| +'|n)(n + 1)).

n
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FIG. 2. Selectively pumping a non-Hermitian gauged laser array.
The panels and parameters are the same as Fig. 1. The spatial profile
of the zero mode in panel (b) has a longer tail compared to that in
panel (a).

The asymmetric couplings create a non-Hermitian gauge field
[44] that localizes all modes toward the left edge. The zero
mode (also a non-Hermitian skin mode) has the strongest
localization [Fig. 2(a)], which can be quantified using the
inverse participation ratio [i.e., IPR =
O WP/ 3, 1W|* ~ 4.0 with #//t = 1.2 and N = 9].

When we pump the leftmost cavity, the zero mode overlaps
strongly with the pump and is the first lasing mode as expected
[Fig. 2(c)]. With the same ¢, ¢’ as in the SSH array, this zero
mode has an IPR identical to that of the topological edge state
in the SSH array. According to Eq. (1), we then expect that
they should have similar if not identical lasing thresholds.
However, we find DN = 4.22k here instead, more than 50%
higher than the SSH array. Probably even more surprisingly,
we find that this zero mode localized on the left edge is again
the first lasing mode when we pump the rightmost cavity
[Fig. 2(b)], with exactly the same threshold [Fig. 2(d)]. This
unexpected finding thus defies the conventional principle of
selective pumping represented by Eq. (1).

B. Symmetry arguments

To understand this unusual threshold behavior, we first note
that the two configurations, i.e., pumping the leftmost or the
rightmost cavities (denoted by configurations A, B with pump
profile F, Fg and threshold D, D{®)), can be mapped into
each other. More specifically, the left-right mirror reflection
P (an antidiagonal matrix with 1’s) maps the left pump in
configuration A to the right pump in configuration B, i.e.,
PF,P~! = Fp. It also exchanges the couplings ¢, ¢/, which can
be restored by the imaginary gauge transformation given by
the diagonal matrix G = diag[1, ¢/, (¢/t')?, .. .]. Because the
latter does not change the on-site potential [51], here given by
just (w, — ixp) in H, we identify S = GP as a symmetry of H
(i.e., SHS™' = H). Similarly, we find GFsG™' = Fp using the
property that Fg, G are both diagonal matrices, and hence

SFS7!' = G(PF,PHG™! = GFG™! = F;. 2)
Altogether, we derive
S(H +iD™F,)S™" = H + iDF = Hy,. 3)

This expression then indicates Hy, in configuration B, has the
same eigenvalues as H + iDWF,. The latter represents the
system at threshold in configuration A, with the zero mode

on the real axis and all other modes in the lower half of the
complex plane [Fig. 2(c)]. Therefore, Hj also represents the
system at threshold but in configuration B, i.e., D(®) = DW),
with the zero mode again being the lasing mode [Fig. 2(d)].
We note, though, the wave functions W™, W of the zero
mode at threshold in these two configurations are different,
e, UB = SUA £ wd; they are both localized at the left
edge but with different tail lengths [Figs. 2(a) and 2(b)].

C. Energy exchange with the environment
at non-Hermitian coupling junctions

Next, to understand the breakdown of the conventional
principle of selective pumping, we analyze the dynamical
equation for the intensity in each cavity:

d|y|*
dt

where F,, is the pump strength in the nth cavity and
Tnn—1 = it*Y;_ Y, +c.c.

are the intercavity power flows from cavity n+ 1 to n and
from cavity n — 1 to n [56], respectively. Here we have used
the notation [, ¥, ...]7 for the lasing mode at threshold
and c.c. stands for the complex conjugation of the first term.

Equation (4) indicates that there are two power sources or
drains for each cavity, i.e., the on-site term given by P, =
2(DF,,, — ko)|¥,|* and the exchange term p, = Jp,.q1 +
Jn.n—1 with its neighbors via the coupling junctions [57]. At
the laser threshold, a self-sustained oscillation means that the
left hand side of Eq. (4) becomes zero for each cavity and
hence we have the following power relation:

N—-1
ZPn = - an = - Zg(n,n+l)- (5)
n n n=1

In the last step we have rearranged the summation using
8unnt+1) = Tnn+1 + Tnt1.0. Which is the power gained (f
positive) or dissipated (if negative) at the coupling junction
between cavities n and n + 1.

In a system with symmetric couplings (i.e., t' = t*), it is
clear that 7, ,4+1 = —Jn+1.n from their definitions, indicat-
ing all gun41) = 0, i.e., power flows from one cavity to its
neighbors without being amplified or dissipated. Therefore,
gain and loss for the entire lattice only comes from the on-site
terms, whether or not the pump is uniform. Equation (5) then
gives Dy = k¢ with uniform pumping and D; = «q/ (\IIST FJyy)
with selective pumping. W, is the lasing mode at threshold
with selective pumping and normalized by W/W, = 1. We
then recover Eq. (1) if ¥y =~ W, € R.

