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Landau-Ginzburg-Devonshire theory of the chiral phase transition in 180◦ domain
walls of PbTiO3
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A new mechanism leading to a switchable Bloch-type polarization in a domain wall separating two ferroelec-
tric domain states is proposed. A biquadratic coupling of the primary order parameter and its gradient originating
from inhomogeneous electrostriction triggers the chiral phase transition (Ising-to-Bloch) in the domain walls
(DW) with softening of the local polar mode and anomalous increase of the dielectric susceptibility at the
phase transition temperature TDW < Tc. This mechanism describes the origin and properties of the polar Bloch
component, which appears below TDW additionally to the antipolar Néel component in the 180◦ DW of PbTiO3.
The tensile strain of the DW plane promotes the development of the Bloch polarization.
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I. INTRODUCTION

The tensor properties of domain walls (DWs) in ferroic
materials receive increasing interest driven by achievements
in technological and measurement methods allowing to fabri-
cate and observe submicron and nanoscale structures. Various
methods for modeling of DWs are widely used [1], i.e.,
first-principle calculations [2], machine-learned force fields
[3], phase-field modeling [4], and phenomenological Landau-
Ginzburg-Devonshire (LGD) theory [5], which are closely
interconnected with the DW symmetry analysis described by
layer groups [6–10]. Polarization inside DWs was predicted in
some perovskite structures [11,12], where the crucial role was
assigned to flexoelectricity [13], rotopolar coupling [8,14],
or biquadratic coupling of the primary and secondary order
parameters [15].

The possible existence of a polar 180◦ DW in PbTiO3

(PTO) was reported by several authors. However, the situation
is not so clear yet. Based on ab initio calculations an Ising
structure of the DW profile was reported in Ref. [16]. Such a
DW would not carry any polarization within the wall. Other
authors concluded that the DW contains also a Néel-like po-
larization (asymmetric polarization profile) originating from
flexoelectricity [17,18] and a switchable Bloch component in-
dicating a ferroelectric phase transition inside the DW [2,19].
The latter behavior was not found to be stable within the LGD
approach [17,18], using the common free-energy expansion.

In the present work we show that the symmetry and prop-
erties of 180◦ DW in PTO can be excellently described by
extending the LGD potential by a coupling term which origi-
nates from inhomogeneous electrostriction.

*rychet@fzu.cz

II. SYMMETRY OF 180◦ DOMAIN WALLS

PTO exhibits a uniaxial ferroelectric phase transition from
cubic to tetragonal structure without multiplication of the
unit cell. The symmetry decrease from Pm3̄m to P4mm im-
plies 6 tetragonal domain states (DSs) 11 ≡ (−Ps, 0, 0), 21 ≡
(0,−Ps, 0), 31 ≡ (0, 0,−Ps), and 12, 22, 32 with opposite
sign of polarization.

To account for the significant interest [16–19], espe-
cially in the aforementioned DWs, we consider the 180◦
DW (31|n, p|32) between the DSs 31 ≡ (0, 0,−Ps) and 32 ≡
(0, 0, Ps), with the normal n = [1, 0, 0] and the microscopic
position p within the unit cell [8,9], implying that the DW
profiles depend only on x. The macroscopic tensor properties
of DWs described by Landau theory are independent of the
microscopic position p and they are determined by the layer
group symmetry of the DW twin (31|n|32), which contains
4 elements T12 = T{1, my, 2y, 1̄}, T are translations parallel
with the DW plane [9]. This symmetry implies that the Néel
component is antisymmetric P1(x) = −P1(−x), and it can be
nonzero in the whole temperature range below Tc. The Bloch
component is forbidden by symmetry, since application of my

yields P2(x) = −P2(x) = 0. Therefore it could only occur as
a result of phase transition lowering the symmetry to T ′

12 =
T{1, 2y}. Then the Bloch component can be nonzero and must
be symmetric: P2(x) = P2(−x) �= 0. The polarization profiles
and the phase transition in the DW are further analyzed using
the Landau-Ginzburg free-energy description.

