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Group theoretical and ab initio description of color center candidates in fluorographene
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We present a group theoretical and ab initio analysis of lattice point defects in fluorographene, with a focus
on neutral and negative VCF vacancies. By using a combination of density functional theory calculations and
group theory analysis, we investigate the many-body configurations of the defects and calculate the vertical
absorption and zero-phonon line energies of the excited states and their dependence with strain. The description
of the defects is extended by computing their formation energy, as well as further relevant parameters as the
Jahn-Teller energy for neutral VCF and the zero field splitting for negative VCF vacancies. Based on our results,
we discuss possible quantum applications of these color centers when coupled to mechanical oscillation modes
of the hosting two-dimensional material. The symmetry and active orbitals of the defects exhibit a parallelism
with those of the extensively studied nitrogen vacancy (NV) centers in diamond. In this context, the studied
defects emerge as interesting candidates for the development of two-dimensional quantum devices based on
fluorographene.
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I. INTRODUCTION

Point defects are of increasing interest in the fields
of quantum information and sensing due to their poten-
tial applications, among which are the promising nitrogen
vacancy (NV) center technologies [1–3]. By coupling the
localized states introduced by color centers with mechanical
oscillation modes, hybrid quantum devices with long-range
interactions mediated by phonons can be fabricated through
appropriate design [4–8]. The introduction of color centers
in two-dimensional (2D) materials is particularly promising
for the continuously accelerated development of quantum
technologies.

Two-dimensional resonators can be mechanically coupled
with cavities through optothermal, electromagnetic, or fur-
ther interactions [9–11]. The dynamics of 2D membranes
and other micro- and nanodevices have been widely studied
for their potential applications in quantum and mass sensors,
quantum simulators, and nanophotonics [10,12–14]. Because
color centers in 2D structures lie naturally on the surface of
the material, high sensitivity to the environment is expected
[15]. Various materials, including graphene [16–19], MoS2

[20,21], hexagonal boron nitrite (h-BN) [22,23], and others
[10,24,25], have been studied as candidates for 2D systems.
In particular, h-BN, a wide-band insulator that can host color
centers [26,27], has been proposed as a platform for quantum
simulation and ultrasensitive force detection [22,23,28,29].

In this work, we explore the potential of defect-bearing flu-
orographene [30,31] as a platform for the realization of hybrid
quantum devices. Fluorographene (FG) is a stoichiometric 2D
derivative of graphene, in which one fluorine atom is bonded
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to each carbon atom. This material has been used for a variety
of applications, including electrochemical sensors, batteries,
and electrocatalysis, as well as electronic applications such
as transistors and solar cells [32]. A key characteristic of FG
is that the carbon atoms exhibit sp3 hybridization instead of
the sp2 one found in graphene. As a result, the electronic
properties of FG are closer to those of diamond than to those
of graphite. In fact, the structure of FG is similar to the
fluorine-terminated (111) diamond surface, which has been
proposed as a suitable candidate for the implementation of a
quantum simulator at room temperature [33]. The application
of polarized nuclear spins in quantum simulators is an active
research field, in particular for the previously mentioned h-BN
based systems [34,35].

Although it has been well established that FG presents a
large band gap, its precise value has been a long-standing
issue that appears to have been clarified only recently [36].
Initial measurements suggested a band gap larger than 3 eV
[31], and later measurements yielded a value of 3.8 eV, consis-
tent with the first results [37]. Additional photoluminescence
emission peaks have been observed at 3.56 [38] and 3.65 eV
[37,38], with the latter being attributed to phonon-assisted
radiative recombination. On the theoretical field, the initial
density functional theory (DFT) [39] calculations at the local
density approximation (LDA) and generalized gradient ap-
proximation (GGA) theory levels resulted in predicted band
gap values close to 3 eV [40–44], in excellent agreement
with the experimental measurements. However, more refined
calculations including the exact exchange interaction through
the hybrid screened functional (HSE) predicted a larger band
gap of ≈5 eV [43,45].

Additional calculations incorporating electron-electron in-
teractions via Green’s function methods (GW) on top of
either LDA or GGA to further improve the description of
the electronic structure led to a predicted band gap of about
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7.5 eV [41,42,44,45]. The inclusion of electron-hole inter-
actions through the Bethe-Salpeter equation (BSE-GW), one
of the most advanced methods beyond DFT, partially cancels
the electron-electron interactions and results in predicted band
gap values between 5.4 [44] and 5.65 eV [36]. It is worth
noting that the latter values are in agreement with the results
obtained via the HSE method, which is computationally less
demanding.

The discrepancies between the measured and calculated
values of the band gap have been tentatively linked to midgap
states resulting from defects in the material [42,44]. A com-
bined experimental and theoretical study has confirmed this
hypothesis, showing that the band gap value is in agreement
with previously reported BSE-GW results [36]. The long-
standing FG band gap conundrum highlights the importance
of characterizing defects in materials. However, most theoret-
ical works on FG have primarily focused on improving the
accuracy of band gap predictions for the pristine material.
Thus, the calculation of defects is often relegated to a sec-
ondary place [44–46], or analyzed at the GGA level of the
theory, which strongly underestimates the band gap [47].

In this study, we investigate the electronic structure of two
types of defects in FG: a fluorine vacancy (VF) and a double
fluorine and carbon vacancy (VCF). A central finding of our
work is a parallelism between essential electronic properties
of the VCF defect in fluorographene and the negatively charged
NV center in diamond. The NV center consists of a substi-
tutional nitrogen atom adjacent to a vacancy in the diamond
lattice. Consequently, the electronic structure of the negatively
charged NV center’s ground state is a spin triplet, accom-
panied by a sharp optical zero phonon line of 637 nm. The
precisely defined optical transition indicates the involvement
of midgap states which is facilitated by the large band gap
of diamond [2]. Crucially for applications, the NV center ex-
hibits an intersystem crossing that allows for state-dependent
readout and high-fidelity state preparation. These properties
have driven a research focus toward the negatively charged
NV− rather than in the neutral NV0 [2]. The advantageous
properties of the negatively charged NV were a significant
source of motivation for the present study aimed at identifying
similar defects in fluorographene. This effort led to the iden-
tification of the negatively charged VCF defect as a promising
candidate.