This derivation shows clearly that the conventional princi-
ple of selective pumping is based on the assumption that the
system does not exchange power with the photonic environ-
ment via the intercavity couplings (at least not strongly). Note
that this condition holds even in our non-Hermitian gauged
array at threshold, if the pump is uniform: with real couplings
tandt’, H = H + iDyF (at threshold) is real valued and has
a real, nondegenerate spectrum. Therefore, we find

= 2(DFy, — k)I¥nl* + Tunt1 + Tune1, (@)

Tnns1 = Y Y, + e,

H'Y; = (H'Vp)* = (0™g)* = o™wg, (6)
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FIG. 3. Properties of the zero mode at threshold in a non-
Hermitian gauged laser array. (a), (b) Phase of its wave function
in configurations A and B. (c), (d) Power dissipated (g nt+1) < 0)
and gained (g, n+1) > 0) at each coupling junction in these two
configurations, plotted at half integer positions and with the normal-
ization ¥, = 1. (e), (f) The corresponding power gained (P, > 0) or
dissipated (P, < 0) on site.

with H' ¥y = o T, (also see Appendix A). The observa-
tion then indicates that W; = W, is real, which renders all
s7n,n+1 ) s7n+l,n (and hence g(n,n+l)) Zero.

With selective pumping, however, these eigenstates be-
come complex valued in our non-Hermitian gauged array. For
the lasing zero mode in particular, its wave function has a stag-
gering phase in both configurations A and B [Figs. 3(a) and
3(b)], i.e., with a £ /2 relative phase between neighboring
cavities due to non-Hermitian particle-hole symmetry [38]. As
a result, g 1) = [(*/t") — 11T,.011 is no longer zero due
to the asymmetric couplings and hence the system exchanges
power with its photonic environment via the coupling junc-
tions, leading to the breakdown of the conventional principle
of selective pumping.

D. Generalized principle of selective pumping

Nevertheless, a generalized principle of selective pumping
can be established (see Appendix A):

Dy

N 7
VIFw, @

s

where \I/OT is the corresponding left eigenstate of the passive H
(i.e., the biorthogonal partner of Wy), normalized by \IJOT Yy =
1 [58]. It is then clear that the decisive spatial overlap now that
determines the lasing threshold is not just between the pump
profile and the lasing mode, but also with its biorthogonal
partner W/'. When H is symmetric as in the SSH array, we
find ¥y = W, and recover Eq. (1).

Equation (7), though just an approximation, further corrob-
orates our findings of the identical thresholds in configurations
A and B: W, (without the transpose) is a right eigenstate of
HT, which is mapped to H by the aforementioned mirror
reflection P. Therefore, ¥, and W, are mirror-symmetric part-
ners and any two pump profiles that are also mirror-symmetric
partners give the same triple product \IIOT F\, and, in turn, the

same lasing threshold according to Eq. (7). We find D, = 5«
for both configurations A and B using Eq. (7), which agrees
with its numerical value (4.22«() qualitatively.

E. Failure of the tight-binding model

Following our previous discussion of the power relations
in the non-Hermitian gauged array, next we offer a physical
understanding of this identical threshold in these two config-
urations. We find all g, ,+1)’s are negative in configuration
A [Fig. 3(c)], indicating that the system dissipates energy
into the environment at every coupling junction. The situation
is reversed in configuration B [Fig. 3(d)], where the system
receives power from the environment at all coupling junctions.
This contrast provides an explanation of their identical lasing
threshold: due to the vastly different overlaps between these
two pump configurations and the non-Hermitian skin mode,
the system receives a net on-site gain ), P, = 3.18«( in
configuration A [Fig. 3(e)] but a net on-site loss — ) P, =
3.73k in configuration B at threshold [Fig. 3(f)]. Neverthe-
less, they are compensated by dissipating and gaining exactly
the same amounts via the coupling junctions.

A closer examination of this seemingly satisfactory expla-
nation suggests, however, either it is misleading in certain
non-Hermitian gauged arrays or it excludes these systems
from exhibiting the aforementioned anomalous threshold
behavior: one common approach to realize asymmetric cou-
plings and the resulting non-Hermitian gauge field in photonic
systems is using auxiliary rings with different gain and/or loss
halves as couplers (see, for example, cavity 2 in Fig. 4; also
Refs. [52-54]). In the case that the auxiliary rings are passive
with lossy and lossier halves, they simply cannot provide
the gain needed in configuration B at the coupling junctions.
Similarly, if the auxiliary rings are active with gain and more
gain in the two halves, they cannot induce the loss needed in
configuration A.

These observations highlight a significant drawback in
relying on the tight-binding model to describe the physical
system with asymmetric couplings: it does not provide infor-
mation on the nature of each coupling, which is essential for
understanding the energy exchange between the system and its
environment. Furthermore, a potentially graver concern arises
when the supermodes formed by the couplings of the auxiliary
rings may even lase before the non-Hermitian skin modes.
To tackle these issues, below we analyze the non-Hermitian
gauged array using a transfer matrix approach, from which
we gain a more accurate and detailed understanding of the
aforementioned anomalous threshold behavior.