III. THE FREE ENERGY

The Gibbs free energy can be written as

G(P, σ ) = G0 + Ges + Gel + Gflex + Gbiq + Gg, (1)
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where the individual parts, pure polarization G0, electrostric-
tion Ges, elastic energy Gel , gradient term Gg, flexoelectric
Gflex, biquadratic OP, and its gradient Gbiq read
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Gflex and Gbiq are terms not considered in Ref. [18], the influ-
ence of Gflex was studied in Ref. [17]. The origin of Gflex, Ges,
and Gbiq results from the expansion of strain with respect to
polarization and its gradients (Appendix A)

ei j = fi jkl
∂Pk

∂xl
+ Qi jkl PkPl + Ri jklmn

∂Pk

∂xm

∂Pl

∂xn
,

where the terms represent converse flexoelectricity, common
electrostriction of the bulk crystal, and gradient electrostric-
tion, respectively. The last term is important at the DW center,
where polarization is small but the gradient is big, and it
reflects the fact that the DW center is not a high-symmetry
structure. The two-suffix notation is used for tensor com-
ponents, e.g., R231 ≡ R223311. In cubic symmetry the tensor
Ri jklmn has 16 nonzero independent components. In Gflex and
Gbiq, only the terms that couple strain and polarization are
shown. For simplicity we omit the other symmetry-allowed

terms that directly couple polarization and its gradients: ∝
PiPj

∂Pk
∂x in Gflex and ∝ PiPj

∂Pk
∂x

∂Pl
∂x in Gbiq. The primary ef-

fect of these terms is to renormalize coefficients, which
for PbTiO3 are not very well known, anyway. However, it
should be stressed that independent on the particular choice
of the coupling coefficients of the flexoelectric part Gflex, the
stabilization of a Bloch component is not possible at any
temperature if the biquadratic gradient coupling part Gbiq is
zero.

Since the DW properties are x dependent, the gradi-
ent terms contain only ∂�/∂x derivatives. The quasi-1D
DW along the x axis requires mechanical equilibrium σ1 =
σ5 = σ6 = 0 and compatibility of strains e2(x) = e2s, e3(x) =
e3s, e4(x) = e4s, where eis are spontaneous strains of homo-
geneous domains. Therefore it is convenient to use the ther-
modynamic potential F (P, σ1, σ2, σ6, e2, e3, e4) obtained by
the Legendre transformation F = G + σ2e2 + σ3e3 + σ4e4.
When accounting for zero stress components the flexoelectric
and gradient electrostriction parts become

Gflex = − f12(σ2 + σ3)
∂P1

∂x
, (8)
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For the sake of simplicity we further keep only the R231

term, and neglect all remaining ones (i.e., R221 = R211 =
R441 = 0), since some of them only renormalize the gradient
coefficients; P1 is already accounted for in Gflex, and shear
is expected to be zero. Taking into account all above the
potential, F is expressed as

F = F0 + Fflex + Fbiq, (10)

where
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Fflex = f ′
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TABLE I. Free energy parameters [18,20,21].

α1 3.8(T − 752K) × 105 C−2m2N Q11 0.089 C−2m4 g11 2.0 × 10−10 m4C−2N
α11 −0.73 × 108 C−4m6N Q12 −0.026 C−2m4 g44 1.0 × 10−10 m4C−2N
α12 7.5 × 108 C−4m6N Q44 0.0337 C−2m4

α111 2.6 × 108 C−6m10N s11 8.0 × 10−12 m2N−1

α112 6.1 × 108 C−6m10N s12 −2.5 × 10−12 m2N−1

α123 −37 × 108 C−6m10N s44 9.0 × 10−12 m2N−1

where f ′
12 = f12F , r23 = R231A (A > 0), and b coefficients

are explicitly written in Appendix B. The numerical values
of the coefficients for PTO are shown in Tables I and II.

The spontaneous polarization is Ps =
√

−a11+
√

a2
11−3a1a111

3a111
. It is

reasonable to assume that the gradient-electrostriction coeffi-
cient R231 has the same sign as the electrostriction coefficient
Q12, since off-diagonal tensor components are often negative,
i. e., R231 < 0, which implies r23 < 0. In such case a stability
condition is also required: r23P2

s + g44/2 > 0. F0 was already
discussed in Ref. [18]. It is shown below that F0 alone does not
lead to the DW polarization, while the flexoelectric coupling
induces the Néel component P1, and the biquadratic coupling
r23 of the OP and its gradient can cause the appearance of
the Bloch component P2 below TDW , depending on its value.
For brevity, scaled numerical values of f ′

12 and r23 are further
used, i.e., their units are [ f ′

12] = 10−1 m5C−3N and [r23] =
10−10 m8C−4N. Let us stress that the values of f ′

12 and r23 are
not known and we treat them as free parameters in the free
energy F , Eq. (10).