The paper is structured as follows. We present the de-
scription of the theoretical method in Sec. II. Our approach
involves using DFT to obtain the single-particle localized
states and group theory to construct the many-body config-
urations. In Sec. III we discuss our results. We start with a
description of pristine fluorographene and the VF defect in
Sec. III A. Neutral and negative VCF vacancies are presented
in Secs. III B and III C. We examine the transitions between
ground and excited states introduced by the defects and an-
alyze their dependence on strain. In addition, we compute
the Jahn-Teller energy for the neutral defect and the zero
field splitting for the negatively charged one. Given that the
symmetry of the VCF defect is equivalent to that of a NV
center, a parallelism can be established between both systems.
Based on previous NV studies, in Sec. III D we discuss pos-
sible applications of defective FG sheets as quantum hybrid
resonators. Our calculations of the formation energy of the

defects are presented in Sec. III E. The conclusions are pre-
sented in Sec. IV.

II. METHODS

The computational details of our work, based on previous
studies of related 2D systems [15,48,49], are as follows. We
employed the DFT code Quantum Espresso [50] and used a
supercell approach to study defects in FG. We used the HSE
method with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [51,52], adjusting the parameter α =
0.35 to match the band gap of fluorographene obtained with
the latest calculations and experimental data [36]. In order
to perform geometrical relaxations including HSE, we used
norm-conserving pseudopotentials. We used an energy cutoff
of 100 Ry and, unless otherwise stated, we used a value of
0.01 eV/Å as the criterion for the convergence of the atomic
forces. We considered a 15 Å vacuum spacing between fluo-
rographene sheets.

We used 7 × 7 hexagonal supercells, which preserve the
symmetry of the defects, except for the calculations involving
strain in the x and y directions, where we used 7 × 8 orthogo-
nal supercells. This cell size was required to avoid interactions
between the periodic copies of the defects. After preliminary
calculations, we do not expect a significant variation of our re-
sults when using larger supercells. In all cases we considered
only the � point in the reciprocal space and therefore a single
q point in the Hartree-Fock calculation for the HSE method.

In our study, we employed the �SCF method [53,54] to
calculate relevant transition energies, which involves com-
puting the energy difference between the ground state and
excited states with different electronic occupations. We deter-
mined the vertical absorption energy (VAE) by keeping the
ground-state geometry fixed and imposing an excited elec-
tronic occupation for the calculation of the excited states.
The zero-phonon line (ZPL) was obtained after performing a
geometrical relaxation of the excited electronic configuration.
It should be noted that the �SCF method is applicable only to
configurations corresponding to a single Slater determinant.
To estimate the energy of multi-determinantal configurations,
we used auxiliary single-determinant states [55,56]. It is worth
stressing that this method provides only an estimation of the
transition energies for such configurations [57,58].

III. RESULTS

A. Pristine fluorographene and VF

We obtained a lattice parameter of 2.58 Å for pristine
fluorographene, in good agreement with available theoretical
[42,59,60] and experimental [31,61] data, and a band gap of
5.65 eV.

We start our analysis of defects with the simple fluorine
vacancy, VF, which lowers the C6v symmetry of pristine flu-
orographene to C3v . The VF vacancy leaves a C atom with a
dangling sp3 bond, which corresponds directly to a molecu-
lar orbital (MO) with spatial symmetry A1. We denoted this
single-electron orbital a1. The geometry of the system and the
a1 orbital are illustrated in Fig. 1(a).

According to our spin-polarized DFT calculation, the
a1 orbital is half occupied in the ground state (GS),
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FIG. 1. (a) Geometry of fluorographene with a VF vacancy and
the localized a1 orbital. (b) Single-particle levels for the ground
state (GS) and excited state (ES) of the VF vacancy. The occupied
(empty) single-electron states are indicated in blue (orange), and
the conduction (valence) bands are shown as areas shaded with the
same colors. The localized orbitals are labeled, and their occupancy
is indicated with symbols: empty (circle) or occupied (up or down
arrows).

resulting in a magnetic moment of the defect of 1 and a
2A1 many-body configuration. The molecular orbitals of the
majority (up) and minority (down) spins are well localized,
with the up state located within the valence band and the down
state inside the band gap [see Fig. 1(b)]. The first excited
state (ES) can be constructed by promoting an electron from
the highest occupied valence bands, which have E symmetry,
to the unoccupied a1 state. In this case, the well-localized a1

orbital is doubly occupied, and there is a single hole in the E
bands.

We calculated the VAE and ZPL following the method-
ology described in Sec. II, and obtained values of 3.44 eV
and 3.00 eV, respectively. The ZPL value is consistent with
absorption bands observed in less fluorinated fluorographene
samples [36]. As suggested in Ref. [36], it is likely that the op-
tical transitions introduced by this midgap state were initially
attributed to a much lower band gap of fluorographene.

B. VCF

A VCF defect in fluorographene also lowers the symmetry
of the system to C3v . In this case, there are three sp3 dangling
bonds of the C atoms around the defect, and an in-depth
group theory analysis becomes relevant. Using the projection
operator method [62] we determined that the three localized
orbitals that can be formed have symmetries A1 and E . The
single-particle orbitals a1, ex, and ey are given by

a1 = 1√
3

(σ1 + σ2 + σ3), (1)

ex = 1√
6

(2σ1 − σ2 − σ3), (2)

ey = 1√
2

(σ2 − σ3), (3)

where σi corresponds to the dangling orbital of each C atom.
The geometry of the system and the orbitals is presented in
Fig. 2(a).