(a) ) Sl o ®
2 az 7 / N - ® (>
AL 2 N.‘)W t 3(t v )
Q\m = 1
) v._y

FIG. 4. Schematics of a non-Hermitian gauged array. (a) Cou-
plings of CCW modes in cavity rings (1, 3, ...) via auxiliary rings
(2, ...) with two halves of different Im[n]’s in the transfer matrix
analysis. (b) The corresponding tight-binding model.
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F. Transfer matrix analysis

We consider the couplings of counterclockwise (CCW)
modes in the odd-numbered rings shown in Fig. 4(a), which
are the cavities considered in the tight-binding model. We de-
fine e, = e™*t (p=1,3,...,N), where n, is the refractive
index in the nth ring and & is the free-space wave vector. These
rings have the same Re[n, ] and length L but can have different
Im[n,]’s depending on the pump profile. The amplitudes of
the CCW mode in ring 1 and those of the clockwise (CW)
mode in ring 2 (one of the auxiliary rings) satisfy [59,60]

A1 _ ag _ N iJ
(5)=5G) o=(0 7)o@

S is the unitary scattering matrix satisfying |s|> + |J|> = 1.
To propagate these amplitudes down the array, we rewrite this
equation as

A\ _ B, e s =1
()= () w=mr=5(0 %) o

Next, the propagation of waves inside cavity 2 can be written

as
B\ .. (A (0 1
<b2) —M2<a2)a M2 =e, (edeu 0>’ (10)

with e, = e"«*u and e; = el Here n,, L, (nq, Ly) are the
refractive index and length of the upper (lower) half of the
auxiliary ring. To achieve ¢’ > ¢ in the non-Hermitian gauged
array as in Fig. 2, we then require Im[n,] < Im[n,], which
represent gain (loss) when negative (positive).

By repeating the same procedure for all N ring resonators
in the array, we find

(Al) _ M(%), M= (MMM, (1)

a

where the transfer matrices inside the cavity rings are

0 6;1/2
M, = =3,5,...,N=2).
P 611)/2 0 (p )

Assuming all auxiliary rings are identical, we also have M, =
My=-=My_,.

The resonances of the array are then found by combining
Eq. (11) with the propagation equations in the first and last
(cavity) rings, i.e., a; = Aje; and by = Byey, which leads to

My + Myey
My + Mysey

M;;’s are the matrix elements of the total transfer matrix M
and they are proportional to e, [see the expression for M in
Eq. (10)], where N, = (N — 1)/2 is the number of auxiliary
rings. This factor is canceled in the denominator and numera-
tor on the right hand side of Eq. (12), whose only dependence
on ey, e; comes from the product e,eq in M, (p =2,4,...).
This observation shows explicitly the non-Hermitian gauge
symmetry: changing n,L,, nsL; (and in particular their imag-
inary parts) does not affect the resonance frequencies, as long
as o = n,L, + nyL4 is a constant. Therefore, we recover the
anomalous threshold behavior shown in Fig. 2, i.e., pumping
the head or the tail of a non-Hermitian skin mode leads to the
same lasing threshold.
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FIG. 5. Transfer matrix analysis of non-Hermitian gauged ar-
rays. (a) Trajectories of the resonances when pumping either the
first or the last cavity ring. Symbols are the same as in Fig. 2(c).
(b) Power gained (positive) or dissipated (negative) at coupling
junctions at threshold. Upper (lower) panel is for configuration A
(B) with the normalization A; = 1 in the first cavity. Parameters
used are r =4.75 um and ¥ =4.70 um in the cavity rings and
auxiliary rings, respectively, with Re[n] = 2.7 in all rings. Pas-
sive cavity rings have Im[n] =2 x 107*. s = 0.7, J = +/1 — 2, and
Im[n,] = 1.5 x 1073 = —Im[n,]. (c), (d) Same as (a), (b) but with
Im[n,] =2 x 1073 = —2Im[ny]. (e), (f) Same as (a), (b) but with
Im[n,] = 1073 = —Im[n,]/2.

Next, we show that the mechanism of this anomalous
threshold behavior depends on the specific physical realiza-
tion of the non-Hermitian gauge field. Figure 5 shows the
results for a non-Hermitian gauged array formed by nine cav-
ity rings and eight auxiliary rings. Three cases are presented
using auxiliary rings with balanced gain and loss, net loss, and
net gain, respectively. They feature the same imaginary gauge
field (see Appendix D)

t'/t ~ mbunalatko — 9 9 (13)

as in the tight-binding model shown in Fig. 2, where ko
is the free-space wave vector of the zero mode. Below we
define the coupling gain/loss via the auxiliary ring p by
(|ap|2 - |Bp|2) + (|bp|2 — |A,,|2), with the two intensity dif-
ferences occurring at the upper and lower halves, respectively
[see, for example, the one labeled by p =2 in Fig. 4(a)].
For convenience, both the wave amplitudes and the coupling
gain/loss here are dimensionless, scaled by their nature units.

The first case exhibits similar results to the tight-binding
model, i.e., with loss (gain) at all coupling junctions in con-
figuration A (B) [Fig. 5(b)]. The threshold in configurations A
and B is found at Im[n] = —7.96 x 10~* and the trajectories
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of the non-Hermitian skin modes [Fig. 5(a)] are similar to
those in Fig. 2 obtained from the tight-binding model. While
the auxiliary-ring resonances have lower losses in the pas-
sive case, they do not reach their threshold when the zero
mode starts lasing with selective pumping (see Fig. 10 in
Appendix D).