IV. 180◦ DOMAIN WALLS

The polarization profile can be obtained by minimiz-
ing the free energy functional L = ∫ ∞

−∞ F (P(x), ∂xP(x))dx
with proper boundary conditions P1(±∞) = 0, P2(±∞) = 0,
P3(±∞) = ±Ps, see Sec. II. In practice, this can be achieved
by direct minimization of the discretized (finite-difference)
free energy. An example of the DW profile at low temper-
atures and with specifically chosen values of f ′

12 and r23 is
shown in Fig. 1. Alternatively, it can be obtained by solving
Lagrange-Euler (LE) equations. Let us first assume F = F0,
i. e., f ′

12 = r23 = 0. Then the LE equations can be solved
explicitly and the Ising DW profile is obtained:

P1 = P2 = 0, P3 = Ps tanh(x/2L)√
η/ cosh2(x/2L) + 1

, (14)

η = b3+2b33P2
s

2b3+b33P2
s

, L =
√

g44

30a111P4
s +2b3+12b33P2

s
. In Ref. [18] the re-

duced free energy F0 was considered and the possibility of

TABLE II. Auxiliary parameters.

A = Q11s11−Q12s12
s2
11−s2

12
1.12 × 1010 C−2m2N

B = Q12s11−Q11s12
s2
11−s2

12
2.51 × 108 C−2m2N

C = s11
2(s112−s122 )

6.93 × 1010 m−2N

D = −s12
s112−s122 4.33 × 1010 m−2N

E = −Q12
s11+s12 4.73 × 109 C−2m2N

F = Q11+Q12
s11+s12 1.15 × 1010 C−2m2N

nonzero P1 and P2 was mentioned. But it will be shown that
in PTO below Tc = 765 K the Ising profile is in fact always
stable when calculated from F0. In order to get nonzero po-
larization at the DW center additional free energy terms are
needed. At first, only the flexoelectric term Fflex is consid-
ered: f ′

12 �= 0, r23 = 0. It leads to a nonzero antisymmetric

Néel component P1 ∝ ∂P2
3

∂x (and P2 = 0) in the whole tem-
perature range below Tc and it is in accord with the DW
symmetry in Sec. II: P1(−x) = −P1(x). The typical antisym-
metric Néel DW profile is obtained from Fig. 1 by setting
P2 = 0. For f ′

12 < 0 it possesses head-to-head configuration
(see Fig. 1), while for f ′

12 > 0 it has tail-to-tail configuration,
which corresponds to P1 in Fig. 1 taken with negative sign. For
simplicity’s sake we do not encounter depolarizing fields here.

The Bloch component P2 can occur by introducing a bi-
quadratic term of the OP and its gradient. Let us first assume
a zero flexoelectric term f ′

12 = 0, r23 �= 0. The typical Bloch
profile is obtained by setting P1 = 0 in Fig. 1. The discussion
of symmetry in Sec. II indicates that a nonzero P2 could
appear only due to a phase transition at TDW accompanied by
a decrease of the DW symmetry. Stability of the Ising solution
Eq. (14), with respect to a small disturbance P2 = 0 + δ2,
is inspected by solving the eigenvalue problem (equation of
motion of δ2) [15], see Appendix C:

�−1ω2
0δ2 = − 2δ2

(
a112P4

3 + b2 + b23P2
3 + r23P2

3,x

)
+ δ2,xx

(
2r23P2

3 + g44
) + 4r23P3P3,xδ2,x. (15)

FIG. 1. The most general profile, mixed Bloch+Néel, at low
temperatures P1 �= 0, P2 �= 0. Generally, in the Bloch profile P1 =
0, P2 �= 0; in the Néel profile P1 �= 0, P2 = 0; and in the Ising profile
P1 = 0, P2 = 0. The units of f ′

12 and r23 are [ f ′
12] = 10−1 m5C−3N

and [r23] = 10−10 m8C−4N.
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FIG. 2. The temperature dependence of the DW soft mode for
different values of r23. The phase transition occurs at temperatures
TDW = 0, 150, 305 K. The increase of ω2

0 below TDW = 305 K is
also shown.