The most symmetric a1 orbital lies lowest in energy. There
are three electrons to fill the orbitals, so that in the ground
state two electrons are located in the a1 orbital, and one in
an e orbital. The configuration is then a2

1e1, and the spatial
symmetry of the many-body wave function in the C3v symme-
try induced by the defect is A1 ⊗ A1 ⊗ E = E . The S = 1/2
spin of the ground-state configuration gives a spin doublet, so
that the total state corresponds to 2E . As discussed below, this
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FIG. 2. (a) Geometry of fluorographene with a VCF defect and the resulting localized orbitals. (b) Single-particle levels for the ground
state (2E ) and first excited state (4A2) for the VCF defect. The occupied and empty single-electron states are indicated with blue and orange,
respectively, and the shaded areas represent the conduction and valence bands. The localized orbitals are labeled and their occupancy is
indicated with symbols: empty (circle) or occupied (up or down arrows). (c), (d) Vertical absorption energy (VAE) and zero-phonon line (ZPL)
transitions of the many-body states referred to the ground state, in eV. The 4A2 state is computed using the �SCF method, while the remaining
states are computed from auxiliary configurations and should be taken as estimations (see text). Optical transitions are possible among the
states on the left side of each plot, while only nonradiative transitions involve the 4A2 state, located on the right side of the plot.
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TABLE I. Electronic configurations of the VCF defect. The no-
tation 2E ′ is used to differentiate this state from the ground state
with same symmetry. We label with Ã the state with A1 symmetry,
to distinguish it from the states with A2 symmetry, labeled with
A. We show only the configurations with non-negative spin pro-
jections; the ones with negative spin projection can be constructed
straightforwardly.

2S+1�o Electronic configuration Label

2E |a1a1ex〉, |a1a1ey〉 E0(x,y)
+1/2

4A2 |a1exey〉 A1
+3/2

1√
3
(|a1exey〉 + |a1exey〉 + |a1exey〉) A1

+1/2

2E ′ 1√
2
(|a1exex〉 − |a1eyey〉) E2(x,y)

+1/2
1√
2
(|a1exey〉 − |a1exey〉)

2A2
1√
6
(2|a1exey〉 − |a1exey〉 − |a1exey〉) A3

+1/2

2A1
1√
2
(|a1exex〉 + |a1eyey〉) Ã4

+1/2

situation is analogous to the configuration of a neutral NV0

center [63,64].
A neutral NV0 center has four molecular orbitals formed

from the corresponding dangling bonds, two with a1 sym-
metry and a double degenerated e orbital [65]. However, one
a1 orbital is located well below the valence band, and is not
relevant for the transitions of interest. The remaining three
orbitals are located within the band gap and accommodate
three electrons, which is precisely the same configuration as
the VCF vacancy in fluorographene. Then, the conclusions
derived from group theory for NV centers apply also to VCF.
Note that they include the resulting many-body configurations
but not necessary their energy order, which is beyond a group
theoretical analysis. The similarity motivates also the study
of the negatively charged V−

CF defect, which is analyzed in
Sec. III C.

The many-body configurations corresponding to the
ground and first excited states of the VCF defect are presented
in Table I. The first excited states are obtained by promoting
an electron to the E orbitals, that is, a a1

1e2 configuration. The
spatial symmetry of the resulting many-body states is given by
A1 ⊗ E ⊗ E = A1 ⊕ A2 ⊕ E . We constructed the electronic
configurations given by the single-particle orbitals using the
projection operator method. Note that we obtained three dou-
blets with different symmetry and in particular a 2A2 doublet
which, as pointed out in Ref. [64], has been misidentified in
some works as 2A1 for NV0. These states can become mixed
by different interactions such as spin-orbit, spin-spin, electric
and magnetic fields, and strain, as analyzed for NV0 in several
works [64–66].

Given that the many-body ground state presents spatial
degeneracy, the system is Jahn-Teller unstable, giving rise to
an adiabatic potential energy surface (APES) with the typical
“Mexican hat” shape [67]. Therefore, the geometrical config-
uration of the ground state will have a symmetry lower than
C3v , namely C1h. For simplicity, we keep the labels of the C3v

symmetry for the configurations in our notation. In our analy-
sis, we first relaxed the system while enforcing C3v symmetry
to obtain the high-symmetry (HS) structure. We then lifted the

symmetry restriction and obtained the C1h lower-symmetry
structure with the lowest energy (LE), a method similar to
the one presented in Ref. [68] for the study of a neutral NV0

center, analogous to our system. For these calculations we
used a stricter force convergence criterion of 1 meV/Å to
obtain reliable values for the Jahn-Teller energy.

We found that the Jahn-Teller stabilization energy, which
is the energy difference between the HS and LE structures,
was EJT = 30 meV. This value is about one third of the
value found for a neutral NV0 center [65] and close to the
one found for a negatively charged NV− center [69]. There
are three equivalent LE points separated by warping barriers,
with saddle points with an energy δ above the minimum [67].
By computing the direct path between two equivalent mini-
mum energy configurations located at different low-symmetry
points, we obtained δ = 20 meV.

In Fig. 2(b) we present the single-particle levels for both
the ground state 2E and the first excited state 4A2. The
levels E0

±1/2 and A1
±3/2 of each manifold can be described

by using a single Slater determinant (see Table I). There-
fore, the transition energies can be obtained straightforwardly
using the �SCF method, and are given by the difference
between the energies of each configuration. We estimated
the transition energies for the remaining excited states us-
ing single Slater determinant configurations [55–57] (see the
Appendix). While this method has been successfully used
to compute transition energies between multi-determinantal
configurations, it only provides a rough estimation of the
energies [57]. For example, the method does not account ac-
curately for the geometrical relaxation energy (Stokes shift),
given that the geometry of the actual configuration cannot
be computed. In our calculations of the ZPL for the higher
excited states we considered the same geometry as the one
obtained for the first excited state, given that all these excited
states have the same a1

1e2 electronic occupation [56]. Note that
the excited state 2E ′ will also present Jahn-Teller distortion;
however the accuracy of our method is not enough to estimate
its EJT .