If we assume a stronger cavity loss (e.g., Im[n] =2 x
1073), the spatial profile of the lasing mode in either config-
uration A or B is determined mainly by the localized pump,
i.e., with a peak at the pump position (not shown). This is
the regime of zero-mode lasing with tunable spatial profiles
[38] and these two configurations still share the same lasing
threshold. The same situation takes place when we use only
loss or gain in the auxiliary rings to achieve the same imag-
inary gauge field (e.g., Im[ng] = 4Im[n,] = 4 x 1073) (not
shown).

In order for the first lasing mode at threshold to be a
non-Hermitian skin mode peaked at the leftmost cavity in both
configurations A and B, below we consider auxiliary rings
with net loss and gain instead. By increasing (decreasing) the
loss (gain) in the upper (lower) halves of the auxiliary rings by
Im[An] = 5 x 1074, the second case in Fig. 5 shows results
that differ from the tight-binding model: while all coupling
junctions still dissipate power in configuration A, not all of
them gain power in configuration B [Fig. 5(d)]. The largest
deviation from the tight-binding model is the last case shown
in Figs. 5(e) and 5(f), where we achieve the same asymmetric
couplings (and imaginary gauge field) as in the cases above
by increasing (decreasing) the gain (loss) in the lower (upper)
halves of the auxiliary rings by Im[An] = —5 x 10~* instead.
Now the system gains power from all auxiliary rings in both
configurations A and B and their identical lasing threshold is
understandably lower at Im[n] = —1.26 x 10~*, thanks to the
enhanced gain in the auxiliary rings.

The passive resonances in Figs. 5(a), 5(c) and 5(e) have
almost the same spacing, which indicates that the average
coupling 7 = ¢ is roughly equal in these three cases, besides
the imaginary gauge field ¢'/¢. This observation then shows
that both ¢ and ¢’ are fixed in these cases approximately,
despite the fact that we have changed the gain and loss in the
auxiliary rings significantly.

This finding first suggests that the coupling ¢ (¢) is not
simply determined by the upper (lower) halves of the aux-
iliary rings, as one may have anticipated from comparing
the two schematics in Fig. 4 or assumed in previous studies.
Furthermore, it also shows that different realizations of the
same non-Hermitian gauge field demand contrasting power
exchanges with the photonic environment to produce the same
threshold in configurations A and B, which is beyond the
analyzing capability of the tight-binding model. This is true
even after we take into account the different effective cavity
decays of the passive resonances shown in Figs. 5(a), 5(c),
and 5(e) (see Appendix B).

As we have hinted in the motivations of adopting the
transfer matrix analysis, here another crucial drawback of the
tight-binding model is its inability to describe the supermodes
formed by the auxiliary ring resonances, which have much
lower thresholds than the non-Hermitian skin modes in the
third case above; they are already lasing before we even pump
the cavity rings (see Fig. 10 in Appendix D).

We also mention in passing that, for the CW modes in the
cavity rings (instead of CCW modes considered above), their
couplings lead to the same resonances in the transfer matrix
analysis: we just need to switch ¢, and e; in the analysis
above, which leads to the same equation (12) thanks to its non-
Hermitian gauge symmetry. Consequently, degenerate CW
and CCW non-Hermitian skin modes are localized on the op-
posite edges of a 1D array due to the opposite non-Hermitian
gauge fields they experience. The anomalous threshold behav-
ior discussed above then manifests itself as a lasing mode with
a symmetric intensity profile at threshold, localized on both
edges before nonlinear gain saturation and modal interaction
play arole. We further note that the same anomalous threshold
behavior takes place in higher dimensional systems [54] as
well. For a square lattice with a uniform non-Hermitian gauge
field in both the x and y directions, pumping either of the four
corners (i.e., the head, tail, and two “wings”) leads to the same
lasing threshold (see Appendix C).

IV. CONCLUSION

In summary, we have reported an anomalous threshold
behavior when pumping either the head or tail of a non-
Hermitian skin mode; these two configurations lead to the
same lasing threshold and hence defy the conventional princi-
ple of selective pumping. We have given explanations to this
behavior from both the mathematical and physical perspec-
tives, by introducing a transfer matrix analysis that remedies
two crucial drawbacks of the usual tight-binding model, i.e.,
the lack of information on the physical realization of the
imaginary gauge field and whether the auxiliary rings lase
first. Our study provides a glimpse into how the two forms
of non-Hermiticity, i.e., asymmetric couplings and a complex
on-site potential [61], interact in a synergetic fashion, which
may stimulate further explorations of their collective effects
in photonics and related fields.
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APPENDIX A: THRESHOLD ANALYSIS
IN THE TIGHT-BINDING MODEL

To quantify the effect of selective pumping in the tight-
binding model of a laser array, we analyze the equation that
determines the lowest lasing threshold with uniform pumping:

(H + iDy1) Wy = oWy, (A1)

Here H is the effective Hamiltonian of the passive system
(i.e., with cavity decay ky but no gain), Dy represents the
pump strength at the lasing threshold, and 1 is the identity
. . . . (TH)

matrix representing uniform pumping. @, ~ € R and ¥y are
the lasing frequency and wave function at threshold. Note that
the eigenstates of H 4 iDy1 are the same as those of H and its
eigenvalues are merely shifted from those of H (denoted by
{w,}) by iDy. In other words,

i = Re[wy],

Dy = —Im[wy], (A2)
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where wy is the passive resonance that evolves into the lasing
mode at threshold.