The instability of the mode δ2 occurs when ω2
0 < 0. For

positive ω2
0 the contribution of δ2 to the susceptibility reads

	χ = �/ε0ω
2
0. 	χ is defined as 	χ = δ2,A/E , where δ2,A

is an amplitude of the polar δ2(x) mode and E is an electric
field, see Appendix C. The analytic solution of the differential
equation [Eq. (15)] is unknown and we solved it numerically
for several values of the biquadratic (of the OP and its gradi-
ent) coefficient r23, Fig. 2. It turns out that the phase transition
in the DW occurs at TDW > 0 if r23 < −0.4815. The effect
of negative r23 can be seen from the quadratic P2

2 term at
the DW center (b2 + r23P2

3,x )P2
2 , which decreases if r23 < 0.

Near above TDW , ω2
0 ∝ (T − TDW ) (see Fig. 2). Below TDW the

symmetric Bloch component P2(x) appears, its shape is shown
in Fig. 1. Below TDW , ω2

0 of the polar mode was calculated by
solving the coupled equations of motion of δ2 and δ3 obtained
from Eq. (C4). It exhibits a typical hardening ω2

0 ∝ (TDW − T )
shown in Fig. 2. The corresponding dielectric susceptibility
	χ around the phase transition at TDW = 305 K exhibits
a 1/|T − TDW | divergence, Fig. 3, characteristic of a ferro-
electric phase transition. The temperature dependence of the

FIG. 3. The susceptibility divergence ∝ 1/|T − TDW | at TDW =
305 K (r23 = −0.736). The softening of ω2

0, the same as in Fig. 2, is
also shown for reference.

FIG. 4. Temperature dependence of the Bloch component P2,A

and Néel component P1,A for 2 values of f ′
12. Full line shows the

Ising→Bloch transition at TDW ≈ 305 K, P1,A = 0. Dashed lines
show the transition Néel→Bloch+Néel at lower TDW ≈ 220 K,
P1,A �= 0 at all temperatures. The inset shows a tiny cusp of P1,A at
TDW ≈ 220 K, indicating the competition between the Néel and Bloch
components.

amplitude of the P2(x) profile is P2,A ≈ (TDW − T )1/2, see the
solid line in Fig. 4. A similar softening of the P2 polar mode,
its freeze-out below TDW , and divergent susceptibility was
obtained by Monte Carlo (MC) simulations in Ref. [19].

The interrelation between the Néel and Bloch components
comes into play when concurrently f ′

12 �= 0 and r23 �= 0. The
component P1 exists in the whole temperature range and TDW

is shifted to lower temperatures, see the dashed lines in Fig. 4.
Below TDW the P1 and P2 components coexist (mixed Néel-
Bloch profile). The inset in Fig. 4 shows that P1 exhibits a tiny
cusp at TDW , reflecting the competition between P1 and P2.
The polar mode softening and the anomalous susceptibility
are similar, as shown in Fig. 3 for the previous case.

The inhomogenous electrostriction results in an increase
of stress components σ2 and σ3 at the DW center, Fig. 5. The
dashed lines correspond to the DW profile Eq. (14) without
biquadratic gradient coupling. The substantial increase of the

FIG. 5. Temperature dependence of inhomogeneous stress com-
ponents in the DW center, with biquadratic term (solid lines) and
without biquadratic term (dashed lines). Flexoelectric coupling is set
to zero.
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FIG. 6. Temperature dependence of inhomogeneous strain in the
DW center, with (solid lines) and without (dashed lines) biquadratic
term. Flexoelectric coupling is set to zero.

tensile stress σ2 along the y axis after including the biquadratic
gradient coupling supports the appearance of the P2 polariza-
tion and the corresponding symmetry reduction. As a result,
the DW center is compressed along the x direction, Fig. 6.