In Figs. 2(c) and 2(d) we present the many-body states
and their corresponding VAE and ZPL transition energies for
the VCF defect. The 2A1 state lies at 7.8 eV and is omitted.
The values of the optical transitions from the ground state
to the excited states 2E ′ and 2A2, although approximated, are
consistent with available experimental data that show absorp-
tion features at around 2.9 eV and 4.8 eV in less fluorinated
fluorographene, attributed to single VF vacancies [36]. Only
nonradiative transitions are allowed between these states and
the 4A2 state. The latter state is split via spin-spin interac-
tion into two double-degenerated states, with MS = ±1/2 and
MS = ±3/2 [65]. Since the MS = ±3/2 states only couple
via very weak nonaxial spin-orbit interaction with the ground
state, they are long-lived and have been proposed as qubit
candidates for NV0 centers [65].

In Fig. 3 we present the dependence of the ZPL transition
energy between the ground state and the first excited state on
strain. Strain is defined as the ratio of the lattice deforma-
tion (�li) to its initial dimension (li), that is, ε = �li/li with
i = x, y. When strain is applied in the y direction, we obtain a
variation of −8.5 eV/strain for the transition energy, whereas
we obtain a lower value of −1.3 eV/strain when strain is
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FIG. 3. (a) Strain dependence of the transition energy between the ground state (2E ) and the first excited state (4A2) for a VCF defect, for
strain applied in the x and y directions (shown in the inset). A linear fit is used to obtain the dependence for each direction. (b) Single-particle
levels’ dependence with strain for each case.

applied in the x direction. The value in the y direction is not far
from the large 12 eV/strain shift obtained for VNNB defects
in h-BN sheets [70]. As shown in Fig. 3(b), strain in the x
direction affects mainly the ey single-particle orbital of the
ground state 2E , which is occupied by an electron in our DFT
calculation. This dependence is consistent with the geometry
of the ey orbital [see Fig. 2(a)]. On the other hand, when strain
is applied in the y direction in the ground state, the occupied
ey orbital remains almost constant in energy. Finally, in the
excited state 4A2 both ex and ey orbitals are occupied, and
the energy change when strain is applied in either direction
is similar. As a result, when computing the energy difference
between the ground and first excited states, there is a larger
variation in energy when strain is applied in the y direction.
This is because the energy variation of each state with strain
in the x direction partially compensates.

C. V−
CF

As discussed before, the negatively charged V−
CF defect

possesses the same symmetry as a NV− center. In Table II

TABLE II. Electronic configurations of the V−
CF defect, in the

hole picture. The notation 1E ′ is used to differentiate this state from
the 1E state with same symmetry. We label with Ã the state with A1

symmetry, to distinguish it from the ground state with A2 symmetry,
labeled with A. We show only the configurations with non-negative
spin projections; the ones with negative spin projection can be con-
structed straightforwardly.

2S+1�o Electronic configuration Label

3A2 |exey〉 A0
+1

1√
2
(|exey〉 + |exey〉) A0

0

1E 1√
2
(|exex〉 − |eyey〉), 1√

2
(|exey〉 − |eyex〉) E1(x,y)

0

1A1
1√
2
(|exex〉 + |eyey〉) Ã2

0

3E |aex〉, |aey〉 E3(x,y)
+1

1√
2
(|aex〉 + |aex〉), 1√

2
(|aey〉 + |aey〉) E3(x,y)

0

1E ′ 1√
2
(|aex〉 − |aex〉), 1√

2
(|aey〉 − |aey〉) E4(x,y)

0

we present the many-body states corresponding to V−
CF,

which were obtained using the projection technique of group
theory. We adopt the hole picture for the description of this
defect, which is more convenient given that the electronic
occupation is larger than half filled. The interactions arising
between states have been studied in previous works [71,72].

Only the states A0
±1 and E3

±1 correspond to single-
determinant configurations and can be calculated with the
�SCF method. However, the convergence of the E3

±1 state
could not be achieved with the HSE method used. Note that
the difficulty in convergence is expected for this case where a
hole occupies a degenerated E orbital (a1e1

xe2
y electron occu-

pation) [73,74]. Then, we used the a1e1.5
x e1.5

y configuration for
the calculation of this state. By comparing the results using
the a1e1.5

x e1.5
y configuration with preliminary calculations us-

ing a1e1
xe2

y and a larger convergence threshold, we estimate
a difference in the energy of ≈0.05 eV, in agreement with
previous reports [73].

As in Sec. III B, we estimated the transition energies of
the remaining states by using auxiliary states (see the Ap-
pendix). The excited singlets E1

0 and Ã2
0 have two holes in

the orbitals with E symmetry, which results in the same
electronic occupation as the ground state. Then, we consid-
ered the ground-state geometry in the estimation of the ZPL
for these excited states, assuming their ZPL energies equal to
their vertical excitation energies. According to Hund’s rules,
the remaining singlet E4

0 lies higher in energy than the excited
triplet E3

+1, so that we omitted it.
In Fig. 4(a) we present the single-particle levels for the

ground state, which can be described with a single determi-
nant. The empty e orbitals of the ground state 3A2 are pushed
up in energy into the conduction band when compared to
the same levels of the 4A2 state of the neutral VCF defect
[Fig. 2(b)]. However, our DFT calculations show that these
states remain well localized, and the molecular orbitals are
similar to those shown in Fig. 2(a).

In Fig. 4(b) we show the VAE transitions for the excited
states. As discussed before, the VAE provides an estima-
tion of the ZPL for the singlet states. For the excited triplet
3E we obtained a ZPL energy of 2.3 eV. Note that this
value of ZPL for 3E is lower than the absorption features
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FIG. 4. (a) Single-particle levels for the ground state (3A2) and
the excited state 3E for the V−

CF defect. (b) Vertical absorption energy
(VAE) transitions of the many-body states referred to the ground
state, in eV. The 3E state is computed using the �SCF method, while
the remaining states are computed from auxiliary configurations.
Optical transitions are possible among states on the left or right
side of the plot, while only nonradiative transitions are possible
among different sides. The estimated ZPL of 1E and 1A2 are equal
to the VAE. The ZPL of 3E is 2.3 eV. (c) Strain dependence of the
transition energy between 3A2 and 3E , for strain applied in the x and
y directions. A linear fit is used to obtain the dependence for each
direction. (d) Strain dependence of the ZFS of the 3A2 triplet.

experimentally observed [36–38]. This indicates that the pres-
ence of the negatively charged defects is not energetically
favored, which is consistent with the formation energy anal-
ysis presented in Sec. III E. Consequently, the negatively
charged state should be stabilized by applying a gate voltage.
The obtained ZPL for the V−

CF defect in fluorographene cor-
responds to 539 nm, which is blueshifted with respect to the
637 nm value of NV−, and close to the green laser wavelength
used in the initialization of the latter defect (632 nm) [33].