Below we refer to this basis (including the lasing mode at
threshold) and the corresponding left eigenstates of H by {W,,}
and {\TJ;} (uw=0,1,2,...), and they satisfy the following
biorthogonal relation after normalization:

Vi, =4, (A3)

Here we have assumed that none of these states are at an ex-
ceptional point, which would make \Il; W, = 0 and the basis
{W,.} incomplete.

Now with selective pumping, we represent the pump pro-
file f(¥) by a diagonal and positive semidefinite matrix F'
normalized by TrF = N, where N is the size of the lattice.
We then have

(H + iDsF)¥; = o™y, (A4)

where Dj is the new threshold. o™ € R and W are the
modified lasing frequency and wave function at threshold.
Their formal solutions can be obtained by the expansion W, =
>, auVy, which leads to

> au(wy — o™ +iD,F)W, =0 (A5)
I
or
FA = wa, (A6)
D;

where F is a square matrix with elements F,, = lIIZF v,
A =[ag,ai, ...,ay]", and W is a diagonal matrix with ele-
ments W, = i(w, — o{™).

Equation (A6) is a system of N complex linear equa-
tions and, by fixing the normalization of A (e.g., requiring
ap = 1), we can solve for the N unknowns: the (N — 1) ampli-
tudes and the (N — 1) phases of {a,-0}, the lasing frequency
o™ and the threshold D;. One strategy to find all solutions
of Eq. (A6) is treating it as a parametrized eigenvalue problem
[62-64]:

FA, =1, WA,. (A7)

By tuning the real frequency (™ in W, we monitor the
generalized eigenvalues A,,’s in the complex plane. When one
of them crosses the real axis, the inverse of that real eigen-
value gives one (linear) lasing threshold. The corresponding
eigenstate of A, is the wave function of that lasing mode at
threshold in the basis {W,} and the tuning parameter (™
at which this crossing happens is the corresponding lasing
frequency.

If | Fooap| is much greater than | Zpo Fouayl, which usu-
ally takes place in a lattice with strong couplings and weak
losses (i.e., with modes having high quality factor), the first
row of the matrix equation in (A6) gives

i (TH)
i(wyg — w D
A ( s )=~T° + o(e). (A8)
Foo Wy Fy,
Here we have used the expressions for Dy and a)(()TH) in

Eq. (A2) and we note € = w§TH) — a)(()TH) vanishes if a zero
mode lases with both uniform and selective pumping.

To understand better the requirement on the lasing mode in
this approximation, we note that it can also be derived using
o™ ~ wE)TH) and ¥, = W, i.e., the lasing frequency and the
spatial profile of the lasing mode should stay roughly the same
with selective pumping. We then find (Dol — DF )Wy ~ 0
and recover Eq. (A8).

The denominator on the right hand side of Eq. (AS)
represents the spatial overlap between the lasing mode,
the pump profile, and its biorthogonal partner (i.e., the
corresponding left eigenstate of H). When H is symmetric
as in the SSH array, we find ¥, = W, with which we derive
Eq. (1) in the main text. In the continuous limit, we then
recover the more conventional form of this denominator, i.e.,
[ dF f(F)VE(F) [8].

In the main text, we have used Eq. (AS8) to further
corroborate the identical threshold when pumping the
leftmost and rightmost cavity in a non-Hermitian gauged
array. We note though not all observations based on Eq. (A8)
hold due to its approximative nature. For example, given
the structures Uy o« [1,0, (t'/1),0,...,0, ¢ /N1
and Wy o [(¢'/0)V1,0, (¢ /0)N72,0,...,0, 117 of the
zero mode in the non-Hermitian gauged array, we find
\IJOT FYy « Zneodd F,n, where F,,, is the pump strength in the
nth cavity. As a result, selective pumping any odd-numbered
cavity gives the same threshold according to Eq. (AS), but
the actual thresholds in these pump configurations differ. For
example, the zero mode has a threshold of D;N = 4.81«
when pumping the middle cavity and we have seen in the
main text that this value is 4.49« instead when pumping the
leftmost or the rightmost cavity.

APPENDIX B: DIFFERENT CAVITY DECAYS

As we have mentioned in the main text using the transfer
matrix model, selective pumping with a strong cavity loss
brings the system to the regime of zero-mode lasing with
tunable spatial profiles, where the lasing mode at threshold
has a significant (if not dominating) peak at the pump location.
This is also the case in the tight-binding model, but the latter
does not capture the different mechanisms of the anomalous
threshold behavior when the physical realization of the imag-
inary gauge field changes.