V. SUMMARY

The layer group symmetry of a 180◦ DW in PbTiO3 indi-
cates the existence of an unswitchable antisymmetric Néel P1

polarization around the DW center in the whole temperature
range below Tc and within the Landau-Ginzburg description
it is shown to be induced by the flexoelectric term. Similar
results concerning the flexoelectric term were also obtained
by phase-field modeling [17]. In general, based on symmetry
considerations, it is clear that the Néel component is present
in every DW. Here, we have shown that the symmetric switch-
able Bloch polarization P2 occurs due to a phase transition
in the domain wall at TDW < Tc, which is driven by the
biquadratic coupling of the OP and its gradient. This new
term can be understood resulting from inhomogeneous elec-
trostriction, which in contrast to bulk electrostriction becomes
effective in the center of the 180◦ DW of PTO. The softening
of the polar mode, divergent susceptibility, and the tempera-
ture dependence of P2 below TDW are in excellent agreement
with the results from first-principles calculations [2,19].
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APPENDIX A: STRAIN EXPANSION

Expansion of strain with respect to Pi and ∂Pj/∂xk up to
second order reads

ei j = di jkPk + fi jkl
∂Pk

∂xl
+ Qi jkl PkPl

+ Ti jklmPk
∂Pl

∂xm
+ Ri jklmn

∂Pk

∂xm

∂Pl

∂xn
, (A1)

where the terms are piezoelectricity, flexoelectricity, bulk
electrostriction, a rank-5 tensor property, and “gradient elec-
trostriction,” respectively. For cubic symmetry Pm3̄m rank 3
and 5 tensors are zero, di jk = Ti jklm = 0. Bulk electrostric-
tion contributes in the bulk sample, while it is zero in
DWs, where polarization is zero. On the contrary, gradi-
ent electrostriction is nonzero inside DWs and zero in the
bulk.

APPENDIX B: COEFFICIENTS

The ′b′ coefficients in F0 Eq. (11):

b1 = a1 − P2
s Q12(Q11 + Q12)

s11 + s12
,
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s

(
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)
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,
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s
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)
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) − 2Q11Q12s11

s2
11 − s2

12

+ Q2
44

2s44
. (B1)

The reduced gradient electrostriction Eq. (13) and flexo-
electric Eq. (12) parts:

Fbiq + Fflex =

− R231

{
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∂P1

∂x

)2

+ R231 f12

s11 + s12

((
∂P3

∂x

)2

+
(

∂P2

∂x

)2
)(

∂P1

∂x

)
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≈ R231A

((
∂P3

∂x

)2

P2
2 +

(
∂P2

∂x

)2

P2
3

)

+ f12F

(
∂P1

∂x

)(
P2

2 + P2
3

)
, (B2)

where we keep only two terms. The auxiliary coefficients A to
F are positive, see Table II. All other terms are neglected—
we neglect higher than second-order gradients B << A, terms
renormalizing gradients, P1 is kept only in the flexoelectric
part.

APPENDIX C: VARIATION

L =
∫ ∞

−∞
F (P(x), ∂xP(x))dx, (C1)

δL =
∫ ∞

−∞

δL
δP

δPdx =
∫ ∞

−∞

(
∂L

∂P
− d

dx

∂L

∂Ṗ

)
δPdx. (C2)

The DW profiles P are solutions of three equilibrium equa-
tions

δL
δPi

≡
(

∂L

∂Pi
− d

dx

∂L

∂Ṗi

)
= 0, i = 1, 2, 3. (C3)

A small perturbation P = P + δ leads to three equations of
motion

�−1δ̈i = −�−1ω2
0δi = − δL

δPi

∣∣∣∣
P→P+δ

, (C4)

where on the right-hand side only the linear terms in δ are
kept. The perturbation is assumed as δ ∝ eiωx, the coefficient
� = ne2/m, where m, e, n are mass, charge, and density
of ions, respectively, [�] = kg−1m−3C2. The DW profile be-
comes unstable when the smallest eigenvalue ω2

0 < 0. The
static susceptibility of the polar eigenmode δ2(x) is defined
as 	χ ≡ δ2,A/E = �/ε0ω

2
0, where δ2,A is an amplitude of the

polar mode. In case of the Ising profile the three equations in
Eq. (C4) are decoupled.
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