A distinguishing feature of the NV− center defect is that it
allows for high-fidelity preparation of the m = 0 sublevel of
its ground state, labeled A0

0 in our system, due to a convenient
intersystem crossing (ISC) between triplet and singlet states
[2]. Taking as reference the VAE of the many-body states
of V−

CF [Fig. 4(b)], the ordering of the levels for our system
would be the same as that of the NV center. If that were indeed
the case, symmetry considerations would allow in principle
the existence of a similar ISC, which could then be tested
using available models [75]. However, our rough estimations
for the ZPL values suggest that the 1A2 singlet remains above

the 3E triplet. In order to decide this question conclusively it is
of considerable interest to extend this study using alternative
ab initio methods better suited for the calculation of multiref-
erence states [49], since an accurate description of the state
ordering is a first step to determine whether an ISC similar to
the one in NV− centers is also present in V−

CF defects in FG.
Spin-orbit and spin-spin interactions split the excited states

3E into four sublevels, and the fine structure is further split
into two branches (Ex, Ey) under the application of nonaxial
strain [72]. Figure 4(c) shows the dependence of the ZPL of
the 3E state with application of strain in the x and y direc-
tions. We obtained a value of approximately −8 eV/strain for
both directions which, as in the case of the neutral defect, is
comparable to the strain shift obtained for defects in h-BN
sheets [70].

Another parameter of interest in the description of the
defect is the zero field splitting (ZFS) tensor. The ZFS is
determined to first order by dipolar spin-spin interactions, and
we calculated its value for the ground state from our DFT
results [76]. For the C3v symmetry of the defect, only the
axial ZFS parameter D is different from zero. We obtained
D = 2.97 GHz, which is close to the value for NV centers
(D = 2.88 GHz [2]). In addition, we calculated the depen-
dence of the ZFS for the 3A2 ground state on strain [Fig. 4(d)].
We obtained a shift of −10 GHz/strain for both directions.
The symmetry breaking induced by strain allows a nonzero
value of the transversal component of the ZFS (E parameter).
Our calculations yield a value of E ≈ −20 MHz for ±1%
strain, which is close to the numerical accuracy of the method
used.

D. Applications to hybrid resonators

Strain induced by the mechanical motion of the material,
for example, through the drum oscillatory modes of a FG
membrane suspended from its edges, provides an intrinsic
mean of coupling phonons with electronic degrees of freedom.
This method does not require the use of external components,
resulting in a device that is less prone to noise and decoher-
ence, and has lower complexity in its scalability than devices
relying on auxiliary components to provide the coupling [4].
However, intrinsic strain coupling is typically relatively small,
which led to several proposals aimed at increasing the inter-
action by using electric or magnetic fields [23], or cavities [4]
coupled to the resonator.

Depending on the system, qubits can be encoded in either
the orbital or spin electronic degrees of freedom of color
centers, which makes orbit-strain or spin-strain interactions
relevant for phonon coupling [4]. Typically, the spin-strain
coupling strength is rather small, with values in the order of
10 GHz/strain for devices with implanted NV centers [77,78].
On the other hand, orbit-strain coupling is much stronger, ap-
proximately 108 times larger than spin-strain coupling, given
that the molecular orbitals are directly affected by the changes
in the lattice induced by mechanical motion [79]. Values for
orbit-strain coupling are typically in the range of PHz/strain
for different quantum hybrid devices using NV centers [79]
and h-BN sheets with defects [70,80,81].

The dynamics of a freestanding 2D material sheet can be
described through the elasticity theory of membranes. In the
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membrane limit in which the material has vanishing thickness,
which is fulfilled by single or a few layer sheets, the frequency
of the fundamental mechanical mode ω0

m for membranes with
simple geometries is approximated in terms of the pretension
T , the surface mass density ρs, a geometrical form factor
α given by the nontrivial zero of the mode profile, and a
characteristic dimension of the system d [17,82,83],

ω0
m = α

d

√
T

ρs
. (4)

For a circular membrane, α = 2.4 and d is equal to the ra-
dius R [82,84], while for a ribbon of length L clamped in
the extremes, α = π and d = L [80]. The pretension value
depends on the fabrication of the membrane [60], and is
related to the strain ε and in-plane Young’s module of the
material Es by T = Esε. For graphene membranes of a few
µm of radius, T was estimated to be ≈4 × 10−2 N/m [85].
For fluorographene, ρs = 1.706 mg/m2 [60] and Es = 100
N/m [31]. Taking T ≈ 4 × 10−2 N/m as reference, we obtain
ω0

m ≈ 10 MHz for fluorographene membranes of d ≈ 1µm, a
value in agreement with the ones obtained for similar devices
of h-BN [23] and graphene [17,19,83,85]. It is worth mention-
ing that driven devices can achieve frequencies of the order of
GHz, as was obtained for MoS2 piezo-resonators [20].