Take the three cases shown in Fig. 5 analyzed using the
transfer matrix approach, for example. They have almost
identical asymmetric couplings ¢, t’, and their effective cavity
decays, judged by Im[w,]’s of the passive Hamiltonian H,

(a) (b)

O—I'I'-'-'——i O—I"I“—f
§-0.3 H 0.1 !
3 [=
> 05 5 005

0 0

13 5 7 9 13 5 7 9

lattice position n lattice position n

FIG. 6. Power gained or dissipated at coupling junctions in a
non-Hermitian gauged laser array at threshold. Parameters are the
same as in Fig. 2 but with ko = 0.4¢ in (a) and 0.08¢ in (b). The
upper (lower) panel shows the result when pumping the leftmost
(rightmost) cavity in the tight-binding model.
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Imfw, Jt,
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-5 5 min
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FIG. 7. Selectively pumping a 2D non-Hermitian gauged laser
array. (a) Trajectories of the resonances when pumping either corner
of the array. Line with an arrow shows the lasing zero mode. (b) Field
profiles || of the lasing modes at threshold when pumping either
corner (orange arrows), respectively. A Gaussian peak is superposed
in each cavity.

are roughly 1 :2: 0.4. The first case gives similar results to
the tight-binding model with the same ¢’/ in Fig. 2 of the
main text, where «g is taken to be 0.2¢. Here we consider the
other two cases in the tight-binding model, with ko = 0.4f and
0.08¢, respectively. As can be seen in Fig. 6, the tight-binding
model still shows power dissipation (gain) at all coupling
junctions when we pump the head (tail) of the non-Hermitian
gauged array and hence it fails to capture the actual power
relations displayed in the last two cases in Fig. 5.

APPENDIX C: ANOMALOUS THRESHOLD
BEHAVIOR IN 2D

As we have mentioned in the main text, the conventional
principle of selective pumping represented by Eq. (1) in the
main text breaks down also in a 2D non-Hermitian gauged
array. Here we exemplify in Fig. 7 the identical threshold of
pumping either corner of a rectangular lattice, which has cou-
plings #, = 1.5¢, and t,/t, = ty’/ty = 1.2. With g = —0.1¢,,
the lasing threshold is reached at D;N = 8.1kp no matter
which corner we pump. The approximation given by Eq. (A8)
again captures this behavior qualitatively, giving D;N = k.

Here we have made the couplings in the x and y directions
sufficiently different. If we have not, then the density of states
would be high close to the zero mode, which tends to induce
stronger couplings between these non-Hermitian skin modes.
As a result, the lasing modes at threshold by pumping the
four corners will have significantly different intensity profiles,
even though they still have the same threshold. For example,
with the same gauge fields in the x and y directions as above
but with ¢, = 1.2¢,, pumping either of the two “wings” of the
passive zero mode (i.e., the bottom left and the upper right
corners) will introduce the strongest intensity peaks at both
of these two corners (not shown). Again, this is the regime of
zero-mode lasing with tunable spatial profiles mentioned in
the main text [38].

APPENDIX D: BEYOND THE TIGHT-BINDING MODEL

Single ring. We start by considering a single resonator of
refractive index n and length L. Its resonances are determined
by ¢t =1 or k =2mmn/(nL) (m =1,2,...). Note that n
can be made complex with a positive imaginary part to repre-
sent both material and radiation losses. Denoting n = ngy + in;
and k = k, + ik;, we find

ng 2mim ny 2mm

CmPL T mP L

Two ring with symmetric coupling. To characterize coupled
ring resonators, here we resort to a simple model that ig-
nores the radiative coupling and only considers the evanescent
coupling through the scattering matrix S at each coupling
junction. We place two identical cavities (1 and 2) next to
each other and first consider the coupling between the coun-
terclockwise (CCW) mode in cavity 1 and the clockwise (CW)
mode in cavity 2 [Fig. 8(a)].

The incoming and outgoing amplitudes in these two modes
at the coupling junction can be captured by the following §
matrix [59,60]:

(5)=2G) 5= )

The S matrix is dimensionless and so are s and J. Given the lo-
cal flux conservation relation, i.e., |a|*> + |b|> = |A|? + |B|> =
[a, b1STS[a, b]T, S must be unitary (STS = 1) and we have
Is|> + |J|> = 1.

For a resonance k, the amplitudes a,A and b, B are
related by

(D)

r

(D2)

a=Ae"™  p=Be" (D3)
Substituting these relations in Eq. (D2), we find

(1 _ seinkL)A — iJekaB, (1 _ s*einkL)B — l-J*einkLA’
(D4)

(@) 5 (b) Bo a2 @
Ae @ 2 ) A B3

D AL A

\Jj\u \_1}) : Y\T/vx

FIG. 8. Schematics of (a) two and (b) three coupled ring
resonators.
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or
(1 = se™L)(] — gLy = _|j o2 (D5)
Using |s|? 4 |J|? = 1, this expression gives
et — 2 Re[sle™ +1 =0 (D6)
or
oMkl — it D7)
where
0 = tan~! —Vl_Remz >0 (D8)

[Rels]|

given the physical constraint that |s| < 1.

Equation (D6) indicates that each resonance k; of a single
ring splits into two resonances k4. given by

0
ky —ky = :tnL.