The membrane strain is related to its deflection, and for
small deflections it can be approximately written in terms of
the maximum vertical displacement ξ [85],

ε = β

(
ξ

d

)2

, (5)

where β is a geometrical factor, which for a ribbon-shaped
membrane corresponds to 8/3 [85]. Static deflections in mem-
brane devices can be tuned using a voltage gate, and typical
values for membranes of a few µm of radius are on the order
of 10 nm, which leads to static built-in strains of ≈10−4 [85].
Strain induced dynamically through time-dependent bias can
achieve the same order of magnitude [85]. The fundamental
oscillation modes of microscale membranes around the equi-
librium point have a vertical displacement of approximately
0.1 nm, which corresponds to an induced strain of ε ≈ 10−8.
These reference values correspond to a h-BN ribbon [80]. The
quadratic dependence of the strain with the vertical displace-
ment, which in turn depends on the membrane geometry and
material through ξ = √

h̄/(2Mω0
m) (M is the effective mass)

[23,80], leads to a spread in the reference values, ranging
from ξ ≈ 10−2 nm and ε ≈ 10−10 for a similar h-BN device
[23] to ξ ≈ 10 nm and ε ≈ 10−4 for the already mentioned
driven resonators [85]. For comparison, the strain of a three-
dimensional (3D) diamond micro-cantilever with implanted
NV centers in the fundamental mode is ≈10−12, and can be
increased to ≈10−6 through mechanical drive [79]. A scaling-
down of the latter device to the nanoscale was proposed to
achieve a larger orbit-strain coupling (up to the ≈10 MHz) in
the fundamental mode [79], through a larger induced strain.
In this regard, 2D membranes arise as promising candidates,
given their comparatively large achievable strain.

Our ab initio calculations suggest a deformation potential
[22] of  ≈ 1 PHz/strain for fluorographene membranes, a
value similar to the one obtained for previously studied h-BN

resonators [22,80]. If we consider a fluorographene membrane
of d ≈ 1µm hosting a color center and oscillating in the fun-
damental mode with a vertical displacement of ξ ≈ 0.1 nm,
we obtain an orbit-strain coupling of g = 10 MHz.

The obtained coupling is about 103 times larger than the
values obtained for 3D mechanical resonators with NV− cen-
ters [4,79]. For the latter devices, different cooling schemes
were proposed [4,5,86]. The “off-resonant” scheme uses the
ms = 0 sublevel A0

0 of the ground state and the E3y
0 level of

3E as a two-level system, and converts the strain coupling
to an effective transverse interaction using a laser detuned
by ω0

m from the transition energy [4]. The “resonant” scheme
involves tuning the energy difference between the E3x

0 and E3y
0

levels of the 3E state to be equal to ω0
m, while driving the tran-

sition from the A0
0 ground state to E3y

0 with a laser. This allows
for resonant excitation to the E3x

0 state by removing a phonon
from the mechanical mode [4]. However, scaling-down these
devices from the microscale to the nanoscale is necessary to
achieve ground-state cooling using these methods [4,79]. The
inherent larger coupling in our system would enable the im-
plementation of these methods in a fluorographene membrane
device, thereby extending the proposal for the NV− center to
the V−

CF defect. Another possible protocol uses the A0
±1 levels

in a � configuration with an excited state formed with the
E3(x,y)

±1 levels, which are mixed through spin-orbit interaction
[72]. This scheme relies on stimulated Raman transitions to
remove phonons from the resonator, and has the advantage of
combining the stronger orbit-strain coupling with the larger
coherence of spin states [4].

E. Formation energy and stability

The formation energy for a defect with charge q is obtained
from [87]

Eq
f (εF ) = Eq

d − Ebulk −
∑

i

niμi + qεF + Eq
corr, (6)

where Eq
d is the total energy of the supercell with the defect,

Ebulk is the energy of the pristine supercell, and ni are the
number of atoms that have been added (ni > 0) or removed
(ni < 0) to form the defect, with μi the corresponding chemi-
cal potentials. The energy depends on the total charge with the
Fermi energy εF , measured from the top of the valence band.
The final term Eq

corr accounts for corrections such as finite
k-point sampling and electrostatic interactions [87,88]. Here,
we apply the Freysoldt–Neugebauer–Van de Walle (FNV)
correction scheme [89,90].

In Fig. 5 we present the formation energy for the VF and
VCF defects as a function of the Fermi energy, which can
be varied by applying a gate voltage. We considered two
different scenarios for the chemical potentials. In the first
scenario, the defective membrane is in equilibrium with F2,
which results in a fluorine-rich environment. For this case,
we obtain μF = μF2/2 from the energy of a F2 molecule and
μC = μFG − μF from the difference between the energy of the
pristine fluorographene primitive cell (μFG) and the fluorine
chemical potential. In the second scenario, we considered a
carbon-rich environment and calculated μC from a graphene
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FIG. 5. Formation energy as a function of the Fermi energy for
VF and VCF defects, for F2-rich and C-rich environments. The black
dashed lines indicate the position of the top of the valence and the
bottom of the conduction bands. The favorable charge states (+, 0,
or −) of the defects are also indicated.

primitive cell. We obtained the fluorine chemical potential
from the difference with μFG, which gives μF = μFG − μC.

The formation energy of VCF is independent of the environ-
ment, since the third term in Eq. (6),

∑
i niμi = nCμC + nFμF,

equals μFG by definition for both environments. On the other
hand, the formation energy for the VF defect is higher in the
F2-rich environment, as expected. The formation energy of
VF is higher than that of VCF only in the special condition of
the F2-rich environment and εF � −0.5 eV. For the remaining
conditions, the VF defect is more stable than VCF. However,
molecular dynamics calculations suggest that the latter defect
is also thermodynamically stable [47].

IV. CONCLUSIONS

In this study, we investigated the electronic properties of
VF, VCF, and V−

CF defects in FG membranes. We computed
the many-body states from single-particle DFT results making
use of group theoretical considerations, obtained the transition
energies between the states, and analyzed their dependence
with nonaxial strain. The obtained energy shift under strain for
the studied defects was on the order of 1 PHz/strain, which
is comparable to the one found for defects in h-BN sheets.
This value leads to an orbit-strain coupling of g ≈ 10 MHz
for membranes of ≈1µm. Due to the similarities of VCF

defects in FG with NV centers on diamond, some propos-
als for NV center resonators can be mapped to 2D devices

based on FG with V−
CF defects, taking advantage of the larger

strain achievable in 2D materials. Furthermore, extending this
study with alternative ab initio methods would be useful to
determine whether an ISC similar to the one present in NV
centers could also be expected in this system. Our findings
suggest that the VCF defect in FG membranes can be a promis-
ing candidate for developing nanomechanical resonators with
strong orbit-strain coupling and contribute to the understand-
ing of defects in two-dimensional materials and their quantum
applications.
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APPENDIX: MULTICONFIGURATIONAL STATES

For VCF, the ground and first excited states are directly
described by a single determinant, while the remaining states
are multiconfigurational. In principle, the �SCF method does
not allow one to compute configurations composed by sev-
eral determinants. However, it is possible to obtain a rough
estimation of these multiconfigurational states from single-
determinant auxiliary configurations [55,56]. To illustrate the
method, consider the state A3. We note that

√
2A3

+1/2 + A1
+1/2 =

√
3|a1exey〉. (A1)

Considering that the energy of the states is independent of the
spin projection, E (A1

+1/2) = E (A1
+3/2) = E (A1), we obtain

E (A3) = 1
2 [3E (|a1exey〉) − E (A1)]. (A2)

Similarly, for the two remaining excited states of VCF we
obtain the following expressions,

E (E2) = 1
3 [6E (|a1exey〉) − 2E (A1) − E (A3)], (A3)

E (A4) = 2E (|a1exex〉) − E (E2). (A4)

For V−
CF, we obtain the following expressions for the tran-

sition energies of the multiconfigurational states:

E (E1) = 2E (|exey〉), (A5)

E (A′2) = 2E (|exex〉) − E (E1), (A6)

E (E4) = 2E (|aex〉). (A7)
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[30] R. Zbořil, F. Karlický, A. B. Bourlinos, T. A. Steriotis, A. K.
Stubos, V. Georgakilas, K. Šafářová, D. Jančík, C. Trapalis,
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[56] M. Mackoit-Sinkevičienė, M. MacIaszek, C. G. Van de Walle,
and A. Alkauskas, Carbon dimer defect as a source of the 4.1 eV
luminescence in hexagonal boron nitride, Appl. Phys. Lett. 115,
212101 (2019).

[57] A. Gali, M. Fyta, and E. Kaxiras, Ab initio supercell cal-
culations on nitrogen-vacancy center in diamond: Electronic
structure and hyperfine tensors, Phys. Rev. B 77, 155206
(2008).

[58] G. Thiering and A. Gali, Ab initio calculation of spin-orbit
coupling for an NV center in diamond exhibiting dynamic Jahn-
Teller effect, Phys. Rev. B 96, 081115(R) (2017).

[59] A. Markevich, R. Jones, and P. R. Briddon, Doping of fluo-
rographene by surface adsorbates, Phys. Rev. B 84, 115439
(2011).

[60] M. E. Belenkov, V. M. Chernov, and E. A. Belenkov, Struc-
ture of fluorographene and its polymorphous varieties, J. Phys.:
Conf. Ser. 1124, 022010 (2018).

[61] S. H. Cheng, K. Zou, F. Okino, H. R. Gutierrez, A. Gupta,
N. Shen, P. C. Eklund, J. O. Sofo, and J. Zhu, Reversible
fluorination of graphene: Evidence of a two-dimensional
wide bandgap semiconductor, Phys. Rev. B 81, 205435
(2010).

[62] M. Tinkham, Group Theory and Quantum Mechanics (Courier
Corporation, New York, 2003).

[63] S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D.
Fisher, and D. J. Twitchen, Electron paramagnetic resonance
studies of the neutral nitrogen vacancy in diamond, Phys. Rev.
B 77, 081201(R) (2008).

[64] N. B. Manson, K. Beha, A. Batalov, L. J. Rogers, M. W.
Doherty, R. Bratschitsch, and A. Leitenstorfer, Assignment of
the NV0 575-nm zero-phonon line in diamond to a 2E -2A2

transition, Phys. Rev. B 87, 155209 (2013).
[65] A. Gali, Theory of the neutral nitrogen-vacancy center in di-

amond and its application to the realization of a qubit, Phys.
Rev. B 79, 235210 (2009).

[66] M. S. Barson, E. Krausz, N. B. Manson, and M. W. Doherty,
The fine structure of the neutral nitrogen-vacancy center in
diamond, Nanophotonics 8, 1985 (2019).

[67] I. B. Bersuker, The Jahn-Teller Effect (Cambridge University
Press, Cambridge, 2009).

[68] J. Zhang, C. Z. Wang, Z. Zhu, Q. H. Liu, and K. M.
Ho, Multimode Jahn-Teller effect in bulk systems: A case
of the NV0 center in diamond, Phys. Rev. B 97, 165204
(2018).

[69] Á. Gali, Ab initio theory of the nitrogen-vacancy center in
diamond, Nanophotonics 8, 1907 (2019).

[70] M. Abdi and M. B. Plenio, Quantum Effects in a Mechanically
Modulated Single-Photon Emitter, Phys. Rev. Lett. 122, 023602
(2019).

[71] J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras,
and M. D. Lukin, Properties of nitrogen-vacancy centers in dia-
mond: The group theoretic approach, New J. Phys. 13, 025025
(2011).