Due to the mirror symmetry of the system about the y — z
plane at the center of the gap between the two rings, these two
modes must be symmetric and antisymmetric about the same
plane, i.e., A = =B and a = %b. This physical consideration
then determines the phases of both s and J: by substituting the
exponential factors in Eq. (D4) by that given by Eq. (D6), we
have

(D9)

A o Tt
3= iJ T ot (D10)
Here we have two choices
oi? ot
isz:tl, ijmzqﬂ, (D11)
that give
(stiDe® =1, FiNe =1, (D12)
respectively. No matter which choice we make,
s+ =1 (D13)

always holds and, combining it with the local flux conserva-
tion relation |s|?> 4 |J|*> = 1, we know that both s and J are
real. Furthermore, we do not expect a phase jump when a (b)
passes through the coupling junction to become part of A (B),
especially in the limit J/ — 0: we should recover the single-
ring case presented above, i.e., s — 1. Therefore, we take s to
be positive and the angle # becomes 6 = tan~!(|J|/s).

The two choices in Eq. (D10) then tell us that if J is also
positive, then k_ is symmetric and k4 is antisymmetric. If J is
negative instead, then k; is symmetric and k_ is antisymmet-
ric.

Equation (D9) indicates that

f

0
ky —ko=ko—k_ = 7
is the effective coupling between the CCW mode in cavity
1 and the CW mode in cavity 2 in the tight-binding model.
It is approximately real for a high-Q passive resonance (i.e.,
with 0 < n; < ng). |f| approaches its maximum 7 /(2nL) =
ko/(4m), i.e., the strong coupling limit, when |J| > s.

(D14)

Finally, the analysis for the coupling of the CW mode in
cavity 1 and the CCW mode in cavity 2 is the same as above,
leading to the same resonances k.. Altogether, there are two
pairs of degenerate modes near kp—one symmetric and the
other antisymmetric about the y — z mirror plane. Because the
system is also mirror symmetric about the x — z plane through
the centers of the two rings, the two modes in each pair can
also be expressed as symmetric (cosine) and antisymmetric
(sine) modes about this plane.

Two rings with asymmetric couplings. In the main text, we
have introduced the transfer matrix to analyze a coupled laser
array with cavity rings and auxiliary rings. Here we study
a special case with just three rings [Fig. 8(b)]. The second
ring is the auxiliary ring and it features different values of the
refractive index and arc lengths in the upper (n,, L,) and lower
(ng, Ly) halves, allowing us to implement different combina-
tions of gain and loss. We also allow the refractive index to
be different in the left (n;) and right (n3) rings to account for
selectively pumping one ring. The coupling junctions between
the first two and the last two are identical and so are their
scattering matrices:

()-4) ()-s2)

We take s > 0 and J € R in the S matrix using our findings of
the two ring case. We also have a; = Aje™ L = Ajeq, by =
Azemdkl‘d = Azed, a) = Bzem"kl‘“ = Bzeu, and b3 = B3€m3k1‘ =
Bses, which leads to

(D15)

s—e; S—e3

(D16)

1—se;1— se3eued =1
when we combine the two scattering matrix equations. We
note that J does not appear in Eq. (D16) similar to Eq. (D6) in
the two-ring case; it is eliminated in the coefficients of e; and
e3 in the numerator, both of which are given by s> + J> = 1.

Obviously, Eq. (D16) is equivalent to Eq. (12) in the main
text with N = 3, as can be checked directly using

1 |:s(ed —el) st — ed]

= — D17
J? bos(e,! —eq) 1D

s’eq — e,

We have mentioned the explicit no-Hermitian gauge symme-
try exhibited by Eq. (12) in the main text. As expected, here
Eq. (D16) shows the same non-Hermitian gauge symmetry:
ny,, L, and ng, Ly only appear in the product e,e;. Therefore,
as long as

o = n,L, + ngLy; = const, (D18)

the coupled rings have the same resonances for a fixed set of
other parameters, independent of the values of n,, n; and, in
particular, their imaginary parts.

There are several scenarios possible due to this non-
Hermitian gauge symmetry. (1) With net loss (Im[o] > 0),
an imaginary gauge transformation can map an auxiliary ring
with different losses in the two halves to one with the same
loss. It can also map an auxiliary ring with gain and loss
halves to one with stronger gain and stronger loss or to one
with weaker loss(es) in the two halves. (2) With net gain
(Im[o] < 0), an imaginary gauge transformation can map an
auxiliary ring with different gains in the two halves to one
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FIG. 9. Real-valued resonances in (a) a three-ring system
and (b) a 17-ring system. Parameters used are s =0.7, L=
29.845 um(r=4.75 wm), and L,=L; =15.101 um (r=
4.81 pm), and all rings have n = 2.7 with loss ignored. Legend:
single-ring resonances (dashed lines), numerical results of coupled
resonances (circles), and their approximations (crosses).

with the same gain. It can also map an auxiliary ring with gain
and loss halves to one with stronger gain and stronger loss or
to one with weaker gain(s) in the two halves.

Below we analyze Eq. (D16) to estimate the effective cou-
plings and the non-Hermitian gauge field. When s = 1 (and
J = 0), the rings are uncoupled and Eq. (D16) only gives
the condition that determines the resonances of the auxiliary
ring, i.e., e,eq = 1; the resonances of cavities 1 and 2 are
determined by e; = 1 and e, = 1, respectively, which make
the denominators (and numerators) of the two fractions on
the left hand side of Eq. (D16) vanish. From this analysis,
we expect three “supermodes” from Eq. (D16) when |J| # 0,
which evolve from three uncoupled resonances in the three
rings, one from each.