[72] M. W. Doherty, N. B. Manson, P. Delaney, and L. C.
Hollenberg, The negatively charged nitrogen-vacancy centre in

104102-10

https://doi.org/10.1039/C5NR03243A
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1016/j.carbon.2009.12.031
https://doi.org/10.1103/PhysRevB.81.085433
https://doi.org/10.1103/PhysRevB.82.195436
https://doi.org/10.1063/1.4736998
https://doi.org/10.1002/smll.201002058
https://doi.org/10.1021/ct400476r
https://doi.org/10.1103/PhysRevB.87.115431
https://doi.org/10.3390/molecules26216666
https://doi.org/10.1039/C7NR04270A
https://doi.org/10.1021/acs.jctc.7b01072
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1063/1.1645787
https://doi.org/10.1103/PhysRevB.105.184101
https://doi.org/10.1063/1.5124153
https://doi.org/10.1103/PhysRevB.77.155206
https://doi.org/10.1103/PhysRevB.96.081115
https://doi.org/10.1103/PhysRevB.84.115439
https://doi.org/10.1088/1742-6596/1124/2/022010
https://doi.org/10.1103/PhysRevB.81.205435
https://doi.org/10.1103/PhysRevB.77.081201
https://doi.org/10.1103/PhysRevB.87.155209
https://doi.org/10.1103/PhysRevB.79.235210
https://doi.org/10.1515/nanoph-2019-0142
https://doi.org/10.1103/PhysRevB.97.165204
https://doi.org/10.1515/nanoph-2019-0154
https://doi.org/10.1103/PhysRevLett.122.023602
https://doi.org/10.1088/1367-2630/13/2/025025


GROUP THEORETICAL AND AB INITIO … PHYSICAL REVIEW B 108, 104102 (2023)

diamond: The electronic solution, New J. Phys. 13, 025019
(2011).

[73] Y. Jin, M. Govoni, G. Wolfowicz, S. E. Sullivan, F. J. Heremans,
D. D. Awschalom, and G. Galli, Photoluminescence spectra of
point defects in semiconductors: Validation of first-principles
calculations, Phys. Rev. Mater. 5, 084603 (2021).

[74] J. Gavnholt, T. Olsen, M. Engelund, and J. Schiøtz, � self-
consistent field method to obtain potential energy surfaces of
excited molecules on surfaces, Phys. Rev. B 78, 075441 (2008).

[75] M. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao,
S. D. Bennett, N. B. Manson, A. Kubanek, and M. D.
Lukin, State-selective intersystem crossing in nitrogen-vacancy
centers, Phys. Rev. B 91, 165201 (2015).

[76] H. Ma, M. Govoni, and G. Galli, PyZFS: A Python package
for first-principles calculations of zero-field splitting tensors,
J. Open Source Softw. 5, 2160 (2020).

[77] P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B.
Jayich, Dynamic strain-mediated coupling of a single diamond
spin to a mechanical resonator, Nat. Commun. 5, 4429 (2014).

[78] J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky,
Strain Coupling of a Nitrogen-Vacancy Center Spin to a Di-
amond Mechanical Oscillator, Phys. Rev. Lett. 113, 020503
(2014).

[79] K. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze,
and A. C. Bleszynski Jayich, Strain Coupling of a Mechanical
Resonator to a Single Quantum Emitter in Diamond, Phys. Rev.
Appl. 6, 034005 (2016).

[80] F. T. Tabesh, Q. Hassanzada, M. Hadian, A. Hashemi, I. A.
Sarsari, and M. Abdi, Strain induced coupling and quantum
information processing with hexagonal boron nitride quantum
emitters, Quantum Sci. Technol. 7, 015002 (2022).

[81] G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov,
M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich,

and D. Englund, Tunable and high-purity room temperature
single-photon emission from atomic defects in hexagonal boron
nitride, Nat. Commun. 8, 705 (2017).

[82] T. Wah, Vibration of circular plates, J. Acoust. Soc. Am. 34, 275
(1962).

[83] A. M. Van Der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-
Vargas, W. S. Whitney, P. H. Pham, J. Park, J. M. Parpia, H. G.
Craighead, and P. L. McEuen, Large-scale arrays of single-layer
graphene resonators, Nano Lett. 10, 4869 (2010).

[84] C. Di Giorgio, E. Blundo, G. Pettinari, M. Felici, F. Bobba,
and A. Polimeni, Mechanical, elastic, and adhesive properties of
two-dimensional materials: From straining techniques to state-
of-the-art local probe measurements, Adv. Mater. Interfaces 9,
2102220 (2022).

[85] X. Zhang, K. Makles, L. Colombier, D. Metten, H. Majjad,
P. Verlot, and S. Berciaud, Dynamically-enhanced strain
in atomically thin resonators, Nat. Commun. 11, 5526
(2020).

[86] I. Wilson-Rae, P. Zoller, and A. Imamoglu, Laser Cooling of a
Nanomechanical Resonator Mode to Its Quantum Ground State,
Phys. Rev. Lett. 92, 075507 (2004).

[87] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G.
Kresse, A. Janotti, and C. G. Van de Walle, First-principles
calculations for point defects in solids, Rev. Mod. Phys. 86, 253
(2014).

[88] Á. Gali, Recent advances in the ab initio theory of solid-state
defect qubits, Nanophotonics 12, 359 (2023).

[89] C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Fully
Ab Initio Finite-Size Corrections for Charged-Defect Supercell
Calculations, Phys. Rev. Lett. 102, 016402 (2009).

[90] M. H. Naik and M. Jain, CoFFEE: Corrections for formation
energy and eigenvalues for charged defect simulations, Comput.
Phys. Commun. 226, 114 (2018).

104102-11

https://doi.org/10.1088/1367-2630/13/2/025019
https://doi.org/10.1103/PhysRevMaterials.5.084603
https://doi.org/10.1103/PhysRevB.78.075441
https://doi.org/10.1103/PhysRevB.91.165201
https://doi.org/10.21105/joss.02160
https://doi.org/10.1038/ncomms5429
https://doi.org/10.1103/PhysRevLett.113.020503
https://doi.org/10.1103/PhysRevApplied.6.034005
https://doi.org/10.1088/2058-9565/ac2f4d
https://doi.org/10.1038/s41467-017-00810-2
https://doi.org/10.1121/1.1928110
https://doi.org/10.1021/nl102713c
https://doi.org/10.1002/admi.202102220
https://doi.org/10.1038/s41467-020-19261-3
https://doi.org/10.1103/PhysRevLett.92.075507
https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1515/nanoph-2022-0723
https://doi.org/10.1103/PhysRevLett.102.016402
https://doi.org/10.1016/j.cpc.2018.01.011