When cavities 1 and 2 are identical, the effective coupling
between them can be expressed by reformatting Eq. (D16):

1 In 1+ S/ eu(k)ed(k)
imL s+ Je,(K)eqa(k)

We have included the explicit k dependence of ¢,, e; to em-
phasize that this is in fact a self-consistent equation. The two
signs on the right hand need to be taken as the same, which
leads to two resonances k. as a result of the effective coupling
between cavities 1 and 2. When this effective coupling is
much weaker than the free spectral range of the single-ring
resonances, k4 can be approximated by

e — kot 1 1n1:I:S«/eu(ko)eaz(ko)
=10 imL s+ e (ko)ea(ko)

We note that unlike the two-ring case, |k — ko| here are
different in general, even when the system is idealized to be
Hermitian [see Fig. 9(a)], which seems to suggest that an
effective symmetric coupling or asymmetric couplings would
be difficult to define. As shown in Fig. 9(b) for a longer array
with 17 rings (nine cavity rings plus eight auxiliary rings)
though, this issue does not impose a fundamental challenge
when comparing the results of the tight-binding model and the
transfer matrix approach: if we define the effective coupling
in the three-ring case as 7 = (ky — k_)/2 using Eq. (D19)
and that in the 17-ring case by fitting the resonances with
a tight-binding model (f = +/tt'), they differ by about 11%,
given by 7 = 3.88 x 10~ um~! and 3.45 x 1073 um~".

k — ko = (D19)

(D20)

Furthermore, by tuning the size of the auxiliary rings to be
antiresonant with the cavity ring, we can align the center of
the supermodes with the single-ring resonance k. This can be
seen by requiring that the two solutions of Eq. (D19), i.e., k4,
satisfy k,. — kg = —(k_ — ko) = 7 or, equivalently,

1+ Sa/ eu(k+)ed(k+) 1- S+/ eu(kf)ed(kf) -1 (D21)
s+ \/ett(k+)ed(k+) s = \/eu(kf)ed(kf) '

We then find
Veulki)ea(k)eu(k)eq(k-) = —1.

Next, we substitute ki = ko = 7 into this expression and use
eu(ky ey (k=) = e(ko), eq(ky)eq(k_) = e (ko); we then find

eu(ko)eq (ko) = £1. (D23)

(D22)

The “4” solution is spurious as can be checked when
substituted in Eq. (D21) and the “—” solution is precisely
the antiresonant condition in an auxiliary ring. Here this so-
lution requires L,y = 14.779 pum, which gives 7 = 3.74 x
1073 um~" in the three-ring case.

We note that the estimation of the gauge field is indepen-
dent from that of 7: the latter, as mentioned, is given by N
and the former is given by |¢'/¢|. In the tight-binding model
for two asymmetrically coupled rings, the amplitude ratio
between the rings are 44/¢'/¢. In the transfer matrix analysis,
this ratio is represented by A; /B3, which can be shown to be

Ay s —e;3 11 —se3
— =y — ! (D24)
B3 1 — se; s—e
x10™
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FIG. 10. Supplemental data for the three cases shown in Fig. 5
of the main text. (a), (c), (e) Spatial profiles of their passive zero
mode from the transfer matrix calculation (histogram), plotted using
U, =Ay_1 (n=1,2,...,9) of the CCW modes in the cavity rings.
Solid line shows their envelope from the tight-binding model with
t'/t = 1.2.(b), (d), (f) Trajectories of auxiliary-ring resonances when
the pump is increased to the lasing threshold of the non-Hermitian
skin zero mode. Open dots mark the passive resonances.
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In the last step we have used Eq. (D16). Using e; = e3 in the

passive case (and with uniform pumping), we then find

_ A eq(ky) ea (ko)
B3 eu(ks) eu(ko)

t 2

t

~

~ ~ e!mlnuly—naLalko

(D25)

It gives |¢t//t| ~ 1.20 for the three sets of parameters used in
Fig. 5, which agree nicely with the values of the gauge field
extracted from the 17 rings case (i.e., |t'/t| ~ 1.20).

The analysis for the couplings of CW modes in cavities
1 and 2 is slightly different; the one in cavity 1 (cavity 2)
couples to the bottom (upper) half of the auxiliary ring and
hence e, and e; need to be switched when compared with
the analysis above for the CCW modes in these two cavities.
Nevertheless, this change does not affect the resonances due
to the non-Hermitian gauge symmetry mentioned earlier.

Therefore, here we have three pairs of degenerate supermodes
with all modes considered (two pairs originated from the
cavity rings and one pair from the auxiliary ring). This
observation holds for both uniform pumping and selective
pumping (i.e., different n;’s in the first and last rings).

Longer arrays. In the main text, we have used the ex-
pression (D25) to keep the non-Hermitian gauge field fixed
when varying the gain and loss in the two halves of aux-
iliary rings. In Figs 10(a), 10(c), and 10(e) we show that
this approximation has a high precision by comparing the
amplitudes of the CCW zero mode in the cavity rings with
their envelope from the tight-binding model. In Figs. 10(b),
10(d) and 10(f) we show the spectra of the supermodes
formed by the auxiliary ring resonances, which do not lase
before the non-Hermitian skin zero mode except for the
last case.
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